Selected Marine Environmental Considerations Associated With Concrete Gravity Base Foundations For UK Round 3 Projects

Ian Reach
Principal Marine Ecologist

MarineSpace
Making Sense of the Marine Environment™
Presentation Outline

• Context and Perceptions

• **Environmental Pressure Pathways**
 – Foundation Seabed Footprint
 • Physical
 • Functional
 – Seabed Preparation
 – Underwater Energy Emissions and Impacts

• Determinations
Context and Perceptions
Background

Presentation based upon work commissioned by
The Concrete Centre’s Gravity Foundation Interest Group (CFIG)

– Aimed at UK Round 3 and Scottish TW Projects

– Set context for CGBFs with other deep water foundation solutions

– To inform UK regulators, statutory advisors, developers and environmental consultants

– Consultation with the Offshore Renewable Energy Licensing Group (ORELG)
CGBFs in Context

- Concrete Gravity Foundations used at industry-scale in marine environment for last 50+ years
- >50 major offshore concrete structures have been built worldwide
- 300 m water depth have been installed - Troll Gas Platform
- Majority of recent platforms in water depths comparable with UK Round 3 zones
- The trend for shallower-water platform installation commenced with the Ravenspurn North platform (1989)
- The construction features of these smaller oil and gas platforms are evident in the CGBFs now being proposed

So nothing new?
CGBFs in Context

Ninian Central - 600,000 tonnes

BP Harding – 110 m water depth

Troll Gas Platform
472 m high

Thornton Bank – 40 m,
3,000 tonnes
18 m water depth
Deep Water Foundations in Context

Deep Water Foundations in Context

- **UK Round 1 and 2**
 - **Nearshore**
 - **Shallow water** ≤ 20 m BCD
 - **Steel monopiles**

- **UK Round 3**
 - **Further offshore**
 - **Deep water** > 20 m BCD ~35 m+
 - Shift in foundation ‘toolkit’
 - CGBF, Steel Jacket, Tripod, Suction Caisson, and Floating NOT monopile

© DECC
CGBFs – Perceptions and Concerns

So what is the current perception of wind CGBFs by the UK Statutory Bodies?

• ‘Mind-set’ based on UK R1 and R2 infrastructure baseline
 – Shallow water + Nearshore
 – Steel monopile + Variable scale of scour protection

• Cumulative - Array-scale - effects
 – Oil and Gas platforms vs Wind Farms
 • Single structure vs multiple structures
 – Blockage effects
 – Direct seabed habitat loss + seabed alteration
 – Underwater energy emissions and noise impacts

• Shift in ‘mind-set’ required
 – Increased direct physical footprint
Environmental Effect Pathways

Dredging / ground preparation
- Changes to bathymetry
 - Changes to local tidal currents
 - Changes to waves
 - Disposal of dredged material
 - Resuspension of fine sediment
- Vessel presence on site
 - Displacement
 - Removal of seabed sediments and habitats
- Noise
- Deposition of sediment
 - Increased turbidity
- Coast
 - Features, habitats and species of significance
 - Smothering
 - Benthos
 - Marine Mammals
 - Navigation
 - Fishing
Foundation Footprint
Parameterisation - Structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>35m Depth 5MW Turbine</th>
<th>50m Depth 5MW Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bedrock</td>
<td>Sands</td>
</tr>
</tbody>
</table>

PERMANENT INSTALLATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>35m Depth 5MW Turbine</th>
<th>50m Depth 5MW Turbine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bedrock</td>
<td>Sands</td>
</tr>
</tbody>
</table>

A.1 External surface area of concrete (m²)	2,825	2,739	3,421	3,338
	4,675	4,675	5,800	5,800
A.2 Elevational area from surface of sea bed to water surface (m²)	901	863	1,201	1,145
	1,690	1,690	2,067	2,067
A.3 Area of concrete footprint at surface level of sea bed (m²)	865	900	1,000	1,029
	1,150	1,150	1,386	1,386
A.3.b Inferred diameter at seabed (calculated from A.3) (m)	33.2	33.9	35.7	36.2
	38.3	38.3	42.0	42.0
A.4 Diameter at water surface (or shape and maximum projected width if not circular) (m)	6.5	6.65	6.36	6.5
	8	8	7	7
A.5 Area of scour protection if used (m²)	Assumed	2,095	Assumed	2,324
	N/A	3,500	N/A	4,005
A.6 Density of wind towers (no/km²)	1	1	1	1
	1.23	1.23	1.23	1.23
Foundation Seabed Footprint - Physical

<table>
<thead>
<tr>
<th>Foundation Concept</th>
<th>Foundation diameter (m)</th>
<th>Foundation footprint (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel monopile</td>
<td>8.5</td>
<td>57</td>
</tr>
<tr>
<td>CGBF</td>
<td>40</td>
<td>1,257</td>
</tr>
<tr>
<td>Steel Jacket (piled)</td>
<td>4 * 4</td>
<td>201</td>
</tr>
<tr>
<td>Tripod (piled)</td>
<td>3 * 5</td>
<td>177</td>
</tr>
<tr>
<td>Suction caisson</td>
<td>22</td>
<td>380</td>
</tr>
</tbody>
</table>
Foundation Seabed Footprint - Functional

- **Direct loss of seabed habitat + benthos**
- ‘Shading’ effect\(^2\) = habitat loss/alteration
 - Significant for Steel Jackets and Tripods
- Changes to nearbed water and sediment flow – alter benthos
- ‘Reef’ effect = habitat loss/alteration
 - Significant for Steel Jackets and Tripods

\(^1\)Footprint = effective seabed footprint = habitat loss or alteration

\(^2\)Seabed located beneath foundation structure but not under one of the footings
Functional Seabed Footprint and Benthic Communities

• ‘Shading’ effects from SJs and Tripods
 – Habitat in an altered state

• Complex construction surface area
 – Altered hydrography
 – Sediment particle size changes
 – Food supply/availability

• Alteration of infaunal biotopes
 – Even on seabed without physical presence of footings
Functional Seabed Footprint and Benthic Communities

• ‘Reef’ effects from SJs and Tripods
 – Habitat in an altered state

• Complex construction surface area
 – Change from sediment biotopes to ‘rocky’ biotopes
 – Deposition of faeces and pseudofaeces
 – Organic nutrification
 – Fish Aggregation
 – Predation increase on surrounding benthos
Seabed Preparation

- 70 m * 80 m * 7 m foundation pits
- 90,000 m³ per foundation
- Dredge operations a licensable activity
- Sediment plumes
 - Smothering
 - Dredge, discharge, re-dredge, back-fill
Seabed Preparation

- Foundation pits/layers not required for all solutions
- Seabed excavation = temporary habitat loss
 - direct (removal) and indirect (smothering/plume)
- Increases overall impact zone
 - Spoil mounds
- Increases risk to archaeology/heritage
- Recovery – habitat type and benthos present
 - Sands -6-24 months
 - Gravel – 8-15 years+
 - >1 m ‘capping’ layer
Underwater Energy Impacts
Underwater Energy Emissions and Impacts

• Energy Emissions
 – Sound
 – Pressure

• Source
 – Piling
 – Drill-drive-drill

• Offshore environment vs Nearshore
 – Bathymetry, Seabed bedforms/Geomorphology
Underwater Sound Emissions and Noise Impacts

• Sensitive species
 – Certain fish (incl. eggs and larvae) and marine mammals

• Disturbance
 – Displacement
 – Behaviour Alteration
 – Reduced Predation Success

• Damage, Mortality

• Population and Ecosystem-scale effects
Underwater Noise Impacts

• Habitats Directive
 – Annex IV European Protected Species - *deliberate disturbance*
 • Habitats Regulation 41
 • Offshore Habitats Regulation 39(1)(b)

• Marine Strategy Framework Directive
 – 11 Descriptors of Good Environmental Status
 • GES #11 – "*Introduction of energy including underwater noise is at levels that do not adversely affect the marine environment.*"

• Defra – Noise Register
 "...establish and maintain a ‘noise registry’ which would record in space and time activities generating noise... (allowing a determination of)...whether they may potentially compromise the achievement of GES."
Underwater Noise Impacts

• Hammering of piles
 – Steel monopiles, Steel Jackets and Tripods
 • Disturbance\(^1\) at 50 km – Beatrice OWF (2 Steel Jackets – 5MW)
 • Mortality of Herring eggs\(^2\) – Scroby Sands OWF
• No piles for CGBF
• Dredging foundation pits
 – No more noisy than background traffic\(^3\) (≤ 1 km)
• CGBF Installation
 – No more noisy than background traffic\(^4\)
• Sound mitigation technology for SJs and Tripods

\(^1\)Bottlenose Dolphin *Tursiops truncatus* – Moray Firth SAC interest feature – Bailey *et al.* (2010). Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals.

\(^2\)Perrow, *et al.* (2011). Effects of the construction of Scroby Sands offshore windfarm on the prey base of Little tern *Sternula albifrons* at its most important UK colony.

\(^3\)Robinson *et al.* (2011). Measurement of noise arising from marine aggregate dredging operations, MALSF

\(^4\)Haelter *et al.* (2009) - Underwater noise emission during construction at Thornton Bank, Belgian Territorial Waters
Conclusions
Relative Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CGBFs</th>
<th>Monopiles</th>
<th>Tripods</th>
<th>Steel Jackets</th>
<th>Suction Caissons</th>
<th>Floating platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience (No. of foundations currently installed)</td>
<td>Good (332)</td>
<td>Good (1810)</td>
<td>Moderate (86)</td>
<td>Moderate (88)</td>
<td>Low (1)</td>
<td>Trial only (2)</td>
</tr>
<tr>
<td>Water Depth</td>
<td>All</td>
<td>Shallow</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>Deep</td>
</tr>
<tr>
<td>Emplacement weather window</td>
<td>Good</td>
<td>Restricted</td>
<td>Restricted</td>
<td>Restricted</td>
<td>Moderate</td>
<td>Unknown</td>
</tr>
<tr>
<td>Maintenance required</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>Unknown</td>
</tr>
<tr>
<td>Price</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Availability – UK R3</td>
<td>Fav</td>
<td>Unfav</td>
<td>Fav</td>
<td>Fav</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Environmental Effects/Impacts

<table>
<thead>
<tr>
<th>Ground preparation (temp habitat loss)</th>
<th>H</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound emitted during installation</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Seabed footprint (habitat loss)</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Scour</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Blockage effects</td>
<td>M</td>
<td>H</td>
<td>M</td>
<td>M</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Reef effects</td>
<td>H</td>
<td>M</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>
Conclusions

For **all** foundation solutions

– A *mind shift* for regulators and their advisors

– All deep water foundations likely to have increased direct seabed footprint than UK Round 1 and 2 foundations

– Functional seabed footprint variable between foundation types

– Return of the seabed to pre-impacted baseline

– Underwater energy emissions during construction will receive even more focus than UK Round 1 and 2 projects
Conclusions

Concrete Gravity Base Foundations

– Can have a similar functional seabed footprint to other deepwater foundation solutions

– Where seabed preparation is required will initially result in larger footprints of effects than steel jackets or tripods

– Recovery from these effects is expected within the lifespan of the windfarm project

– No significant sound emissions during installation and decommissioning

– Mitigate legislative/consenting burden
 • No significant noise impacts
Further Thoughts

– Fate of foundation pit ‘spoil’ heaps
– Service vessel moorings
 • Emplacement of permanent moorings
– Accommodation platforms
– Spread of non-native invasive species
 • Foundations as ‘stepping stones’
– Fate of the artificial reefs at project end?
Acknowledgements

Thanks to:

John Bingham
Chair GFIG

Alan Bromage
Andrew Minson
Chris Laver

• Ballast Nedham Offshore B.V.
• BAM Wind Energy
• Gravitas Offshore
• Laing O’Rourke
• SeaBreeze Ltd
• Seatower AS
• Sir Robert McAlpine
• Skanska
• Strabag Offshore Wind GmbH
• Vici Ventus
• Vinci Offshore Wind UK
• WindAtBase

A full list of The Concrete Centre Interest Group members can be found at:
http://www.concretecentre.com/wind

The full report can be downloaded from www.concretecentre.com/wind