

E.ON Climate & Renewables

Analysis of Marine Ecology Monitoring Plan Data from the Robin Rigg Offshore Wind Farm, Scotland (Operational Year 2)

Technical Report

Appendices

Report: 1012206

Authors: Richard Walls, Dr. Chris Pendlebury, Dr. Jane Lancaster, Dr. Gillian Lye, Dr. Sarah Canning, Fraser Malcolm, Victoria Rutherford, Laura Givens, and Amy Walker

Final Issue: 06/09/2013

Natural Power Consultants The Green house Forrest Estate Dalry, Dumfries and Galloway DG15 7XS Tel: +44 (0) 1644 430 008

Client: Sally Shenton, E.ON Climate & Renewables

Report: 1012206

Analysis of Marine Ecology Monitoring Plan Data from the Robin Rigg Offshore Wind Farm, Scotland (Operational Year 2)

Authors	Dr. Sarah Canning, Dr. Gillian Lye, Dr Jane Lancaster, Laura Givens, Dr Chris Pendlebury, Victoria Rutherford, Fraser Malcolm, Amy Walker & Richard Walls (Team Leader).	21/09/2012
Checked	Dr Chris Pendlebury, Jane Lancaster, Dr. Sarah Canning	16/10/2012
Approved	Dr Jane Lancaster	18/10/2012

Classification COMMERCIAL IN CONFIDENCE

Distribution Sally Shenton, E.ON Climate & Renewables

DISCLAIMER OF LIABILITY

This report is prepared by us, THE NATURAL POWER CONSULTANTS LIMITED, ("NATURAL POWER") for you, Shelly Shenton, E.ON Climate & Renewables (the "Client") to assist the Client in analysing ecological data in connection with the Robin Rigg Offshore Wind Farm. It has been prepared to provide general information to assist the Client in its decision, and to outline some of the issues, which should be considered by the Client. It is not a substitute for the Client's own investigation and analysis. No final decision should be taken based on the content of this report alone.

This report should not to be copied, shown to or relied upon by any third parties without our express prior written consent. Nothing in this report is intended to or shall be deemed to create any right or benefit in favour of a third party. In compiling this report, we have relied on information supplied to us by the Client and by third parties. We accept no Liability for the completeness and/or veracity of the information supplied to us, nor for our conclusions or recommendations based on such information should it prove not to be complete or true.

We have been asked to comment on analysis of ecological data collected as part of the MEMP, in accordance with the Client's instructions as to the scope of this report. We have not commented on any other matter and exclude all Liability for any matters out with the said scope of this report. If you feel there are any matters on which you require additional or more detailed advice, we shall be glad to assist.

We hereby disclaim any and all liability for any loss (including without limitation consequential or economic loss), injury, damage, costs and expenses whatsoever ("Liability") incurred directly or indirectly by any person as a result of any person relying on this report except as expressly provided for above. In any case, our total aggregate Liability in connection with the provision of this report (whether by contract, under delict or tort, by statute or otherwise) shall be limited to the aggregate of fees (excluding any VAT) actually paid by the Client to us for provision of this report.

Revision History

Issue	Date	Changes
А	18/10/2012	Draft Issue
В	17/01/2013	First Issue
Final	06/09/2013	Final Issue

Appendix 1: Benthic Ecology

Table A1.1: Total abundance of benthic infauna caught around the Robin Rigg Wind Farm, baseline – operational year two.

Species	Total numbers caught
Bathyporeia elegans	1123
Nephtys cirrosa	540
Scalibregma inflatum	265
Angulus fabula	169
Kurtiella bidentata	159
Magelona johnstoni	145
Pseudocuma longicornis	144
Scolelepis mesnili	107
Nucula nitidosa	91
Pomatoceros lamarcki	76
Bathyporeia nana	72
Abra alba	64
Gastrosaccus spinifer	60
Donax vittatus	55
Echinocardium cordatum	51
Nephtys caeca	49
Ophelia borealis	36
Bathyporeia sarsi	28
Nephtys hombergii	26
Glycera tridactyla	25
Pontocrates altamarinus	24
Pomatoceros	23
Tellimya ferruginosa	22
Mactra stultorum	22
Eteone flava/longa	20
Paraspio decorata	20
Spio martinensis	16
Nemertea indet.	15
Nemertea	14
Sigalion mathildae	14
Perioculodes longimanus	13
Lagis koreni	12
Exogone hebes	11
Pariambus typicus	10
Pontocrates arenarius	10
Nephtys assimilis	9
Pholoe inornata	9
Pholoe minuta	9
Spiophanes bombyx	9
Scoloplos armiger	8
Urothoe brevicornis	8
Nephtys juv. indet.	7
Polycirrus	7
Schistomysis spiritus	7
Tanaopsis graciloides	7
Liocarcinus marmoreus	6
Microphthalmus similis	6

Species	Total numbers caught
Onchidoris muricata	6
Pharus legumen	6
Bathyporeia indet.	5
Paraonis fulgens	5
Photis longicaudata	5
Sthenelais boa	5
Sthenelais limicola	5
Urothoe poseidonis	5
Chrysallida decussata	4
Gammarus indet.	4
Mytilus edulis (juv.)	4
Nephtys (juv.)	4
Ophiura albida	4
Phoronis sp.	4
Podarkeopsis capensis	4
Solenacea indet.	4
Cephalothricidae indet.	3
Cerebratulus sp.	3
Cerianthus Iloydii	3
Dipolydora caeca (agg.)	3
Eumida sanguinea	3
Goniada maculata	3
Haustorius arenarius	3
Hydrobia ulvae	3
Mediomastus fragilis	3
Mytilus edulis	3
Owenia fusiformis	3
Spio armata	3
Actiniaria sp.	2
Ammodytes tobianus	2
Ampelisca spinipes	2
Conopeum reticulum	2
Dyopedos monacanthus	2
Echinocardium	2
Euspira pulchella	2
Magelona filiformis Magelona mirabilis	2
Nephtys kersivalensis	2
	2
Syllidia armata Abra nitida	1
Abra nitiaa Achelia echinata	1
	1
Alcyonium digitatum	1
Ampharete finmarchica	
Amphiura filiformis	1
Angulus tenuis	1
Asterias rubens	1
Cerastoderma edule	1
Cliona	1
Crangon crangon	1
Echinocardium flavescens (?)	1

Species	Total numbers caught
Escharella immersa	1
Eteone foliosa	1
Eteone picta	1
Eulalia viridis	1
Eusyllis blomstrandi	1
Glycera convoluta	1
Golfingia elongata	1
Heteroclymene robusta	1
Hirudinea	1
Hydrozoa	1
Lagotia viridis	1
Lanice conchilega	1
Malmgreniella arenicolae (agg.)	1
Megaluropus agilis	1
Mya truncata	1
Mya truncata (juv.)	1
Ophiothrix fragilis	1
Phialella quadrata	1
Phyllodoce groenlandica	1
Pisces juv.	1
Pisidia longicornis	1
Pomatoceros triqueter	1
Pomatoschistus sp.	1
Sabellaria spinulosa	1
Schistomysis kervillei	1
Solen marginatus	1
Spisula (?)	1
Spisula subtruncata	1
Tritonia (juv.)	1
Verruca stroemia	1
Total abundance	3,796
Total no. of species	127
	127

Operational \	rear One				
Group A					
Average simil		1	1	1	
Species	Average	Average	Similarity/	Contribution	Cumulative
	Abundance	Similarity	Dissimilarity	%	%
Bathyporeia					
elegans	1.65	44.61	6.91	51.83	51.8
Nephtys					100.
cirrosa	1.64	41.47	11.02	48.17	0
Group B					
Average simil	arity: 49.99%				
Species	Average	Average	Similarity/	Contribution	Cumulative
	Abundance	Similarity	Dissimilarity	%	%
Nephtys	1.21	43.84	7.76	87.69	87.6
cirrosa					
Ophelia	0.50	6.16	0.41	12.31	100.
borealis					0
Group C					
Average simil	arity: 45.63%				
Species	Average	Average	Similarity/	Contribution	Cumulative
	Abundance	Similarity	Dissimilarity	%	%
Nephtys	2.16	21.37			46.8
cirrosa			12.07	46.84	
Bathyporeia	1.75	12.42	4.06		74.0
elegans				27.22	
Scalibregma	1.04	6.50	0.89		88.3
inflatum				14.24	
Pontocrates	0.68	1.90	0.41	4.15	92.4
altamarinus					

Table A1.2: SIMPER analysis results for operational year two.

Climate & Renewables

natural **power**

Appendix 2: Non-migratory Fish and Electrosensitive Fish

		Number of
Common Name	Latin Name	individuals
Plaice	Pleuronectus platessa	20961
Dab	Limanda limanda	19415
Whiting	Merlangius merlangus	10066
Lesser Weever	Trachinus vipera	4458
Solenette	Buglossidium luteum	2766
Pogge	Agonus cataphractus	2495
Sprat	Sprattus sprattus	1485
Sand Goby	Pomatoschistus minitus	1464
Sole	Solea solea	980
Scald Fish	Arnoglossus laterna	790
Greater Pipefish	Syngnathus acus	265
Bib	Trisopterus luscus	123
Dragonet	Callionymus lyra	122
Grey gurnard	Eutrigla gurnardus	106
Red gurnard	Aspitriglia cuculus	97
Sea Snail	Liparis liparis	75
Lesser spotted dogfish	Scyliorhinus canicula	62
Thornback Ray	Raja clavata	53
Five Bearded Rockling	Ciliata mustela	37
Cod	Gadus morhua	33
Tub Gurnard	Trigla lucerna	30
Flounder	Platichthys flesus	23
Greater Sand Eel	Hyperoplus lanceolatus	18
Brill	Scophthalmus rhombus	17
Three Bearded Rockling	Gaidropsarus vulgaris	7
Common Skate	Raja batis	6
Common Goby	Pomatoschistus microps	4
Turbot	Scophthalmus maximus	4
Transparent Goby	Aphia minuta	3
Butterfish	Pholis gunnellus	3
Bull Rout	Myoxocephalus scorpius	2
Long-spined Sea Scorpion	Taurulus bubalis	2
Blonde Ray	Raja brachyura	2
Shore Rockling	Gaidropsarus mediterraneus	1
Sea Stickleback	Spinachia spinachia	1
Lumpsucker	Cyclopterus lumpus	1

Table A2.1: Fish Species List from Non-migratory fish surveys 2001-2010

Common Name	Latin Name	Number of Individuals	
Brown shrimp	Crangon crangon	95442	
Brittle star	Ophiura ophiura	23006	
Hermit crab	Pagurus bernhardus	2186	
Harbour crab	Liocarcinus depurator	1862	
Common starfish	Asterias rubens	623	
Baltic prawn	Palaemon adspersus	298	
Plumose anemone	Metridium senile	278	
Pink shrimp	Pandalus montagui	138	
Small shrimps	Philocheras trispinus	125	
Small decapod	Eualus gaimardii	98	
Sea mouse	Aphrodita aculeata	94	
Masked crab	Corystes cassivelaunus	79	
Barnacle	Semibalanus balanoides	66	
Strawberry crab	Eurynome aspera	65	
Spotted crab	Portumnus latipes	63	
Barnacle	Eliminius modestus	51	
Squid	Allotheuis subulata	51	
Brittle Star	Ophiura albida	50	
Common whelk	Buccinum undatum	42	
Cuttle fish	Sepiola atlantica	41	
Shore crab	Carcinus maenas	37	
Green sea urchin	Psammechinus miliaris	37	
Hyroids on hermit crabs	Podocoryne carnea	36	
Razor Clam	Ensis ensis	35	
Isopod	Idotea lineanis	35	
Rayed trough shell	Mactra stultorum	32	
Hydroids on hermit crabs	Hydractinia echinata	30	
Gammarid amphipod	Chaetogammarus merinus	28	
Banded Wedge Shell	Donax vittatus	27	
Spider Crab	Macropodia rostrata	16	
Great Spider Crab	Hyas araneus	16	
Top Shell	Gibbula umbilicalis	14	
Sea Mat	Membranipora membranacea	14	
Heart Urchin	Echinocardium cordatum	11	
Hornedwrack	Flustra foliacea	11	
Spider Crab	Macropodia tenuirostris	10	
Queen Scallop	Aequipecten opercularis	9	
Bivalve	Mactridae sp.	8	
Alder's necklace Shell	Polinices polionus	7	
Barnacle	Balanus hameri	6	
Anemone	Sagartia elegans	6	
Spider Crab	Macropodia deflexa	5	
Barnacle	Balanus balanus	5	
Velvet Swimming Crab	Necora puber	4	
Mussel	Mytilus edulis	4	
Blunt Gaper	Mya truncata	4	
Sea squirt	Tunicate sp.	4	

Table A2.2: Invertebrate Species List from Non-migratory fish surveys 2001-2010

Common Name	Latin Name	Number of Individuals
Thin tellin	Angulus tenuis	3
Naken Sea Slug	Phillene aperta	3
Pea Crab	Pinnorteres pisum	2
White shrimp	Pasiphaea sivado	2
Baltic Tellin	Macoma balthica	2
Edible crab	Cancer pagurus	1
Sand Star	Astropecten irregularis	1
Dahlia anemone	Urticina felina	1
Dead man's fingers	Alcyonium digitatum	1
Sponge	Hemimycale columella	1
Ascidian	Ascidiella scabra	1

Common Name	Latin Name	Number of Individuals	
Plaice	Pleuronectes platessa	558	
Whiting	Merlangius merlangus	363	
Dab	Limanda limanda	345	
Lesser Weever	Echiichthys vipera	164	
Solenette	Buglossidium luteum	99	
Witch	Pleuronectes cynoglossus	79	
Dover sole	Solea solea	56	
Scaldfish	Arnoglossus laterna	54	
Pogge	Agonus cataphractus	31	
Sand Goby	Pomatoschistus minutus	28	
Gurnard	Aspitriglia cuculus	25	
Short spined sea scorpion	Myoxocephalus scorpius	24	
Dragonet	Callionymus lyra	22	
Brill	Scopthalmus rhombus	18	
Poor cod	Trisopterus minutus	18	
Thornback ray	Raja clavata	18	
Lesser Spotted Dogfish	Scyliorhinus canicula	15	
Bib	Trisopterus luscus	11	
Sprat	Sprattus sprattus	9	
Grey Gurnard	Eutrigla gurnardus	8	
Four bearded rockling	Enchelyopus cimbrius	6	
5 bearded rockling	Ciliata mustela	6	
Flounder	Pleuronectes flesus	5	
Gunnel	Pholis gunnellus	4	
Tadpole fish	Raniceps raninus	2	
Lemon Sole	Microstomus kitt	2	
Sandeel	Ammodytes tobianus	2	
Pipefish	Sygnathus acus	2	
Turbot	Scopthalmus maximus	1	
Tub gurnard	Trigla lucerna	1	
Cod	Gadhus morhua	1	
Ling	Molva molva	1	

Table A2.3: Fish species from electrosensitive fish surveys 2007-2010

Common Name	Latin Name	Number of Individuals
Brown Shrimp	Crangon crangon	1040
Starfish	Asterias rubens	474
Hermit crab	Pagurus bernhardus	215
Pink shrimp	Pandalus montagui	132
Swimming crab	Liocarcinus holstatus	43
Shore crab	Carcinus maenas	36
Harbour crab	Liocarcinus depurator	16
Whelk	Buccinum undatum	15
Spider crab	Hyas araneus	13
Brittlestar	Ophiura ophiura	13
Spider crab	Macropodia deflexa	9
Cuttlefish	Sepiola atlantica	3
Edible Crab	Cancer pagurus	2
Dead man's fingers	Alcyonium digitatum	2
Sea Mouse	Aphrodita aculeata	2
Squid	Loligo forbesii	1
Sea snail	Liparis liparis	1
Rayed trough shell	Mactra stultorum	1
Breadcrumb sponge	Halichondria panicea	1
Honeycomb worm	Sabellaria alveolata	1

Table A2.4: Invertebrates species from electrosensitive fish surveys 2007-2010

Appendix 3: Birds

A3. ORTHNITHOLOGICAL MONITORING AT ROBIN RIGG

A3.1. Designated conservation areas for birds within the Solway Firth

The Solway Firth in an important area for a wide range of diverse bird species, with a number of areas being protected (Table A3.1. These protected areas fall into a number of designations/categories:

- Protected areas established under National Legislation, including Sites of Special Scientific Interest (SSSI) and National Nature Reserves.
- Protected areas established as a result of European Union Directives or other European initiatives, including the Natura 2000 network.
- Protected areas set up under Global Agreements, including Ramsar sites.
- Marine Protected Areas

Table A3.1: Areas of protection for birds within the Solway Firth.

Site Name	Designation	Approximate Distance from Site (km)	Qualifying Features
Upper Solway Flats and Marshes	RAMSAR	6.4	Bar-tailed godwit: non-breeding Svalbard barnacle goose: non- breeding Curlew: non-breeding Knot: non-breeding Oystercatcher: non-breeding Pink-footed goose: non-breeding Pintail: non-breeding Scaup: non-breeding
Upper Solway Flats and Marshes	SPA	6.4	Bar-tailed godwit: non-breeding Svalbard barnacle goose: non- breeding Cormorant: non-breeding Curlew: non-breeding Dunlin: non-breeding Golden plover: non-breeding Goldeneye: non-breeding Great-crested grebe: non-breeding Grey plover: non-breeding Knot: non-breeding Lapwing: non-breeding Mallard: non-breeding Oystercatcher: non-breeding Pink-footed goose: non-breeding Pintail: non-breeding Ringed plover: non-breeding Ringed plover: non-breeding Scaup: non-breeding Shelduck: non-breeding Whooper swan: non-breeding
Upper Solway Flats and Marshes	SSSI	6.4	Bar-tailed godwit: non-breeding Barnacle goose: non-breeding Breeding bird assemblage Curlew: non-breeding

			Dunlin:– non-breeding Golden plover: non-breeding Goldeneye: non-breeding Grey plover: non-breeding Knot: non-breeding Oystercatcher: non-breeding
			Pintail: non-breeding Redshank: non-breeding Ringed plover: non-breeding Sanderling: non-breeding Scaup: non-breeding Shelduck: non-breeding
Abbey Burn Foot to Balcary Point	SSSI	8.5	Cormorant: breeding Fulmar: breeding Guillemot: breeding Kittiwake: breeding Razorbill: breeding
Borgue Coast	SSSI	22	Common gull: breeding Greater black-backed gull: breeding
St Bees Head	SSSI	23	Guillemot: breeding Fulmar: breeding Kittiwake: breeding Razorbill: breeding Puffin: breeding Shag: breeding Herring gull: breeding Black guillemot: breeding
Cree Estuary	SSSI	40	Pink-footed goose: non-breeding
Scare Rocks	SSSI	62	Gannet: breeding Guillemot: breeding Shag: breeding
Loch of Inch and Torrs Warren	RAMSAR	69	Greenland white-fronted goose: non- breeding
Loch of Inch and Torrs Warren	SPA	69	Greenland white-fronted goose: non- breeding Hen harrier: non-breeding
Torrs Warren to Luce Sands	SSSI	69	Hen harrier: non-breeding
Mull of Galloway	SSSI	73	Fulmar: breeding Kittiwake: breeding Razorbill: breeding
Ailsa Craig* *Although not within the Solway, is there nearest breeding site for gannets.	SPA	100	Gannet: breeding Lesser black-backed gull: breeding Guillemot: breeding Kittiwake: breeding Herring gull: breeding

A3.2. Data collection methods

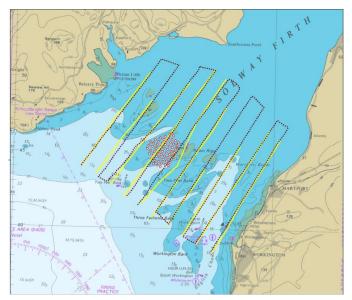

The survey vessel used for most of the boat surveys was a Fisheries Protection Vessel (16 m length, 18 tonne displacement). This vessel provided an excellent viewing platform and had the combination of speed (to be able to survey across the range of tidal conditions) and the ability to operate in relatively shallow water. Its viewing platform gives a 4 m viewing height above the sea surface. Although this is below the JNCC recommended 5 m, it gave a very suitable viewing platform, especially when taking into account the site constraints on a larger boat which would not have been able to navigate the sandbanks that run through much of the study area. The maximum wind force for observations was reduced from force 5 to force 4 (see Table A3.2 for full definition of sea states) to further ensure that viewing conditions were optimal and were not compromised by the slightly lower viewing height.

Table A3 2: Definition of sea states used in the collection of environmental data.

Sea State	Definition
0	Mirror calm
1	Slight ripples, no foam crests
2	Small wavelets, glassy crests but no whitecaps
3	Large wavelets, crests begin to break, few whitecaps
4	Longer waves, many whitecaps
5	Moderate waves of longer form, some spray

The survey route was designed to provide a 2 km interval between transects; a total of ten transects were surveyed, each of about 18 km length (see Figure A3.1). This separation distance was chosen to ensure that a good sample of the study area was covered for all species, whilst minimising the likelihood that birds may be displaced from one transect to the adjacent one and double-counted.

The same route was used for all the surveys, though restricted hours of daylight, weather and tidal conditions meant that it was not always possible to cover the whole survey area in a single day. Where complete surveys were not possible the second survey each month was designed to ensure that the whole study area was covered at least once per month and that the potential wind farm area twice per month whenever possible. A GPS record of the precise route was taken on each trip, so that the location at all times was known.

Figure A3.1: Illustration showing the 10 transect lines followed during the bird and marine mammal surveys. The yellow lines represent the area that could be covered at low tide. Red circles represent turbine locations.

Two surveys were completed each month from May 2001 to April 2002, with the exception of May and October 2001, when only one survey was completed. Alternate surveys covered the high tide and the low tide periods. Monthly surveys were conducted in April/May 2003 and between January and September 2004 with an addition survey performed in July 2007, just prior to construction commencing. Construction phase surveys began in January 2008 and continued on a bi-monthly basis until the end of the phase in February 2010. Surveys were completed in all months of the construction phase except November 2009.

All birds encountered, their behaviour, flight height and approximate distance from the boat were recorded.

Two observers worked simultaneously, each observing a 90° angle ahead and to the side of the vessel. Following the JNCC Seabirds at Sea recommendations, birds were recorded into five distance bands (0-50 m, 50-100 m, 100-200 m, 200-300 m and 300+ m). Birds were recorded continuously, at a steady speed of approximately 12 knots, with the precise time of each observation recorded where possible to give as accurate a position as possible (linking to the GPS position information being recorded simultaneously). A range-finder was used to estimate distances of the birds from the ship. All records of birds observed flying as well as those on the sea was recorded.

A3.3. Bird species recorded during boat-based surveys between 2001 and 2012.

Table A3.3: Summary of the raw count data collected to the end of March 2012 during boat-based bird surveys at the Robin Rigg offshore wind farm.

		Baseline		c	onstructio	'n		Operatio	n
	Sea	Flight	Total	Sea	Flight	Total	Sea	Flight	Total
Arctic Skua	2	10	12	10	48	58	1	7	8
Arctic Tern				2	73	75	6	3	9
Auk species	224	358	582	719	379	1098	160	373	533
Auk species (large)							20	60	80
Bar-tailed Godwit					2	2		4	4
Black Guillemot	1		1	3	1	4	1		1
Black-headed Gull	53	322	375	503	1443	1946	89	158	247
Black-tailed Godwit					1	1			
Black-throated Diver				5		5			
Black-throated Diver(?)	3	3	6		1	1			
Buzzard					1	1			
Canada Goose					4	4			
Carrion Crow					1	1			
Collared Dove				1		1			
Commic Tern	21	99	120	19	48	67	7	50	57
Common Gull	443	826	1269	2102	5029	7131	1323	1497	2820
Common Scoter	25820	12261	38081	36274	19054	55328	19757	4204	23961
Common Tern		5	5	2	22	24		27	27
Common Tern(?)								2	2
Cormorant	161	192	353	702	1576	2278	487	1182	1669
Cormorant/Shag	1	1	2						
Curlew		11	11		16	16			
Curlew/Whimbrel								2	2
Diver species	212	244	456	378	903	1281	73	254	327
Duck species								1	1
Dunlin		90	90		43	43			
Dunlin(?)					3	3			
Eider				2	3	5			
Feral Pigeon		1	1						
Finch species		5	5		1	1			
Fulmar	13	104	117	10	65	75	2	12	14
Gannet	106	352	458	139	602	741	60	294	354
Golden Plover		2	2					51	51
Goldeneye		1	1						

Goosander Image: species Image: speci		· 								
Goosander Image: species Image: speci					0	1			<u> </u>	
Goose species Image: Marking and Marki		Sea	Flight	Total	Sea	Flight	Total	Sea	Flight	Total
Great Black-backed Gull 58 142 200 202 276 478 172 240 41 Great Crested Grebe 45 25 70 18 1 19 10 3 13 Great Northern Diver 5 6 11 17 8 25 70 18 1 19 10 3 13 Great Northern Diver(?) 4 3 7 7 1	Goosander				12		12	227	71	298
Gull5814220020227647817224041Great Crested Grebe4525701811910313Great Northern Diver?5611178257018111910313Great Northern Diver?4377825701811191033Great Skua1371112223344222Grey Goose11	Goose species				1	4	5		20	20
Great Crested Grebe 45 25 70 18 1 19 10 3 13 Great Northern Diver 5 6 11 17 8 25										
Grebe4525701811910311Great Northern Diver56111782561117Diver(?)4377825701817101010Great Northern Diver(?)437777101110101111101011 <td></td> <td>58</td> <td>142</td> <td>200</td> <td>202</td> <td>276</td> <td>478</td> <td>172</td> <td>240</td> <td>412</td>		58	142	200	202	276	478	172	240	412
Great Northern Diver 5 6 11 17 8 25 Great Northern Diver(?) 4 3 7		45	25	70	10	1	10	10	2	12
Diver561117825Great Northern Diver(?)437 <td></td> <td>45</td> <td>25</td> <td>70</td> <td>10</td> <td>1</td> <td>19</td> <td>10</td> <td>5</td> <td>15</td>		45	25	70	10	1	19	10	5	15
Great Northern Diver(?) 4 3 7 1 1 1 Great Skua 3 3 4 4 2 2 Grey Goose 1 1 1 1 1 Grey Goose 1 1 4 4 0 1 1 Grey Plover 4 4 4 <td< td=""><td></td><td>5</td><td>6</td><td>11</td><td>17</td><td>8</td><td>25</td><td></td><td></td><td></td></td<>		5	6	11	17	8	25			
Great Skua Image: scalar	Great Northern									
Grey Goose Image: state of the	Diver(?)	4	3	7						
Grey Heron 1 1 1 4 4 4 4 Grey Plover 3 3 - 4 4 4 - - Grey Plover(?) 3 3 -	Great Skua		3	3		4	4		2	2
Grey PloverImage: state of the	Grey Goose								1	1
Grey Plover(?) 3 3 3 1 1 1 1 Greylag Goose 1 3530 355 3885 4693 725 5418 3132 419 355 Gull species 4 111 115 86 1249 1335 1 139 14 Gull species (large) 4 111 115 86 1249 1335 1 139 14 Gull species (small) $ 300$ 76 100 Gull species (small) $ -$ Gull species (small) 20 2 22 22 285 307 1 133 14 Hen Harrier $ -$ Herring Gull 379 910 1289 529 1218 1747 201 427 62 Herring/Lesser $ -$ Black-backed Gull 10 10 $ -$ Hirundine $ -$ <	Grey Heron		1	1						
Greylag Goose Image: Marcine Marcine Marcine Marcine Marcine Marcine Martine Image: Marcine M	Grey Plover					4	4			
Greylag GooseImage: state st	Grey Plover(?)		3	3						
Guillemot 3530 355 3885 4693 725 5418 3132 419 355 Gull species 4 111 115 86 1249 1335 1 139 14 Gull species (large) - - - - 300 76 100 Gull species (small) - - - - 1 24 25 Gull species (small) - - 5 156 161 94 94 Gull species (small) 120 120 -									1	1
Gull species 4 111 115 86 1249 1335 1 139 14 Gull species (large) 30 76 10 Gull species (small) 1 24 25 Gull species (small) 120 120 16 94 94 Gull species(mixed) 120 120 94		3530	355	3885	4693	725	5418	3132	419	3551
Gull species (large) Image: species (large) Ima										140
Gull species (small) Image: Small of the species (large) 18 333 351 5 156 161 94 94 Gull species (mixed) 120 120 Image: Small of the species (mixed) 1 13 11 Image: Small of the species (mixed) 1 13 14 Herning Gull 379 910 1289 529 1218 1747 201 427 62 Herring/Lesser Black-backed Gull 10 10 Image: Small of the species (mixed) 10 Image: Small of the species (mixed) 1 1 1 1 1 1 Image: Small of the species (mixed) 1 1 1 1 1 1 1 1 1 Image: Small of the species (mixed) 1 1 1 1 1 1 1 </td <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>106</td>	-	-								106
Gull species(large) 18 333 351 5 156 161 94 94 Gull species(mixed) 120 120 2 22 285 307 1 13 14 Gull species(small) 20 2 22 22 285 307 1 13 14 Hen Harrier 1 1										25
Gull species(mixed) 120 110 11 130 140 Hen Harrier 379 910 1289 529 1218 1747 201 427 62 Herring/Lesser 10<		18	333	351	5	156	161	-		
Gull species(small) 20 2 22 22 285 307 1 13 14 Hen Harrier 1 1 1 1 1 1 1 1 14 Herring Gull 379 910 1289 529 1218 1747 201 427 62 Herring/Lesser 10 10 10 10 10 10 10 11 128 1747 201 427 62 Herring/Lesser 10 10 10 10 10 10 11 14 128 128 1747 201 427 62 Herring/Lesser 10 10 10 10 11 14 14 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 16 16 16 16 17 17 17 17 <t< td=""><td></td><td></td><td>555</td><td></td><td>5</td><td>150</td><td>101</td><td></td><td>54</td><td>54</td></t<>			555		5	150	101		54	54
Hen Harrier Image: Marrier Image: M			2		22	205	207	1	12	11
Herring Gull 379 910 1289 529 1218 1747 201 427 62 Herring/Lesser Black-backed Gull 10 11 11 10 10 10 10 10 10 10 10 10 10 11 1		20	2	22	22			1	15	14
Herring/Lesser Black-backed Gull 10 11 <td></td> <td>270</td> <td>010</td> <td>1200</td> <td>F 20</td> <td></td> <td></td> <td>201</td> <td>407</td> <td>(20</td>		270	010	1200	F 20			201	407	(20
Black-backed Gull10		379	910	1289	529	1218	1/4/	201	427	628
HirundineImage: Marking the speciesImage: Marking th			10	10						
Hirundine species Image: Markin description Image: Mar	Hirundine								8	8
House Martin Image: Martin Marking Martin Image: Martin Martin </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>7</td> <td></td> <td></td> <td></td>						7	7			
Kestrel 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>2</td>									2	2
Kittiwake 393 479 872 612 955 1567 407 527 93 Knot(?) 15 15 1			1	1		_			_	
Knot(?) 15 15 1 1 1 1 Lapwing		393			612	955	1567	407	527	934
Lapwing Image: Constraint of the second		333			012			-107	527	
Lesser Black-backed 108 196 304 347 424 771 36 126 16			15	15		-	1		1	1
Gull 108 196 304 347 424 771 36 126 16										1
		108	196	304	347	424	771	36	126	162
Lesser Redpoll(?) 1 1	Lesser Redpoll(?)									1
Little Auk 1 1						1	1			
		1	13	14	3			1	6	7
Little Tern 17 17		_				-		_	_	
Long-tailed Duck 2 2 2				/		2	2			

		Baseline	1	C	Constructio	n		Operatio	n	
	Sea	Flight	Total	Sea	Flight	Total	Sea	Flight	Total	
Long-tailed Duck (?)								1	1	
Mallard				2		2		2	2	
Manx Shearwater	97	1467	1564	660	664	1324	267	249	516	
Meadow Pipit		29	29		169	169		61	61	
Merlin		1	1							
Oystercatcher		20	20		13	13		7	7	
Passerine species		9	9		73	73				
Peregrine		1	1		1	1		2	2	
Pied Wagtail		1	1		2	2				
Pink-footed Goose				3	693	696	1	1106	1107	
Pink-footed										
Goose(?)					6	6				
Pipit species		37	37		29	29		21	21	
Pomarine Skua		3	3		1	1		1	1	
Puffin	2	2	4	1	7	8	8	7	15	
Purple Sandpiper								3	3	
Raptor (Buzzard?)								1	1	
Razorbill	1274	921	2195	2493	284	2777	1292	380	1672	
Red throated Diver								1	1	
Red-breasted										
Merganser Red-breasted	19	5	24	8	12	20	6	19	25	
Merganser(?)		4	4							
Redshank					15	15				
Red-throated Diver	363	170	533	256	243	499	247	437	684	
Redwing	505	1/0	333	230	245	-135	247	1	1	
Ringed Plover		20	20		9	9		-	⊥	
Ringed Plover(?)		1	1		5	5				
Sand Martin		26	26		11	11		7	7	
Sanderling		20	20		3	3		33	33	
Sandwich Tern	5	115	120	49	463	512	3	166	169	
	J	115		49	405	512	5	100	109	
Sandwich Tern(?)			219	251	40	201	1201	160	1461	
Scaup		318	318	351	40	391	1301	160	1461	
Shag(?)		-				10	1	_	1	
Shelduck		2	2	2	8	10		7	7	
Skua species					2	2		1	1	
Skylark		14	14		13	13				
Song Thrush/Redwing					1	1				
Sparrowhawk		1	1		1	1				

		Baseline		C	onstructio	n		Operatio	n
	Sea	Flight	Total	Sea	Flight	Total	Sea	Flight	Total
Starling					6	6		15	15
Storm Petrel		20	20	3	16	19			
Swallow		25	25		112	112		98	98
Swan species		3	3						
Swift		4	4		9	9			
Teal		1	1	3		3		1	1
Tern species		35	35	6	130	136	1	63	64
Turnstone		4	4		2	2			
Velvet Scoter	23	2	25	1	2	3		1	1
Wader (large)					1	1			
Wader (small)		6	6		28	28			
Wader species		2	2		3	3			
White/Pied Wagtail		2	2		3	3			
Whooper Swan		14	14		7	7	34	2	36
Wigeon								11	11
Yellowhammer(?)		1	1						
Grand Total	33528	20799	54327	51256	37732	88988	29366	13246	42612

A3.4. Data exploration

A3.4.1. Relationship between variables

Is there even coverage between months?

Table A3.4: Number of segments for each month during each phase of the development. There should be an even distribution of effort between months and phases.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pre	380	495	522	377	332	254	368	393	394	350	525	602
During	436	391	162	271	256	237	266	561	446	548	247	443
Post	453	601	547	616	531	565	550	614	485	421	532	529

Spatial distribution of effort

There should be an even distribution across the site between phases (Figure A3.2).

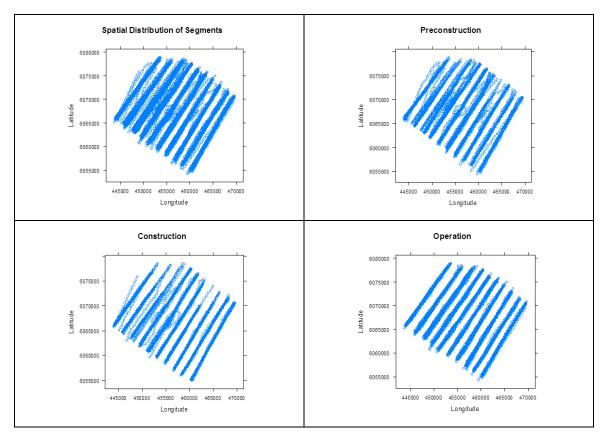
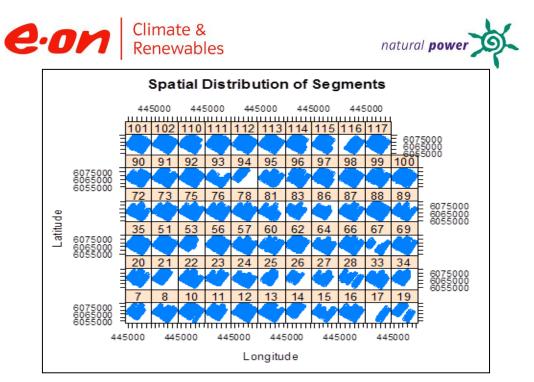



Figure A3.2: Visual representation of the survey segments by effort.

Figure A3.3: Visual representation of the survey segments by effort for each individual survey.

Check variables for outliers and even coverage

Response variables were allocated to each survey segment. Each variable was checked for even coverage (Figure A3.4; Table A3.5). As can be seen, sea state is not available for a large proportion of the preconstruction data and therefore will not be used in analysis.

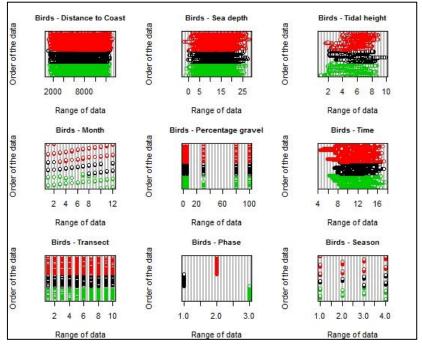


Figure A3.4: Figures visually representing the coverage of each of the response variable

Table A3.5: The number of segments collected at each different sea state during each of the three phases.

Sea state	0	1	2	3	4	5	NA
Pre	59	108	259	496	130	12	3928
During	212	270	1157	667	1515	262	0
Post	427	558	2150	911	1610	486	0

Pearson's coefficient looks for linear relationships, the larger the number the stronger the relationship. Generally, if they have a value of greater than 0.8, there is a strong relationship. For large datasets it is advisable to bear in mind any relationships with a coefficient of greater than 0.5. The output below (Figure A3.5) suggests relationships between depth and lat/long and between distance and gravel need further investigation.

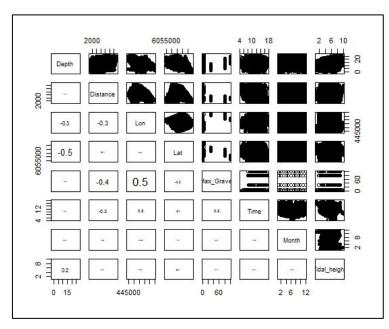


Figure A3.5: Collinearity among continuous variables.

A3.5. Response Variables

A3.5.1. Scaup (SP)

Check response variable for outliers

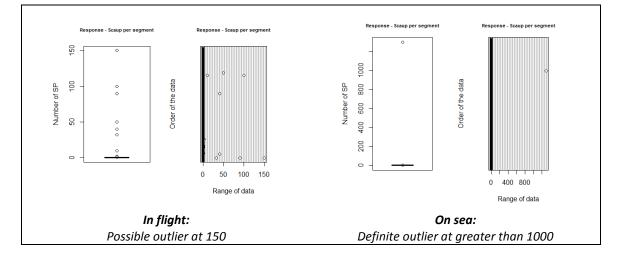


Figure A3.6: Response variable for scaup data

Check for zero inflation

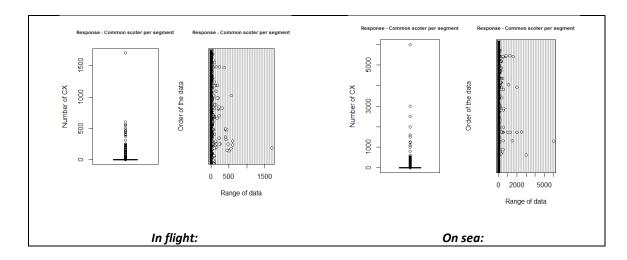

Too few non-zero sightings to perform analysis (Table A3.6)

Table A3.6: Percentage zero sightings

	% zeros	No. observations	No. non-zero's
In flight	99.9	1570	13
On sea	99.9	15700	3

A3.5.2. Common scoter (CX)

Check response variable for outliers

Possible outlier at 1600

Definite outlier at greater than 5000

Figure A3.7: Response variable for scaup data.

Check for zero inflation

High proportion of zero observations.

Table A3.7: Percentage zero sightings

	% zeros	No. observations	No. non-zero's
In flight	94.9	15700	801
On sea	95.5	15700	700

Check for relationships with variables

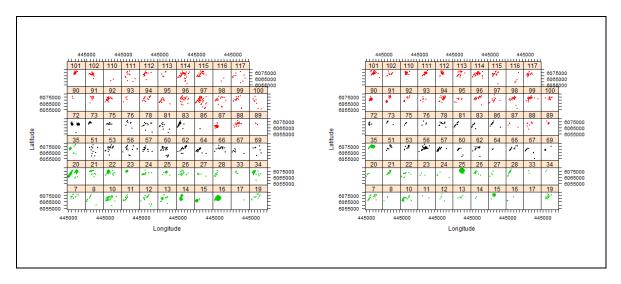


Figure A3.8: Spatial distribution by survey (left = in flight, right = on sea)

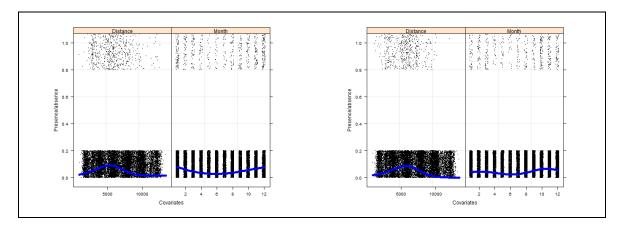


Figure A3.9: Binary response (left = in flight, right = on sea)

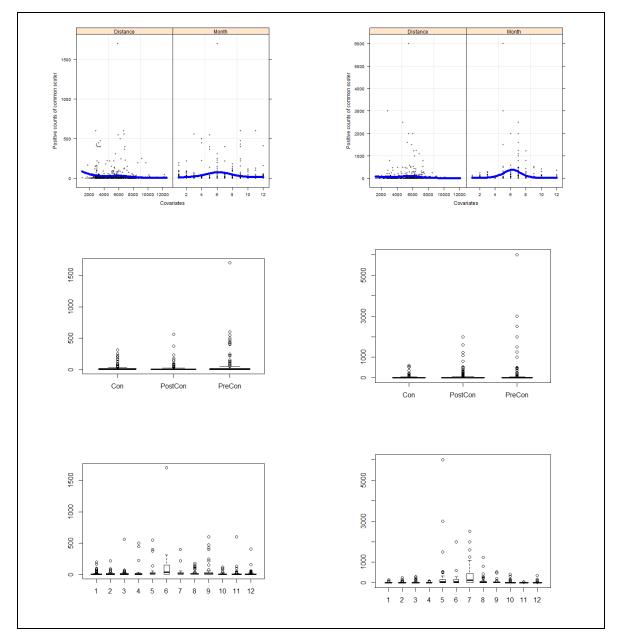


Figure A3.10: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.3. Red-throated diver (RH)

Check response variable for outliers

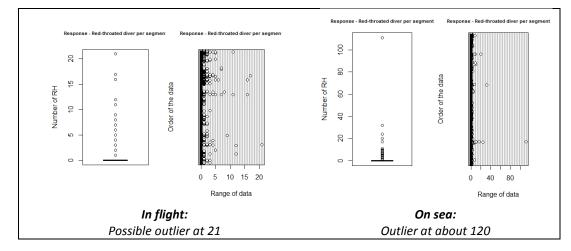
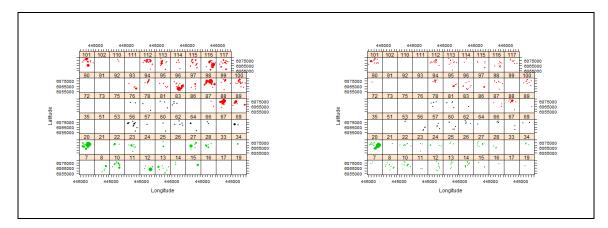


Figure A3.11: Response variable for red throated diver data.


Check for zero inflation

High proportion of zero observations.

Table A3.8: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	97.8	15700	341
On sea	98.2	15700	275

Check for relationships with variables

Figure A3.12: Spatial distribution by survey (left = in flight, right = on sea)

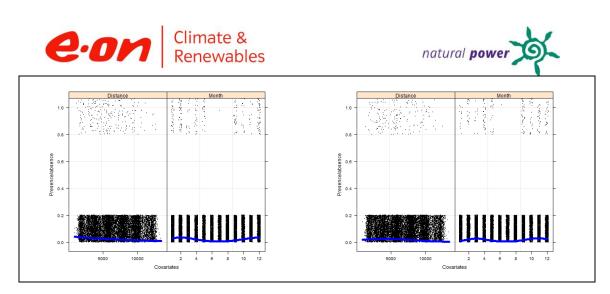
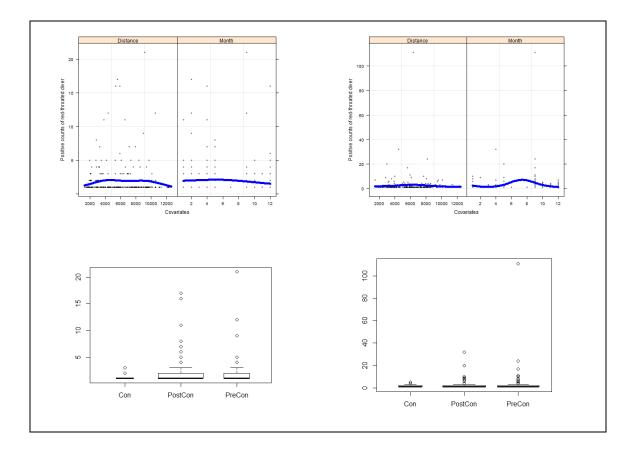



Figure A3.13: Binary response (left = in flight, right = on sea)

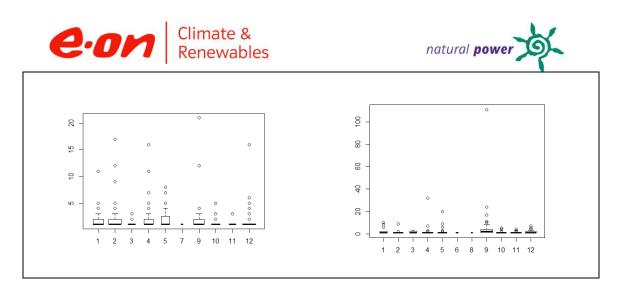


Figure A3.14: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.4. Manx shearwater

Check response variable for outliers

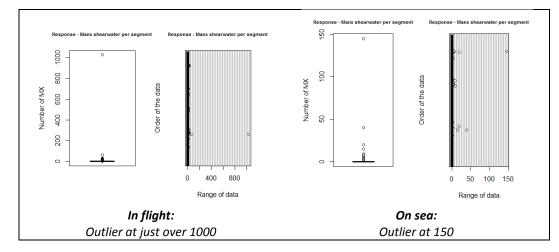


Figure A3.15: Response variable for manx shearwater data.

Check for zero inflation

High proportion of zero observations.

Table A3.9: Percentage zero sightings

	% zero's	No. observations	No. non-zero's
In flight	98.7	15700	208
On sea	99.6	15700	64

Check for relationships with variables

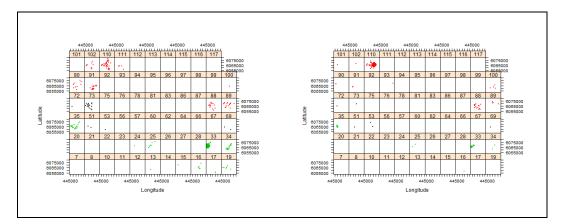


Figure A3.16: Spatial distribution by survey (left = in flight, right = on sea)

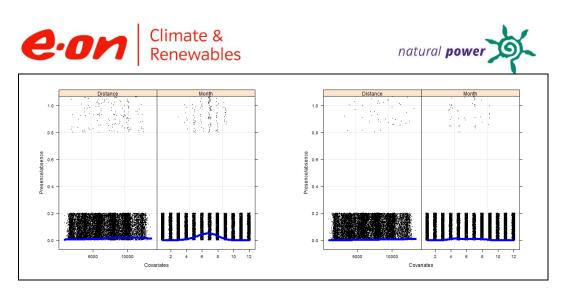
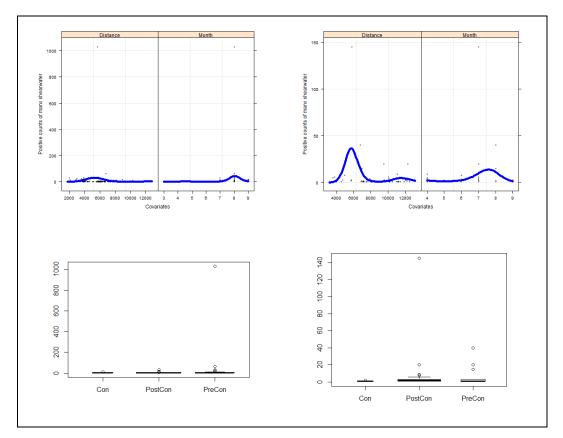



Figure A3.17: Binary response (left = in flight, right = on sea)

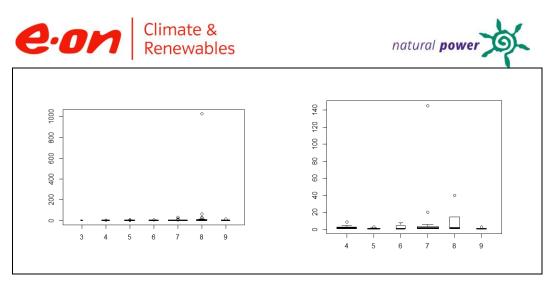


Figure A3.18: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.5. Gannet

Check response variable for outliers

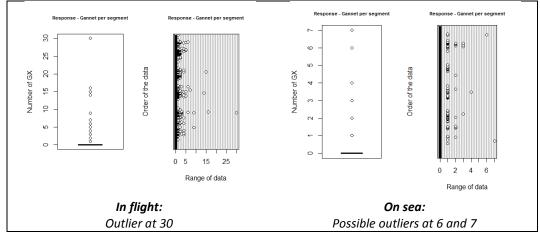


Figure A3.19: Response variable for gannet data.

Check for zero inflation

High proportion of zero observations

Table A3.10: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	97.1	15700	448
On sea	99.3	15700	108

Check for relationships with variables

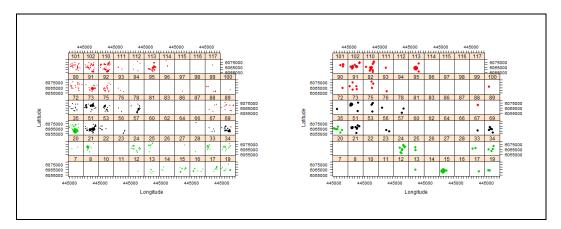


Figure A3.20: Spatial distribution by survey (left = in flight, right = on sea)

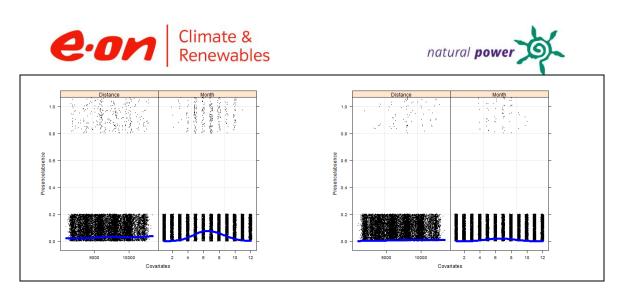
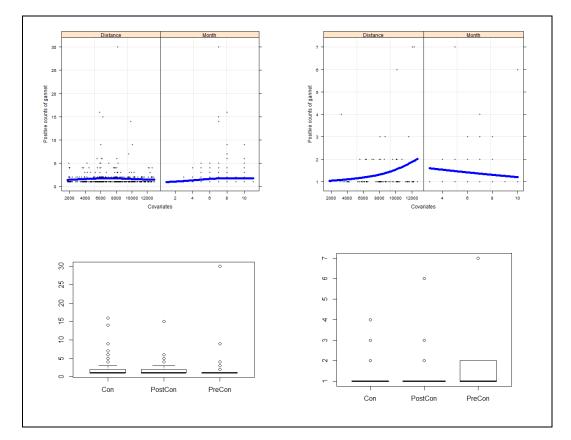



Figure A3.21: Binary response (left = in flight, right = on sea)

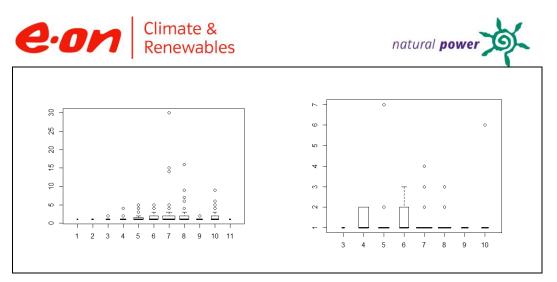


Figure A3.22: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.6. Cormorant

Check response variable for outliers

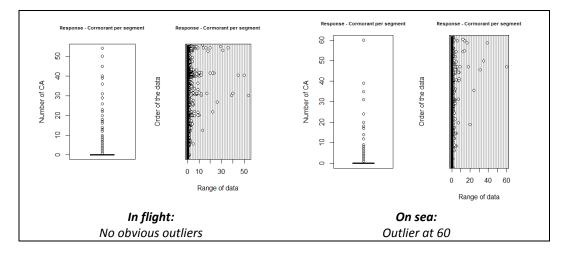


Figure A3.23: Response variable for cormorant data

Check for zero inflation

High proportion of zero observations.

Table A3.11: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	95.7	15700	675
On sea	98.4	15700	259

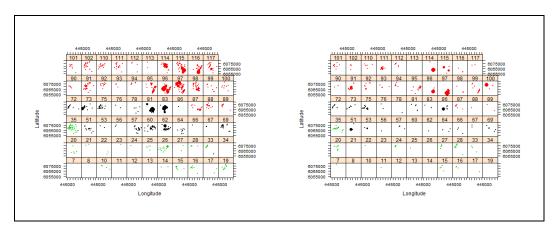


Figure A3.24: Spatial distribution by survey (left = in flight, right = on sea)

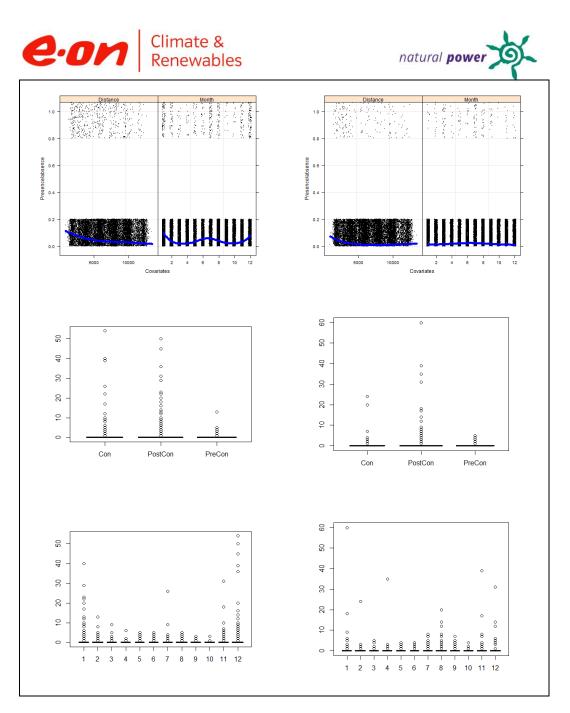


Figure A3.25: Binary response (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

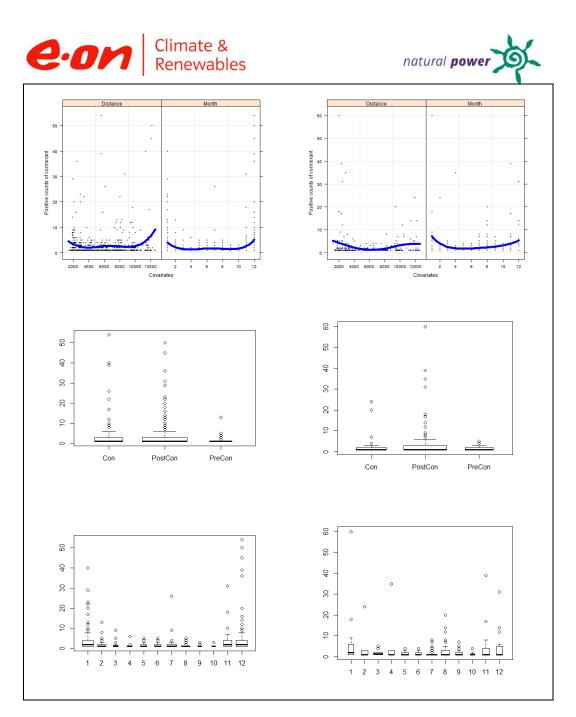


Figure A3.26: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.7. Kittiwake

Check response variable for outliers

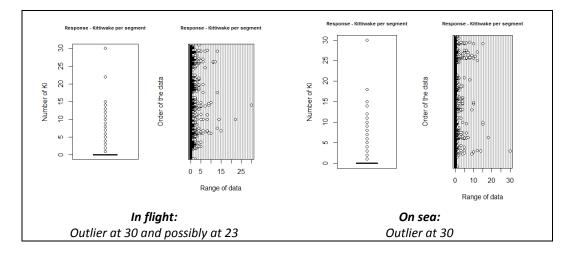


Figure A3.27: Response variable for kittiwake data.

Check for zero inflation

High proportion of zero observations.

Table A3.12: Percentage zero sightings

	% zero's	No. observations	No. non-zero's
In flight	95.7	15700	669
On sea	97.6	15700	380

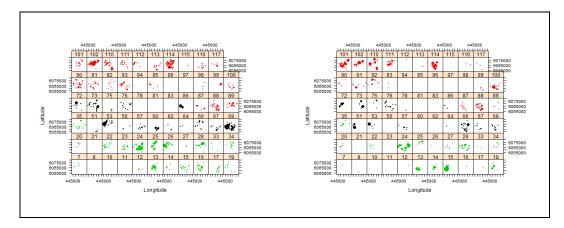


Figure A3.28: Spatial distribution by survey (left = in flight, right = on sea)

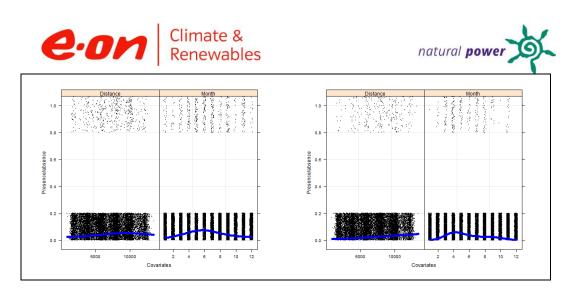
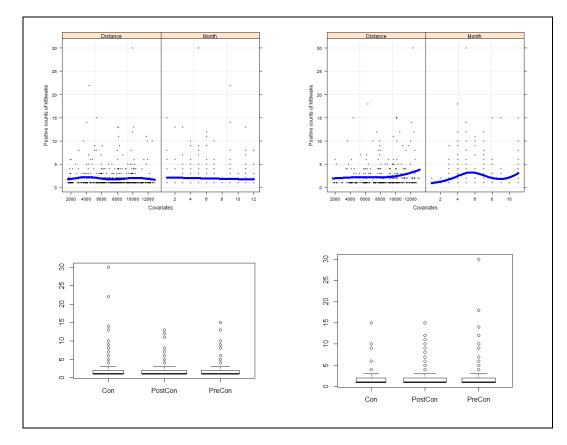



Figure A3.29: Binary response (left = in flight, right = on sea)

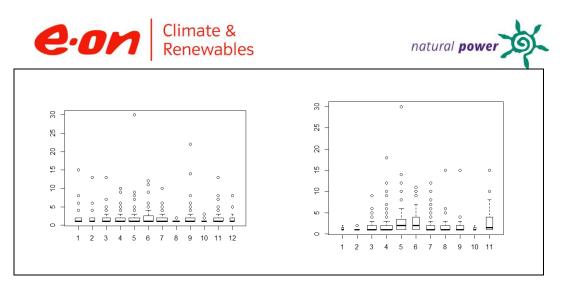


Figure A3.30: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.8. Herring gull

Check response variable for outliers

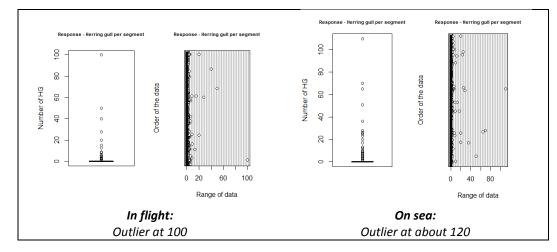


Figure A3.31: Response variable for herring gull data.

Check for zero inflation

High proportion of zero observations.

Table A3.13: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	95.0	15700	787
On sea	98.0	15700	169

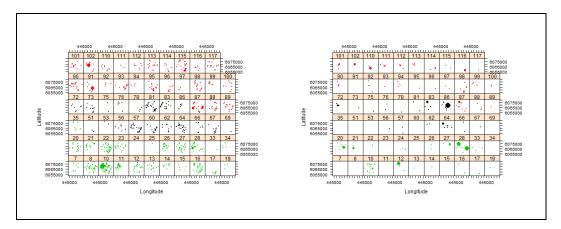


Figure A3.32: Spatial distribution by survey (left = in flight, right = on sea)

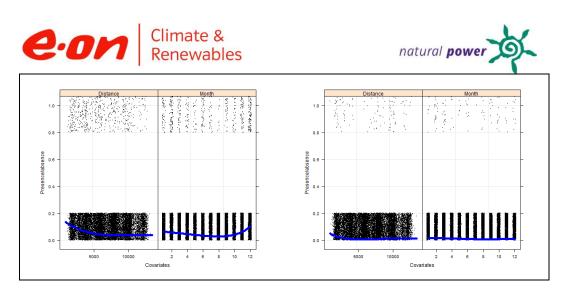
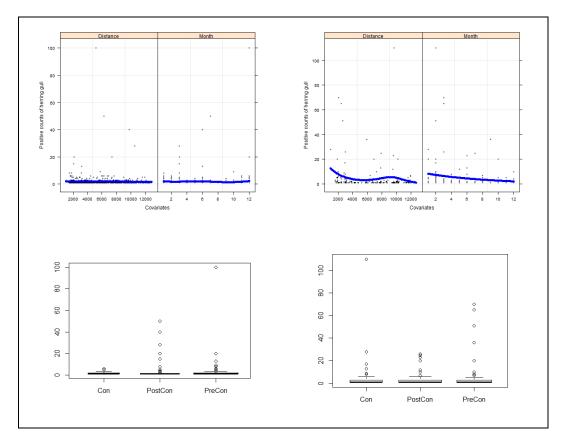



Figure A3.33: Binary response (left = in flight, right = on sea)

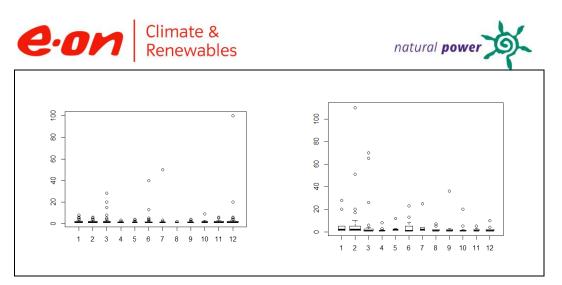


Figure A3.34: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.9. Great black-backed gull

Check response variable for outliers

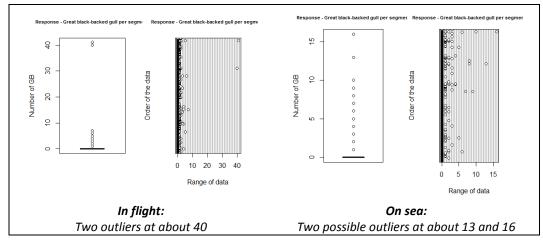


Figure A3.35 Response variable for great black-backed gull data

Check for zero inflation

High proportion of zero observations.

Table A3.14: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	98.2	15700	288
On sea	99.0	15700	152

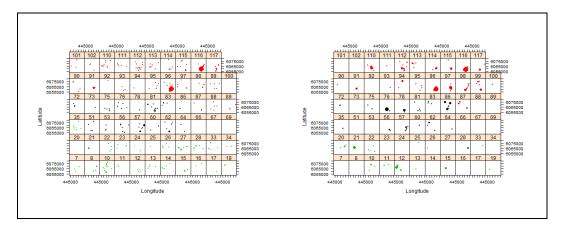


Figure A3.36: Spatial distribution by survey (left = in flight, right = on sea)

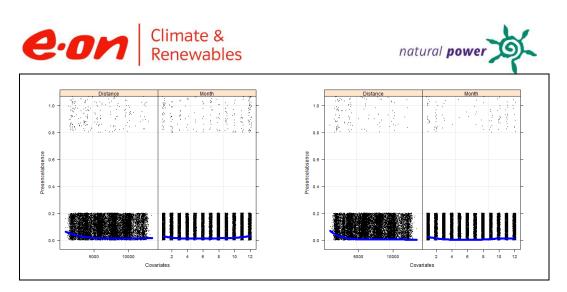
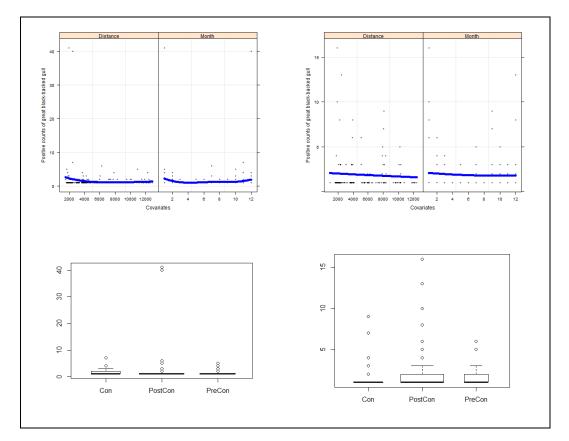
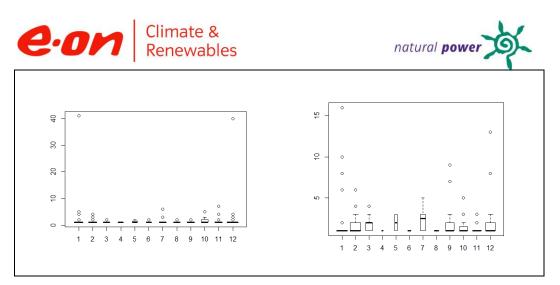




Figure A3.37: Binary response (left = in flight, right = on sea)

Figure A3.38: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.10. Guillemot

Check response variable for outliers

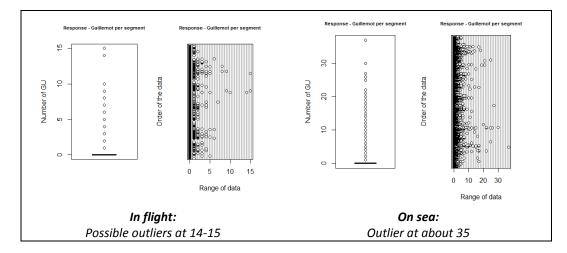


Figure A3.39: Response variable for guillemot data

Check for zero inflation

High proportion of zero observations.

Table A3.15: Percentage zero sighting

	% Zero's	No. observations	No. non-zero's
In flight	96.0	15700	631
On sea	78.4	15700	3385

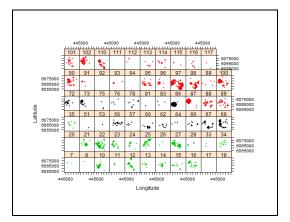


Figure A3.40: Spatial distribution by survey

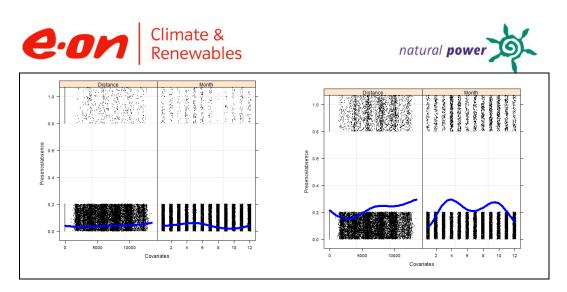
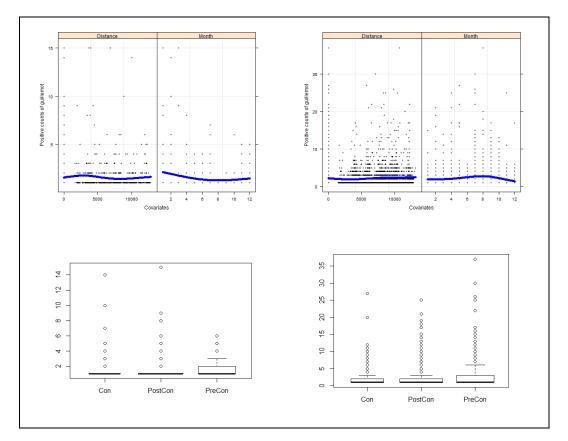



Figure A3.41: Binary response (left = in flight, right = on sea)

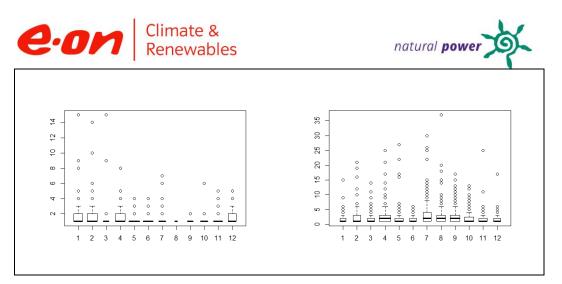


Figure A3.42: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.5.11. Razorbill

Check response variable for outliers

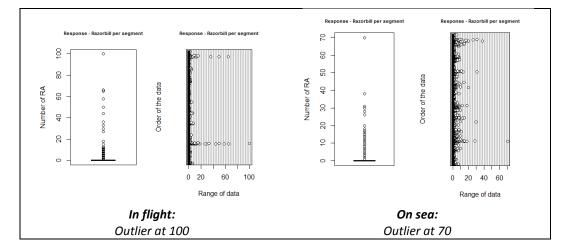


Figure A3.43: Response variable for razorbill data.

Check for zero inflation

High proportion of zero observations.

Table A3.16: Percentage zero sightings

	% Zero's	No. observations	No. non-zero's
In flight	98.2	15700	284
On sea	93.6	15700	1058

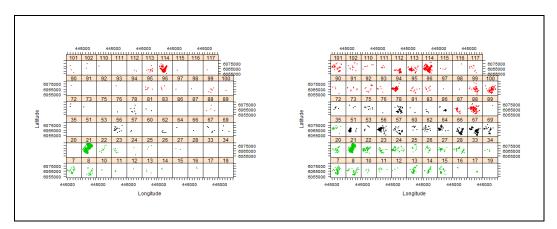


Figure A3.44: Spatial distribution by survey (left = in flight, right = on sea)

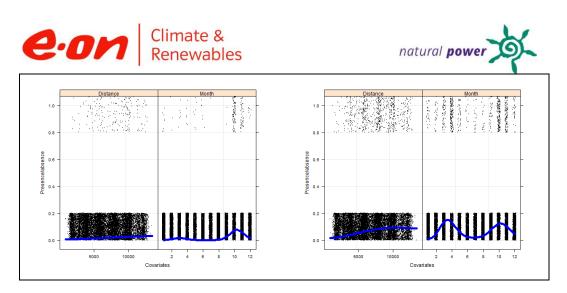
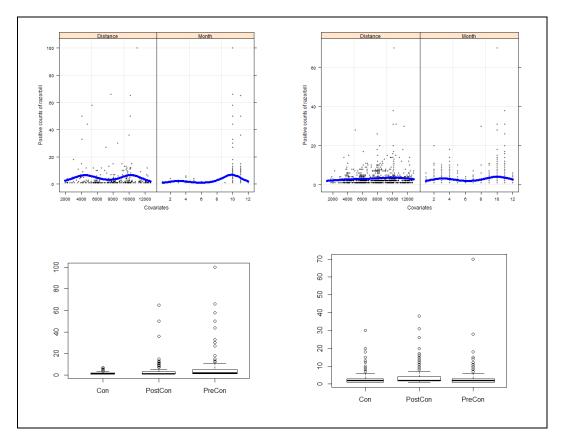



Figure A3.45: Binary response (left = in flight, right = on sea)

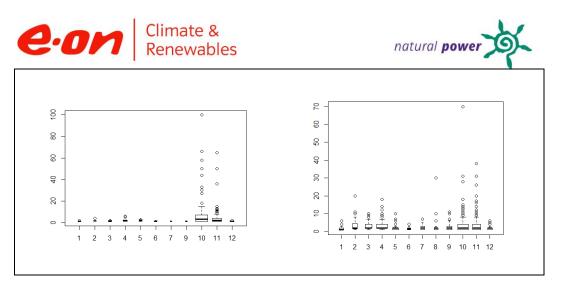


Figure A3.46: Visualization of non-zero data (left = in flight, right = on sea). Top figures show possible relationships with continuous covariates, middle figures show possible relationship with factor period and bottom figures show possible relationship with factor month.

A3.6. Distribution maps of raw sightings data

Distribution maps illustrating the raw sightings data are presented below.

Species Scaup Red-throated diver Manx shearwater Gannet Cormorant Kittiwake Herring gull Great black-backed gull Guillemot Razorbill

Appendix 4: Marine Mammals

A4. MARINE MAMMAL MONITORING AT ROBIN RIGG

A4.1. Robin Rigg offshore wind farm Marine Environment Monitoring Programme (MEMP)

Introduction

This document presents the developers proposed outline for a monitoring programme covering the pre-, during and post-construction stages of the Robin Rigg offshore wind farm in accordance with the consent from Scottish Ministers under Section 36 of the Electricity Act 1989 and as guided and/or described by all consents issued by the relevant authorities. The monitoring proposals have been formulated jointly with the Robin Rigg Monitoring Group (RRMG).

The document is intended to be the basis on which detailed monitoring schemes will be devised and implemented by the developer, in consultation with the RRMG, to meet consent and licensing conditions.

Remit

Purpose: to comply with condition 6.4 of Section Consent 36 conditions.

The remit of the Monitoring Programme will be to allow changes to the physical and ecological environment caused by the construction and operation of the wind farm to be recorded principally in areas where there is some uncertainty in the effects of the wind farm on the receiving environment, where those effects are potentially damaging. The monitoring programme should be designed so that is potentially adverse significant impacts are predicted which can be reasonably attributed to the wind farm; mitigation measures can be adopted in time to avoid irreversible significant impacts.

Scope of the MEMP

The MEMP should be sufficiently robust to detect and/or predict direct and indirect adverse impacts, likely to have a significant effect on the marine environment¹, arising from the pre-construction, construction, operation and decommissioning of the wind farm. However, it must also recognise that fact of the consents granted and the demands of the construction programme in a difficult working environment, the programme will have to remain responsive to unexpected events.

The monitoring programme shall comply with the conditions attached to the various consents as listed at Annex 1.

Summary of direct and indirect impacts identified in the Environmental Statement

Direct and indirect potential impacts on the physical environment and biological receivers identified within the Environmental Statement (ES) and the requirements of the conditions contained in the consents and licenses guide the scope and detail of the monitoring programme.

However, it is possible the issues may arise or evolve that require changes to be made, in which case such changes will be discussed with the RRMG and agreed with the licensing authorities.

Full details of the protected species and habitats are contained within the ES.

Proposed outline monitoring programme

The following section gives an outline of the monitoring regime proposed by the Developer for the environmental monitoring of the Robin Rigg wind farm. It also identifies additional base line surveys that may be required where considered necessary to complement the original baseline surveys carried out for the ES, in order to give a sufficiently robust picture of the baseline environment for later comparison with monitoring data.

¹ In this context the marine environment includes the birdlife in the vicinity of the wind farm

Depending upon the detailed arrangements for monitoring or results obtained it may be appropriate to amend the monitoring arrangements from time to time in order to ensure that the methods are effective or appropriately focussed. Such amendments would be subject to consultation as appropriate between the Developer and the RRMG and agreement with the relevant licensing authorities as appropriate.

The developer is actively involved in COWRIE and will keep track of the research carried out and associated conclusions. COWRIE conclusions available at the time will be taken into account in the specification for the design and construction of the Robin Rigg wind farm. However, once firm contract commitments have been made by the developer, it will not always be possible to apply new research findings retrospectively, otherwise it will be impossible to finalise major design and construction methodologies.

Ecological monitoring for marine mammals

Pre-construction	
Reason	To establish addition background data of abundance and distribution of mammals in region of wind farm in order to establish/confirm measures to be adopted during construction.
Suggested survey type	Boat-based surveys to coincide with pre-construction boat-based surveys using formal survey procedure and dedicated spotter. Leases with WDCS and MCS to agree training and survey methods for construction and post- construction monitoring. Continue to liaise with SSW on data exchange and collation.
Timing and frequency	As for boat-based bird surveys
During construction	
Reason	To comply with Section 36 and Condition 26 of the FEPA licence
Suggested survey type	As for pre-construction
Timing and frequency	As for boat-based bird surveys
Pre-construction	
Reason	To comply with Section 36 and Condition 26 of the FEPA licence
Suggested survey type	As for pre-construction
Timing and frequency	As for boat-based bird surveys for a period of 2 years.

Table A4.1: Distribution and abundance.

Mitigation measures

The RRMG has advised that mitigation measures to be developed in light of results of the monitoring programme where appropriate.

Where monitoring results reveal unexpected results, it may be appropriate to carry out further, possibly more detailed or focussed monitoring in order to investigate further. In this respect mitigation measures are considered to include additional monitoring.

Where the need for mitigation is demonstrated by the results from the monitoring programme, such measures will be agreed by the Developer with the relevant licensing authorities and subject to appropriate consultation with the RRMG.

A4.2. FEPA Licence 2236 - Licence authorising deposits in the sea in connection with the construction of an offshore wind farm: monitoring conditions

17. The licensee shall submit the details and specifications of all studies and surveys to the licensing authority for their information and approval as necessary.

18. The licensee shall undertake monitoring at 6 monthly intervals during the licensed construction period and then annually for a further two years following the completion of all construction works in order to assess changes in the sea bed conditions in and around the wind farm site. The monitoring should specifically address the following: scour, sedimentary, erosion, hydrological processes and their impacts on marine benthos and ecosystem function. The licensee shall produce a report of their findings including the need for scour protection within one month of completion of each monitoring study.

19. The licensee shall produce proposals for pre-construction baseline and post-construction surveys of fish species (both migratory and non-migratory) in the area of the wind farm. The licensee shall, in drafting these proposals, canvas the views of local fisheries interests (both freshwater and marine).

20. The licensee shall undertake such ornithological monitoring as Scottish Executive experts advise.

21. The licensee shall make provision during the construction phase of the wind farm to monitor subsea noise and vibration during the construction work and for the first year of the operational phase of the wind farm.

22. The licensee shall, prior to construction of the wind farm, provide the licensing authority with a report on "best practice" relating to the attenuation of field strengths of cables by shielding or burial designed to minimise effects on electro-sensitive species. Such "best practice" guidance as is identified shall be incorporated into the Working Method Statement of the Robin Rigg development.

23. The licensee shall arrange to have no more than five composite sediment samples collected from the area of the wind farm for the purpose of measuring representative values of radioactivity in the finer particle material (clay etc.) excavated from the site. The samples should be analysed by an independent party on behalf of the licensee.

24. The licensee shall ensure that during the construction phase all reasonable steps should be taken to minimise any disturbance to cetaceans. This should include temporary suspension of piling operations if cetaceans are sighted in close proximity to the works. Such "best practice" guidance and mitigation measures as is identified in any appropriate report and/or study shall be incorporated into the Working Method Statement as directed by the licensing authority.

25. The licensee shall submit the reports, studies and surveys described in paragraphs 18-24 to the licensing authority at the appropriate time in order to allow the licensing authority to consider what, if any, action may be required as a consequence.

26. The licensee shall detail in a plan the working arrangements to be put into place during the construction period to minimise interference with other legitimate users of the sea. The plan must provide details on issuing Notices to Mariners, appointing onshore and offshore liaison officers and alerting fisheries interests.

A4.3. DEROG 068A/2007: Licence to allow the disturbance of cetaceans: harbour porpoise.

This licence is granted under regulation 44(2)(e) of the Conservation (Natural Habitats &c) Regulations 1994 by Scottish Ministers who, after consultation with, and having been advised as to the circumstances in which they should grant such licenses, by SNH, are satisfied as regards the purpose for which the licence is granted (namely, for an imperative reason of overriding public interest including that of social and economic nature and of beneficial consequences of primary importance for the environment); and that (a) there is no satisfactory alternative and (b) that the action will not be detrimental to the maintenance of the population of the species concerned at a favourable conservation status in their natural range; and is valid unless previously revoked and authorises:

E.On UK Solway Offshore Ltd and E.On UK offshore Energy resources Ltd (the "companies")

Or any persons authorised by the "companies"

To disturb European Protected Species of Cetacean – the harbour porpoise (*Phocoena phocoena*) during the laying of foundations for the Robin Rigg offshore wind farm in the Solway Firth.

Purpose and circumstance in which action is required

The construction of the Robin Rigg offshore wind farm will require the driving in, by impact piling, 62 monopile foundations. The noise generated by this has the potential to disturb cetaceans. The effects of this could be two-fold. In the short range, it is possible that the noise could physiologically damage cetaceans. In the longer range, the noise may deter cetaceans from using the area, with an attendant risk of trapping cetaceans within parts of the Solway Firth during low tide. The developer has mitigated against short range damage to cetaceans by the use of acoustic deterrents that will be sounded prior to the commencement of piling, in order to ensure that cetaceans are deterred from the immediate area of piling. A further mitigation against physical damage to cetaceans in that the piling operation will commence at only 20% of full energy and will be slowly ramped up 90% in accordance with this licence – giving time for cetaceans to vacate the area.

However, it is difficult to completely mitigate against long range disturbance to cetaceans during the laying of foundations for the Robin Rigg offshore wind farm. The following conditions seek to minimise potential disturbance to cetaceans in the course of the works and ensure adequate monitoring of the effects of the piling operation on cetaceans. This licence is intended to compliment FEPA licence 2236, in providing for protection of the environment during the construction of the Robin Rigg offshore wind farm.

Conditions of licence

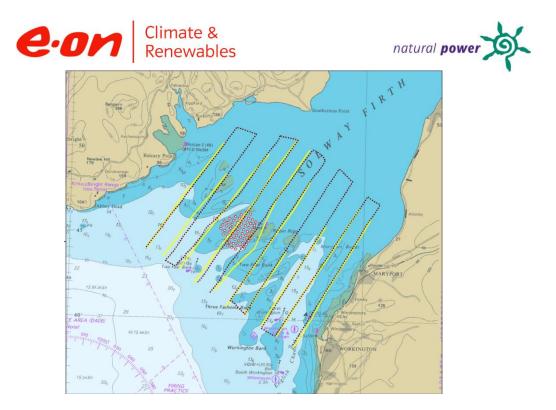
- 1. Nothing in this licence conveys any right of entry upon land.
- 2. Nothing in this licence invalidates anything in FEPA licence 2236.
- 3. The "companies" are responsible for ensuring that the conditions of this licence are met, and that any person carrying out work under this licence is fully aware of the conditions of this licence and of their responsibilities with regard to meeting those conditions.
- 4. During the piling period, the piling contractor will ensure that the correct "soft start" procedure is followed to allow marine mammals to move away from the area should they wish to do so; ensure the AHD is deployed according to the correct procedures; and ensure that there is no piling activity apart from that necessary for the normal operations or "soft start".
- 5. The following details will be recorded for each pile installation: date and location of installation; status of installation and details of pile energy (where possible); a record of the details of the pre-installation watch and the duration of the soft-start; details of any problems encountered during marine mammal detection procedures, or during the survey; marine mammal sightings; reports from any observers on board.
- 6. The MMO on board the installation vessel shall ensure that their efforts are concentrated on keeping watch prior to the soft start. Any MMO shall manage their time to ensure that they are available to undertake the tasks required when carrying out a watch during the 30 minutes before commencement of piling.

- 7. Beginning at least 30 minutes before commencement of piling the MMO will carefully make a visual check from a suitable high observation platform to see if there are any marine mammals within 500 meters of the pile location.
- 8. If marine mammals are seen within 500 meters of the pile location, the start of piling will be delayed until they have moved away, allowing adequate time after the last sighting for the animals to move away (at least 30 minutes).
- 9. The hydraulic hammer will be commenced with an energy level of 20% or less of the maximum rated energy. The installation at low energy levels will be carried out over at least 20 minutes (the "soft start" period) to give adequate time for marine mammals to leave the vicinity.
- 10. Following the soft start period, the power will be increased to maximum power (or just below maximum power) over at least 60 seconds. There will be a soft start every time the piling commences, even if no marine mammals have been observed.
- 11. The soft start procedure shall be followed at all times prior to the commencement of piling.
- 12. If, for any reason, the piling has stopped and not re-started for at least 15 minutes, a full 20 minute soft start will be carried out which will include a visual check for marine mammals within 500 meters of the pile location. If a marine mammal is present than recommencement of piling should be delayed as per conditions above which deal with the commencement of piling.
- 13. The MMO will have undertaken suitable training in marine mammal observation as well as suitable instruction and training (if required) on implementing and reporting on these procedures.
- 14. The MMO will be located onboard the installation vessel.
- 15. Acoustic Harassment Devices (AHDs) will be correctly employed in association with pile driving activities in order to cause sea mammals to vacate the vicinity of the construction activity.
- 16. The AHD proposed will be of the type manufactured by Lofitech which has the following nominal operating characteristics: a frequency range of 13-15 kHz, sound pressure 189 dB re 1μPa @ 1 m, and the operational range that is referred to in the Subacoustic Report 773R0102. If for any reason this particular device cannot be used, a device having similar characteristics shall be used.
- 17. The AHD will be deployed from the main installation vessel for a period of 30 minutes prior to the commencement of the soft start.
- 18. Additional boat-based monitoring will be employed during the first 4 daylight piling activities. The purpose of the enhanced monitoring is to determine the behaviour of any cetaceans that may be disturbed by the piling activities and to ensure, if necessary, that a suitable mitigation is applied (e.g. pause piling during a period either prior to or during low water).
- 19. In addition to the enhanced boat-based monitoring, noise measurements will be made during the installation of the first few piles in order to gain a greater understanding of site specific noise propagation.
- 20. Reasonable care shall be taken at all times to avoid and prevent injury or death of any cetaceans in the course of the works.
- 21. The Scottish Government shall be informed of any death or injury to cetaceans resulting from these activities.
- 22. The licence holder shall, no later than one month after the expiry date of this licence, submit to the Scottish Government Rural Directorate, Landscapes and Habitats Division, a written report detailing all actions taken place and certifying that these have been carried out in accordance with the specified terms and conditions of this licence.

A4.4. Data Collection Methods

The survey vessel used for most of the boat surveys was a Fisheries Protection Vessel (16 m length, 18 tonne displacement). This vessel provided an excellent viewing platform and had the combination of speed (to be able to survey across the range of tidal conditions) and the ability to operate in relatively shallow water. Its viewing platform gives a 4 m viewing height above the sea surface. Although this is below the JNCC recommended 5 m, it gave a very suitable viewing platform, especially when taking into account the site constraints on a larger boat which would not have been able to navigate the sandbanks that run through much of the study area. The maximum wind force for observations was reduced from force 5 to force 4 (see Table A4.2 for full definition of sea states) to further ensure that viewing conditions were optimal and were not compromised by the slightly lower viewing height.

Table A4.2: Definition of sea states used in the collection of environmental data.


Sea State	Definition
0	Mirror calm
1	Slight ripples, no foam crests
2	Small wavelets, glassy crests but no whitecaps
3	Large wavelets, crests begin to break, few whitecaps
4	Longer waves, many whitecaps
5	Moderate waves of longer form, some spray

All surveys were done in conjunction with ornithological surveys (see Appendix 5 for bird methodology). The survey route was designed to provide a 2 km interval between transects; a total of ten transects were surveyed, each of about 18 km length (see Figure A4.1). This separation distance was chosen to ensure that a good sample of the study area was covered for all species, whilst minimising the likelihood that birds may be displaced from one transect to the adjacent one and double-counted.

The same route was used for all the surveys, though restricted hours of daylight, weather and tidal conditions meant that it was not always possible to cover the whole survey area in a single day. Where complete surveys were not possible the second survey each month was designed to ensure that the whole study area was covered at least once per month and that the potential wind farm area twice per month whenever possible. A GPS record of the precise route was taken on each trip, so that the location at all times was known.

Two surveys were completed each month from May 2001 to April 2002, with the exception of May and October 2001, when only one survey was completed. Alternate surveys covered the high tide and the low tide periods. Monthly surveys were conducted in April/May 2003 and between January and September 2004 with an addition survey performed in July 2007, just prior to construction commencing. Construction phase surveys began in January 2008 and continued on a bi-monthly basis until the end of the phase in February 2010. Surveys were completed in all months of the construction phase except November 2009.

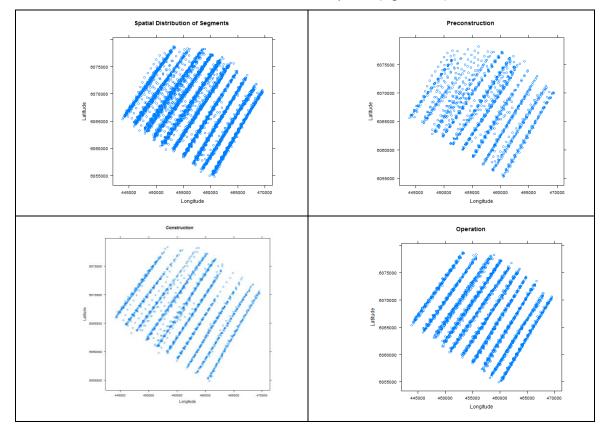
No marine mammal surveys were carried out during the EIA process. Baseline surveys were conducted on a monthly basis between February 2004 and January 2005 with an addition survey performed in July 2007, just prior to construction commencing. Construction phase surveys began in January 2008 and continued on a bimonthly basis until the end of the phase in February 2010. Surveys were completed in all months of the construction phase except November 2009.

Figure A4.1: Illustration showing the 10 transect lines followed during the bird and marine mammal surveys. The yellow lines represent the area that could be covered at low tide. Red circles represent turbine locations.

Data was collected following Sea Watch Foundation guidelines. A single observer scanned a 180° area ahead and to either side of the vessel looking for marine mammals. When a mammal was observed, the species id, number of animals, distance from the boat and direction relative to the direction of travel were recorded along with any behavioural information. In addition to this, environmental data such as sea state, swell height and water depth were recorded every 15 minutes.

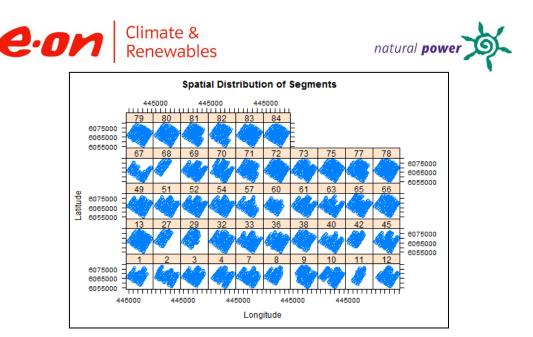
A4.5. Data exploration

Data exploration on final data set i.e. extensions removed and sea states combined:


A4.5.1. Relationship between variables

Is there even coverage between months?

Table A4.3: Number of segments for each month during each phase of the development. There should be an even distribution of effort between months and phases. Note that that the effort for April and June has been removed from all phases as there was no data for these months pre-construction.


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pre	142	100	130		136		322	137	98	159	150	69
During	151	230	95		153		157	244	266	325	146	263
Post	338	358	324		315		326	366	287	250	313	312

Spatial distribution of effort

There should be an even distribution across the site between phases (Figure A4.2).

Figure A4.2: Visual representation of the survey segments by effort.

Figure A4.3: Visual representation of the survey segments by. effort for each individual survey.

Check variables for outliers and even coverage

Response variables were allocated to each survey segment. Each variable was checked to ensure even coverage (figure A4.4; table A4.4). In order to reduce the number of levels within the models, the original values have been combined. 1 -sea state 0 - 1; 2 =sea state 2 - 3; and 3 =sea state 4 - 5.

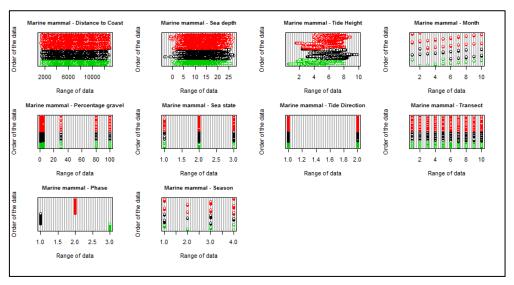


Figure A4.4: Figures visually representing the coverage of each of the response variable

Table A4.4: The number of segments collected at each different sea state during each of the three phases with the original values combined. 1 - sea state 0 - 1; 2 = sea state 2 - 3; and 3 = sea state 4 - 5.

Sea state	1	2	3	NA
Pre	377	883	183	0
During	193	951	886	0
Post	578	1535	1076	0

The values in the bottom left are Pearson's coefficients. The higher the value, the stronger the relationship between the variables. A value of 0.8 or above indicates a strong linear relationship. When dealing with large data sets (as here), variables with a value of 0.4-0.5 or above should be investigated further as this may be an indication on non-linear relationships.

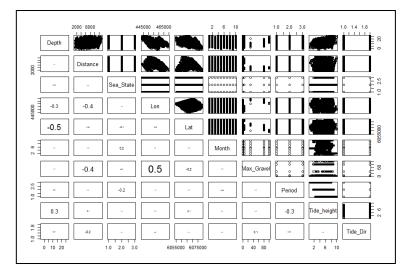


Figure A4.5: Collinearity among continuous variables.

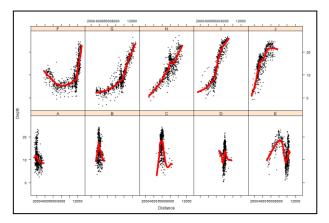


Figure A4.6: Further investigation of variables found non-linear relationships with distance and depth nested in transect.

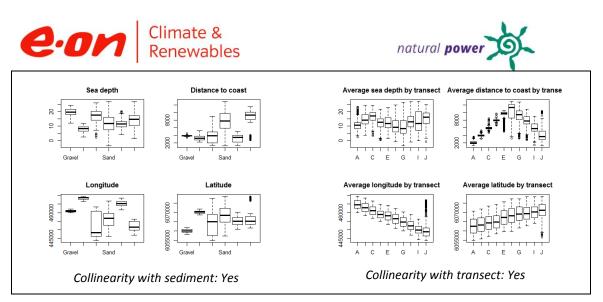


Figure A4.7: Collinearity between factors and covariates

A4.5.2. Relationships with response variables

Check response variable for outliers

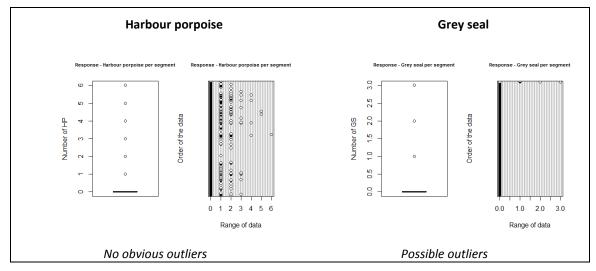


Figure A4.8: Response variable for harbour porpoise and grey seal data

Check for zero inflation

High proportion of zero observations.

Table A4.5: Percentage zero sightings - There are too few non-zero data points to allow further analysis of grey seal data.

	% zeros	No observations	No non-zero's
Harbour porpoise	95.8	6662	281
Grey seal	99.4	6662	38

Harbour porpoise

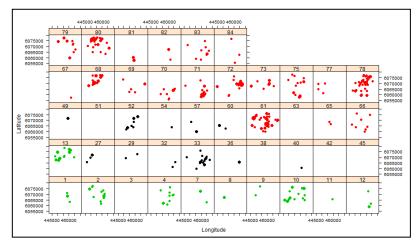


Figure A4.9: Spatial distribution by survey

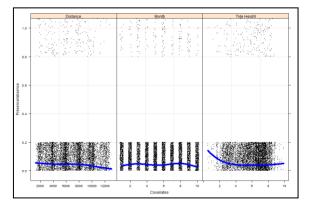


Figure A4.10: Visualization of relationship between response and variables (binary response)

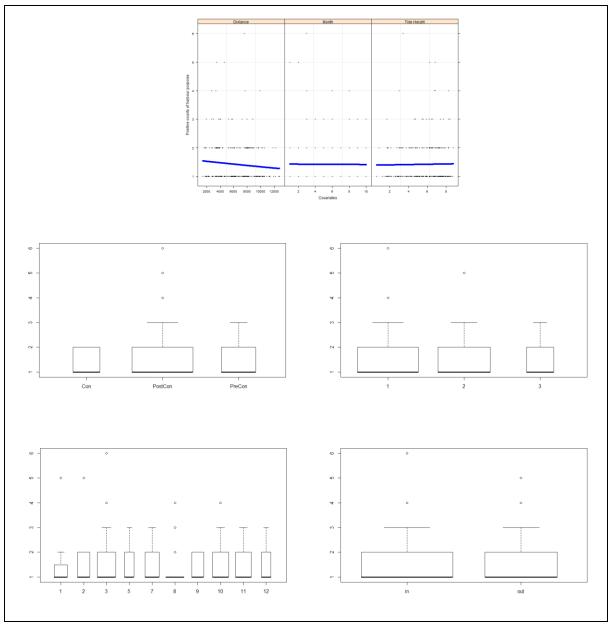
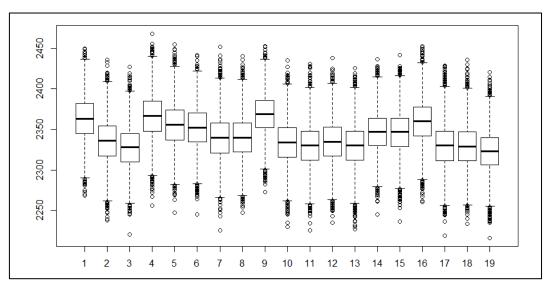


Figure A4.11: Visualization of relationship between response and variables (non-zero data). Figures from top left to bottom right: relationship with continous covariates, relationship with wind farm phase, relationship with sea state, relationship with month and relationship with direction of the tide.



A4.6. Model outputs

The table below contains the Information Criteria (IC) for each variation of the model containing sea state in the binary part. The lower the value the better the model explains the data. Colour coding ranges from dark green (lowest) to red (highest). Models M3. 17, 18 and 19 appear to be the best. The models below will be repeated, this time including a random effect in the binary part of the model (in addition to sea state) and the outputs compared.

Table A4 6. Information Criteria (IC) for each variation of the model	containing sea state in the binary part.
Tuble A4.0. Injoinnution Criteriu (iC	joi cuch vunution oj the mouer	containing sea state in the binary part.

Model	DIC	AIC	BIC	Min AIC	Min BIC	Posterior Mean AIC	Posterior mean BIC
M1: intercept only	2434.82	2282.20	2315.75	2268	2302	2363.52	2397.06
M2: distance	2411.31	2248.36	2288.62	2238	2278	2335.83	2376.08
M3: period + distance	2396.20	2243.56	2297.23	2220	2273	2327.87	2381.54
M4: season	2436.77	2282.57	2329.53	2256	2303	2366.66	2413.63
M5: period + season	2418.28	2274.93	2335.31	2247	2307	2355.59	2415.98
M6: period	2416.12	2274.47	2321.44	2245	2292	2352.30	2399.27
M7: distance + season	2413.73	2250.13	2303.80	2225	2279	2339.93	2393.60
M8: distance*season	2412.98	2246.51	2313.60	2247	2314	2339.74	2406.83
M9: period*season	2415.59	2295.86	2383.08	2273	2360	2368.72	2455.94
M10: period*distance	2397.22	2250.38	2317.47	2230	2297	2333.81	2400.90
M11: period + distance + seastate	2397.70	2242.08	2309.17	2225	2292	2329.90	2396.99
M12: season + distance*period	2398.39	2248.11	2328.62	2235	2316	2335.24	2415.76
M13: period + distance*season	2263.06	2374.05	2454.56	2227	2308	2330.55	2411.06
M14: distance*period + season*period	2198.51	2463.79	2571.13	2245	2352	2347.15	2454.50
M15: distance*period + distance*season + season*perio	2397.44	2259.59	2380.36	2236	2356	2346.53	2467.30
M16: tide_height	2432.18	2275.90	2316.16	2260	2300	2360.05	2400.30
M17: tide_height + distance	2406.14	2238.91	2285.88	2219	2266	2329.53	2376.50
M18: tide_height*distance	2404.81	2237.28	2290.96	2233	2287	2329.06	2382.73
M19: tide_height*distance + period	2386.37	2239.72	2306.81	2216	2283	2323.05	2390.14

Figure A4.12: visual representation of the AICs calculated for the above listed models.

Table A4.7: Parameter estimates, 95% Credible Intervals (CI) and significances for each individual model. A parameter is considered significant if the 95% CIs do not bound zero.

Model 1					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.56	0.57	0.16	0.92	Yes
Sea state 2 v Sea state 1	1.75	1.75	1.39	2.12	Yes
Sea state 3 v Sea state 1	2.54	2.54	2.06	3.05	Yes
Poisson intercept	-0.98	-0.98	-1.38	-0.60	Yes
Random effect (transect: survey)	0.71	0.71	0.46	0.97	Yes
Model 2					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.38	0.39	-0.06	0.76	No
Sea state 2 v Sea state 1	1.81	1.81	1.43	2.20	Yes
Sea state 3 v Sea state 1	2.63	2.63	2.15	3.16	Yes
Poisson intercept	-1.16	-1.16	-1.58	-0.77	Yes
Distance	-0.37	-0.36	-0.53	-0.21	Yes
Random effect (transect: survey)	0.75	0.74	50	1.01	Yes
Model 3					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.34	0.35	-0.09	0.71	No
Sea state 2 v Sea state 1	1.76	1.76	1.39	2.16	Yes
Sea state 3 v Sea state 1	2.58	2.58	2.08	3.12	Yes
Poisson intercept	-1.9	-1.90	-2.49	-1.37	Yes
Distance	-0.34	-0.33	-0.50	-0.18	Yes
Post con V Con	1.00	1.00	0.56	1.46	Yes
Pre con v Con	0.65	0.65	0.14	1.16	Yes
Random effect (transect: survey)	0.71	0.71	0.47	0.97	Yes
Model 4		-			
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.55	0.56	0.16	0.91	Yes
Sea state 2 v Sea state 1	1.75	1.75	1.39	2.11	Yes
Sea state 3 v Sea state 1	2.53	2.52	2.04	3.05	Yes
Poisson intercept	-0.96	-0.96	-1.44	-0.51	Yes
Summer v Autumn	0.12	-0.12	-0.53	0.28	No
Winter v Autumn	0.02	0.02	-0.39	0.43	No
Random effect (transect: survey)	0.72	0.72	0.47	0.98	Yes
Model 5	-	1	1		1
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.52	0.53	0.13	88	Yes
Sea state 2 v Sea state 1	1.68	1.68	1.32	2.05	Yes
Sea state 3 v Sea state 1	2.46	2.46	1.98	2.98	Yes
Poisson intercept	-1.70	-1.69	-2.32	-1.10	Yes
Post con v Con	1.07	1.07	0.63	1.55	Yes
Pre con v Co	0.69	0.68	0.19	1.21	Yes
Summer v Autumn	-0.17	-0.17	-0.57	0.22	No
Winter v Autumn	-0.13	-0.13	-0.53	0.28	No
Random effect (transect: survey)	0.69	0.68	0.43	0.96	Yes
Model 6					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.52	0.53	0.14	0.87	Yes
Sea state 2 v Sea state 1 Sea state 3 v Sea state 1	1.69 2.47	1.69 2.46	1.33 1.99	2.05 2.99	Yes Yes

eon	Climate & Renewables
	Renewables

natural power	
---------------	--

Poisson intercept	-1.76	-1.75	-2.33	-1.23	Yes
Post con v Con	1.04	1.04	0.61	1.50	Yes
Pre con v Co	0.66	0.66	0.18	1.78	Yes
Random effect (transect: survey)	0.67	0.67	0.43	0.94	Yes
Model 7					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.38	0.38	-0.04	0.76	Yes
Sea state 2 v Sea state 1	1.81	1.81	1.43	2.20	Yes
Sea state 3 v Sea state 1	2.63	2.62	2.13	3.15	Yes
Poisson intercept	-1.19	-1.18	-1.68	-0.73	Yes
Distance	-0.37	-0.37	-0.53	-0.21	Yes
Summer v Autumn	-0.01	-0.01	-0.42	0.40	No
Winter v Autumn	0.06	0.07	-0.34	0.46	No
Random effect (transect: survey)	0.75	0.75	0.51	1.02	Yes
Model 8	·	•			•
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.36	0.36	-0.08	75	No
Sea state 2 v Sea state 1	1.80	1.80	1.42	2.19	Yes
Sea state 3 v Sea state 1	2.60	2.60	2.09	3.13	Yes
Poisson intercept	-1.24	-1.23	-1.75	-0.78	Yes
Distance	-0.42	-0.42	-0.71	-0.14	Yes
Summer v Autumn	0.01	0.01	-0.39	0.43	No
Winter v Autumn	0.04	0.04	-0.39	0.48	No
Distance * Summer	0.22	0.22	-0.15	0.60	No
Distance * Winter	-0.12	-0.12	-0.52	0.28	No
Random effect (transect: survey)	0.77	0.77	0.53	1.03	Yes
Model 9			4	4	
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.53	0.53	0.14	0.88	Yes
Sea state 2 v Sea state 1	1.74	1.73	1.38	2.10	Yes
Sea state 3 v Sea state 1	2.55	2.55	2.05	3.05	Yes
Poisson intercept					103
Post con v Con	-1.26	-1.25	-1.95	-0.64	Yes
Pre con v Con		-1.25 0.73	-1.95 0.09		
	-1.26			-0.64	Yes
Summer v Autumn	-1.26 0.74	0.73	0.09	-0.64 1.40	Yes Yes
Summer v Autumn Winter v Autumn	-1.26 0.74 -0.10	0.73 -0.11	0.09 -0.92	-0.64 1.40 0.70	Yes Yes No
	-1.26 0.74 -0.10 -0.30	0.73 -0.11 -0.30	0.09 -0.92 -1.11	-0.64 1.40 0.70 0.54	Yes Yes No No
Winter v Autumn	-1.26 0.74 -0.10 -0.30 -1.76	0.73 -0.11 -0.30 -1.74	0.09 -0.92 -1.11 -3.03	-0.64 1.40 0.70 0.54 -0.62	Yes Yes No No Yes
Winter v Autumn Post con * Summer	-1.26 0.74 -0.10 -0.30 -1.76 -0.09	0.73 -0.11 -0.30 -1.74 -0.08	0.09 -0.92 -1.11 -3.03 -1.05	-0.64 1.40 0.70 0.54 -0.62 0.87	Yes Yes No No Yes No
Winter v Autumn Post con * Summer Pre con *Summer	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74	0.73 -0.11 -0.30 -1.74 -0.08 0.74	0.09 -0.92 -1.11 -3.03 -1.05 -0.38	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86	Yes Yes No No Yes No No
Winter v Autumn Post con * Summer Pre con *Summer Post con * Winter	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06	Yes Yes No Yes No No Yes
Winter v Autumn Post con * Summer Pre con *Summer Post con * Winter Pre con * Winter	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78	Yes Yes No Yes No No Yes Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78	Yes Yes No Yes No No Yes Yes
Winter v Autumn Post con * Summer Pre con *Summer Post con * Winter Pre con * Winter Random effect (transect: survey) Model 10	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88	Yes Yes No Yes No Yes Yes Yes
Winter v Autumn Post con * Summer Pre con *Summer Post con * Winter Pre con * Winter Random effect (transect: survey) Model 10 Parameter	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 Mean	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I.	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I.	Yes Yes No Yes No No Yes Yes Yes Significant?
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary intercept	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 Mean 0.32	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72	Yes Yes No Yes No No Yes Yes Yes Significant? Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary interceptSea state 2 v Sea state 1	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33 1.79	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13 1.39	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72 2.19	Yes Yes No No Yes No Yes Yes Yes Significant? Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary interceptSea state 2 v Sea state 1Sea state 3 v Sea state 1	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 Mean 0.32 1.79 2.59	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33 1.79 2.59	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13 1.39 2.09	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72 2.19 3.13	Yes Yes No No Yes No Yes Yes Yes Significant? Yes Yes Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary interceptSea state 2 v Sea state 1Sea state 3 v Sea state 1Poisson intercept	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 - - - - - - - - - - - - - - - - - - -	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33 1.79 2.59 -1.88	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13 1.39 2.09 -2.46	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72 2.19 3.13 -1.35	Yes Yes No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary interceptSea state 2 v Sea state 1Sea state 3 v Sea state 1Poisson interceptDistance	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 - 	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33 1.79 2.59 -1.88 -0.06	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13 1.39 2.09 -2.46 -0.44	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72 2.19 3.13 -1.35 0.32	Yes Yes No No Yes No Yes Yes Yes Significant? Yes Yes Yes Yes Yes Yes Yes
Winter v AutumnPost con * SummerPre con *SummerPost con * WinterPre con * WinterRandom effect (transect: survey)Model 10ParameterBinary interceptSea state 2 v Sea state 1Sea state 3 v Sea state 1Poisson interceptDistancePost con v Con	-1.26 0.74 -0.10 -0.30 -1.76 -0.09 74 1.72 2.27 0.61 Mean 0.32 1.79 2.59 -1.89 -0.07 0.97	0.73 -0.11 -0.30 -1.74 -0.08 0.74 1.70 2.26 0.61 Median 0.33 1.79 2.59 -1.88 -0.06 0.97	0.09 -0.92 -1.11 -3.03 -1.05 -0.38 0.48 0.84 0.36 2.5% C.I. -0.13 1.39 2.09 -2.46 -0.44 0.55	-0.64 1.40 0.70 0.54 -0.62 0.87 1.86 3.06 3.78 0.88 95.5% C.I. 0.72 2.19 3.13 -1.35 0.32 1.42	Yes Yes No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Random effect (transect: survey)	0.69	0.69	0.44	0.96	Yes
Model 11		1	1	1	-
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.34	0.35	-0.08	0.72	No
Sea state 2 v Sea state 1	1.75	1.74	1.36	2.14	Yes
Sea state 3 v Sea state 1	2.58	2.57	2.06	3.13	Yes
Poisson intercept	-1.88	-1.88	-2.51	-1.30	Yes
Distance	-0.34	-0.34	-0.50	-0.18	Yes
Post con v Con	1.02	1.02	0.57	1.49	Yes
Pre con v Con	0.66	0.65	14	1.18	Yes
Summer v Autumn	-0.07	-0.07	-0.49	0.35	No
Winter v Autumn	-0.09	-0.09	-0.51	0.32	No
Random effect (transect: survey)	0.73	0.73	0.49	1.00	Yes
Model 12					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.32	0.33	-0.09	0.71	No
Sea state 2 v Sea state 1	1.77	1.77	1.38	2.16	Yes
Sea state 3 v Sea state 1	2.60	2.60	2.09	3.14	Yes
Poisson intercept	-1.86	-1.85	-2.46	-1.30	Yes
Distance	-0.06	-0.06	-0.45	0.31	No
Post con v Con	1.00	0.99	0.56	1.48	Yes
Pre con v Con	0.65	0.65	0.15	1.17	Yes
Summer v Autumn	-0.09	-0.09	-0.49	0.31	No
Winter v Autumn	-0.11	-0.10	-0.52	0.29	No
Post con * Distance	-0.36	-0.37	-0.78	0.06	No
Pre con * Distance	-0.24	-0.24	-0.74	0.25	No
Random effect (transect: survey)	0.72	0.72	0.47	0.98	Yes
Model 13	0.7		0	0.00	
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.34	0.35	-0.05	0.71	No
Sea state 2 v Sea state 1	1.72	1.72	1.34	2.11	Yes
Sea state 3 v Sea state 1	2.52	2.52	2.00	3.05	Yes
Poisson intercept	-1.94	-1.94	-2.56	-1.35	Yes
Distance	-0.42	-0.42	-0.71	-0.14	No
Post con v Con	1.03	1.03	0.58	1.50	Yes
Pre con v Con	0.68	0.68	0.17	1.22	Yes
Summer v Autumn	-0.05	-0.05	-0.46	0.37	No
Winter v Autumn	-0.09	-0.09	-0.53	0.34	No
Distance * Summer	0.26	0.26	-0.33	0.63	No
Distance * Winter	-0.07	-0.07	-0.11	0.33	No
Random effect (transect: survey)	0.74	-0.74	-0.50	1.01	Yes
Model 14	0.74	-0.74	-0.50	1.01	103
	Moon	Modian	2.5% C.I	05 5% C I	Significant?
Parameter Pinary intercent	0.31	Median 0.32	2.5% C.I.	95.5% C.I. 0.70	Significant?
Binary intercept			-0.12		No
Sea state 2 v Sea state 1	1.83	1.83	1.44	2.23	Yes
Sea state 3 v Sea state 1	2.67	2.67	2.15	3.20	Yes
Poisson intercept	-1.39	-1.38	-2.07	-0.70	Yes
Distance	0.05	0.05	-0.36	0.46	No
Post con v Con	0.57	0.57	-0.10	1.26	No
Pre con v Con	-0.17	-1.17	-1.00	0.65	No
Summer v Autumn	-0.37	-0.36	-1.23	0.48	No
Winter v Autumn	-1.84	-1.81	-3.21	-0.63	Yes

Post con * Distance	-0.47	-0.46	-0.92	-0.02	Yes
Pre con * Distance	-0.34	-0.33	-0.86	0.17	No
Post con * Summer	0.14	0.14	-0.84	1.15	No
Pre con * Summer	0.84	0.84	-0.30	1.99	No
Post con * Winter	1.84	1.82	0.54	3.28	Yes
Pre con * Winter	2.34	2.33	0.84	3.96	Yes
Random effect (transect: survey)	0.66	0.66	0.82	0.93	Yes
Model 15					
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.30	0.31	-0.14	0.69	No
Sea state 2 v Sea state 1	1.80	1.80	1.40	2.21	Yes
Sea state 3 v Sea state 1	2.62	2.62	2.10	3.17	Yes
Poisson intercept	-1.46	-1.45	-2.19	-0.78	Yes
Distance	-0.06	-0.05	-0.50	0.39	No
Post con v Con	0.58	0.58	-0.11	1.28	No
Pre con v Con	-0.14	-0.14	-0.97	0.72	No
Summer v Autumn	-0.37	-0.37	-1.27	0.52	No
Winter v Autumn	-1.75	-1.71	-3.13	-0.57	Yes
Post con * Distance	-0.45	-0.45	-0.90	0.01	No
Pre con * Distance	-0.34	-0.34	-0.86	0.17	No
Distance * Summer	0.24	0.24	-0.13	0.63	No
Distance * Winter	0.00	0.00	-0.40	0.40	No
Post con * Summer	0.18	0.17	-0.85	1.23	No
Pre con * Summer	0.86	0.86	-0.30	2.04	No
Post con * Winter	1.76	1.74	0.49	3.25	Yes
Pre con * Winter	2.23	2.21	0.72	3.91	Yes
Random effect (transect: survey)	0.69	0.68	0.72	0.95	Yes
Model 16	0.05	0.00	0.44	0.55	103
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.54	0.55	0.15	0.9-	Yes
Sea state 2 v Sea state 1	1.74	1.74	1.38	2.11	Yes
Sea state 3 v Sea state 1	2.51	2.51	2.02	3.01	Yes
Poisson intercept	-1.03	-1.03	-1.45	-0.64	Yes
Tide height	-0.14	-0.14	-0.29	0.01	No
Random effect (transect: survey)	0.72	0.72	0.48	0.99	Yes
Model 17	0.72	0.72	0.40	0.55	103
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.35	0.35	-0.07	0.74	No
Sea state 2 v Sea state 1	1.80	1.80	1.42	2.19	Yes
Sea state 3 v Sea state 1	2.60	2.60	2.10	3.12	Yes
Poisson intercept	-1.23	-1.23	-1.65	-0.83	Yes
Tide height	-0.18	-0.18	-0.34	-0.03 -0.23	Yes
Distance Random effect (transect: survey)	0.39	-0.38 0.76	-0.55	1.02	Yes
· · · ·	0.76	0.76	0.52	1.02	Yes
Model 18	Maar	Madian	2.5% 6.1		Significant?
Parameter Discoursister	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?
Binary intercept	0.32	0.33	-0.11	0.71	No
Sea state 2 v Sea state 1	1.82	1.82	1.44	2.23	Yes
Sea state 3 v Sea state 1	2.62	2.62	2.12	3.17	Yes
Poisson intercept	-1.27	-1.27	-1.68	-0.87	Yes
Tide height	-0.22	-0.21	-0.38	-0.05	Yes
Distance	-0.43	-0.42	-0.60	-0.27	Yes
2.000					

Tide height * Distance	-0.13	-0.13	-0.28	0.02	No			
Random effect (transect: survey)	0.77	0.77	0.53	1.02	Yes			
Model 19	Model 19							
Parameter	Mean	Median	2.5% C.I.	95.5% C.I.	Significant?			
Binary intercept	0.28	0.29	-0.14	0.67	No			
Sea state 2 v Sea state 1	1.79	1.79	1.41	2.19	Yes			
Sea state 3 v Sea state 1	2.59	2.59	2.08	3.13	Yes			
Poisson intercept	-1.99	-1.98	-2.57	-1,46	Yes			
Tide height	-0.29	-0.29	-0.45	-0.13	Yes			
Distance	-0.41	-0.40	-0.57	-0.25	Yes			
Tide height * Distance	-0.15	-0.15	-0.30	0.00	Yes			
Post con v Con	1.07	1.07	0.64	1.52	Yes			
Pre con v Con	0.47	0.46	-0.05	1.01	No			
Random effect (transect: survey)	0.70	0.70	0.45	0.95	Yes			

A4.7. Maps

A4.7.1.Raw data

The following maps represent the raw sightings data for the grey seal and harbour porpoise.

Species Grey seal Harbour porpoise

A4.7.2. Surveys associated with piling

The following maps illustrate the transects covered by the vessel on days when piling occurred, including the location of any marine mammal sightings that occurred.

Date of Survey 1st January 2008

24th June 2008 29th July 2008 28th August 2008 13th October 2008 6th November 2008 8th December 2008 5th January 2009