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1 Introduction 
The Brims Tidal Array is a proposed tidal energy development by SSE Renewables and 
Open Hydro. The area being investigated for the proposed development lies to the south of 
the island of Hoy, off the Brims Ness headland (Figure 1). Based on present knowledge it is 
anticipated that a tidal array of up to 200 megawatts (MW) capacity could be installed on the 
site, generated by up to 200 tidal energy devices. This report describes the distance 
sampling analyses used to calculate the abundance and density estimates for seabirds that 
will underpin the environmental impact assessment for the project with respect to these 
species.  
 
Distance sampling is a widely-used group of closely related methods for estimating the 
density and/or abundance of biological populations from data collected usually using line 
transects or point counts (Buckland et al. 2001, 2004).  It caters for the fact that animals 
more distant from the observer are less likely to be detected, and corrects the resulting 
population estimates accordingly. For distance sampling to be applied, perpendicular 
distances of clusters of animals from the survey line must be recorded. A detection function 
is then fitted to these observed distances, and used to estimate the proportion of objects 
missed within transect.  This then allows an absolute estimate of the number and density of 
animals present to be made.  Key assumptions of the standard distance sampling methods 
applied here are: 

 All animals on the transect line (i.e. at distance zero) should be detected.  
 There should be no responsive movement prior to detection. 
 Distance to animals should be measured without error. 
 The detection function should have a wide shoulder (i.e. most animals should be 

detected out to a reasonable distance). 
 

2 The Data 
The data analysed here was collected using standard ESAS methodologies (Camphuysen et 
al. 2004) on 20 survey dates between June 2013 and May 2014 (Table 1a).   
 
The proposed development lies to the South of South Walls and Cantick Head (Figure 2).  At 
the start of the project a provisional boundary was defined for the area potentially suitable for 
development (Figure 2). The survey area was initially defined as all areas within a 4 km 
buffer around this provisional boundary (Figure 2). Areas within this 4 km buffer but to the 
North of South Walls and Cantick Head, were deemed very unlikely to be influenced 
ecologically by the proposed development, and were excluded. These areas were delimited 
by a straight line running between Cantick Head and the Ool on Switha. Areas excluded on 
this basis include North Bay, Longhope, Kirkhope and Cantick Sound. In addition, to ensure 
safe operation of the vessel, all areas within 500m of the shore were also excluded. 
Subsequently the area within which development could potentially take place was defined 
more precisely. This revised area potentially suitable for development almost wholly falls 
within the initial provisional boundary (Figure 2), with only very small areas (a total of 2.3 ha 
out of 1105.7 ha, 0.2%) at the site‟s north western and south eastern corners falling outside 
the initial provisional boundary. Therefore, excluding areas to the north of Cantick Head or 
within 500m of the shore, the survey area includes nearly all (i.e. 10601.5 ha out of 10614.22 
ha, 99.88%).sea areas within 4 km of any potential development  This survey area was 
systematically covered by 11 transects spaced at 1.4 km intervals within a randomly 
positioned grid (Figure 2).  With transects 0.3 km wide, and spaced at 1.4 km intervals 
21.4% of the survey area would be expected to fall within the transect during each complete 
survey.  
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Table 1a presents estimates of coverage for each date. The coverage of each transect on a 
particular date is estimated by expressing the distance covered by the vessel (derived from 
global positioning system estimates of the ship‟s position at 1 minute intervals) as a 
percentage of the length of the transect. The overall coverage is estimated by expressing the 
total distance covered by the vessel on transect as a percentage of total transect length. As 
in practice the vessel can only follow the transect approximately, particularly given the 
vigorous tidal regime operating in the area, these percentages can sometimes be greater 
than 100%.  
 
The intention was to carry out a single survey during each calendar month, with all transects 
being covered within a single day. On the 16th May 2013 poor sea state conditions led to the 
survey being abandoned with only one transect partially covered (Table 1a); data from this 
date has been excluded from all analyses. In February 2014, survey coverage was extended 
over two dates, the 17th and 19th, and these have been combined into a single survey.  Table 
1b presents the survey effort achieved on each survey, excluding the data from the abortive 
survey in May 2013, and combining the data from the two survey dates in February 2014 
into a single survey, assigned to the 18th February 2014.  Between late March 2012 and 
early March 2014 18 surveys were conducted, with complete coverage being achieved in 12 
surveys, and partial coverage in 6 surveys. 
 
For the 12 complete surveys, overall coverage across all transects always exceeded 96%, 
whilst coverage of individual transects was never less than 83%, and for 11 out of the 12 
surveys was always greater than 89% (Table 1b).  
 
For the 6 incomplete surveys overall coverage varied between 53% and 89% (Table 1b). On 
the 20th August 2012, all transects apart from transect 22 were fully covered and an overall 
coverage of 89% was achieved.  Three of the incomplete surveys (11th December 2012, 4th 
March 2013, 12th March 2014) showed a similar pattern, with complete coverage of transects 
2-14,  but no coverage of transects 16 to 22, providing overall coverage of 53-56%.  During a 
fifth survey on the 23rd October 2013, again transects 2-14 were completely covered, but 
there was only partial coverage of transects 16 and 18, and no coverage of transects 20 and 
22, providing overall coverage of 68%. Thus five of the six incomplete surveys show a 
similar pattern, with complete coverage of the 7 easternmost transects (transects 2-14) and 
either partial or no coverage of the 4 westernmost transects (transects 16-22). This reflects 
the poorer sea conditions often encountered on these westernmost transects, reflecting their 
greater exposure to Atlantic swells. The sixth survey, conducted on the 17th and 19th 
February 2014, shows a different pattern of a coverage, with complete coverage of transects 
4 - 10 and transects 20 -22, partial coverage of transects 2 and 18, and no coverage of 
transects 12 - 16.  
 
Surveys took place over 25 calendar month period, from late March 2012 to early March 
2014.  Complete surveys, in which all transects were covered, were achieved in 10 of these 
25 calendar months (March, April, May, June, and July in 2012; February, March,  June, 
July, September in 2013). Surveys in which some but not all transects were covered were 
achieved in 5 months (August and December 2012, October 2013, and February and March 
2014). No coverage was achieved in 10 out of the 25 months (September, October and 
November 2012; January, April, May, August, November and December 2013, January 
2014).  Although there were no surveys in April or May 2013, additional complete surveys 
were achieved in the adjoining months (on the 30th March 2013 and the 3rd June 2013) so as 
to maintain as even coverage throughout the year as closely as possible.  In March 2013, in 
addition to complete surveys conducted on the 5th March and 30th March, the latter in lieu of 
the April survey, an incomplete survey was completed on the 4th March. When presenting 
the results for individual surveys the results from this partial survey have been included, to 
illuminate variation between surveys within a month. However, when calculating seasonal 
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abundance estimates, the results from this addition incomplete survey on the 4th March have 
been excluded, to make the sample more representative.  
 
Difficult sea conditions associated with the strong tidal currents in the survey area prevented 
surveys in some months. In other months, although surveys were conducted, poor sea 
conditions meant it was often not possible to complete all transects. In particular, completing 
the westernmost transects was often difficult. The incomplete coverage achieved in these 
partial surveys means that the density of birds encountered during them may not be 
representative of the densities across the whole survey area.  Thus, including the results 
from these incomplete surveys will potentially lead to bias in our density estimates. However, 
excluding them would carry a heavy cost in terms of achieving representative cover 
throughout the year. Thus, results from these incomplete surveys have been retained in the 
analyses. However, the potential for bias in their results as a result of incomplete coverage 
should be borne in mind when interpreting the results. As noted previously a common 
pattern across the incomplete surveys was to achieve complete coverage of the 7 
easternmost transects (transects 2-14), but partial or no coverage of the 4 easternmost 
transects (transects 16-22). One of the analyses we perform below, for the 12 surveys were 
complete coverage was achieved, is to compare density estimates for each species based 
upon the 7 easternmost transects with the corresponding estimates based upon the four 
easternmost transects during the same survey. This should allow us to better understand 
any potential biases introduced into density estimates because of incomplete coverage.  
 
On first two surveys a small amount of survey effort (2.1 km (2.7%) on the 27/03/2012 and 
3.6 km (4.6%) on the 18/04/2012) was conducted in sea state 5, whereas Camphuysen et al. 
(2004) recommend that all surveys should be conducted in sea states of four or less.  Data 
from this survey effort outside standard conditions has been retained in the analyses to 
retain full coverage of the site on these two dates.  The inclusion of sea state as a covariate 
in the detection function modelling (see below) should further minimise any bias including 
this small amount of survey effort conducted outside standardised survey conditions has on 
density and abundance estimates.   
 
Initially we derive density estimates for each species on each survey. From these we derive 
seasonal abundance estimates for each species. The seasons used for each species are 
specific to that species and reflect its local phenology. Our assessment of impacts is based 
upon seasonal abundance estimates rather than monthly abundance estimates, as we think 
this provides a more reliable basis for assessment. We derive seasonal abundance 
estimates both for separate years and also across years. Generally, each season includes 
several months. Therefore even, for seasonal estimates within a year, each seasonal 
abundance estimate is based upon several surveys. Given the variation between survey 
dates   within a season  in abundance and density the much larger sample size (in terms of 
survey dates) upon which seasonal abundance estimates are based should make them a 
much more reliable basis for impact assessment than would using monthly estimates. 
Furthermore, as the density estimate for each season within a year is based upon multiple 
surveys, and so has a measure of error attached, we can potentially identify year to year 
variation in the density of birds recorded within a particular season. Given the large temporal 
variation to be expected in the density of a seabird species within a month a single survey 
within a month cannot be assumed to be representative. Furthermore, with only a single 
survey, there is no measure of the variation between different survey dates within a month. 
Thus, although confidence limits can be attached to the density estimates from a particular 
survey on a particular day within a month, we cannot compute reliable confidence limits for 
the expected density of birds across the month. Even across two survey years, a single 
survey in each month in each year provides a sample size of just two surveys for each 
month. With a sample size of just two surveys the mean is still unlikely to provide a reliable 
best estimate of the expected density of birds in that month, and any measure of the 
variance is also likely to remain unreliable.  Furthermore, with only one survey in a month in 
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a particular year, year to year variation in density cannot be separated from day to day 
variation.  Thus, for these reasons we conclude seasonal abundance estimates should 
provide a sounder basis for impact assessment than would monthly abundance estimates. A 
further advantage of using seasonal abundance estimates is it potentially provides a basis 
for estimating density even across those months for which no survey effort  was possible, 
whether within a single year (September, October and November 2012; January, April, May, 
August, November and December 2013, January 2014) or across years (January, 
November, December across both survey years).  
 
For birds in flight, the survey data upon which abundance and density estimates are based 
consists of birds recorded on effort and in transect during the snapshot counts (Camphuysen 
et al. 2004).  For birds on water, the survey data, which is used to estimate the detection 
probabilities as well as abundance and density, consists of all sightings of birds on the water 
on effort and within transect. In defining which observations were in transect, observations 
outside the survey area, or beyond the ends of the transect, or when the vessel was not 
travelling along the transect have been excluded.  These strict criteria have been adopted to 
ensure that across the whole project exactly the same underlying data are used as the basis 
for different types of analysis.  Tables 2 to 5 present the following summary statistics for 
each species, separating birds in flight from birds on the water:  

 Table 2 presents the number of sightings for each survey, and in total across all 
surveys. 

 Table 3 presents the total number of individual animals recorded, for each survey, 
and in total across all surveys. 

 Table 4 presents the mean number of animals in each sighting (i.e. mean cluster 
size) for each survey. 

 Table 5 presents the median number of animals in each sighting (i.e. median cluster 
size) for each survey. 

3 Software 
All analyses were carried out using programmes written in R (R version 3.0.1 (2013-05-16), 
R Core Team 2013) with the distance sampling analyses performed using functions from the 
mrds library (Laake et al. 2012). 
  
Although the majority of the manipulation of spatial data has been carried out using the 
libraries available within R (Bivand et al. 2008), ESRI Arcview 9.3 was used for some tasks 
(e.g. buffering of site boundaries, presentation of some maps).   
 

4 Detection Function Modelling 
The purpose of detection function modelling is to estimate the proportion of animals 
observers fail to detect, so that estimates of density and abundance can be corrected 
accordingly.  For ESAS data, detection function modelling is only possible for birds on the 
water as no distance data are recorded for birds in flight.  For birds in flight, we have 
assumed a probability of detection of 100% in the 300m x 300m snapshot recording box.   
 
For birds on the water, the ESAS methodology records birds into five distance bands A-E (0-
50m, 50-100m, 100-200, 200-300m,  300m+).  As no distance data are available for 
sightings beyond 300m (distance band E), this data cannot be included in the analyses, so 
that our detection function modelling could only be based on four distance bands at most. 
Four distance bands is the absolute minimum for detection function modelling (Buckland et 
al. (2001:262), so that further truncation to remove outliers, or further grouping of data into a 
smaller number of distance intervals to overcome potential problems such as heaping, errors 
in distance measurement or evasive movement prior to detection (Buckland et al. 2001), 
were not available as analysis options.   
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To estimate detection probabilities we use as our dataset all observations of birds on the 
water within transect, across all surveys from late March 2012 to early March 2014 inclusive 
(Table 1b).  We model the probability of detection separately for common and rare species. 
Common species are defined as those with 30 or more observations of birds on the water 
across all surveys, and rare species as those with less than 30 observations (Table 2a). This 
definition yields eight common species (fulmar, gannet, shag, great skua, kittiwake, common 
guillemot, razorbill and puffin) and thirteen rare species (red-throated diver, black-throated 
diver, great northern diver, Manx shearwater, storm petrel, cormorant, Arctic skua, common 
gull, herring gull, great black-backed gull, Arctic tern, black guillemot and little auk)..  The 
definition of common and rare species used is consistent with the advice of Maclean et al. 
(2009), in the context of fitting separate detection function models for each species, that 
distance sampling analysis should be only be applied to species with 30 or more records and 
that otherwise the probability of detection should be estimated on the basis of the generic 
JNCC correction factors published in Stone et al. (1995).  Thirty observations is considerably 
less than the 60-80 observations recommended by Buckland et al. (2001:228) as the 
minimum required for reliable fitting of the detection function. 

4.1 Detection function modelling for common species 
For common species, we fit a single detection function across all species. Variation in the 
probability of detection between species is captured by including species as a covariate in 
the model, with sightings for all species with less than 30 observations combined into a 
single “Other species” category.  The shape of the detection function is modelled as a half 
normal key function with no adjustment terms (Buckland et al. 2001). 
 
Detection functions are fitted on the assumption that it is the sightings as recorded in the 
field (e.g. 3 guillemots in a group) that are independently detected rather than the individuals 
within these clusters. This should make the fitted detection functions more reliable as a 
relatively small number of clusters holding high numbers of individuals will not potentially 
have undue influence.  Furthermore, it should also avoid obtaining spuriously high estimates 
of precision by avoiding overestimating the number of independent observations 
underpinning a model. Therefore, sample sizes are defined in terms of numbers of 
observations (i.e. Table 2a) rather than numbers of individuals (Table 3a). Only sightings 
definitely identified to species are included so the sample size is the total number of 
observations across all species and all surveys but excluding those sightings not definitively 
identified to species:  This yields a sample size of 2537 observations (Table 2a).  
 
Fitting a global detection function across species has a number of advantages: 

 It provides large sample sizes for fitting relationships with other covariates. 
 Because only a single global model is being fitted rather than a separate model for 

each species it reduces the chances of the models capturing spurious relationships 
with covariates, which can occur due to sampling error particularly when a large 
number of models are fitted.  

 It provides an approach which scales well with multiple species. 
 

It should be noted that this approach assumes the relationships with other covariates are 
shared across species. This approach has the advantage of providing sufficiently large 
sample sizes to take these other covariates into account even for less common species, 
where sample sizes would be inadequate to fit reliable relationships. The disadvantage of 
the approach is that it only considers the element of the effects of these covariates that are 
common across species, and ignores any interaction with species (i.e.  if the effect of survey 
conditions or cluster size on detectability varied between species). However if we were to 
analyse the data as separate species, sample sizes would generally be inadequate to fit 
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reliable relationships with these other covariates, and so we suggest the use of this 
approach is justified. 
 
To ensure accurate estimates of the numbers of individuals (abundance) of each species on 
each survey our detection function model must successfully capture any variation in 
detectability between species, survey and cluster size. Therefore, we defined as our base 
model, which any alternative model must improve upon, a detection function including these 
three variables as covariates. With cluster size untransformed all models fitted including this 
covariate either crashed or failed to converge. Scaling cluster size so that it only varied 
between 0 and 1 did not resolve this problem. Therefore, throughout all analyses we have 
log transformed cluster size, which did resolve the problem, and treated it as a quantitative 
variable. Survey was treated as an 18 level categorical variable with one level for each 
survey date (Table1b).  
 
We compare the fit of alternative models using Akaike‟s Information Criterion, the best fitting 
model having the lowest AIC score. AIC is defined as  

  qAIC e 2log.2    
Where loge(λ) is the log-likelihood function evaluated at the maximum likelihood estimates of 
the model parameters and q is the number of estimated parameters in the model. We can 
interpret the first term as a measure of how well the model fits the data, while the second 
term is a penalty for the addition of parameters. The difference in fit from one model to 
another is measured as the change in the AIC value, ΔAIC, with the better fitting model 
having the lowest AIC score. In the tables comparing the goodness of fit of different 
detection functions, we present ΔAIC values comparing each model to the null model, with 
no covariates. We also present separately the changes in the first and second terms of the 
AIC score, so that the separate contribution of changes in the quality of fit and changes in 
the numbers of parameters to the AIC score can be assessed.  
 
The null model with no covariates had an AIC score of 6903.9 (Table 6). When the three 
covariates included in the base model (i.e. species, log transformed cluster size and survey) 
were introduced singly into the model, all three led to a reduction in the AIC score compared 
to the null model, with species being the covariate which by itself provided the best fitting 
model. reducing the AIC score by 107.4. For all three of the models in which the base model 
covariates were introduced in pairs, the AIC scores were reduced compared to either of the 
models including the same covariates singly. The best model including two covariates was 
the model including species and survey, which reduced the AIC score by 63.5 compared to 
the model just including species, the best fitting of the single covariate models. Adding log 
transformed cluster size into the best fitting of the two covariate models, which already 
included species and survey, further reduced the AIC score by 29.8. Thus, the inclusion of 
all three covariates improves the fit of the base model, and can be fully justified.  
 
Survey date per se will not directly determine the probability of detection and the differences 
between surveys will reflect differences between surveys in environmental conditions (e.g. 
sea state, light levels) and other factors (e.g. observers).   We considered the following 
covariates as alternative to the survey covariate in the base model to see if they could 
potentially explain the variation between surveys in detectability (Table 7):  

 Sea state (the Douglas score as a quantitative variable). 
 Wind force (the Beaufort score as a quantitative variable). 
 Swell height (estimated in metres, as a quantitative variable). 
 Observer (as a ten level categorical variable, one level for each observer). 

 
We considered models in which the three environmental variables (sea state, wind force and 
swell height) were considered separately, and also models in which they were combined 
with the observer covariate. Initially, the environmental variables were only entered singly 
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into the models. The same survey vessel was used throughout and thus was not considered 
as a potential explanatory variable. 
  
Only one of the models in which single environmental variables, sometimes in combination 
with the observer variable, were used as alternatives to the survey covariate provided a 
better fit to the data than the base model: this was the model in which sea state and 
observer were used as an alternative to the base model, which reduced the AIC score by 
28.2 compared to the base model. In contrast, all of the models where the alternative 
explanatory variables were offered as supplements to survey provided a better fit to the data 
than the base model. However, none of these models provided as good a fit to the data as 
the best model identified previously, that where observer and sea state were used as 
alternatives to survey: thus this remained our best model. As one final test we investigated  
whether adding swell height to the current best model with sea state and observer provided 
a better fitting model; it did not. We did not consider introducing wind force into this model 
along with sea state as these two covariates are highly correlated with one another. Thus, 
our best model, which we will use to predict the probability of detection for common species 
is that which includes sea state and observer as explanatory variables along with species 
and log(cluster size.)  
 
The best fitting model (sea state and observer instead of survey) had 7 less parameters than 
the base model, and thus provided a simpler, more parsimonious explanation of the data 
(AIC Term 2 equals 40 compared to 54). However, not only did it provide a simpler fit to the 
data, it also provides a closer fit (AIC Term 1 equals 6635.0 compared to 6649.3.  Thus, the 
best model was both simpler (Δ AIC Term 2 = -14) and provided a better fit to the data (Δ 
AIC Term 1 = -14.2) than the base model.  This suggests that these differences in observer 
and sea state could potentially explain all the variation between surveys and also explain 
additional variation within surveys.  
 
The coefficients for Model 18 (Table 7) which are used as the detection function to predict 
the probabilities of detection for common species are presented in Table 8. 
 

4.1.1 Fit of the model to distance data 
Scaled histograms of detection distances with the fitted detection function superimposed 
suggests that the model provides a reasonable fit to the data, across all observations (Figure 
3a), for different species (Figure 4), cluster sizes (Figure 5), surveys (Figure 6), sea states 
(Figure 7) and observers (Figure 8). 
 
A notable pattern in the data is the apparent under recording of birds within the innermost 0-
50m distance band, with less birds being recorded in this distance band than in the 50-100m 
(Figure 3a). This pattern is present across species (Figure 4). There is also a clearer pattern 
for larger clusters to be recorded at greater distance from the vessel, and only for single 
birds does the density of birds recorded decline monotonically with increasing distance from 
the vessel (Figure 5). The pattern of more birds being recorded in the 50-100m distance 
band than in the innermost 0-50m distance band was recorded during 13 out of 18 surveys 
(72%), or 11 out of 14 surveys (77%) if we exclude surveys with less than 50 sightings 
(Figure 6). The pattern of more birds being recorded in the 50-100m distance band than in 
the innermost 0-50m distance band was recorded for 4 out of 6 sea states (67%), or 3 out of 
4 sea states (75%) if we exclude sea states with less than 50 observations: There was no 
trend for under recording within the innermost distance bands to be associated with higher 
sea states (Figure 7).  The pattern of more birds being recorded in the 50-100m distance 
band than in the innermost 0-50m distance band was recorded for 5 out of 10 observers  
(50%), or 3 out of 5 observers (60%) if we exclude observers with less than 50 observations 
(Figure 8). 
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Thus, the apparent under-recording of birds within the innermost distance band is not 
restricted to particular species, observers, surveys, sea states or cluster sizes.  The 
underlying causes for this apparent under recording within the innermost distance band are 
unclear, but potentially could bias our estimates of the probabilities of detection. In particular, 
any under recording of birds within the innermost distance band will tend to lead to the 
probability of detection being overestimated, and thus density and abundance being 
underestimated.  

4.1.2 Variation in the probability of detection between species 
Based upon the common species detection function model, for the 8 most common species, 
Table 9 presents estimates of the average probability of detection for both clusters and 
individuals across all surveys. Tables 15 and 16 present similar estimates but for each 
survey separately, with Table 15 presenting the probabilities of detection for clusters, and 
Table 16 presenting the probabilities of detection for individuals. The more birds a cluster 
holds the easier it is to detect (Table 10, Table 11). Therefore the probabilities of detection 
for individuals are generally higher than those for clusters (Table 9, and compare tables 15 
and 16). 
 
The average probability of detection for individuals from the common species detection 
function model for the 8 most common species (excluding the “Other” category) varies nearly 
two fold from 50% to 94% (Table 9, Figure 9).  For 6 out of these 8 most common species, 
the probabilities of detection for individuals are less than would obtained using the JNCC 
correction factors (Table 9 Stone et al. 1995), so that our estimates of density and 
abundance will tend to be higher. The exceptions are great skua, where the average 
probability of detection for individuals across surveys was estimated at 90% compared to the 
77% that would be expected on the basis of JNCC correction factors and kittiwake, where 
the average probability of detection for individuals across surveys was estimated at 73% 
compared to the 71% that would be expected on the basis of JNCC correction factors.  
These are the two species with the lowest sample sizes (32 and 33 observations 
respectively), for which our estimates of the probability of detection are likely to be least 
reliable.  
 
A limitation of relying on the average probabilities of detection to compare the probabilities of 
detection between species is that species may also differ with respect to other covariates 
that influence the probability of detection, preventing a clean comparison. For example, one 
species may tend to occur in larger clusters than another species, or, if recorded on different 
surveys at different times of year, tend to be recorded by different observers, or under 
different sea states.  Thus, as well as presenting average probabilities of detection for each 
species we also present “standardised” probabilities of detection for each species (Table 9). 
These standardised probability of detection are for single birds in sea state 2 by observer 8. 
We use a single bird as this is the most frequently recorded cluster size, with 1529 out of 
2537 observations (60%), Table 10). We use sea state 2 as this is the most frequently 
recorded sea state with 995 out of 2537 observations (39%), Table 12). We use Observer 8 
is this is the observer with the most observations, with 606 out of 2537 observations (24%), 
Table 13). In the following sections we also compare standardised probabilities of detection 
between cluster sizes, sea states, observers and surveys. To standardise in these 
comparisons for species we use guillemot as our standard. We use guillemot as this is the 
most frequently recorded species with 895 out of 2537 observations (35%), Table 9). 
 
The average probability of detection for individuals from the common species detection 
function model for the 8 most common species (excluding the “Other” category) varies 
across species by a factor of 1.9 from 50% to 94% (Table 9, Figure 9). In comparison, the 
standardised  probability of detection (i.e single bird, sea state 2, observer 8) varies by a 
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factor of  2.7 from 34% to 92%.  Thus, controlling for other sources of variation other than 
that with which we are principally concerned (i.e. variation between species) strengthens the 
apparent differences between species in the probability of detection. As would be expected 
the standardised probabilities of detection, which are for a single bird, are invariably lower 
than the average probabilities, which are for a range of cluster sizes. Most sightings are of 
single birds (Table 5a) and so for most species although the standardised probability of 
detection is lower than the average probability of detection, it is similar: for fulmar, gannet, 
shag, great skua and puffin the value of the standardised probability of detection is between 
78% and 98% of the value of the standardised probability of detection.  
 
However, for three species, kittiwake, common guillemot and razorbill, the standardised 
probability is much lower relative to the average probability than for these other species. For 
kittiwake, the standardised probability of detection is 34% compared to an average 
probability of detection of 73%.  . Thus the value of standardised probability of detection is 
46% of the value of the average probability of detection.  For guillemot, the standardised 
probability of detection is 42% compared to an average probability of detection of 63%. Thus 
the value of standardised probability of detection is 67% of the value of the average 
probability of detection. For razorbill, the standardised probability of detection is 34% 
compared to an average probability of detection of 53%. Thus the value of standardised 
probability of detection is 63% of the value of the average probability of detection.  These 
large differences between the average and standardised probability of detection for some 
species can greatly change our assessment of the detectability of these species relative to 
others.  
 
For example, when species are ranked in decreasing order of the average probability of 
detection, kittiwake is ranked 4th out of 8, above all the diving species. In contrast when 
species are ranked in a similar fashion on the basis of the standardised probability of 
detection for a single bird, kittiwakes are ranked 8th out of 8, below all the diving species. 
This difference is explained by the tendency for kittiwakes to occur in much large clusters 
than the other species. The average probability of detection does not correct for any such 
difference between species in cluster size, whereas the standardised probability of detection 
does.  Kittiwakes were recorded on the water in groups of up to 400 birds, with a mean and 
median cluster sizes across all surveys of 34 and 8 birds respectively. In contrast, across the 
other species, the mean cluster size varied from 1.6 to 4.2, and the median cluster size was 
1 for six out of the seven species, and 2 for the seven species.  
 
As another example, if we compare the three species of auk on the basis of the average 
probability of detection, the ranking of species follows what might be expected on the basis 
of body length (i.e. guillemot, body length 40cm, 1st at 63.1%, razorbill, body length 38cm, 
2nd at 53.3%, puffin, body length 28cm, 3rd at 50.1%).  However, the ranking based on the 
standardised probability of detection for a single bird, (i.e. guillemot 1st at 42.2%, puffin 2nd at 
39.3%, razorbill 3rd at 33.6%) suggest a very different pattern, with razorbills now less likely 
to be detected than the smaller puffin. Thus, these results suggest that for a given cluster 
size razorbills are less likely to be detected than puffins, a result which is obscured by 
differences in other covariates when comparing average probabilities of detection.  
 
To conclude, when we standardise the probabilities of detection for cluster size, sea state 
and observer, differences between species which are obscured by differences in these other 
covariates, in particular cluster size, when comparing average probabilities of detection are 
revealed.  This suggests that such standardisation is essential if we are to identify true 
patterns within the data.   
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4.1.3 Variation in the probability of detection with cluster size 
The average probability of detection is strongly related to cluster size (Figure 10), with the 
average probability of detectability varying by a factor of 1.6 between single birds and 
clusters of more than 10 birds (50% compared to 80%, Table 10). For our standard species, 
common guillemot, cluster sizes varied between 1 and 50 birds. Over this range of cluster 
sizes, the standardised probability of detection for a single guillemot (i.e. in sea state 2 for 
observer 8) varied by a factor of 1.8 from 42% to 76% (Table 11). Kittiwake showed the 
greatest range of cluster sizes of all species, with cluster sizes varying from 1 to 400. 
Therefore we also present standardised probabilities of detection for kittiwakes, over this 
range of cluster sizes.(Table 11), For kittiwakes,  over this range of cluster sizes (i.e. 1 to 
400) the probability of detection varies by a factor of 2.5 from 34% to 83%. For comparison, 
over the same range of cluster sizes (i.e. 1 to 400), the probability of detection for our 
standard species, common guillemot, would vary by a factor of 2.1 from 42.2% to 88.4%. 
 

4.1.4 Variation in the probability of detection between sea states 
Camphuysen et al. (2004) recommends that all survey effort should be conducted in sea 
states of four or less. As discussed previously, this was achieved on most surveys, although 
2.7% of coverage on the 27/03/2012, and 4.6% of coverage on the 18/04/2012 was 
conducted in sea state 5. Thus, in Table 12 we show the variation in the average and 
standardised probabilities of detection from sea state 0 to sea state 5, but in the discussion 
which follows we will focus on the variation which occurs up to sea state 4.  For clusters, the 
average probability of detection declines consistently with increasing sea state from 79% at 
sea state 0 to 42% at sea state 4, variation by a factor of 1.9  (Table 12, Figure 11).  For 
individuals, the average probability of detection declines with increasing sea state from 91% 
at sea state 0 to 57% at sea state 4, variation by a factor of 1.6  (Table 12). As well as 
declining by a smaller factor, the average probability of detection for individuals declines less 
consistently with increasing sea state than does the average for clusters, remaining 
effectively unchanged at 68-71% over sea states 1-3.  These results are consistent with 
increasing sea state mainly reducing the probability of detection for smaller groups of birds, 
so that it has a more marked effect on the probability of detection of clusters than individuals. 
The standardised probability of detection for a single guillemot declines from 57% to 30% 
over sea states 1 to 4, variation by a factor of 1.9, similar to that observed for clusters.  
 

4.1.5 Variation in the probability of detection between observers 
Between observers (Table 13, Figure 12), the average probability of detection for clusters 
varied by a factor of 1.72 from 41% to 70%, the average probability of detection for 
individuals varied by a factor of 1.66 from 47% to 78%, and the standardised probability of 
detection for a single guillemot varied by a factor of 1.60 from 39% to 62%.  However 
observers fall into groups: Major observers, all of whom recorded over 300 observations, 
and minor observers all of whom recorded less than 50 observations. If we only consider the 
major observers, the average probability of detection for clusters varied by a factor of 1.44 
from 46% to 66%, the average probability of detection for individuals varied by a factor of 
1.25 from 61% to 76%, and the standardised probability of detection for a single guillemot 
varied by a factor of 1.47 from 42% to 62%. Thus, variation between observers was 
considerably less marked when we considered only the major observers, but still far from 
negligible.  
 
 

4.1.6 Variation in the probability of detection between surveys 
The average probability of detection for individuals varies by a factor of 1.8 between surveys 
from 43% to 77% (Table 12, Figure 13).  On some surveys few birds were recorded (e.g. just 
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9 sightings of birds on the water during the 11/12/2012 survey, Table 11) and some of the 
apparent variation in the probability of detection between surveys could potentially be due to 
sampling error. However, even if we restrict consideration to those surveys with more than 
100 sightings, average probability of detection still varies by a factor of 1.7 from 46% to 77%. 
Thus, these results suggest that the variation between surveys in the probability of detection 
is likely to be genuine, and of a similar order of magnitude to that observed between species. 
Some of this variation between surveys could potentially be due to variation in species 
composition between surveys. However, even with species there are similar levels of 
variation (Table 16): 
 For fulmar, the probability of detection for individuals varies between surveys by a factor 

of 1.4 from 60% to 86%; 
 For gannet, the probability of detection for individuals varies between surveys by a factor 

of 1.1 from 87% to 97%; 
 For shag, the probability of detection for individuals varies between surveys by a factor of 

2.0 from 41% to 83%; 
 For great skua, the probability of detection for individuals varies between surveys by a 

factor of 1.4 from 65% to 92%; 
 For kittiwake, the probability of detection for individuals varies between surveys by a 

factor of 2.6 from 33% to 83%; 
 For guillemot, the probability of detection for individuals varies between surveys by a 

factor of 1.8 from 38% to 70%, 
 For razorbill, the probability of detection for individuals varies between surveys by a 

factor of 2.2 from 31% to 68%. 
 For puffin, the probability of detection for individuals varies between surveys by a factor 

of 1.9 from 33% to 62%. 
 
Thus these results suggest that the variation in the average probability of detectability 
between surveys within species is of a similar order of magnitude to the variation between 
species. If for example, we had used JNCC correction factors to correct our abundance 
estimates rather than estimates of the probability of detection based upon analysis of the 
survey data itself then not only would our estimates of the overall probability of detection for 
each species been very different to those obtained from site-specific data, but also the 
variation in detectability between surveys would also have been missed. Thus genuine 
variation in species abundance between surveys would have been conflated with variation in 
the probability of detection.  

4.2 Detection function modelling for rare species 
To estimate the probability of detection for rare species (n<30) we again fit a single detection 
function across all species, both rare and common. Other than species, this model has the 
same covariates as the common species detection function model (i.e. cluster size, sea state 
and observer). However species is replaced by covariates describing species traits that are 
chosen to explain, as simply as possible, the variation in detectability between species. The 
underlying assumption of this approach is that a rare species will have similar probabilities of 
detection to a common species with similar traits. In particular, the models reported here 
replace species by two covariates, one a measurement of body size and the other a 
categorical variable classifying species into two categories on the basis of behaviour: 

 Surface/Aerial Feeders. (including gannets, gull, skuas, terns and petrels) 
 Surface divers (within the current data set, just auks). 

 
We consider two measurements of body size, body length and body length2.  We would 
expect the width of the image on the retina of a bird sitting on the water to be directly 
proportional to its body length. Furthermore, to the extent that we can successfully 
approximate the area of this image as a rectangle (or trapezium, or triangle, or ellipse) with 
its height equal to a fixed (across species) proportion of its width, then the area of this image 
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should be directly proportional to body length2.  Therefore, there are strong a priori reasons 
to expect the detectability of birds on the water to be positively related to body length or body 
length2.  The justification for categorising birds based on their diving behaviour is that 
surface divers would be expected to have lower detectability than surface/aerial feeders, as 
when they are under the surface they are temporarily not available for detection.   Values for 
these covariates for each species are provided in Table 9.  
 
The advantage of estimating the probability of detection for rare species using this approach 
rather than using JNCC correction factors is that it provides an estimate for the probability of 
detection that is survey specific rather than generic. Furthermore, it allows the effect of other 
covariates including cluster size and environmental covariates on the probability of detection 
for rare species to be taken into account. 
 
We compare the fit of models which are the same as the common species model but with 
the species covariate replaced by these covariates describing species traits in various 
combinations with one another, and with the null, base and common species detection 
function models (Table 17). We evaluate models in which the two covariates describing body 
size and the covariate describing behaviour are included separately, and models in which 
the two body size measurement are included in combination with the behaviour covariate.   
 
All models including behaviour as a covariate provide a better fit to the data than the base  
model, with the best rare species model overall being the model which also includes the 
body length2 covariate as a measurement of body size (Table 17).  This best fitting model 
had an AIC score which was only marginally higher than that for the common species 
detection function model (Δ AIC= +0.4). This is because although the rare species model 
provides a considerably poorer fit to the data than the common species detection function (Δ 
AIC Term 1 = +12.4) it is a simpler model with 6 less parameters (Δ AIC Term 2 = -12). 
Although it provides a poorer fit to the data than the common species detection function, it 
still provides a better fit than the base model (Δ AIC Term 1 = -1.8). Furthermore, on the 
basis of the overall AIC score, other than the final model selected for the common species 
detection function model (model 18 in Table 7) none of the alternatives considered for the 
common species detection model (models 1 to 17 in Table 7) provided a better fit. Thus, the 
AIC scores suggest that the rare species model provide a reasonable fit to the data 
compared to alternatives, in particular the common species detection function.  
 
The improvement in fit gained from using body length2  as the measurement of body size 
rather than body length per se is marginal (Δ AIC = -0.5), but carries no disadvantages in 
terms of adding to model complexity. Therefore we will use this model (Model 8 in Table 17) 
as the basis for predicting the probability of detection for „rare‟ species.  
 
With one exception, the coefficients for the covariates other than those capturing species 
traits in the rare species model (i.e. the cluster size, sea state and observer covariates) all 
take similar values (Table 18) to their counterparts in the common species model (Table 8).  
The one exception is the coefficient for observer 5 which in the common species detection 
function (Table 8) takes the value -0.07 but in the rare species detection function (Table 18) 
takes the value -0.22. However, observer 5 was only responsible for recording 32 out of 
2537 observations (1.3%) This suggests that overall the covariates used in the rare species 
model to capture the variation between species in detectability are capturing the same 
underlying patterns of the variation in detectability between species as the species covariate 
in the common species model, so that the behaviour of the model with respect to other 
covariates is similar.  
 
For the 8 common species considered by both the common species and rare species 
detection function models, Table 9 allows us to compare estimates for the probability of 
detection between the two models. The more similar the predictions from the two models, 
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the more confident we can be that rare species model successful captures the variation 
between species in their probability of detection, at least for the common species for which a 
test is possible. For these eight common species, the predictions of the average probability 
of detection from the rare species model are closely correlated with those of the common 
species model for both clusters (r2= 64%) and individuals (r2= 75%). The predictions for the 
standardised probability of detection for a single bird are also closely correlated between the 
two models (r2= 70%). These strong correlations suggest that the rare species model 
successfully captures much of the variation between species in detectability, at least in 
relative terms.  
 
For each species, expressing the average probability of detection for an individual bird  from 
the common species model relative to its counterpart from the rare species model allows us 
to assess the average proportional change using the rare species detection function in place 
of the common species detection function is likely to cause in the resulting abundance and 
density estimates. This approach shows that for five out of the eight species (fulmar, puffin, 
common guillemot, great skua and gannet) the abundance and density estimates provided 
by the rare species detection function would on average be higher than those provided by 
the common species detection function: 0.2% higher for fulmar, 1.4% higher for puffin, 2.6% 
higher for guillemot, 9.7% higher for great skua, and 10.4% higher for gannet.  For the other 
three species (shag, razorbill and kittiwake) the relative values of the average probability of 
detection for individuals from the two models suggests that the abundance and density 
estimates provided by the rare species detection function would on average be lower than 
those provided by the common species detection function: 6.9% lower for shag, 12.4% lower 
for razorbill and 19.0% lower for kittiwake.  
 
A discrepancy between the predictions of the rare species model and those of the common 
species model could reflect either inaccuracies in the predictions of the rare species model, 
or inaccuracies in the predictions of the common species model, or inaccuracies in both. The 
predictions of the rare species model could be inaccurate because it is missing one or more 
of the covariates that actually determine the variation between species in the probability of 
detection. As the common species model explicitly includes species as a covariate, it cannot 
miss an underlying cause of variation between them in the same fashion. However, where 
sample sizes are small for a particular species, sampling error may mean that the common 
species model provides a less accurate prediction of the probability of detection for that 
species than the rare species model.  The predictions from the rare species detection 
function model will also tend to be more accurate for common species than rarer species 
because where two species share similar values of the model‟s covariates, but one is much 
commoner than the other, the fitting of the model will be dominated by the distance data for 
the more common species.  
 
As noted previously, although our definition of a common species being one with 30 or more 
observations is consistent with the guidance provided by Maclean et al (2009) it is 
considerably less than the 60-80 observations recommended by Buckland et al. (2001:228) 
as the minimum required for reliable fitting of the detection function.  
 
For the three species with sample sizes greater than 400 observations (guillemot, fulmar and 
puffin) the predictions of the two models are very similar to one another, with the rare 
species model expected to provide density and abundance estimates just 0.2 -2.6% greater 
than those provided by the common species model. This is to be expected both because 
with such large sample sizes, sampling error will only have a minimal impact on the 
predictions of the common species detection function model, and also because the fitting of 
the rare species model will tend be dominated by the distance data for these three species 
(together they constitute 2121 out of 2578 sightings, 82%). In contrast, for the four species 
with sample sizes of less than 80 sightings (gannet, shag, great skua, kittiwake) the 
discrepancy varies from 6.9% to 19%, and for the three species with sample sizes of less 
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than 50 sightings (gannet, great skua, kittiwake) the discrepancy varies from 10.4% to 
19.0%.  With these small sample sizes, the discrepancies between the common species and 
rare species detection function models for these four species could potentially be explained 
by sampling error in the predictions from the common species detection function model, 
without having to invoke inaccuracies in the predictions from the rare species detection 
function. The one species where there is strong apparent evidence for the rare species 
detection function failing to capture the observed patterns in the data is razorbill, for which 
the density estimates as predicted by the rare species model are expected to be 12.4% 
lower than those from the common species model, and with a sample size of 197 negligible 
sampling error is expected in the predictions of the common species detection function.  
Both guillemots and razorbills are diving birds, with very similar body lengths (40 cm for 
guillemot, 38 cm for razorbill). Thus, the rare species detection function predicts a very 
similar probability of detection for these two species, with a probability of detection for 
individuals of 61.6% for guillemot and 60.9% for razorbill, a difference of 0.7%.  In contrast 
the common species detection function model suggests a much greater difference between 
the probabilities of detection for the two species, 63.1% for guillemot, and 53.3% for razorbill, 
a difference of 9.8%.  Thus, this suggests that the probability of detection for razorbill in this 
study was much lower than would be expected given its body length, and so was not fully 
captured by our rare species model. 
 
In conclusion, these results suggest that the rare species detection function is likely to 
capture much, but not all, of the variation in the probability of detection between species. 
This conclusion is strengthened by the observation that the species for which the 
discrepancy between the predictions of the rare species detection function and the common 
species detection function is greatest are generally those for which the sample size of 
observations is less than 50, so that sampling error in the predictions of the common species 
detection function is likely to explain at least some of the discrepancy. However, even if we 
make the worst case assumption that the results of the common species detection function 
are completely accurate for all species, irrespective of sample size, and all the error lies 
within the rare species detection function, then the worst discrepancy we observe (for 
kittiwake) is an underestimate by 19% of abundance and density for the rare species model 
compared to the common species model.  
 
For rare species with fewer than 30 sightings, the alternative to estimating the probability of 
detection using the rare species detection function model would have been to use the JNCC 
correction factors provided in Stone et al. (1995).  Similar correction factors, sometimes 
taking into account variation between sea state, vessel type and source database, are 
presented in Skov et al. (1995). Here, we focus on the corrections provided by Stone et al. 
(1995) as these are the ones Maclean et al. (2009) recommend should be used.  However, 
for Black guillemot, Stone et al. do not provide a correction factor and so for this species we 
use the estimate provided by Skov et al.  
 
The average detection of probability for individuals determines the associated abundance 
and density estimates. For 11 of the 13 rare species for which the rare species detection 
function model will be used to provide abundance and density estimates the estimate of the 
average probability of detection for an individual as provided by the rare species detection 
function model is less than that implied by the JNCC correction factor for that species (Table 
9). This implies that for these 11 species the abundance and density estimates we will obtain 
using the rare species detection function will tend to be higher than those we would have 
obtained if we had used the JNCC correction factors. Thus, any assessment of impacts is 
likely to be more conservative. The two exceptions are Arctic tern and great black-backed 
gull.   
 
For great black-backed gull the difference between the average probability of detection for 
individuals from the two approaches is small:  71.4% from the JNCC correction factor 
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compared to 74.2% from the rare species detection function model. The 11 great black-
backed gulls recorded were all single birds, so differences in cluster size cannot explain any 
difference in the observed probability of detection. However, the difference between the two 
estimates is easily explained by differences in survey conditions between this survey and 
those upon which the JNCC correction factor is based. Although using the rare species 
detection function to estimate the probability of detection for great black-backed gull will tend 
to yield slightly lower abundance estimates than would using the JNCC correction factors, 
the resulting estimates have the advantage of taking into account local survey conditions, 
including those such as observer and sea state that vary between surveys (Table 19 and 
20). 
 
For Arctic tern the estimates of the  average probability of detection for individuals from the 
two approaches differ greatly from one another: an estimate of 82.5% from the rare species 
detection function model compared to 58.8% from the JNCC correction factor.  However,  in 
this study there was only one observation of Arctic terns on the water, and this was a group 
of 8 birds. The standardised probability of detection for a single bird is 58.9%, very similar to 
the probability of detection of 58.8% suggested by the JNCC correction factor. Thus, the 
relatively high average probability of detection for individual Arctic terns suggested by the 
rare species detection function can be explained by the fact that the estimate is for a single 
observation of 8 birds, for which, given the cluster size, irrespective of species a high 
probability of detection would be expected.  
 
For 6 of the 8 common species the estimate of the average probability of detection for an 
individual as provided by the common species detection function model is less than that 
implied by the JNCC correction factor for that species (Table 9). This implies that for these 6  
species the abundance and density estimates we will obtain using the common species 
detection function will tend to be higher than those we would have obtained if we had used 
the JNCC correction factors. Thus, any assessment of impacts is likely to be more 
conservative. The two exceptions are great skua and kittiwake. For kittiwake using the 
common species detection function to estimate the probability of detection rather than the 
JNCC corrections will on average lead to abundance and density estimates being 2% lower.  
For great skua using the common species detection function to estimate the probability of 
detection rather than the JNCC corrections will on average lead to abundance and density 
estimates being 14% lower.   
 
Thus, for most species, using probability of detection estimates based upon either the 
common species detection function model, for the 8 common species, or the rare species 
detection function model, for the 13 rare species, will tend to yield higher abundance and 
density estimates than we would have obtained using JNCC correction factors.  Thus, our 
assessment of impacts will tend to be more conservative than we would have been obtained 
using the standard JNCC correction factors. For four species, (great black-backed gull and 
Arctic tern from the rare species and great skua and kittiwake from the common species) our 
approach will tend to yield lower abundance and density estimates, and thus less 
conservative impact assessments than would using the JNCC correction factors. However, 
for three of the four species (great black-backed gull, great skua and kittiwake) the effects on 
the abundance and density estimates are small, whilst for the fourth species, Arctic tern, the 
results reflect the effect of cluster size. Furthermore, although in the interests of 
transparency we feel it is important to assess how the abundance and density estimates 
from our approach compare to those we would have obtained if we had used JNCC 
correction factors,  we suggest our estimates of the probability detection based upon fitting 
detection functions to site specific data, and including covariates such as cluster size, sea 
state and observer are likely to provide a far more accurate estimate of the actual probability 
of detection than using generic JNCC correction factors.  This includes capturing the 
considerable variation in the probability of detection between surveys for individual species 
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(Tables 15 and 16 for common species, Table 19b and 20b for rare species), which the use 
of a constant correction factor would ignore.  
 

5 Estimating Density and Numbers 

5.1 Overview 
For each species, we calculated density and abundance estimates for each survey  using 
the Horvitz-Thompson like estimator (Thomas et al. 2010, Borchers and Burnham 2004) 
provided by the dht (Density Horvitz-Thompson) function from the mrds (Mark Recapture 
Distance Sampling) R package (Laake et al. 2012). We did this for birds in flight and birds on 
the water separately.  For birds on the water, for species with 30 or more sightings the 
common species detection function model is used to estimate the probability of detection. 
Otherwise the rare species detection function model is used. For birds in flight all birds in 
snapshot are assumed to be detected.  
 
The variance of the density and abundance estimates provided by mrds has two 
components: 1) uncertainty in the estimate of the probability of detection and 2) uncertainty 
in the encounter rate estimate.  With respect to estimating the contribution of the variance in 
encounter rate to the overall variance estimate, we use the default option (varflag=2). For 
birds on the water, the detection function models fitted using mrds‟s ddf function provide 
estimates of the variance associated with the probability of detection estimates which are 
used by the dht function to estimate the contribution from this source to the overall variance 
estimate. For birds in flight we fit our own customised detection function model, which 
assumes 100% probability of detection for all sightings, with no variance in the estimates.  
Using this customised detection function model allows us to use dht to estimate density and 
abundance for birds in flight, providing confidence limits which take into variance in 
encounter rate.  
 
This approach provides abundance and density estimates with associated variance 
estimates, and thus confidence limits, for both birds on the water and birds in flight. The 
variance estimate for birds on the water includes contributions from both uncertainty in the 
estimate of the probability of detection and uncertainty in the estimate of the encounter rate. 
For birds in flight, only variance in encounter rate contributes to this variance estimate, with 
zero contribution assumed from uncertainty in the estimated probability of detection.  
 
Having calculating separate density and abundance estimates for birds on the water and 
birds in flight we than combine these estimates to provide an overall estimate, with 
associated confidence limits for birds on the water and birds in flight combined (See 
Appendix A).  
 
Using the above approach we calculate density estimates for each survey. From these 
density estimates for each survey we derive density estimates for species specific seasons, 
as described below.  
 
We have used 90% two sided confidence limits, which correspond to 95% one sided 
confidence limits throughout. Thus there is an estimated 90% probability that the true 
estimate lies between the lower and upper confidence limits, and an estimated 95% 
probability that that the true estimate lies either below the upper confidence, or above the 
lower confidence limit. For the purposes of site characterisation, we are often interested in 
determining whether the number of birds occurring within a given area falls below some 
threshold value which defines a species of conservation interest. Thus, the upper confidence 
limit is generally of more interest than the lower confidence limit. Furthermore we are 
generally only interested in the probability the true estimate falls below this upper confidence 
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limit, irrespective of whether or not it falls above some lower confidence limit: Thus we are 
primarily interested in one tailed rather than two-tailed confidence limits, and this is why we 
have chosen to use confidence limits corresponding to 95% one side confidence limits, 
rather than two sided confidence limits.  
 
In these analyses no distinction has been made between different age classes of birds. Thus 
the abundance and density estimates presented are for all age classes of birds combined.  
Where the impact assessment requires abundance or density estimates for a particular age 
class, these will be derived by multiplying these abundance estimates by the estimated 
proportion of birds within that age class from a separately derived age class distribution.  
 
Of the 2573 sightings of birds on the water, 36 were not identified to species. Four of these 
sightings (across three surveys) were recorded as “Auk sp.”  and 32 (across 6 surveys were 
recorded as “guillemot or razorbill”. Of the 1861 sightings of birds in flight, 16 were not 
identified to species. Fifteen of these sightings (across 8 surveys) were recorded as 
“guillemot or razorbill” and a single sighting was recorded as “large gull sp.” 
 
For the species concerned, as well as presenting uncorrected abundance estimates, we also 
present abundance estimates corrected for the presence of these sightings not identified to 
species. In particular, we correct the estimates for recorded auk species (i.e. guillemot, 
razorbill, puffin, black guillemot and little auk here) for the presence of birds recorded as 
“guillemot or razorbill” and “auk sp” and we correct the estimates of large gulls (i.e. herring 
and great black-backed gull here) for the presence of birds recorded as “large gull sp.”. The 
procedure we use to make these corrections is described fully in Appendix C.   
 
Across all tables: 
 Densities are in units of nos/km2. 
 “est.” is an abbreviation of “estimate”. 
 “cv” is an abbreviation of “coefficient of variation”. 
 “df” is an abbreviation of “degrees of freedom”. 
 “lcl” is an abbreviation of “lower confidence limit”. 
 “ucl is an abbreviation of “upper confidence limit”. 
 “Max. est” is an abbreviation of “maximum estimate”, and  
 “Max ucl” is an abbreviation of “maximum upper confidence limit”. 

 
Where “Corr.” appears in front of a species name, these density and abundance estimates 
have been corrected for the presence of sightings not identified to species. In calculating 
these corrected estimates, we also need to calculate abundance estimates for relevant 
taxonomic grouping above the species level(Appendix C). In the tables provided: 
 “All auks” identifies estimates for all auks combined, including those not identified to 

species.  
 “PI auks” identifies estimates for all auks combined, based solely on sightings identified 

to species.  
 “All G and R” identifies estimates for guillemot and razorbill combined, including sightings  

not identified to species.  
 “PI G and R” identifies estimates for guillemot and razorbill combined, based solely on 

sightings identified to species.  
 “All large gulls” identifies estimates for all large gulls combined, including those not 

identified to species.  
 “PI large gulls” identifies estimates for all large gulls combined, based solely on sightings 

identified to species.  
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5.2 Seasonal abundance estimates 
From the density estimates for each survey, for species with more than 5 records (in flight 
and on the water combined) we derive abundance estimates for species-specific seasons 
with associated confidence limits using the approach set out in Appendix B. The confidence 
limits are based upon bootstrapping and take into both the uncertainty within the estimates 
of density for each survey and also the uncertainty resulting from the limited number of 
surveys within each season providing a sample of the actual temporal variation in density 
within a season. Table 21 summarises the seasons used to characterise each species. The 
justification for the seasons used is provided in the main technical report (REFERENCE).  
We present two sets of seasonal abundance estimates for each species: 
 Estimates across years, with a single estimate for each season across the years. 
 Estimates by years, with separate estimates for each season in each year. 

 
For the estimates by year, where a season extends over two calendar years, it is identified 
by the year it starts in. For example, a “Winter 2012” season would begin in the autumn of 
2012, and finish in the spring of 2013.  
 
Survey work began in late March 2012 and finished in early March 2014. For species with 
breeding seasons that start after mid March, the initial surveys in early 2012 are within their 
2011 winter season. However, given the limited coverage confined to the end of the season, 
year specific estimates for winter 2011 would be unreliable and unrepresentative. 
Furthermore, if we were to include surveys that fall within the winter 2011 season for a 
species in the calculation of seasonal estimates across years for that species, then with 
complete coverage of the 2012 and 2013 winters, including surveys completed late in the 
winter of 2011 would bias the sample towards late winter. Therefore, to provide a more 
representative sample when calculating seasonal abundance estimates for species with 
breeding seasons beginning after mid-March we have excluded any surveys conducted in 
early 2012 that fall into the winter 2011 season for that species. Similarly, for species with 
breeding seasons that begin before mid-March, the final surveys in early 2014 provided 
limited coverage of the start of their 2014 breeding season. Again, so as to provide a more 
representative sample on which to base our seasonal abundance estimates we have 
excluded any such surveys when calculating the seasonal abundance estimates for that 
species.  
 
Thus, all our seasonal abundance estimates, whether by or across years, are based on the 
2012 and 2013 breeding and non-breeding seasons, for which for complete, or near 
complete coverage, was achieved.  
 
In March 2013, in addition to complete surveys conducted on the 5th March and 30th March, 
the latter in lieu of the April survey, an incomplete survey was undertaken on the 4th March.  
When presenting results for individual surveys, the abundance estimates presented for 
individual surveys include estimates for this partial survey. However when calculating 
seasonal abundance estimates we have excluded this partial survey on the 4th, so as to 
provide a more representative sample.  
 
The original intention was to follow standard practice and base our impact assessment on 
monthly abundance estimates derived from the single survey of 11 transects on a single day 
conducted in each month. However, with a single survey within a month, there is no way to 
distinguish within month variation from between month variation in abundance. Therefore 
instead we decided to base our impact assessment on seasonal abundance estimates, with 
each season generally consisting of several months, and thus with density estimates based 
on several surveys. This allows between and within season variation to be distinguished.  As 
seasonal estimates are based on several surveys, they should be more reliable, and less 
prone to sampling error, than would monthly estimates, based upon a single survey. These 
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seasonal abundance estimates are calculated on the assumption that the surveys conducted 
within each season provide a representative sample, and also that the estimates of density 
and abundance for each survey date can be assumed to be statistically independent.  
 
As well as presenting estimates for the average density or abundance of birds present 
across each season we also present estimates for the maximum density/abundance of birds 
potentially present, all with 95% confidence intervals.  
 

5.3 Spatial strata for which we estimate density and abundance 
To assess the effect of a particular impact on a particular species we require density and 
abundance estimates for an appropriate Anticipated Impact Footprint (AIF). The size of the 
appropriate AIF can vary according to species and the particular impact under consideration. 
Therefore, in order to provide flexibility we provide abundance and density estimates for the 
following strata (Figure 14, Table 22): 

1. The Development Area 
2. The Development area with a 1 km buffer. 
3. The Development area with a 2 km buffer. 
4. The Development area with a 3 km buffer. 
5. The whole survey area.  

Table 22 provides details of each of these strata, including the survey effort and numbers of 
transects that would be to expected to be covered if full coverage is achieved during a single 
survey.   
 

5.4 Overview of presentation of density and abundance estimates 
The raw results of the analyses estimating density and abundance are presented in the 
following appendices: 

 Appendix D details the survey effort actually achieved on each survey date in each 
strata. 

 Appendix E details the density estimates for each species, on each survey for each 
strata, based on survey effort within that strata. Separate density estimates are 
provided for birds on the water, birds in flight, and both of these combined.  

 Appendix F presents density estimates for species specific seasons calculated 
across years, for each species in each strata, based on survey effort within that 
strata.  

 Appendix G also presents density estimates for species specific seasons for each 
species in each strata, based on survey effort within that strata, but this time 
calculated within years, whereas the estimates presented in Appendix F are 
calculated across years.   

 
 

5.5 Temporal variation in density estimates 
For each species, Figures 1 to 24 in Appendix H plots abundance estimates versus date.  
The purpose of these figures is to reveal patterns of temporal variation in the abundance of 
species. The abundance estimates displayed are for the whole survey area for birds on the 
water and birds in flight combined. Both of the figures presented for each species display the 
abundance estimates for each survey, with seasonal abundance estimates superimposed. 
The difference between the two figures is that whereas the seasonal abundances shown in 
the left hand figure are calculated across years, those displayed in the right hand figure are 
calculated within years. All abundance estimates are accompanied by 95% one sided (90% 
double sided) confidence limits.  
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One common pattern which occurs across species is the large variation in abundance 
estimates apparent between survey dates within a season.  Particularly given the limited 
number of surveys usually available for calculating abundance estimates for each season 
this means that the accuracy of the seasonal abundance estimates and their associated 
confidence limits will be heavily dependent on the assumption that the surveys provide a 
representative sample of the actual temporal variation in density occurring within a season. 
However, seasonal abundance estimates are still likely to provide a more reliable basis for 
assessing impacts than either monthly estimates or individual survey estimates as the same 
difficulties with temporal variability would also apply to these estimates, but the sample sizes 
available in terms of number of surveys to try and assess this variability are smaller.  
 
The confidence limits for the seasonal abundance estimates are for the average of the 
individual abundance estimates across the whole season rather than for the individual 
estimates themselves. This is why they are generally much narrower, and more tightly 
defined, than the confidence limits associated with the estimates for the individual surveys.  
 
For the following species sample sizes were insufficient to allow the calculation of seasonal 
abundance estimates, or to formally consider differences in abundance and density 
estimates between seasons and years: 

 Small numbers of red-throated divers (i.e. single birds on each of three surveys, 2 in 
flight, 1 on the water) were recorded prior to the breeding season (i.e. in February or 
March) in 2012 and 2014 but not 2013 (Figure H.1).  

 A single black-throated diver was recorded on the water in March 2014, prior to the 
breeding season (Figure H.2). 

 A single great northern diver was recorded on the water in June 2013 (Figure H.3). 
 A single sooty shearwater was recorded in flight on autumn passage in September 

2013 (Figure H.5). 
 There was a single record of 2 cormorants on the water in October 2013 (Figure H.9). 
 A single black-headed gull was recorded in flight in June 2013 (Figure H.13). 
 There was a single record of two common terns in flight in June 2013 (Figure H.18). 
 A single little auk was recorded in flight in March 2013 and two birds, one in flight and 

one on the water, were recorded in February 2014 (Figure H23). 
 
Summer visitors recorded only during the breeding season in both years were Manx 
shearwater (Figure H.6), storm petrel (Figure H.7), Arctic skua (Figure H.11), great skua 
(Figure H.12) and Arctic tern (Figure H.19). A single great skua recorded on the 27th March 
2012, was just outside the formal April-September breeding season defined for this species.  
 
Species consistently more abundant in the breeding season than in the winter season in 
both years were kittiwake (Figure H.17), common guillemot (Figure H.20), razorbill (Figure 
H.21) and puffin (Figure H.24).  
 
Species consistently more abundant during the winter months than in the breeding season in 
both years were herring gull (Figure H.15) and great black-backed gull (Figure H.16). 
Indeed, although herring gulls breed locally, birds were only recorded outside the breeding 
season, during the winter months (Figure H.15).  
 
Species for which there was no clear consistent difference between the breeding season 
and winter season across both years were fulmar (Figure H.4), gannet (Figure H.6), shag 
(Figure H.10), common gull (Figure H.14) and black guillemot (Figure H.22). Of these 
species, for fulmar (Figure H.4), shag (Figure H.10) and black guillemot (Figure H.22),  not 
only was there no clear consistent difference between the seasons across years, but 
abundance/density appeared to be relatively constant (compared to other species) 
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throughout the year.  For black guillemot and shag this is consistent with locally breeding 
birds remaining close to their breeding colonies throughout the year (Wernham et al. 2002). 
Fulmars will also attend their colonies throughout most of the year (Wernham et al. 2002), 
and the relative stability (compared to other species) of the numbers of this species 
throughout the year might also reflect the presence of locally breeding birds outside the 
breeding season.  
 
The month of August was defined as a distinct “chicks at sea/ Moulting” season for both 
guillemots and razorbills. A single survey was conducted during August 2012 (on the 20th) 
and no surveys were conducted during August 2013. During the single survey in August 
2012, 7 razorbills were recorded, and no guillemots. Thus for guillemot the abundance 
estimate for this season is zero (Figure H.20), whilst for razorbill it is nonzero, but based on 
a single survey in August 2012 (Figure H.21). Of the 7 razorbills recorded, 3 were chicks, 1 
was an adult in summer plumage, and 3 were adults in transitional plumage.  This 
composition is consistent with a high proportion of the razorbills present in the survey area at 
the time of the survey being either chicks or adults accompanying chicks and undergoing 
moult.  
 
For a given species in a given season, when seasonal abundance estimates are calculated 
by year the confidence limits for the abundance estimate for the first year generally show 
considerable overlap with the confidence limits for the abundance estimate in the same year, 
and a single seasonal abundance estimate calculated across years appears to provide a 
reasonable summary of the data across both years. Thus, there is little or no evidence to 
suggest that the accuracy of our impact assessments might be improved by considering 
years separately rather than calculating seasonal abundance estimates across years. This is 
to be expected given the limited sample sizes (in terms of number of surveys) available for 
calculating seasonal abundance estimates, particularly when these estimates are calculated 
within years. Thus, we will base our impact assessment on seasonal abundance estimates 
calculated across years.  
 
Two cases where there are apparent differences between years in seasonal abundance are 
common gulls during the winter (Figure H.14) and great black-backed gulls during the 
breeding season (Figure H.16). Common gulls were recorded during the 2012 winter but not 
the 2013 winter whilst great black-backed gulls were recorded during the 2012 breeding 
season but not the 2013 breeding season.  However, although these differences could 
potentially represent genuine differences between the seasons in the presence or absence 
of birds, they could also represent chance effects. Common gulls were recorded in 3 out of 5 
surveys during the 2012 winter and during 0 out of 4 surveys during the 2013 winter. Thus, 
over the two winters common gulls were recorded during 3 out of 9 surveys.  Thus, the 
overall probability common gulls were not recorded during a winter survey is 6/9. Therefore, 
the probability they would not be recorded during any of the four surveys in the 2013 winter 
is (6/9)4 = 20%. Similarly, great black-backed gulls were recorded in 3 out of 5 surveys 
during the 2012 breeding season and during 0 out of 3 surveys during the 2013 breeding 
season. Thus, over the two breeding seasons great black-backed gulls were recorded during 
3 out of 8 surveys.  Thus, the overall probability black-backed gulls were not recorded during 
a breeding season survey is 5/8. Therefore, the probability they would not be recorded 
during any of the three surveys in the 2013 winter is (5/8)3 = 24%.  Therefore with 
probabilities of 20% and 24% in both cases the complete absence of records in one year is 
not the most likely outcome (i.e. the probabilities are both less than 50%) but is still likely to 
be a relatively common occurrence, without having to invoke differences between the 
seasons (i.e. the probabilities are both considerably greater than 5%).  Thus, even for these 
two species, in these two seasons, we suggest it is reasonable to use densities calculated 
across seasons as the basis of our impact assessment. 
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Appendix A: Combining density estimates for birds on the water 
and birds in flight 
For data collected under the standard ESAS methodology (Camphuysen et al. 2004), as in 
this study, distance sampling methods can only be applied to birds recorded on the water 
within transects, as for birds in flight no distance data are available. Thus, for birds in flight 
we have assumed that all birds within the transect were detected. However, the data for 
birds in flight was also analysed using the code from Distance, assuming 100% detection 
within the transect. This provides density estimates for birds in flight along with associated 
estimates of variance calculated within the same framework/software as the estimates for 
birds on the water. Whereas the variance estimate for birds in flight only includes 
components associated with the estimation of encounter rate and mean cluster size, the 
variance estimate for birds on the water also includes components associated with the 
estimation of the detection function. 
  
Having obtained wD̂ , the estimated density of birds on the water (with associated standard 

error sw  and degrees of freedom vw)  and fD̂ , the estimated density of  birds in flight water 
(with associated standard error sf  and degrees of freedom vf) from separate Distance 
analyses, we compute the estimated density of all birds, tD̂ as: 
 

fwt DDD ˆˆˆ   ( 1) 

 
Assuming wD̂  and fD̂  are uncorrelated random variables we estimate st the standard error 

of their sum tD̂  as: 
22
fwt sss   ( 2) 

 
 
Applying the Satterthwaite Approximation for degrees of freedom (Satterthwaite 1946, 
Milliken and Johnson section 2.7, p.33) provides the following estimate for the degrees of 
freedom, vt, associated with this estimate:  
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(3) 

 
Using these estimates of the standard error, st and degrees of freedom, vt, associated with 
the combined density estimate, tD̂ , we derive confidence limits using equations 3.72 to 3.74 

in Buckland et al. (2001:77), which assume that tD̂ is log-normally distributed.  
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Appendix B: Calculating seasonal abundance estimates 
Assume we are deriving an average density estimate for a season in which n surveys took 
place. Let di be the density estimate for survey i with coefficient of variation ci and degrees of 
freedom vi.. If we assume the surveys provide a representative sample of the variation in the 
true densities of birds present during the season, the best estimate for the average density 
of birds present over the season, D, is given by: 

n

d

D

n

i

i
 1  

(1) 

 
There are two sources of uncertainty associated with this estimate of the average density of 
birds present over the season: 

1. Uncertainty within the individual density estimates for each survey, reflecting the 
accuracy with which they capture the actual density of birds present at the time of 
survey.  

2. Uncertainty because the limited number of surveys conducted within a season only 
samples the actual temporal variation in density through the season, leading to 
sampling error.  

 
With the aim of capturing both of these sources of error we bootstrap confidence limits 
based on 1000 simulations for each species.  For each simulation we choose a random set 
of surveys from the original surveys. This is achieved by randomly sampling (with 
replacement) a list of unique identifiers for each of the surveys. This yields a random sample 
of surveys with the same number of surveys as the original data set. For example, if a 
seasonal density estimate is based upon 6 surveys, numbered 1-6, the random sample upon 
which a particular simulation is to be based might consist of surveys 5,1,3,2,5 and 1. This 
first stage of the simulation aims to capture the error resulting from the limited number of 
surveys only providing a sample of the underlying temporal variation in the actual density of 
birds present. It assumes that the surveys provide a fully representative sample of the 
underlying temporal variation in density through the season, and uses the survey data to 
define the underlying distribution of densities from which our bootstrap samples are chosen. 
Although the distribution of densities across different dates within the survey data can be 
thought of as the most likely instance of the underlying distribution, the true underlying 
distribution will usually differ from that recorded, particularly given the limited number of 
surveys. The question we are answering is if we assume that we can accurately infer the 
shape of the underlying distribution of densities across different dates/times within the 
season from our sample of survey data, what are the consequences of the limited number of 
surveys.  
 
For each survey j within a bootstrap sample k the distance sampling analyses provide a 
central density estimate djk  with coefficient of variation cjk and degrees of freedom vjk. These 
define the expected distribution of the true value of the density for that survey around the 
central density estimate. This distribution is assumed to be a log normal distribution. For 
each simulation k, for each survey j we chose a density estimate, rjk at random from this 
distribution, calculated as follows: 

 




 

21logexp jkevjkjk ctdr
jk

 (2) 

Where tv is a random number chosen from a Student‟s t distribution with v degrees of 
freedom. This is consistent with the approach taken to defining the confidence limits for 
density estimates from distance sampling analyses as set out in equations 3.72 to 3.74 of 
Buckland et al. (2001:77).  In this second step of the simulation process we are capturing the 
potential error resulting from our estimate of the density of birds based on distance sampling 
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for a particular survey not accurately capturing the actual number of birds present at the time 
of that survey.  
 
For each bootstrap sample k we calculate Rk the average density of birds across surveys, 
based upon the random sampled density estimates for that simulation:  

n

r

R

n

j

jk

k





1  

(3) 

 
We calculate the lower confidence limit (lcl) for D, the estimated average density across the 
season, as the 5% quantile of the Rk estimates over the 1000 simulations. We calculate the 
upper confidence limit (ucl) for D, as the 95% quantile of the Rk estimates over the 1000 
simulations. This approach provides 95% one sided and 90% double side confidence 
intervals.  
 
We also calculate the mean and median values of the Rk estimates over the 1000 
simulations. The distance sampling software providing the density estimates for each of the 
surveys assumes the density estimates for a particular survey follows a log normal 
distribution.  For a log normal distribution the central estimate corresponds to the median of 
the distribution. As a result of skewing, the mean of a log normal distribution tends to be 
greater than this central estimate and depends upon the variance of the distribution as well 
as its central estimate. The median of the Rk estimates tends to be close to our best/central   
estimate for the average density of birds present over the season, D, whereas the mean 
value tends to greater, sometimes much greater than this central estimate. This suggests 
that the estimates for the average density of birds present over a season may, like the 
estimates for each survey, also follow a log normal distribution, with our best estimate 
representing the median of this distribution. 
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Appendix C: Uncertain identifications 
Introduction 
For some broader taxonomic groups consisting of similar species, it is not always possible to 
positively identify sightings to individual species although they can be assigned to a broader 
taxonomic grouping.  For example, within the auk taxon, as well as sightings positively 
identified positively to species we have “uncertain” sightings potentially recorded as one of: 
 Common guillemot or razorbill.  
 Puffin or little auk. 
 Auk sp.  
 
For each species, density estimates corrected for uncertain identifications are calculated 
separately for birds on the water and birds in flight. These are combined to provide density 
estimates for all birds using the same approach used for all other species as set out in 
Appendix A. 
  
For birds on the water, we cannot fit a detection function to the distance data for an 
“uncertain” category by  itself as the numbers of sightings not identified to species will often 
tend to increase with increasing distance from the vessel as birds will tend to more difficult to 
identify the further they are from the observer. This violates a core assumption of distance 
sampling, that the items for which we are estimating density must be equally likely to occur 
at all distances from the observer.  Therefore, instead of estimating the probability of 
detection and density for the uncertain identification category by itself we estimate the 
probability of detection and density for the whole taxon based upon all sightings including 
those not identified to species. We then compare this density estimate to that based solely 
on sightings that were successfully identified to species to estimate the proportion of birds 
present within the taxon that were not identified to species. We then use this proportion to 
correct the density estimates for uncertain identification.  
 
For birds in flight, we assume a probability of detection of 100% rather than estimate a 
probability of detection by fitting a detection function to the distance data. R Therefore, we 
could potentially estimate the density of the “uncertain” category by itself without violating 
any key underlying assumptions.  However, there is no disadvantage to applying the same 
approach as is required for birds on the water. Thus, we use the same approach for both 
birds on the water and birds in flight. Consider a taxonomic group for which sightings are 
either positively identified as one of n species or for which the species is recorded as 
uncertain. We calculate a corrected density ci for species i as:  

P

U

ii
D

D
dc   (1) 

Where: 
 di is the uncorrected density estimate for individual i based solely on positively identified 

individuals. 
 Dp is the density estimate for the whole taxon based only on positively identified 

individuals. 
 Du is the density estimate for the whole taxon based on all sightings, including those that 

could not be identified to species. 
 
To estimate the standard error, Si, of this corrected density estimate as a first approximation 
we assume the components are independent and use the Delta method (Seber 1982:7-9):  
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 si is the standard error estimate for di, the uncorrected density estimate for individual 
species i.  

 Sp is the standard error estimate for Dp, the density estimate for whole taxon based only on 
positively identified individuals. 

 Su is the standard error estimate for Du, the density estimate for the whole taxon based on 
all sightings, including those that could not be identified to species. 

 
Applying the Satterthwaite Approximation for degrees of freedom (Satterthwaite 1946, 
Milliken and Johnson section 2.7, p.33) provides the following estimate for the degrees of 
freedom, Vi, associated with ci, the corrected density estimate: 
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(3) 

 
 

Where: 
 vi is the degrees of freedom associated with di, the uncorrected density estimate for 

individual species i.  
 Vp is the degrees of freedom associated with Dp, the density estimate for whole taxon 

based only on positively identified individuals. 
 Vu is the degrees of freedom associated with Du, the density estimate for the whole taxon 

based on all sightings, including those that could not be identified to species. 
 
Using these estimates of the standard error, Si and degrees of freedom, Vi, associated with 
the corrected density estimate for species i, ci, we derive confidence limits using equations 
3.72 to 3.74 in Buckland et al. (2001:77), which assume that ci is log-normally distributed.  
 
Thus, given a density estimate for  species i, di, a density estimate for the whole taxon based 
solely on positively identified individuals, Dp, and a density for the whole taxon based on all 
individuals recorded, including those not identified to species (Du) we can derive a density 
estimate for species i corrected for uncertain identifications. We now describe how we obtain 
these three different density estimates. 
 
Obtaining estimates for di, the density estimate for species i 
The uncorrected density estimates for individual species, di, along with their associated 
standard errors (si) and degrees of freedom (vi) are the results of the distance sampling 
analyses described fully in the main report. The probabilities of detection used in calculating 
these estimates are calculated by fitting detection functions across multiple species. For 
birds on the water, the probability of detection for common species (with 30 or more 
sightings) is derived from the Common Species Detection Function (Table 9) and the 
probability of detection for rare species (less than 30 sightings) is derived from the Rare 
Species Detection Function (Table 18). For birds in flight, a customising detection function 
model implementing 100% detection is implemented.  
 
Obtaining estimates for Dp, the density estimate for the whole taxon, based on just 
positively identified individuals 
The data used to estimate the uncorrected densities of individual species as described in the 
previous paragraph consists solely of sightings positively identified to species. Therefore, we 
estimate the density estimate for the whole taxon based solely on positively identified 
individuals Dp, by simply summing these density estimates for individual species:  





n
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jp dD
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Where dj is the density estimate for the jth species out of n species. Under the simplifying 
assumption that the density estimates for the individual species are independent of one 
another we estimate the standard error for their sum, Sp, as:  





n
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jp sS
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2  (5) 

 
Where sj is the standard error estimate for the jth species out of n species within the taxon 
Applying the Satterthwaite Approximation for degrees of freedom (Satterthwaite 1946, 
Milliken and Johnson section 2.7, p.33) provides the following estimate for the degrees of 
freedom, Vp, associated with this estimate:  
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Where vj is the estimated degrees of freedom associate with the density estimate for the jth 
species out of n species within the taxon. 
 
Obtaining estimates for Du, the density estimate for the whole taxon, including 
sightings not identified to species 
For a study where separate detection functions are fitted for individual species, estimating Du 
is straightforward, as it simply entails providing the appropriate subset of observations (i.e. 
all observations within the taxon, including those not identified to species) to the ddf fitting 
the detection function and to the dht function estimating the density of birds using these 
probability of detection estimates. For this study, where single detection functions are fitted 
across species, a more complex approach is required, although the underlying principles 
remain the same. 
 
For birds in flight, the customised ddf object implementing a 100% probability of detection for 
all sightings across species includes sightings that were not identified to species. Therefore, 
for birds in flight obtaining the density estimate for a whole taxon including uncertain 
identifications, Du, is simply a providing matter of providing the dht function which computes 
density and abundance estimates with this ddf object along with the appropriate subset of 
observations (i.e. all sightings of birds in flight recorded in snapshot within the target taxon 
including sightings not identified to species) as the basis of its calculations. As well as 
directly providing estimates of Du, the dht function also provides estimates of the standard 
error Su and degrees of freedom Vu associated with this estimate. 
 
For birds on water a more complex approach is required as we need to estimate the 
probability of detection for the whole taxon including uncertain identifications by fitting a 
detection function to the distance data. To do this we use detection functions which are as 
close as possible in terms of both structure and underlying data to the original models used 
to estimate the probabilities of detection for positively identified sightings. If the number of 
sightings for the whole taxon including uncertain identifications exceeds the appropriate 
threshold (30 or more sightings for this study), then the detection function used is derived 
from the common species detection function, otherwise it is derived from the rare species 
detection function. The detection functions used to estimate the probability of detection for 
the whole taxon include exactly the same covariates as the detection functions from which 
they were derived (e.g. in this study, for models derived from the common species detection 
function: species, cluster size, survey, observer and sea state; for models derived from the 
rare species detection function: body length2, behaviour, cluster size, survey, observer and 
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sea state.  The underlying data includes all the data upon which the original detection 
function models are based (i.e. all sightings positively identified to species, across all 
species, including species outside the target taxon) plus  those sightings from within the 
target taxon that were not identified to species.  Sightings not identified to species from taxa 
outside the target taxon are not included.  
 
For a target taxon with 30 or more sightings, where a model derived from the common 
species detection function is used to estimate the probability of detection, species is included 
explicitly as a covariate in the model. In this case, for all records within the underlying data 
belonging to the target taxon, including uncertain identifications, the species codes are 
changed from their original values to a single unique identifier for the taxon.  
 
For a target taxon with less than 30 sightings, where a model derived from the rare species 
detection function is used to estimate the probability of detection, species is not explicitly 
included as a covariate within the model, but underlying covariates (e.g. Behaviour and body 
length) are used to capture the variation in the probability of detection between species. In 
this case, for positively identified sightings within the target taxon, the values of these 
covariates are left unchanged. For sightings within the target taxon not identified to species, 
the values of the quantitative covariates capturing variation between species (e.g. body 
length) are estimated separately for each survey as the mean across individual birds of that 
covariate based on positively identified sightings within the taxon.  For qualitative covariates 
(e.g. Behaviour) usually a single value will apply across the whole taxon and the same value 
can be used for unidentified sightings as those identified to species. Should a situation arise 
where a qualitative variable varies between species within a taxon, then the value of the 
covariate for which most individuals were recorded could be used.  
 
Following these changes to the data (i.e. adding unidentified sightings within the target 
taxon, and modifying the values of the covariates capturing the variation between species for 
the sightings within the taxon) the detection function is refitted. Along with estimates of the 
probability of detection for sightings positively identified to species outside the taxon, the 
resulting model n provides estimates for the target taxon, including sightings not identified to 
species. This detection function provides the necessary probability of detection estimates 
required for the dht function to compute estimates of Du, the density of birds in the target 
taxon, including birds not identified to species, along with the estimates of the standard error 
Su and degrees of freedom Vu associated with this estimate. This is achieved by providing 
the dht function with this ddf model to estimate the probability of detection plus the 
appropriate subset  of data as the set of observations upon which to basis its encounter rate 
estimates (i.e. all sightings on the water and in transect within the target taxon including 
sightings not identified to species) 
 
Conditions defining when corrections for uncertain identifications need to be applied 
Obviously, corrections only need to be applied if the particular area/season for which we are 
estimating density has any sightings within the taxon that were not identified to species, and  
furthermore the inclusion of these sightings increases the density estimate over that 
obtained if only sightings positively identified to species are considered (i.e. Du > Dp).  
 
Where additional unidentified sightings do exist, it is not a foregone conclusion that their 
inclusion in the distance sampling analyses will increase the density estimate for the 
taxonomic group concerned. The reason for this is that from the perspective of fitting a 
detection function for a particular species failing to detect birds is indistinguishable from 
failing to identify them. Indeed these two phenomena are likely to behave similarly to one 
another, both increasing in likelihood with increase distance from the observer. Therefore, 
the fitting of a detection function for an individual species will potentially capture both failure 
to detect and failure to identify for birds belonging to that species.   If the detection function 
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does capture both phenomena fully the inclusion of sightings not included to species will not 
increase the density estimate for the taxonomic group.  
 
More formally, we need only correct density estimates for area/season combinations where 
both of the following criteria are satisfied: 

PU nn   (7) 
and 

P

U

P

U

P

P

n

n
  (8) 

 
Where: 
 nu is the number of animals seen within the area/season including all sightings within the 

taxon. 
 np is the number of animals seen within the area/season only including those animals 

within the taxon that where positively identified to species.  
  Pu is the probability of detection for all sightings within the taxon, including those not 

identified to species.  
 Pp is the probability of detection for sightings identified to species within the taxon.  
 
Correcting for uncertain identifications in hierarchically nested taxa 
So far we have considered only a single taxonomic group with n species and one category of 
unidentified individuals. However, the taxonomic groups within which we wish to apply 
corrections for unidentified sightings are often nested hierarchically, with a need to assign 
uncertain observations at each step in the hierarchy. For example within auks: 
  There is a guillemot/razorbill taxonomic grouping, within which birds will have been 

positively identified as one of guillemot or razorbill, or identified as belonging to one or 
other of these two species, although it is uncertain which one.  

 There is a puffin/little auk taxonomic grouping, within which birds will have been positively 
identified as one of puffin or little auk, or identified as belonging to one or other of these 
two species, although it is uncertain which one.  

  There is an overall auk grouping including all the previous groupings (i.e. the individual 
species, plus the guillemot/razorbill grouping and the puffin/little auk grouping) and an 
additional “uncertain” group where the observer can be no more precise than saying the 
bird was an auk.  

 
We handle such hierarchies by correcting for uncertainties in the smaller taxonomic 
groupings, where certainty is greatest, first, and then working upwards. 
 
For example, for auks: 
 We calculate corrected densities for guillemot and razorbill within the guillemot/razorbill 

grouping and corrected densities for puffin and little auk within the puffin/little auk grouping, 
as described above. 

 Then, to apply the correction within the overall auk grouping we take as our initial 
uncorrected densities for individual species, and their associated variances, these 
estimates already corrected for uncertainty at  lower (i.e. more precise) taxonomic levels. 
Thus the density of positively identified birds at the auk level is taken to include birds 
already assigned to lower taxonomic groupings, even if not to particular species.  

 
Comparison with approach recommended by Maclean et al. (2009) 
To correct for uncertain identifications Maclean et al. (2009) recommend the following 
approach “the relative abundance of each of the species comprising the taxon is calculated 
from positively identified individuals. Individuals of the generic taxon can then be randomly 
assigned a species identity using the ratio of relative abundances to determine the total 
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number assigned to each species.” The approach adopted here is similar to this but differs in 
that whereas we assign uncertain observations to species on the basis of their densities 
derived from distance sampling analyses the Maclean et al. approach does it before any 
distance analysis is performed, on the basis of their sample sizes. Advantages of our 
approach over the Maclean et al. approach are: 
 Our approach takes into account any differences between species in their probability of 

detection when estimating their relative abundance when assigning unidentified sightings 
to species. As the Maclean et al. approach is based upon raw sample sizes, it ignores any 
differences between species in this regard.  

 Detection function modelling can potentially capture both failing to detect birds and failing 
to identify them to species. Our approach takes into account this potential for detection 
function modelling to capture the failure to identify sightings to species, whereas the 
Maclean et al. approach does not. This results in corrections either being applied less 
often, or being of a smaller magnitude than would result from the Maclean et al. approach.  

 Our approach explicitly considers the effects of any correction on the variance of the 
corrected density, whereas the Maclean et al. approach does not. 

 
The correction described in Equation 1 whereby the density estimate  for each species is 
inflated by the same correction factor  Du/Dp corrects for any failure to identify species that 
has not already been captured by the  detection functions based upon positively identified 
sightings. An example of where such detection function modelling might not fully capture any 
failure to identify birds would be if all birds close to the observer were detected, but only 
some could be assigned to species. Another example would be where if birds are more likely 
to be recorded as uncertain if (at a given distance from the observer) they occur in larger 
groups than sightings identified to species, or in mixed groups with a  species composition 
differing to that found in groups identified to species. The correction applied inflates the 
number of birds assigned to each species by the same factor so as to leave no birds within 
the taxon unaccounted for, and effectively assumes all birds assigned to a species, are 
subject to the same probabilities of detection and identification as the positively identified 
individuals within that species.  
 
For this project we obtain the estimate for the density of positively identified birds within the 
taxon Dp, by summing density estimates for individual species within that taxon. This 
approach allows density estimates to be combined from different distance sampling 
analyses, with the common species detection function being used for some analyses and the 
rare species detection function for others. Where taxa are hierarchically nested, it also 
allows density estimates for species corrected for uncertainty at a lower taxonomic level to 
be combined with density estimates for other species at a higher taxonomic level. However, 
where all the density estimates within a taxon originate from a single detection function 
model, and non are for species corrected for uncertain identification at a lower taxonomic 
level,  then a better approach might be to directly estimate the density of positively identified 
sightings within the target taxon in a single call to the dht function with the appropriate 
subset of the observation data as the basis of its calculations (i.e. all positively identified 
sightings within the taxon).  This avoids to having to make the simplifying assumption when 
estimating the standard error Sp and degrees of freedom Vp associated with the Dp estimate 
that the density estimates for the individual species are independent of one another, yielding 
more robust estimates. This more robust approach to estimating Dp and its associate 
standard error and degrees of freedom estimates could be adopted when ever all the density 
estimates originate from a single detection function model and either the taxon is not part of 
a hierarchy, or it is the lowest, most precise, taxon within this hierarchy.  



 

 32 

Table 1: Survey effort achieved on each transect expressed as a percentage of transect length 
Table 1a: For each survey date 
  Transect  

Date 2 4 6 8 10 12 14 16 18 20 22 Overall 
27/03/2012 103% 104% 99% 99% 96% 99% 101% 98% 100% 98% 97% 99% 
18/04/2012 89% 103% 101% 100% 103% 94% 100% 97% 102% 99% 97% 99% 
27/05/2012 107% 101% 102% 103% 104% 100% 100% 100% 101% 92% 102% 101% 
30/06/2012 99% 95% 100% 95% 99% 101% 96% 100% 96% 97% 102% 98% 
20/07/2012 95% 97% 95% 96% 101% 100% 100% 101% 99% 97% 103% 99% 
20/08/2012 94% 93% 98% 93% 98% 87% 86% 98% 99% 100%   89% 
11/12/2012 101% 102% 101% 100% 102% 97% 90%         56% 
17/02/2013 105% 101% 103% 102% 91% 99% 101% 101% 102% 98% 91% 99% 
04/03/2013 98% 100% 98% 97% 103% 94% 97%         56% 
05/03/2013 107% 95% 101% 99% 98% 96% 96% 99% 100% 97% 92% 98% 
30/03/2013 97% 105% 101% 100% 102% 89% 101% 100% 98% 97% 91% 98% 
16/05/2013             71%         7% 
03/06/2013 102% 104% 103% 101% 96% 96% 99% 98% 99% 100% 102% 100% 
25/06/2013 111% 101% 102% 100% 97% 100% 99% 103% 100% 99% 100% 101% 
10/07/2013 96% 95% 102% 100% 99% 98% 102% 98% 98% 101% 94% 99% 
09/09/2013 106% 83% 99% 90% 98% 97% 102% 101% 97% 95% 94% 96% 
23/10/2013 99% 89% 101% 102% 97% 101% 98% 62% 25%     68% 
17/02/2014 76% 102% 93% 97% 88%             34% 
19/02/2014                 47% 98% 94% 22% 
12/03/2014 94% 92% 92% 87% 93% 96% 95%         53% 

Transect 
length  

(km) 2.7 5.1 6.4 7.7 7.4 8.4 7.5 11.0 10.0 8.3 5.0 79.5 
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Table 1b: For each survey 
  Transect  

Survey 2 4 6 8 10 12 14 16 18 20 22 Overall 
27/03/2012 103% 104% 99% 99% 96% 99% 101% 98% 100% 98% 97% 99% 
18/04/2012 89% 103% 101% 100% 103% 94% 100% 97% 102% 99% 97% 99% 
27/05/2012 107% 101% 102% 103% 104% 100% 100% 100% 101% 92% 102% 101% 
30/06/2012 99% 95% 100% 95% 99% 101% 96% 100% 96% 97% 102% 98% 
20/07/2012 95% 97% 95% 96% 101% 100% 100% 101% 99% 97% 103% 99% 
20/08/2012 94% 93% 98% 93% 98% 87% 86% 98% 99% 100%   89% 
11/12/2012 101% 102% 101% 100% 102% 97% 90%         56% 
17/02/2013 105% 101% 103% 102% 91% 99% 101% 101% 102% 98% 91% 99% 
04/03/2013 98% 100% 98% 97% 103% 94% 97%         56% 
05/03/2013 107% 95% 101% 99% 98% 96% 96% 99% 100% 97% 92% 98% 
30/03/2013 97% 105% 101% 100% 102% 89% 101% 100% 98% 97% 91% 98% 
03/06/2013 102% 104% 103% 101% 96% 96% 99% 98% 99% 100% 102% 100% 
25/06/2013 111% 101% 102% 100% 97% 100% 99% 103% 100% 99% 100% 101% 
10/07/2013 96% 95% 102% 100% 99% 98% 102% 98% 98% 101% 94% 99% 
09/09/2013 106% 83% 99% 90% 98% 97% 102% 101% 97% 95% 94% 96% 
23/10/2013 99% 89% 101% 102% 97% 101% 98% 62% 25%     68% 
18/02/2014 76% 102% 93% 97% 88%       47% 98% 94% 56% 
12/03/2014 94% 92% 92% 87% 93% 96% 95%         53% 

Transect 
length  

(km) 2.7 5.1 6.4 7.7 7.4 8.4 7.5 11.0 10.0 8.3 5.0 79.5 
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Table 2: Number of observations (clusters) of each species on each survey 
Table 2a: Birds on the water 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

Fulm
ar 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

C
orm

orant 

Shag 

Arctic skua 

G
reat skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

auk sp. 

G
uillem

ot/ 
razorbill 

Total W
ithout 

uncertain ID
 

Total w
ith 

uncertain ID
 

27/03/2012 1 0 0 105 0 0 0 0 8 0 1 0 0 1 0 0 37 3 0 0 41 0 0 197 197 
18/04/2012 0 0 0 41 0 0 2 0 3 0 1 0 0 0 3 0 16 23 1 0 14 0 1 104 105 
27/05/2012 0 0 0 196 0 0 11 0 4 2 15 0 0 0 7 1 374 49 2 0 102 2 23 763 788 
30/06/2012 0 0 0 16 1 0 2 0 0 0 2 0 0 0 6 0 35 17 0 0 51 1 4 130 135 
20/07/2012 0 0 0 30 0 0 1 0 8 1 1 0 0 0 0 0 14 8 0 0 97 0 0 160 160 
20/08/2012 0 0 0 28 0 1 12 0 0 0 2 0 0 0 0 0 0 7 0 0 4 0 0 54 54 
11/12/2012 0 0 0 1 0 0 1 0 3 0 0 1 1 1 0 0 1 0 0 0 0 0 0 9 9 
17/02/2013 0 0 0 27 0 0 0 0 6 0 0 0 1 2 2 0 26 1 2 0 0 0 0 67 67 
04/03/2013 0 0 0 12 0 0 0 0 9 0 0 0 0 2 1 0 36 0 0 0 0 0 0 60 60 
05/03/2013 0 0 0 31 0 0 0 0 10 0 0 0 0 1 0 0 91 4 1 1 4 0 0 143 143 
30/03/2013 0 0 0 25 0 0 0 0 5 0 0 0 0 1 0 0 18 6 1 0 14 1 1 70 72 
03/06/2013 0 0 0 24 0 0 1 0 1 0 1 0 0 0 5 0 25 33 1 0 58 0 0 149 149 
25/06/2013 0 0 1 33 0 0 0 0 2 0 2 1 0 0 5 0 46 19 0 0 64 0 2 173 175 
10/07/2013 0 0 0 91 0 0 0 0 6 0 3 0 0 0 1 0 153 16 2 0 40 0 1 312 313 
09/09/2013 0 0 0 37 0 0 12 0 2 0 4 0 0 0 0 0 3 1 1 0 4 0 0 64 64 
23/10/2013 0 0 0 0 0 0 4 1 2 0 0 0 0 0 3 0 8 3 0 0 2 0 0 23 23 
18/02/2014 0 0 0 19 0 0 0 0 2 0 0 0 0 0 0 0 3 0 1 1 0 0 0 26 26 
12/03/2014 0 1 0 13 0 0 0 0 2 0 0 0 2 3 0 0 9 1 0 0 2 0 0 33 33 

Total 1 1 1 729 1 1 46 1 73 3 32 2 4 11 33 1 895 191 12 2 497 4 32 2537 2573 
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Table 2b: Birds in flight 

Survey 

R
ed-throated 

diver 

Fulm
ar 

Sooty 
shearw

ater 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

Shag 

Arctic skua 

G
reat skua 

Black-headed 
gull 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

C
om

m
on tern 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

large gull sp. 
(H

G
, LB or G

B) 

G
uillem

ot/razorb
ill 

Total w
ithout 

uncertain ID
 

Total w
ith 

uncertain ID
 

27/03/2012 0 28 0 0 0 3 0 0 0 0 0 1 0 2 0 0 7 3 0 0 7 0 2 51 53 
18/04/2012 0 49 0 0 0 7 0 1 1 0 1 0 0 4 0 0 14 8 0 0 1 0 2 86 88 
27/05/2012 0 76 0 0 0 6 0 0 9 0 0 0 1 13 0 2 66 14 0 0 23 0 5 210 215 
30/06/2012 0 65 0 3 3 9 0 0 12 0 0 0 1 41 0 2 22 17 0 0 15 0 1 190 191 
20/07/2012 0 113 0 1 0 8 1 0 10 0 0 0 0 30 0 0 9 7 1 0 24 0 0 204 204 
20/08/2012 0 80 0 0 1 8 3 1 18 0 0 0 1 1 0 0 0 0 0 0 0 0 0 113 113 
11/12/2012 0 36 0 0 0 3 3 0 0 0 2 0 3 1 0 0 0 3 1 0 0 0 0 52 52 
17/02/2013 0 49 0 0 0 1 2 0 0 0 0 0 1 8 0 0 16 2 0 0 0 1 1 79 81 
04/03/2013 0 19 0 0 0 3 0 0 0 0 0 0 1 4 0 0 5 0 0 0 1 0 0 33 33 
05/03/2013 0 44 0 0 0 5 0 0 0 0 1 1 0 11 0 0 11 2 0 0 1 0 2 76 78 
30/03/2013 0 30 0 0 0 2 0 0 0 0 3 0 0 16 0 0 4 2 0 0 0 0 0 57 57 
03/06/2013 0 49 0 0 1 2 1 1 8 0 0 0 0 7 0 3 19 11 0 0 9 0 0 111 111 
25/06/2013 0 52 0 0 3 8 1 0 5 1 2 0 0 28 1 2 36 27 1 0 22 0 1 189 190 
10/07/2013 0 55 0 1 4 7 1 2 6 0 1 0 0 20 0 1 37 16 0 0 10 0 0 161 161 
09/09/2013 0 59 1 0 0 43 1 0 6 0 0 0 0 4 0 0 0 1 0 0 0 0 0 115 115 
23/10/2013 0 6 0 0 0 19 0 0 0 0 0 1 3 11 0 0 0 1 0 0 1 0 0 42 42 
18/02/2014 1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 37 37 
12/03/2014 1 28 0 0 0 0 0 0 0 0 0 0 0 2 0 0 8 0 0 0 0 0 1 39 40 

Total 2 872 1 5 12 134 13 5 75 1 10 3 11 203 1 10 255 114 3 1 114 1 15 1845 1861 
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Table 3: Total number of individual animals of each species seen on each survey 
Table 3a: Birds on water 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

Fulm
ar 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

C
orm

orant 

Shag 

Arctic skua 

G
reat skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

auk sp. 

G
uillem

ot/razorb
ill 

Total w
ithout 

uncertain ID
 

Total w
ith 

uncertain ID
 

27/03/2012 1 0 0 690 0 0 0 0 11 0 1 0 0 1 0 0 60 5 0 0 48 0 0 817 817 
18/04/2012 0 0 0 121 0 0 2 0 6 0 1 0 0 0 123 0 23 50 2 0 22 0 7 350 357 
27/05/2012 0 0 0 1134 0 0 37 0 4 3 89 0 0 0 34 8 1774 92 3 0 250 3 818 3428 4249 
30/06/2012 0 0 0 40 3 0 2 0 0 0 2 0 0 0 172 0 65 51 0 0 61 10 44 396 450 
20/07/2012 0 0 0 43 0 0 1 0 13 1 1 0 0 0 0 0 27 21 0 0 188 0 0 295 295 
20/08/2012 0 0 0 41 0 1 17 0 0 0 4 0 0 0 0 0 0 7 0 0 4 0 0 74 74 
11/12/2012 0 0 0 20 0 0 1 0 4 0 0 1 1 1 0 0 1 0 0 0 0 0 0 29 29 
17/02/2013 0 0 0 213 0 0 0 0 9 0 0 0 1 2 2 0 31 1 2 0 0 0 0 261 261 
04/03/2013 0 0 0 41 0 0 0 0 17 0 0 0 0 2 1 0 51 0 0 0 0 0 0 112 112 
05/03/2013 0 0 0 151 0 0 0 0 21 0 0 0 0 1 0 0 203 11 1 1 4 0 0 393 393 
30/03/2013 0 0 0 162 0 0 0 0 6 0 0 0 0 1 0 0 19 6 1 0 15 1 2 210 213 
03/06/2013 0 0 0 41 0 0 1 0 17 0 1 0 0 0 70 0 41 91 1 0 80 0 0 343 343 
25/06/2013 0 0 1 56 0 0 0 0 15 0 2 2 0 0 755 0 118 306 0 0 84 0 3 1339 1342 
10/07/2013 0 0 0 129 0 0 0 0 10 0 6 0 0 0 5 0 218 41 2 0 46 0 1 457 458 
09/09/2013 0 0 0 90 0 0 16 0 2 0 5 0 0 0 0 0 5 1 1 0 4 0 0 124 124 
23/10/2013 0 0 0 0 0 0 9 2 2 0 0 0 0 0 7 0 11 5 0 0 2 0 0 38 38 
18/02/2014 0 0 0 66 0 0 0 0 2 0 0 0 0 0 0 0 6 0 1 1 0 0 0 76 76 
12/03/2014 0 1 0 36 0 0 0 0 4 0 0 0 3 3 0 0 9 1 0 0 2 0 0 59 59 

Total 1 1 1 3074 3 1 86 2 143 4 112 3 5 11 1169 8 2662 689 14 2 810 14 875 8801 9690 
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Table 3b: Birds in flight 

Survey 

R
ed-throated 

diver 

Fulm
ar 

Sooty 
shearw

ater 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

Shag 

Arctic skua 

G
reat skua 

Black-headed 
gull 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

C
om

m
on tern 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

large gull sp. 
(H

G
, LB or G

B) 

G
uillem

ot/razorb
ill 

Total w
ithout 

uncertain ID
 

Total w
ith 

uncertain ID
 

27/03/2012 0 33 0 0 0 3 0 0 0 0 0 1 0 2 0 0 15 14 0 0 13 0 3 81 84 
18/04/2012 0 67 0 0 0 7 0 1 1 0 1 0 0 6 0 0 34 16 0 0 2 0 3 135 138 
27/05/2012 0 92 0 0 0 7 0 0 9 0 0 0 1 20 0 26 169 23 0 0 83 0 17 430 447 
30/06/2012 0 74 0 7 3 11 0 0 13 0 0 0 1 854 0 3 26 24 0 0 18 0 2 1034 1036 
20/07/2012 0 136 0 1 0 8 1 0 10 0 0 0 0 179 0 0 13 16 1 0 42 0 0 407 407 
20/08/2012 0 95 0 0 1 10 5 1 19 0 0 0 1 1 0 0 0 0 0 0 0 0 0 133 133 
11/12/2012 0 49 0 0 0 5 3 0 0 0 2 0 4 1 0 0 0 6 1 0 0 0 0 71 71 
17/02/2013 0 137 0 0 0 1 2 0 0 0 0 0 1 8 0 0 23 2 0 0 0 1 4 174 179 
04/03/2013 0 19 0 0 0 4 0 0 0 0 0 0 1 4 0 0 10 0 0 0 1 0 0 39 39 
05/03/2013 0 54 0 0 0 5 0 0 0 0 1 1 0 17 0 0 14 4 0 0 1 0 2 97 99 
30/03/2013 0 34 0 0 0 4 0 0 0 0 3 0 0 27 0 0 7 5 0 0 0 0 0 80 80 
03/06/2013 0 52 0 0 1 2 1 1 9 0 0 0 0 7 0 5 59 21 0 0 20 0 0 178 178 
25/06/2013 0 66 0 0 3 9 1 0 7 1 6 0 0 128 2 6 62 39 1 0 45 0 1 376 377 
10/07/2013 0 64 0 2 4 14 1 2 6 0 1 0 0 41 0 6 52 17 0 0 16 0 0 226 226 
09/09/2013 0 82 1 0 0 74 1 0 6 0 0 0 0 4 0 0 0 1 0 0 0 0 0 169 169 
23/10/2013 0 9 0 0 0 31 0 0 0 0 0 1 3 15 0 0 0 1 0 0 4 0 0 64 64 
18/02/2014 1 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 59 59 
12/03/2014 1 36 0 0 0 0 0 0 0 0 0 0 0 2 0 0 12 0 0 0 0 0 3 51 54 

Total 2 1155 1 10 12 195 15 5 80 1 14 3 12 1316 2 46 497 189 3 1 245 1 35 3804 3840 
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Table 4: Mean cluster size of each species on each survey 
Table 4a: Birds on water 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

Fulm
ar 

M
anx shearw

ater 

Storm
 petrel 

G
annet 

C
orm

orant 

Shag 

Arctic skua 

G
reat skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

auk sp. 

G
uillem

ot/ 
razorbill 

27/03/2012 1.0     6.6         1.4   1.0     1.0     1.6 1.7     1.2     
18/04/2012       3.0     1.0   2.0   1.0       41.0   1.4 2.2 2.0   1.6   7.0 
27/05/2012       5.8     3.4   1.0 1.5 5.9       4.9 8.0 4.7 1.9 1.5   2.5 1.5 35.6 
30/06/2012       2.5 3.0   1.0       1.0       28.7   1.9 3.0     1.2 10.0 11.0 
20/07/2012       1.4     1.0   1.6 1.0 1.0           1.9 2.6     1.9     
20/08/2012       1.5   1.0 1.4       2.0             1.0     1.0     
11/12/2012       20.0     1.0   1.3     1.0 1.0 1.0     1.0             
17/02/2013       7.9         1.5       1.0 1.0 1.0   1.2 1.0 1.0         
04/03/2013       3.4         1.9         1.0 1.0   1.4             
05/03/2013       4.9         2.1         1.0     2.2 2.8 1.0 1.0 1.0     
30/03/2013       6.5         1.2         1.0     1.1 1.0 1.0   1.1 1.0 2.0 
03/06/2013       1.7     1.0   17.0   1.0       14.0   1.6 2.8 1.0   1.4     
25/06/2013     1.0 1.7         7.5   1.0 2.0     151.0   2.6 16.1     1.3   1.5 
10/07/2013       1.4         1.7   2.0       5.0   1.4 2.6 1.0   1.2   1.0 
09/09/2013       2.4     1.3   1.0   1.3           1.7 1.0 1.0   1.0     
23/10/2013             2.3 2.0 1.0           2.3   1.4 1.7     1.0     
18/02/2014       3.5         1.0               2.0   1.0 1.0       
12/03/2014   1.0   2.8         2.0       1.5 1.0     1.0 1.0     1.0     

Total 1.0 1.0 1.0 4.2 3.0 1.0 1.9 2.0 2.0 1.3 3.5 1.5 1.3 1.0 35.4 8.0 3.0 3.6 1.2 1.0 1.6 3.5 27.3 
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Table 4b: Birds in flight 

Survey 

R
ed-throated 

diver 

Fulm
ar 

Sooty 
shearw

ater 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

Shag 

Arctic skua 

G
reat skua 

Black-headed 
gull 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

C
om

m
on tern 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

large gull sp. 
(H

G
, LB or G

B) 

G
uillem

ot/ 
razorbill 

27/03/2012   1.2       1.0           1.0   1.0     2.1 4.7     1.9   1.5 
18/04/2012   1.4       1.0   1.0 1.0   1.0     1.5     2.4 2.0     2.0   1.5 
27/05/2012   1.2       1.2     1.0       1.0 1.5   13.0 2.6 1.6     3.6   3.4 
30/06/2012   1.1   2.3 1.0 1.2     1.1       1.0 20.8   1.5 1.2 1.4     1.2   2.0 
20/07/2012   1.2   1.0   1.0 1.0   1.0         6.0     1.4 2.3 1.0   1.8     
20/08/2012   1.2     1.0 1.3 1.7 1.0 1.1       1.0 1.0                   
11/12/2012   1.4       1.7 1.0       1.0   1.3 1.0       2.0 1.0         
17/02/2013   2.8       1.0 1.0           1.0 1.0     1.4 1.0       1.0 4.0 
04/03/2013   1.0       1.3             1.0 1.0     2.0       1.0     
05/03/2013   1.2       1.0         1.0 1.0   1.5     1.3 2.0     1.0   1.0 
30/03/2013   1.1       2.0         1.0     1.7     1.8 2.5           
03/06/2013   1.1     1.0 1.0 1.0 1.0 1.1         1.0   1.7 3.1 1.9     2.2     
25/06/2013   1.3     1.0 1.1 1.0   1.4 1.0 3.0     4.6 2.0 3.0 1.7 1.4 1.0   2.0   1.0 
10/07/2013   1.2   2.0 1.0 2.0 1.0 1.0 1.0   1.0     2.1   6.0 1.4 1.1     1.6     
09/09/2013   1.4 1.0     1.7 1.0   1.0         1.0       1.0           
23/10/2013   1.5       1.6           1.0 1.0 1.4       1.0     4.0     
18/02/2014 1.0 1.6                             1.0     1.0       
12/03/2014 1.0 1.3                       1.0     1.5           3.0 

Total 1.0 1.3 1.0 2.0 1.0 1.5 1.2 1.0 1.1 1.0 1.4 1.0 1.1 6.5 2.0 4.6 1.9 1.7 1.0 1.0 2.1 1.0 2.3 
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Table 5: Median cluster size of each species on each survey 
Table 5a: Birds on water 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

Fulm
ar 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

C
orm

orant 

Shag 

Arctic skua 

G
reat skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

auk sp. 

G
uillem

ot/ 
razorbill 

27/03/2012 1.0     3.0         1.0   1.0     1.0     1.0 1.0     1.0     
18/04/2012       1.0     1.0   2.0   1.0       40.0   1.0 2.0 2.0   1.0   7.0 
27/05/2012       2.0     2.0   1.0 1.5 7.0       5.0 8.0 2.0 1.0 1.5   2.0 1.5 30.0 
30/06/2012       1.0 3.0   1.0       1.0       35.0   1.0 1.0     1.0 10.0 11.5 
20/07/2012       1.0     1.0   1.5 1.0 1.0           1.0 2.0     1.0     
20/08/2012       1.0   1.0 1.0       2.0             1.0     1.0     
11/12/2012       20.0     1.0   1.0     1.0 1.0 1.0     1.0             
17/02/2013       1.0         1.0       1.0 1.0 1.0   1.0 1.0 1.0         
04/03/2013       1.0         2.0         1.0 1.0   1.0             
05/03/2013       1.0         2.0         1.0     1.0 3.0 1.0 1.0 1.0     
30/03/2013       1.0         1.0         1.0     1.0 1.0 1.0   1.0 1.0 2.0 
03/06/2013       1.0     1.0   17.0   1.0       12.0   1.0 2.0 1.0   1.0     
25/06/2013     1.0 1.0         7.5   1.0 2.0     150.0   1.0 3.0     1.0   1.5 
10/07/2013       1.0         1.0   2.0       5.0   1.0 1.0 1.0   1.0   1.0 
09/09/2013       1.0     1.0   1.0   1.0           1.0 1.0 1.0   1.0     
23/10/2013             1.0 2.0 1.0           1.0   1.0 2.0     1.0     
18/02/2014       1.0         1.0               2.0   1.0 1.0       
12/03/2014   1.0   1.0         2.0       1.5 1.0     1.0 1.0     1.0     

Total 1.0 1.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0 1.5 1.0 1.0 8.0 8.0 1.0 1.0 1.0 1.0 1.0 1.5 20.0 
 



 

 41 

Table 5b: Birds in flight 

Survey 

R
ed-throated 

diver 

Fulm
ar 

Sooty 
shearw

ater 

M
anx 

shearw
ater 

Storm
 petrel 

G
annet 

Shag 

Arctic skua 

G
reat skua 

Black-headed 
gull 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Kittiw
ake 

C
om

m
on tern 

Arctic tern 

G
uillem

ot 

R
azorbill 

Black guillem
ot 

Little Auk 

Puffin 

large gull sp. 
(H

G
, LB or G

B) 

G
uillem

ot/ 
razorbill 

27/03/2012   1.0       1.0           1.0   1.0     1.0 2.0     2.0   1.5 
18/04/2012   1.0       1.0   1.0 1.0   1.0     1.5     2.0 2.0     2.0   1.5 
27/05/2012   1.0       1.0     1.0       1.0 1.0   13.0 1.0 1.0     3.0   3.0 
30/06/2012   1.0   3.0 1.0 1.0     1.0       1.0 1.0   1.5 1.0 1.0     1.0   2.0 
20/07/2012   1.0   1.0   1.0 1.0   1.0         1.0     1.0 1.0 1.0   1.0     
20/08/2012   1.0     1.0 1.0 1.0 1.0 1.0       1.0 1.0                   
11/12/2012   1.0       1.0 1.0       1.0   1.0 1.0       1.0 1.0         
17/02/2013   1.0       1.0 1.0           1.0 1.0     1.0 1.0       1.0 4.0 
04/03/2013   1.0       1.0             1.0 1.0     2.0       1.0     
05/03/2013   1.0       1.0         1.0 1.0   1.0     1.0 2.0     1.0   1.0 
30/03/2013   1.0       2.0         1.0     1.0     1.0 2.5           
03/06/2013   1.0     1.0 1.0 1.0 1.0 1.0         1.0   2.0 2.0 1.0     2.0     
25/06/2013   1.0     1.0 1.0 1.0   1.0 1.0 3.0     1.0 2.0 3.0 1.0 1.0 1.0   1.5   1.0 
10/07/2013   1.0   2.0 1.0 1.0 1.0 1.0 1.0   1.0     1.0   6.0 1.0 1.0     1.5     
09/09/2013   1.0 1.0     1.0 1.0   1.0         1.0       1.0           
23/10/2013   1.0       1.0           1.0 1.0 1.0       1.0     4.0     
18/02/2014 1.0 1.0                             1.0     1.0       
12/03/2014 1.0 1.0                       1.0     1.0           3.0 

Total 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 
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Table 6: Goodness of fit of base model for predicting probability of detection for common species. 

ID Model 
AIC 

Term 1 
AIC  

Term 2 AIC 
Δ AIC 

Term 1 
Δ AIC 

Term 2 Δ AIC Comment 
1 1 6901.9 2 6903.9 0.0 0 0.0 Null model 
2 log(size) 6853.5 4 6857.5 -48.4 2 -46.4   
3 survey 6788.0 36 6824.0 -113.9 34 -79.9   
4 species 6778.5 18 6796.5 -123.4 16 -107.4   
5 log(size) + survey 6751.7 38 6789.7 -150.3 36 -114.3   
6 species + log(size) 6730.3 20 6750.3 -171.7 18 -153.7   
7 species + survey 6681.0 52 6733.0 -220.9 50 -170.9   
8 species + log(size) + survey 6649.3 54 6703.3 -252.7 52 -200.7 Base model 

 
Table 7: Goodness of fit of alternative detection function models for predicting probability of detection for common species. 

ID Model 
AIC 

Term 1 
AIC  

Term 2 AIC 
Δ AIC 

Term 1 
Δ AIC 

Term 2 Δ AIC Comment 
1 1 6901.9 2 6903.9 0.0 0 0.0 Null model 
2 species + log(size) + windforce 6722.3 22 6744.3 -179.7 20 -159.7   
3 species + log(size) + swellheight 6716.5 22 6738.5 -185.4 20 -165.4   
4 species + log(size) + observer 6684.6 38 6722.6 -217.3 36 -181.3   
5 species + log(size) + observer + swellheight 6677.4 40 6717.4 -224.5 38 -186.5   
6 species + log(size) + observer + windforce 6673.5 40 6713.5 -228.4 38 -190.4   
7 species + log(size) + seastate 6690.1 22 6712.1 -211.8 20 -191.8   
8 species + log(size) + seastate + swellheight 6685.1 24 6709.1 -216.8 22 -194.8   
9 species + log(size) + survey 6649.3 54 6703.3 -252.7 52 -200.7 Base model 

10 species + log(size) + survey + windforce 6643.5 56 6699.5 -258.4 54 -204.4   
11 species + log(size) + survey + swellheight 6641.6 56 6697.6 -260.4 54 -206.4   
12 species + log(size) + survey + observer 6623.0 72 6695.0 -279.0 70 -209.0   
13 species + log(size) + survey + observer + windforce 6620.6 74 6694.6 -281.3 72 -209.3   
14 species + log(size) + survey + observer + swellheight 6618.0 74 6692.0 -283.9 72 -211.9   
15 species + log(size) + survey + seastate 6626.8 56 6682.8 -275.2 54 -221.2   
16 species + log(size) + survey + observer + seastate 6607.1 74 6681.1 -294.9 72 -222.9   
17 species + log(size) + observer + seastate + swellheight 6635.0 42 6677.0 -267.0 40 -227.0   
18 species + log(size) + observer + seastate 6635.0 40 6675.0 -266.9 38 -228.9   
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Table 8: Coefficients for common species detection function model 
Coefficient Estimate SE CV 
Intercept (Fulmar,observer 1) 5.84 0.12 2% 
species Gannet 0.95 0.97 102% 
species Great skua 0.39 0.66 168% 
species Guillemot -0.45 0.08 17% 
species Kittiwake -0.68 0.19 28% 
species Other -0.11 0.22 199% 
species Puffin -0.52 0.08 16% 
species Razorbill -0.68 0.09 14% 
species Shag -0.36 0.13 37% 
log(size) 0.20 0.04 20% 
observer 2 -0.42 0.09 22% 
observer 3 -0.40 0.13 33% 
observer 4 -0.27 0.09 32% 
observer 5 -0.07 0.34 511% 
observer 6 0.01 0.30 2613% 
observer 7 -0.09 0.09 102% 
observer 8 -0.43 0.08 18% 
observer 9 -0.19 0.26 135% 
observer 10 -0.52 0.51 98% 
seastate -0.17 0.02 14% 
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Table 9: Average and standardized (i.e. single bird, observer 8, sea state 2) probability of detection for each species from both the common 
species and rare species detection function models 

   Common species detection function Rare species detection function 

   
Average probability 

of detection 
Standardised 
probability of 
detection for 

single 
individual 

Body2 
length 

(m) 

Behaviour 

Average probability 
of detection 

Standardised 
probability of 
detection for 

single 
individual species n JNCC1 Clusters Individuals Clusters Individuals 

Red-throated diver 1 76.9%       0.61 Dive 59.4% 59.4% 46.3% 
Black-throated diver 1 76.9%       0.66 Dive 59.4% 59.4% 48.2% 
Great northern diver 1 76.9%       0.80 Dive 62.4% 62.4% 54.2% 
Fulmar 729 90.9% 71.9% 82.1% 62.4% 0.48 Surface/Aerial 71.9% 81.9% 62.4% 
Manx shearwater 1 76.9%       0.34 Surface/Aerial 52.7% 52.7% 58.9% 
Storm petrel 1 66.7%       0.16 Surface/Aerial 57.0% 57.0% 56.2% 
Gannet 46 100.0% 92.7% 94.1% 91.8% 0.94 Surface/Aerial 82.0% 85.2% 79.5% 
Cormorant 1 90.9%       0.90 Dive 57.6% 57.6% 59.4% 
Shag 73 90.9% 54.5% 58.9% 46.0% 0.72 Dive 59.0% 63.3% 50.6% 
Arctic skua 3 76.9%       0.44 Surface/Aerial 77.1% 76.5% 61.3% 
Great skua 32 76.9% 85.4% 89.9% 78.4% 0.56 Surface/Aerial 75.0% 82.0% 64.8% 
Common gull 2 71.4%       0.41 Surface/Aerial 67.0% 69.2% 60.5% 
Herring gull 4 71.4%       0.60 Surface/Aerial 68.0% 70.2% 66.2% 
Great black-backed 
gull 11 71.4%       0.71 Surface/Aerial 74.2% 74.2% 70.2% 
Kittiwake 33 71.4% 49.3% 72.9% 33.6% 0.39 Surface/Aerial 75.3% 90.0% 60.0% 
Arctic tern 1 58.8%       0.34 Surface/Aerial 82.5% 82.5% 58.9% 
Guillemot 895 71.4% 52.5% 63.1% 42.2% 0.40 Dive 51.0% 61.6% 40.6% 
Razorbill 191 66.7% 41.3% 53.3% 33.6% 0.38 Dive 48.8% 60.9% 40.2% 
Black guillemot 12 55.6%       0.31 Dive 42.6% 43.0% 38.9% 
Little Auk 2 52.6%       0.18 Dive 43.6% 43.6% 37.4% 
Puffin 497 66.7% 45.8% 50.1% 39.3% 0.28 Dive 45.1% 49.5% 38.5% 
Other 41   63.0% 64.7% 57.2%           

1 JNCC correction factors all taken from Stone et al. (1995), apart from black guillemot, taken from Skov et al. (1995) 
2Body lengths taken from http://www.bto.org/about-birds/birdfacts 
 

http://www.bto.org/about-birds/birdfacts
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 Table 10: Average probability of detection for different cluster size categories from the 
common species detection function model. 

    
Average probability 

of detection 
Cluster 

size 
category N Clusters Individuals 

1 1529 50.4% 50.4% 
>1 1008 63.6% 72.8% 
>5 294 75.7% 78.6% 
>10 122 78.0% 79.9% 
>20 53 80.3% 81.3% 
>30 30 82.0% 82.2% 

 
Table 11: Standardised (i.e. guillemot or kittiwake, observer 8, sea state 2) probability of 
detection for different cluster size categories from the common species detection function 
model. 

 
Probability of 

detection 

Cluster 
size Guillemot Kittiwake 

1 42.2% 33.6% 
2 48.2% 38.7% 
3 51.9% 41.9% 
4 54.6% 44.3% 
5 56.7% 46.2% 

10 63.2% 52.5% 
20 69.3% 59.0% 
30 72.7% 62.8% 
40 74.9% 65.4% 
50 76.6% 67.4% 
100 81.3% 73.2% 
200 85.2% 78.3% 
300 87.1% 81.0% 
400 88.4% 82.7% 

 
 Table 12: Average and standardised (i.e. single guillemot, observer 8) probability of 
detection for each sea state from the common species detection function model. 

    
Average probability 

of detection 
Standardised 
probability of 

detection for a 
single guillemot 

Sea 
state N Clusters Individuals 

0 37 79.0% 90.5% 57.4% 
1 582 59.7% 68.0% 49.6% 
2 995 56.8% 69.0% 42.2% 
3 644 55.5% 70.7% 35.7% 
4 256 41.5% 57.0% 30.1% 
5 23 34.6% 52.4% 25.4% 
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Table 13: Average and standardised (i.e. single guillemot, sea state 2) probability of 
detection for each observer from the common species detection function model. 

    
Average probability 

of detection 

Standardised 
probability of 

detection for a 
single guillemot Observer N Clusters Individuals 

observer 1 489 66.2% 76.2% 61.8% 
observer 2 346 52.3% 61.3% 42.8% 
observer 3 46 49.7% 54.3% 43.6% 
observer 4 460 54.6% 61.0% 49.3% 
observer 5 32 70.5% 76.1% 58.7% 
observer 6 25 68.6% 78.2% 62.3% 
observer 7 498 62.0% 72.8% 57.8% 
observer 8 606 46.1% 64.2% 42.2% 
observer 9 26 41.8% 47.0% 52.8% 
observer 10 9 40.8% 50.8% 38.8% 
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Table 14: Average probability of detection for each survey from the common species 
detection function model. 

    
Average probability 

of detection 
Survey N Clusters Individuals 

27/03/2012 197 59.6% 77.3% 
18/04/2012 104 49.8% 62.7% 
27/05/2012 763 62.9% 73.7% 
30/06/2012 130 35.7% 46.4% 
20/07/2012 160 54.7% 56.9% 
20/08/2012 54 57.1% 62.1% 
11/12/2012 9 54.9% 69.9% 
17/02/2013 67 49.6% 70.7% 
04/03/2013 60 48.6% 55.2% 
05/03/2013 143 49.2% 59.7% 
30/03/2013 70 53.2% 71.2% 
03/06/2013 149 50.4% 55.5% 
25/06/2013 173 50.3% 71.2% 
10/07/2013 312 58.5% 60.5% 
09/09/2013 64 68.7% 75.3% 
23/10/2013 23 38.4% 42.5% 
18/02/2014 26 59.7% 70.0% 
12/03/2014 33 69.3% 76.2% 
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Table 15: Average probability of detection of clusters of each species on each survey from the common species detection function model. 
 Species 

Survey Fulmar Gannet Shag Great skua Kittiwake Guillemot Razorbill Puffin Other 
27/03/2012 74.5%   60.8% 78.4%   53.6% 36.9% 43.2% 65.1% 
18/04/2012 61.3% 95.7% 40.2% 86.0% 70.5% 46.1% 40.6% 41.3% 55.8% 
27/05/2012 78.3% 95.3% 54.0% 89.9% 52.7% 60.5% 46.3% 55.4% 73.6% 
30/06/2012 52.9% 86.7%   64.7% 53.1% 34.6% 30.1% 32.3% 51.7% 
20/07/2012 75.8% 96.4% 73.3% 89.7%   59.0% 48.9% 48.9% 75.9% 
20/08/2012 62.6% 91.8%   80.4%     31.2% 39.7% 57.8% 
11/12/2012 84.8% 91.8% 42.9%     42.8%     62.4% 
17/02/2013 68.5%   48.1%   33.8% 40.4% 34.1%   50.1% 
04/03/2013 66.9%   50.2%   33.4% 44.4%     56.9% 
05/03/2013 67.6%   50.2%     45.4% 39.7% 41.2% 60.6% 
30/03/2013 74.2%   58.0%     46.7% 38.1% 43.9% 65.4% 
03/06/2013 66.3% 94.2% 83.2% 84.0% 54.9% 51.6% 42.9% 48.3% 72.0% 
25/06/2013 69.0%   63.8% 80.9% 72.7% 48.1% 46.5% 44.4% 67.9% 
10/07/2013 74.3%   64.0% 86.3% 53.7% 55.5% 45.5% 48.6% 65.6% 
09/09/2013 70.6% 94.5% 53.4% 88.3%   45.6% 34.1% 46.1% 65.6% 
23/10/2013   84.4% 46.0%   26.6% 35.7% 30.5% 36.1% 55.8% 
18/02/2014 67.2%   45.6%     40.0%     59.0% 
12/03/2014 81.2%   67.2%     59.7% 51.1% 56.8% 74.1% 
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Table 16: Average probability of detection of individuals of each species on each survey from the common species detection function model. 
 Species 

Survey Fulmar Gannet Shag Great skua Kittiwake Guillemot Razorbill Puffin Other 
27/03/2012 84.9%   61.6% 78.4%   57.2% 43.9% 45.4% 65.1% 
18/04/2012 70.3% 95.7% 43.9% 86.0% 83.2% 47.5% 41.9% 43.9% 55.8% 
27/05/2012 86.3% 96.5% 54.0% 92.0% 55.9% 70.3% 49.0% 61.6% 77.2% 
30/06/2012 59.7% 86.7%   64.7% 58.1% 40.0% 38.6% 33.1% 51.7% 
20/07/2012 76.8% 96.4% 75.5% 89.7%   63.9% 53.6% 52.2% 75.9% 
20/08/2012 66.5% 92.6%   80.4%     31.2% 39.7% 57.8% 
11/12/2012 84.8% 91.8% 41.5%     42.8%     62.4% 
17/02/2013 83.0%   50.1%   33.8% 41.0% 34.1%   50.1% 
04/03/2013 77.0%   52.6%   33.4% 46.0%     56.9% 
05/03/2013 80.5%   53.2%     52.0% 42.0% 41.2% 60.6% 
30/03/2013 84.9%   57.0%     46.8% 38.1% 43.9% 65.4% 
03/06/2013 68.5% 94.2% 83.2% 84.0% 61.5% 56.1% 48.9% 49.7% 72.0% 
25/06/2013 72.1%   64.9% 80.9% 79.9% 59.9% 68.4% 45.8% 68.9% 
10/07/2013 76.0%   66.9% 86.5% 53.7% 58.0% 50.0% 49.1% 65.6% 
09/09/2013 78.3% 94.7% 53.4% 88.8%   48.1% 34.1% 46.1% 65.6% 
23/10/2013   87.8% 46.0%   32.6% 38.4% 32.3% 36.1% 55.8% 
18/02/2014 76.5%   45.6%     41.5%     59.0% 
12/03/2014 86.1%   69.7%     59.7% 51.1% 56.8% 74.7% 
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Table 17: Goodness of fit of alternative detection function models for predicting probability of detection for rare species. 

ID Model 
AIC 

Term 1 
AIC  

Term 2 AIC 
Δ AIC 

Term 1 
Δ AIC 

Term 2 Δ AIC Comment 
1 1 6901.9 2 6903.9 0.0 0 0.0 Null model 
2 length + log(size) + observer + seastate 6681.5 26 6707.5 -220.4 24 -196.4   
3 length2 + log(size) + observer + seastate 6680.8 26 6706.8 -221.2 24 -197.2   
4 species + log(size) + survey 6649.3 54 6703.3 -252.7 52 -200.7 Base model 
5 behaviour + log(size) + observer + seastate 6654.8 26 6680.8 -247.2 24 -223.2   
6 length + behaviour + log(size) + observer + seastate 6648.0 28 6676.0 -254.0 26 -228.0   

7 length2 + behaviour + log(size) + observer + seastate 6647.4 28 6675.4 -254.5 26 -228.5 
Rare species 
model 

8 species + log(size) + observer + seastate 6635.0 40 6675.0 -266.9 38 -228.9 
Common species 
model 
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Table 18: Coefficients for rare species detection function model 
Coefficient Estimate SE CV 
Intercept (behaviour: Diving; observer 1) 5.28 0.10 2% 
length2  0.58 0.24 42% 
behaviour : Surface/Aerial Feeder 0.44 0.08 17% 
log(size) 0.20 0.04 21% 
observer 2 -0.44 0.09 21% 
observer 3 -0.38 0.13 35% 
observer 4 -0.29 0.09 29% 
observer 5 -0.22 0.31 141% 
observer 6 -0.02 0.29 1576% 
observer 7 -0.10 0.09 90% 
observer 8 -0.46 0.08 17% 
observer 9 -0.19 0.26 140% 
observer 10 -0.45 0.42 92% 
seastate -0.18 0.02 14% 
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Table 19: Average probability of detection of clusters of each species on each survey from the rare species detection function model. 
Table 19a Common species (n ≥30) 
 Species 

Survey 

Fulm
ar 

G
annet 

Shag 

G
reat skua 

Kittiw
ake 

G
uillem

ot 

R
azorbill 

Puffin 

27/03/2012 74.5%   65.8% 64.8%   52.2% 43.6% 42.4% 
18/04/2012 61.1% 89.0% 43.9% 76.5% 89.4% 44.6% 48.0% 40.5% 
27/05/2012 78.7% 87.8% 59.3% 82.1% 79.4% 59.2% 54.8% 55.0% 
30/06/2012 52.4% 69.1%   48.7% 79.0% 33.0% 35.6% 31.4% 
20/07/2012 76.3% 90.7% 78.1% 82.2%   58.0% 56.9% 48.7% 
20/08/2012 62.6% 79.6%   67.4%     37.1% 39.0% 
11/12/2012 84.4% 79.5% 47.1%     41.2%     
17/02/2013 68.3%   52.6%   60.2% 38.7% 40.8%   
04/03/2013 66.7%   54.9%   59.6% 42.6%     
05/03/2013 67.9%   55.0%     44.3% 46.9% 40.9% 
30/03/2013 74.0%   62.6%     44.9% 45.1% 43.0% 
03/06/2013 66.2% 85.1% 85.8% 72.9% 80.1% 49.8% 50.6% 47.5% 
25/06/2013 69.0%   68.0% 68.3% 90.1% 46.5% 54.3% 43.6% 
10/07/2013 74.4%   68.8% 76.1% 79.7% 53.8% 53.5% 47.8% 
09/09/2013 70.6% 85.8% 58.2% 79.4%   43.9% 40.8% 45.2% 
23/10/2013   69.1% 50.6%   49.8% 35.2% 36.2% 38.8% 
18/02/2014 65.6%   47.7%     38.2%     
12/03/2014 78.6%   66.3%     54.0% 60.6% 53.2% 
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Table 19b Rare species (n<30) 
 Species 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

M
anx 

shearw
ater 

Storm
 petrel 

C
orm

orant 

Arctic skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Arctic tern 

Black guillem
ot 

Little Auk 

27/03/2012 59.4%                 74.6%       
18/04/2012                       37.5%   
27/05/2012             75.8%       82.5% 54.0%   
30/06/2012       52.7%                   
20/07/2012             79.8%             
20/08/2012         57.0%                 
11/12/2012               61.3% 73.5% 77.0%       
17/02/2013                 50.9% 69.8%   32.4%   
04/03/2013                   69.8%       
05/03/2013                   79.7%   38.9% 40.4% 
30/03/2013                   70.2%   58.3%   
03/06/2013                       53.6%   
25/06/2013     62.4%         73.9%           
10/07/2013                       46.9%   
09/09/2013                       46.9%   
23/10/2013           57.6%               
18/02/2014                       32.7% 47.3% 
12/03/2014   59.4%             78.3% 79.3%       
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Table 20: Average probability of detection of individuals of each species on each survey from the rare species detection function model. 
Table 20a Common species (n ≥30) 
 Species 

Survey 

Fulm
ar 

G
annet 

Shag 

G
reat skua 

Kittiw
ake 

G
uillem

ot 

R
azorbill 

Puffin 

27/03/2012 84.8%   66.6% 64.8%   55.7% 51.4% 44.7% 
18/04/2012 69.7% 89.0% 47.8% 76.5% 94.6% 45.9% 49.2% 43.1% 
27/05/2012 86.4% 90.7% 59.3% 85.5% 81.5% 68.9% 57.6% 61.1% 
30/06/2012 59.0% 69.1%   48.7% 82.0% 38.0% 45.1% 32.2% 
20/07/2012 77.2% 90.7% 80.0% 82.2%   62.8% 61.9% 51.9% 
20/08/2012 66.5% 81.3%   67.4%     37.1% 39.0% 
11/12/2012 84.4% 79.5% 45.5%     41.2%     
17/02/2013 82.6%   54.5%   60.2% 39.2% 40.8%   
04/03/2013 76.7%   57.2%   59.6% 44.2%     
05/03/2013 80.4%   58.0%     50.7% 49.4% 40.9% 
30/03/2013 84.6%   61.6%     45.0% 45.1% 43.0% 
03/06/2013 68.3% 85.1% 85.8% 72.9% 84.5% 54.4% 56.8% 48.8% 
25/06/2013 72.1%   69.0% 68.3% 93.1% 58.0% 74.9% 45.0% 
10/07/2013 76.1%   71.4% 76.3% 79.7% 56.2% 58.1% 48.4% 
09/09/2013 78.3% 86.3% 58.2% 80.1%   46.4% 40.8% 45.2% 
23/10/2013   74.7% 50.6%   58.2% 37.5% 38.3% 38.8% 
18/02/2014 75.3%   47.7%     39.6%     
12/03/2014 84.3%   68.7%     54.0% 60.6% 53.2% 
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Table 20b Rare species (n<30) 
 
 Species 

Survey 

R
ed-throated 

diver 

Black-throated 
diver 

G
reat northern 

diver 

M
anx 

shearw
ater 

Storm
 petrel 

C
orm

orant 

Arctic skua 

C
om

m
on gull 

H
erring gull 

G
reat black-

backed gull 

Arctic tern 

Black guillem
ot 

Little Auk 

27/03/2012 59.4%                 74.6%       
18/04/2012                       37.5%   
27/05/2012             75.5%       82.5% 55.1%   
30/06/2012       52.7%                   
20/07/2012             79.8%             
20/08/2012         57.0%                 
11/12/2012               61.3% 73.5% 77.0%       
17/02/2013                 50.9% 69.8%   32.4%   
04/03/2013                   69.8%       
05/03/2013                   79.7%   38.9% 40.4% 
30/03/2013                   70.2%   58.3%   
03/06/2013                       53.6%   
25/06/2013     62.4%         73.9%           
10/07/2013                       46.9%   
09/09/2013                       46.9%   
23/10/2013           57.6%               
18/02/2014                       32.7% 47.3% 
12/03/2014   59.4%             79.1% 79.3%       
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Table 21: Species-specific seasons used to summarise abundance data 
Species Season From To 

Fulmar Breeding May September 
Non-breeding October April 

Manx shearwater Breeding Mid-March September 
Storm petrel Breeding May October 

Gannet Breeding Mid-March September 
Non-breeding October Mid-March 

Shag Breeding March August 
Non-breeding September February 

Arctic skua Breeding April August 
Great skua Breeding April September 

Common Gull Breeding April August 
Non-breeding September March 

Herring Gull Breeding April August 
Non-breeding September March 

Great black-backed gull Breeding April August 
Non-breeding September March 

Kittiwake Breeding Mid-March Mid-August 
Non-breeding Mid-August Mid-March 

Arctic tern Breeding May August 

Guillemot 
Colony attendance March July 
Chicks on sea/Moulting August August 
Non-breeding September February 

Razorbill 
Colony attendance April July 
Chicks on sea/Moulting August August 
Non-breeding September March 

Black guillemot Breeding April August 
Non-breeding September March 

Puffin Breeding April Mid-August 
Non-breeding Mid-August March 

Months are inclusive. For example, a May to September season would extend from the 1st 
May to the 30th September inclusive. For most months of the year, with 30 - 31 days, we 
define mid-month as midnight on the 15th, whilst for February, with 28-29 days, we define 
mid-month as midnight on the 14th. Therefore, a season from Mid-March to Mid-August, for 
example, would extend from 16th March to the 15th August inclusive.  
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Table 22: Details of each the strata used in calculating abundance and density estimates, including area and expected survey effort and 
numbers of transects expected to be covered if full coverage achieved.  

Strata 
Area 
(km2) 

Expected 
Number of 
transects 
covered 

Expected survey 
effort (km) 

Development Area 11.1 5 8.1 
Development Area with 1 km buffer 32.1 6 21.5 
Development Area with 2 km buffer 52.9 7 37.1 
Development Area with 3 km buffer 77.2 9 55.6 
Survey Area 112.9 11 79.5 
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Table 23: The probability that no birds will be seen within the Development Area if it is assumed that the encounter rate (sightings/km) is the 
same as across whole study area, but sightings follow a Poisson Distribution.  For just those species/season combinations where no birds 
recorded in the Development Area, but are recorded within the Development with a 1 km buffer, and thus all larger strata.  

    Whole Survey Area   
Development 

Area   

Subset Species Season 
Figure in 

Appendix I 
No of 

surveys 

Total 
Survey 
effort 
(km) 

Number 
of 

sightings 

Encounter 
Rate 

(sightings/km) 

Total 
Survey 
effort 
(km) 

Expected 
number of 
sightings 

Probability 
of no 

sightings 

Birds on 
the water 

Gannet Non-breeding I.6 6 341.9 5 0.015 43.4 0.64 53% 
Shag Non-breeding I.8 5 298.8 15 0.050 36.2 1.82 16% 
Herring gull Non-breeding I.13 8 496.7 4 0.008 61.6 0.50 61% 
GBB gull Non-breeding 1.15 8 496.7 8 0.016 61.6 0.99 37% 
Kittiwake Breeding I.16 9 710.2 27 0.038 78.5 2.98 5% 
Razorbill Non-breeding I.23 8 496.7 16 0.032 61.6 1.98 14% 
Black guillemot Breeding I.24 8 623.9 6 0.010 67.2 0.65 52% 
Black guillemot Non-breeding I.25 8 496.7 6 0.012 61.6 0.74 48% 
Puffin Non-breeding I.27 9 567.5 30 0.053 67.5 3.57 3% 

Birds in 
flight 

Shag Breeding I.7 11 858.8 7 0.008 93.6 0.76 47% 
Arctic skua Breeding I.9 8 623.9 5 0.008 67.2 0.54 58% 
Common gull Breeding I.11 8 623.9 4 0.006 67.2 0.43 65% 
Common gull Non-breeding I.12 8 496.7 6 0.012 61.6 0.74 48% 
GBB gull Breeding I.14 8 623.9 3 0.005 67.2 0.32 72% 
Arctic tern Breeding I.18 6 474.3 10 0.021 53.3 1.12 33% 
Black guillemot Breeding I.24 8 623.9 2 0.003 67.2 0.22 81% 

Combined 

Arctic skua Breeding I.9 8 623.9 8 0.013 67.2 0.86 42% 
Common gull Breeding I.11 8 623.9 5 0.008 67.2 0.54 58% 
Common gull Non-breeding I.12 8 496.7 7 0.014 61.6 0.87 42% 
Herring gull Non-breeding I.13 8 496.7 6 0.012 61.6 0.74 48% 
GBB gull Breeding I.15 8 623.9 3 0.005 67.2 0.32 72% 
Arctic tern Breeding I.18 6 474.3 11 0.023 53.3 1.24 29% 
Black guillemot Breeding I.24 8 623.9 8 0.013 67.2 0.86 42% 
Black guillemot Non-breeding I.25 8 496.7 7 0.014 61.6 0.87 42% 
Puffin Non-breeding I.27 9 567.5 32 0.056 67.5 3.81 2% 
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Table 24: For the 12 complete surveys, for each species the number of times the density 
estimate for the eastern transects was greater than that for the western transects, and vice 
versa, and the probability of this or a more extreme result (based on a two sided binomial 
test) if there was no difference between the two sets of transects in the probability of the 
highest density being recorded there.  
Table 24a: Both in flight and on the water combined 
  Number of complete surveys   

Species 
Density higher in 

East 

Density 
higher in 

West 

Density 
same in 

both areas 
(no birds) p 

Red-throated diver 1 0 11 100.0% 
Great northern diver 1 0 11 100.0% 
Fulmar 5 7 0 77.4% 
Sooty shearwater 0 1 11 100.0% 
Manx shearwater 1 2 9 100.0% 
Storm petrel 2 2 8 100.0% 
Gannet 4 8 0 38.8% 
Shag 10 1 1 1.2% 
Arctic skua 3 2 7 100.0% 
Great skua 2 7 3 18.0% 
Black-headed gull 1 0 11 100.0% 
Common gull 5 0 7 6.3% 
Herring gull 2 1 9 100.0% 
Great black-backed gull 4 2 6 68.8% 
Kittiwake 6 6 0 100.0% 
Common tern 1 0 11 100.0% 
Arctic tern 4 1 7 37.5% 
Guillemot 7 5 0 77.4% 
Razorbill 5 7 0 77.4% 
Black guillemot 10 0 2 0.2% 
Little Auk 1 0 11 100.0% 
Puffin 6 5 1 100.0% 
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Table 24b: Birds on the water 
  Number of complete surveys   

Species 
Density higher in 

East 

Density 
higher in 

West 

Density 
same in 

both areas 
(no birds) p 

Red-throated diver 1 0 11 100.0% 
Great northern diver 1 0 11 100.0% 
Fulmar 4 8 0 38.8% 
Manx shearwater 0 1 11 100.0% 
Gannet 2 4 6 68.8% 
Shag 10 1 1 1.2% 
Arctic skua 1 1 10 100.0% 
Great skua 4 5 3 100.0% 
Common gull 1 0 11 100.0% 
Herring gull 1 0 11 100.0% 
Great black-backed gull 1 3 8 62.5% 
Kittiwake 4 3 5 100.0% 
Arctic tern 0 1 11 100.0% 
Guillemot 7 5 0 77.4% 
Razorbill 3 9 0 14.6% 
Black guillemot 8 0 4 0.8% 
Little Auk 1 0 11 100.0% 
Puffin 6 5 1 100.0% 

 



 

 61 

Table 24c: Birds in flight 
  Number of complete surveys   

Species 
Density higher in 

East 

Density 
higher in 

West 

Density 
same in 

both areas 
(no birds) p 

Fulmar 4 8 0 38.8% 
Sooty shearwater 0 1 11 100.0% 
Manx shearwater 2 1 9 100.0% 
Storm petrel 2 2 8 100.0% 
Gannet 5 7 0 77.4% 
Shag 5 1 6 21.9% 
Arctic skua 2 1 9 100.0% 
Great skua 3 5 4 72.7% 
Black-headed gull 1 0 11 100.0% 
Common gull 5 0 7 6.3% 
Herring gull 1 1 10 100.0% 
Great black-backed gull 3 0 9 25.0% 
Kittiwake 6 6 0 100.0% 
Common tern 1 0 11 100.0% 
Arctic tern 4 1 7 37.5% 
Guillemot 6 5 1 100.0% 
Razorbill 6 6 0 100.0% 
Black guillemot 2 0 10 50.0% 
Puffin 5 4 3 100.0% 

 




