Inch Cape Offshore Wind Farm

New Energy for Scotland

Offshore Environmental Statement: VOLUME 2B Annex 10A.2: Modelled Baseline Plots

Intertek

INCH CAPE OFFSHORE LIMITED

ANNEX10A.2 MODELLED BASELINE PLOTS

TECHNICAL REPORT

Report Reference. Annex 10A.2 Rev2.docx

Issued: 24 May 2013

Intertek Exchange House Liphook Hants GU30 7DW United Kingdom

Tel: +44 (0) 1428 727800 Fax: +44 (0) 1428 727122

E-mail: energy.water.info@intertek.com Web Site: www.intertek.com

DOCUMENT RELEASE FORM

Title:	ANNEX10A.2 MODELLED BASELINE PLOTS TECHNICAL REPORT
Client:	INCH CAPE OFFSHORE LIMITED
Report Reference:	ANNEX 10A.2 REV2.DOCX
Date of Issue:	24 May 2013

		Hard Copy	Digital
Distribution:	INCH CAPE OFFSHORE LIMITED	No: n/a	PDF
	Intertek METOC	No: n/a	PDF
Prepared By:	Emma White, Paul Taylor		

Project Manager:	Authoriser:
fan ff	Chin Daws
Paul Taylor	Chris Mooij

Rev No	Date	Reason	Author	Checker	Authoriser
Rev 0	26/10/12	Original	EW	PAT	CPM
Rev 1	28/11/12	Revision	PAT	KRM	CPM
Rev 2	24/05/13	Final edits	PAT	KRM	CPM

COPY NUMBER: (applies to hard copies only)

"We draw your attention to our company policy for documents supplied in electronic form:

a) our formal product is the (fully quality assured and authorised) signed pdf or paper copy of our report;
b) Intertek METOC will not accept any responsibility for the report if it is amended in any way from its original format or content without our prior written agreement;

c) if amendments are made to the content without our written approval, then it should be clearly indicated that the final product is "based on a report issued by Intertek METOC" rather than being a Intertek METOC report;

d) we would be grateful if you could let us have a copy of the amended report for our files".

Intertek METOC is the trading name of Metoc Ltd, a member of the Intertek group of companies

FIGURES

FIGURE 10A.2.	1: MEAN SPRING TIDE, HIGH WATER (HW) LEVEL (M) – REGIONAL
FIGURE 10A.2.	2: MEAN SPRING TIDE, LOW WATER (LW) LEVEL (M) – REGIONAL
FIGURE 10A.2.	3: MEAN NEAP TIDE, HIGH WATER (HW) LEVEL (M) – REGIONAL
FIGURE 10A.2.	4: MEAN NEAP TIDE, LOW WATER (LW) LEVEL (M) – REGIONAL
FIGURE 10A.2.	5: MEAN SPRING TIDE, PEAK FLOOD CURRENTS (M/S) – REGIONAL
FIGURE 10A.2.	6: MEAN SPRING TIDE, PEAK EBB CURRENTS (M/S) – REGIONAL
FIGURE 10A.2.	7: MEAN NEAP TIDE, PEAK FLOOD CURRENTS (M/S) – REGIONAL
FIGURE 10A.2.	8: MEAN NEAP TIDE, PEAK EBB CURRENTS (M/S) – REGIONAL
FIGURE 10A.2.	9: 50-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – REGIONAL
FIGURE 10A.2.	10: 90-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – REGIONAL
FIGURE 10A.2.	11: 95-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – REGIONAL
FIGURE 10A.2.	12: 99-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – REGIONAL
FIGURE 10A.2.	13: MEAN SPRING TIDE, HIGH WATER (HW) LEVEL (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	14: MEAN SPRING TIDE, LOW WATER (LW) LEVEL (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	15: MEAN NEAP TIDE, HIGH WATER (HW) LEVEL (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	16: MEAN NEAP TIDE, LOW WATER (LW) LEVEL (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	17: MEAN SPRING TIDE, PEAK FLOOD CURRENTS (M/S) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	18: MEAN SPRING TIDE, PEAK EBB CURRENTS (M/S) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	19: MEAN NEAP TIDE, PEAK FLOOD CURRENTS (M/S) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.	20: Mean Neap Tide, peak ebb currents (m/s) – Inch Cape OWF (Near- Field) scale
FIGURE 10A.2.	21: 50-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.	22: 90-percentile currents (M/s) over a mean spring and neap tide – Inch Cape OWF (near-field) scale

FIGURE 10A.2.23	: 95-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.24	: 99-PERCENTILE CURRENTS (M/S) OVER A MEAN SPRING AND NEAP TIDE – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.25	: 50% ILE SIGNIFICANT WAVE HEIGHT (M) – REGIONAL (FAR-FIELD) SCALE 25
FIGURE 10A.2.26	: 90% ILE SIGNIFICANT WAVE HEIGHT (M) – REGIONAL (FAR-FIELD) SCALE 26
FIGURE 10A.2.27	: 95%ILE SIGNIFICANT WAVE HEIGHT (M) – REGIONAL (FAR-FIELD) SCALE 27
FIGURE 10A.2.28	: 99% ILE SIGNIFICANT WAVE HEIGHT (M) – REGIONAL (FAR-FIELD) SCALE 28
FIGURE 10A.2.29	: 50% ILE MEAN WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.30	: 90%ile mean wave period (s) – Regional (far-field) scale
FIGURE 10A.2.31	: 95%ILE MEAN WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.32	: 99%ile mean wave period (s) – Regional (far-field) scale
FIGURE 10A.2.33	: 50% ILE PEAK WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.34	: 90% ILE PEAK WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.35	: 95% ILE PEAK WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.36	: 99% ILE PEAK WAVE PERIOD (S) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.37	: BASELINE 50%ILE SIGNIFICANT WAVE HEIGHT (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.38	: BASELINE 90%ILE SIGNIFICANT WAVE HEIGHT (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.39	: BASELINE 95%ILE SIGNIFICANT WAVE HEIGHT (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.40	: BASELINE 99%ILE SIGNIFICANT WAVE HEIGHT (M) – INCH CAPE OWF (NEAR- FIELD) SCALE
FIGURE 10A.2.41	: BASELINE 50%ILE MEAN WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.42	: BASELINE 90%ILE MEAN WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.43	: BASELINE 95%ILE MEAN WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.44	BASELINE 99%ILE MEAN WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.45	: BASELINE 50%ILE PEAK WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.46	: BASELINE 90%ILE PEAK WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.47	: BASELINE 95%ILE PEAK WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE

FIGURE 10A.2.48	BASELINE 99%ILE PEAK WAVE PERIOD (S) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.49	CRITICAL SHEAR STRESS FOR ENTRAINMENT (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.50	: 50%ile bed shear stress - due to currents (N/m2) – Regional (far- field) scale
FIGURE 10A.2.51	: 90%ILE BED SHEAR STRESS - DUE TO CURRENTS (N/M2) – REGIONAL (FAR- FIELD) SCALE
FIGURE 10A.2.52	2: 95%ile bed shear stress - due to currents (N/m2) – Regional (Far- Field) scale
FIGURE 10A.2.53	: 99%ile bed shear stress - due to currents (N/m2) – Regional (far- field) scale
FIGURE 10A.2.54	: 50%ile bed shear stress - due to waves (N/m2) – Regional (far-field) scale
FIGURE 10A.2.55	: 90%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.56	: 95%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.57	2: 99%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.58	: 50%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.59	: 90%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.60	: 95%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.61	: 99%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.62	2: 50%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.63	: 90%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.64	: 95%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.65	: 99%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.66	: EXCEEDANCE OF THE CRITICAL SHEAR STRESS FOR ENTRAINMENT DUE TO MEAN COMBINED BED SHEAR STRESS – REGIONAL (FAR-FIELD) SCALE
FIGURE 10A.2.67	: EXCEEDANCE OF THE CRITICAL SHEAR STRESS FOR ENTRAINMENT DUE TO MAXIMUM COMBINED BED SHEAR STRESS – REGIONAL (FAR-FIELD) SCALE 67

FIGURE 10A.2.68	3: CRITICAL SHEAR STRESS FOR ENTRAINMENT (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.69	: 50%ILE BED SHEAR STRESS - DUE TO CURRENTS (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.70): 90%ILE BED SHEAR STRESS - DUE TO CURRENTS (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.71	: 95%ILE BED SHEAR STRESS - DUE TO CURRENTS (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.72	2: 99%ILE BED SHEAR STRESS - DUE TO CURRENTS (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.73	3: 50%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.74	: 90%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.75	: 95%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.76	: 99%ILE BED SHEAR STRESS - DUE TO WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.77	7: 50%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.78	3: 90%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.79): 95%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.80): 99%ILE BED SHEAR STRESS - DUE TO MEAN COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.81	: 50% ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.82	2: 90%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.83	3: 95%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.84	: 99%ILE BED SHEAR STRESS - DUE TO MAXIMUM COMBINED CURRENT AND WAVES (N/M2) – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.85	EXCEEDANCE OF THE CRITICAL SHEAR STRESS FOR ENTRAINMENT DUE TO MEAN COMBINED BED SHEAR STRESS – INCH CAPE OWF (NEAR-FIELD) SCALE
FIGURE 10A.2.86	EXCEEDANCE OF THE CRITICAL SHEAR STRESS FOR ENTRAINMENT DUE TO MAXIMUM COMBINED BED SHEAR STRESS – INCH CAPE OWF (NEAR-FIELD) SCALE

FIGURE 10A.2.87	: INCH CAPE ACDP SPRING MODELLED TIDAL ELEVATIONS AGAINST PREDICTED FIELD DATA
FIGURE 10A.2.88	: INCH CAPE ADCP Spring Modelled Tidal Currents Speed (MS^{-1}) and Current Direction (deg T) against Predicted Field Data
FIGURE 10A.2.89	: INCH CAPE ACDP NEAP MODELLED TIDAL ELEVATIONS AGAINST PREDICTED FIELD DATA
FIGURE 10A.2.90	: INCH CAPE ADCP NEAP MODELLED TIDAL CURRENTS SPEED (MS ⁻¹) AND CURRENT DIRECTION (DEG T) AGAINST PREDICTED FIELD DATA
FIGURE 10A.2.91	: EASTERLY STORM EVENT - INCH CAPE, WAVERIDER BUOY MODELLED HS (M), TP (S) AND WAVE DIRECTION (DEG T) AGAINST MEASURED FIELD DATA 89
FIGURE 10A.2.92	R : Offshore Wind Event – Inch Cape, Waverider Buoy Modelled H_s (m), $T_{\rm P}$ (s) and Wave Direction (deg T) against Measured Field Data 90
FIGURE 10A.2.93	: Northerly Storm Event – Inch Cape, Waverider Buoy Modelled H_{s} (m), $T_{\rm P}$ (s) and Wave Direction (deg T) against Measured Field Data 91
FIGURE 10A.2.94	: SOUTHEASTERLY STORM EVENT – INCH CAPE, WAVERIDER BUOY MODELLED HS (M), TP (S) AND WAVE DIRECTION (DEG T) AGAINST MEASURED FIELD DATA
FIGURE 10A.2.95	: OFFSHORE WIND EVENT – INCH CAPE, WAVERIDER BUOY MODELLED H _s (M), T_P (s) and Wave Direction (deg T) against Measured Field Data 93

Section 1: Hydrodynamic regime

Figure 10A.2.1: Mean spring tide, high water (HW) level (m) – Regional

Figure 10A.2.2: Mean spring tide, low water (LW) level (m) – Regional

Figure 10A.2.3: Mean neap tide, high water (HW) level (m) - Regional

Figure 10A.2.4: Mean neap tide, low water (LW) level (m) – Regional

Figure 10A.2.5: Mean spring tide, peak flood currents (m/s) – Regional

Figure 10A.2.6: Mean spring tide, peak ebb currents (m/s) – Regional

Figure 10A.2.7: Mean neap tide, peak flood currents (m/s) – Regional

Figure 10A.2.8: Mean neap tide, peak ebb currents (m/s) – Regional

Figure 10A.2.9: 50-percentile currents (m/s) over a mean spring and neap tide – Regional

Figure 10A.2.10: 90-percentile currents (m/s) over a mean spring and neap tide – Regional

Figure 10A.2.11: 95-percentile currents (m/s) over a mean spring and neap tide – Regional

Figure 10A.2.12: 99-percentile currents (m/s) over a mean spring and neap tide – Regional

Figure 10A.2.13: Mean spring tide, high water (HW) level (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.14: Mean spring tide, low water (LW) level (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.15: Mean neap tide, high water (HW) level (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.16: Mean neap tide, low water (LW) level (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.17: Mean spring tide, peak flood currents (m/s) – Inch Cape OWF (near-field) scale

Figure 10A.2.18: Mean spring tide, peak ebb currents (m/s) – Inch Cape OWF (near-field) scale

Figure 10A.2.19: Mean neap tide, peak flood currents (m/s) – Inch Cape OWF (near-field) scale

Figure 10A.2.20: Mean neap tide, peak ebb currents (m/s) – Inch Cape OWF (near-field) scale

Section 2: Wave climate

Figure 10A.2.25: 50% ile significant wave height (m) - Regional (far-field) scale

Figure 10A.2.26: 90%ile significant wave height (m) - Regional (far-field) scale

Figure 10A.2.27: 95%ile significant wave height (m) - Regional (far-field) scale

Figure 10A.2.28: 99%ile significant wave height (m) - Regional (far-field) scale

Figure 10A.2.29: 50% ile mean wave period (s) – Regional (far-field) scale

Figure 10A.2.30: 90% ile mean wave period (s) – Regional (far-field) scale

Figure 10A.2.31: 95% ile mean wave period (s) – Regional (far-field) scale

Figure 10A.2.32: 99%ile mean wave period (s) – Regional (far-field) scale

Figure 10A.2.33: 50%ile peak wave period (s) – Regional (far-field) scale

Figure 10A.2.34: 90%ile peak wave period (s) – Regional (far-field) scale

Figure 10A.2.35: 95%ile peak wave period (s) – Regional (far-field) scale

Figure 10A.2.36: 99%ile peak wave period (s) – Regional (far-field) scale

Figure 10A.2.37: Baseline 50% ile significant wave height (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.38: Baseline 90% ile significant wave height (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.39: Baseline 95% ile significant wave height (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.40: Baseline 99% ile significant wave height (m) – Inch Cape OWF (near-field) scale

Figure 10A.2.41: Baseline 50% ile mean wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.42: Baseline 90%ile mean wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.43: Baseline 95% ile mean wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.44: Baseline 99%ile mean wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.45: Baseline 50% ile peak wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.46: Baseline 90%ile peak wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.47: Baseline 95%ile peak wave period (s) – Inch Cape OWF (near-field) scale

Figure 10A.2.48: Baseline 99%ile peak wave period (s) – Inch Cape OWF (near-field) scale

Section 3: Sediment regime

Figure 10A.2.49: Critical shear stress for entrainment (N/m2) – Regional (far-field) scale

Figure 10A.2.50: 50% ile bed shear stress - due to currents (N/m2) – Regional (far-field) scale

Figure 10A.2.51: 90% ile bed shear stress - due to currents (N/m2) – Regional (far-field) scale

Figure 10A.2.52: 95%ile bed shear stress - due to currents (N/m2) – Regional (far-field) scale

Figure 10A.2.53: 99%ile bed shear stress - due to currents (N/m2) – Regional (far-field) scale

Figure 10A.2.54: 50% ile bed shear stress - due to waves (N/m2) – Regional (far-field) scale

Figure 10A.2.55: 90%ile bed shear stress - due to waves (N/m2) – Regional (far-field) scale

Figure 10A.2.56: 95%ile bed shear stress - due to waves (N/m2) – Regional (far-field) scale

Figure 10A.2.57: 99%ile bed shear stress - due to waves (N/m2) – Regional (far-field) scale

Figure 10A.2.58: 50% ile bed shear stress - due to mean combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.59: 90% ile bed shear stress - due to mean combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.61: 99% ile bed shear stress - due to mean combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.62: 50% ile bed shear stress - due to maximum combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.63: 90% ile bed shear stress - due to maximum combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.64: 95% ile bed shear stress - due to maximum combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.65: 99%ile bed shear stress - due to maximum combined current and waves (N/m2) – Regional (far-field) scale

Figure 10A.2.66: Exceedance of the critical shear stress for entrainment due to mean combined bed shear stress – Regional (far-field) scale

Figure 10A.2.68: Critical shear stress for entrainment (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.69: 50% ile bed shear stress - due to currents (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.70: 90%ile bed shear stress - due to currents (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.71: 95%ile bed shear stress - due to currents (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.72: 99%ile bed shear stress - due to currents (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.73: 50% ile bed shear stress - due to waves (N/m2) - Inch Cape OWF (near-field) scale

Figure 10A.2.74: 90%ile bed shear stress - due to waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.75: 95%ile bed shear stress - due to waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.76: 99%ile bed shear stress - due to waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.77: 50% ile bed shear stress - due to mean combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.78: 90%ile bed shear stress - due to mean combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.79: 95%ile bed shear stress - due to mean combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.80: 99%ile bed shear stress - due to mean combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.81: 50% ile bed shear stress - due to maximum combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.82: 90%ile bed shear stress - due to maximum combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.83: 95%ile bed shear stress - due to maximum combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.84: 99%ile bed shear stress - due to maximum combined current and waves (N/m2) – Inch Cape OWF (near-field) scale

Figure 10A.2.85: Exceedance of the critical shear stress for entrainment due to mean combined bed shear stress – Inch Cape OWF (near-field) scale

Figure 10A.2.86: Exceedance of the critical shear stress for entrainment due to maximum combined bed shear stress – Inch Cape OWF (near-field) scale

Section 4: Summary of Model Performance

Figure 10A.2.88: Inch Cape ADCP Spring Modelled Tidal Currents Speed (ms⁻¹) and Current Direction (deg T) against Predicted Field Data

Figure 10A.2.89: Inch Cape ACDP Neap Modelled Tidal Elevations against Predicted Field Data

Figure 10A.2.90: Inch Cape ADCP Neap Modelled Tidal Currents Speed (ms⁻¹) and Current Direction (deg T) against Predicted Field Data

Figure 10A.2.91: Easterly Storm Event - Inch Cape, Waverider Buoy Modelled Hs (m), Tp (s) and Wave Direction (deg T) against Measured Field Data

09/01/2010

18:00

10/01/2010

06:00

10/01/2010

18:00

11/01/2010

06:00

11/01/2010

18:00

12/01/2010

06:00

Figure 10A.2.92: Offshore Wind Event – Inch Cape, Waverider Buoy Modelled H_s (m), T_p (s) and Wave Direction (deg T) against Measured Field Data

Figure 10A.2.93: Northerly Storm Event – Inch Cape, Waverider Buoy Modelled H_s (m), T_p (s) and Wave Direction (deg T) against Measured Field Data

Figure 10A.2.94: Southeasterly Storm Event – Inch Cape, Waverider Buoy Modelled Hs (m), Tp (s) and Wave Direction (deg T) against Measured Field Data

Figure 10A.2.95: Offshore Wind Event – Inch Cape, Waverider Buoy Modelled H_s (m), $T_{\rm p}$ (s) and Wave Direction (deg T) against Measured Field Data