INSTITUTE Of ESTUARINE COASTAL STUDIES

Firth of Forth (Round 3) Offshore Wind Farm Development: Survey Report Benthic Services – Export Cable Route

Report to Seagreen Wind Energy Ltd.

Institute of Estuarine and Coastal Studies
University of Hull

12th July 2012

Author(s): T. M. Smith, M. J. Bailey, A. Leighton & S. Thomson

Report: ZBB776-ECR-F-2012

Institute of Estuarine & Coastal Studies (IECS)

The University of Hull Cottingham Road Hull HU6 7RX UK

Tel: +44 (0)1482 464120 Fax: +44 (0)1482 464130

E-mail: iecs@hull.ac.uk

Web site: http://www.hull.ac.uk/iecs

UNIVERSITY OF Hull
Institute of Estuarine and Coastal Studies

Seagreen Wind Energy Ltd.

Firth of Forth (Round 3) Offshore **Wind Farm Development: Survey Report Benthic Services – Export Cable Route**

12th July 2012

Reference Number: ZBB776-ECR-F-2012

This report has been prepared by the Institute of Estuarine and Coastal Studies, with all reasonable care, skill and attention to detail as set within the terms of the Contract with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

Printed on 100% recycled paper

TABLE OF CONTENTS

TABLE OF CONTENTS	I
1. Introduction	1
2. METHODS	2
2.1 Benthic Infaunal Samples	2
2.1.1 Sample Collection	2
2.1.2 Post Survey Analysis	3
2.2 Epifaunal Trawls	5
2.2.1 Sample Collection	5
3. Results	7
3.1 Survey Summary and Area Map	7
3.2 Benthic Infaunal Data	.10
3.2.1 Infaunal Grab Sampling	.10
3.2.2 Species and Habitats of Conservation Interest	.12
3.2.3 Proposed and Actual Co-ordinates	.12
3.3 Particle Size Analysis and Organic Content Data	.13
3.4 Sediment Contaminant Data	.14
3.5 Epibenthic Trawl Data	.14
APPENDIX 1. BENTHIC SURVEY LOG INCLUDING SEDIMENT DESCRIPTION & NOTABLE FEATURES	3 16
APPENDIX 2. BENTHIC SURVEY LOG INCLUDING SAMPLE VOLUME	.17
APPENDIX 3. BENTHIC SAMPLE COORDINATES (PROPOSED AND ACTUAL)	.18
APPENDIX 4. BENTHIC INFAUNAL SPECIES LIST	.19
APPENDIX 5. VIDEO AND EPIFAUNAL TRAWL LOG	.25
APPENDIX 6. VIDEO AND EPIFAUNAL TRAWL SAMPLE DESCRIPTION	.26
APPENDIX 7. BENTHIC GRAB PHOTOGRAPHS (EXPORT CABLE ROUTE)	.27
APPENDIX 8. EPIBENTHIC TRAWL PHOTOGRAPHS	.32
APPENDIX 9. EPIBENTHIC TRAWL FISH LENGTH MEASUREMENTS	.33
APPENDIX 10. SEDIMENT CONTAMINANT RESULTS	.37

1. INTRODUCTION

SSE Renewables (SSER) and Fluor (UK) Ltd under the Limited company of Seagreen Wind Energy have been awarded the Firth of Forth Round 3 Zone for offshore wind development. Seagreen aim to deliver a generation capacity of 3.5GW across an area of 2,852km² with the development being undertaken in three phases.

The Institute of Estuarine & Coastal Studies (IECS) was commissioned by Seagreen Wind Energy Limited to undertake an offshore benthic survey. This survey work and associated sample analysis was designed to enable characterisation of the benthic and epibenthic ecology of the area, the physical characteristics of the sample sites and the chemical properties of the sediments sampled.

In order to provide adequate sampling coverage of the proposed development site, Seagreen Wind Energy Ltd, in conjunction with Royal Haskoning, identified 19 benthic sampling sites, 5 contaminant sampling sites, 3 epibenthic trawl sites and 13 video line sites within the export cable route (ECR) area. All survey work was completed during April and June 2011 and the subsequent sample analysis completed by September 2011.

This report documents the survey work completed along the export cable route and the sediment, infaunal and epifaunal results. Analysis of the data is outside the scope of this report.

2. METHODS

2.1 Benthic Infaunal Samples

2.1.1 SAMPLE COLLECTION

The benthic and epibenthic surveys along the proposed cable route were undertaken during two separate deployments, the first in April onboard MV Clupea and the second in June onboard SV Chartwell. A total of 19 benthic stations were identified by Seagreen in the ECR area. A mini Hamon grab was deployed to collect a single replicate sample for infaunal analysis (Plate 1), from which a PSA sample was also taken, as per the specification. A second grab was collected for contaminant analysis. A full survey log was maintained throughout the survey detailing time of sampling, position (DGPS derived), station, water depth, volume of sample, physical characteristics of the sample, digital image number (cross referencing (QA)), presence of Sabellaria spinulosa and any other relevant features.

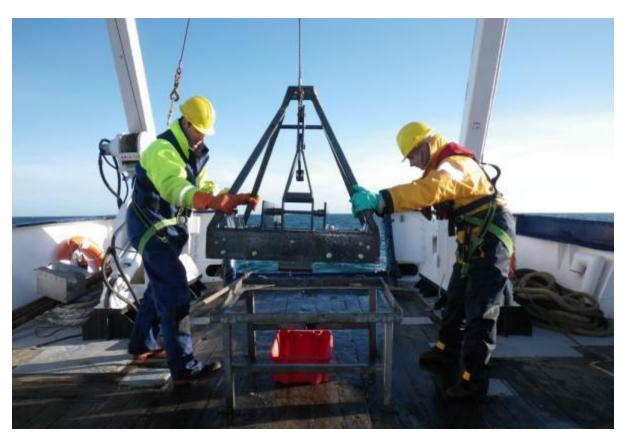


Plate 1. Retrieval of mini hamon grab on board MV Clupea

The infaunal samples were processed on a sequential basis utilising a nested sieving technique. Each acceptable sample was removed from the grab, photographed with an internal label, placed into a hopper and sieved onboard through a nest of 5mm and 1mm sieves. A nested sieve approach was used in order to separate large sediment types and reduce damage to invertebrates. The sieved residue was gently back-washed into a sealable container and borax buffered 4% formo-saline solution containing Rose Bengal vital stain was added as a fixative. Each sample was labelled clearly on the bucket and the internal label placed in the container, noting the client, survey, date and station number.

The PSA and organic carbon samples were stored in separate plastic bags, which were clearly labelled, and frozen onboard the vessel. The samples were kept frozen during transportation back to the IECS laboratory. The IECS methodology followed the protocol given by Rees *et al* (1990)¹ & (1993)², Davies *et al*. (2001)³, Boyd (2002)⁴ and Proudfoot *et al*. (2004)⁵.

Valid Sample Criteria

Samples comprising hard substrata (e.g. broken shell, rocks or gravel) were rejected if a minimum sample volume of 5 litres was not achieved. When samples were within these limits, each sample was photographed (digital image) and subsequently processed. Five attempts were made at each site to collect a valid infaunal sample, however if a sample with a volume of <4 litres was retained the VideoRay was deployed at the site in order to obtain supporting video footage of the seabed.

2.1.2 POST SURVEY ANALYSIS

Benthic infaunal samples

General Requirements

All members of IECS undertaking the sample sorting and taxonomic analysis phases of the laboratory work were qualified marine biologists or ecologists. Those staff carrying out the taxonomic analysis have at least eight years marine biological experience with a wide range of experience in the field of benthic sample analysis and interpretation. The analyses were quality checked by the Senior Benthic Taxonomists who have had more than 10 years experience.

Sample Sorting

The procedure for sieving and sorting benthic core samples was as follows:

_

¹ Rees, H.L., Moore, D. C., Pearson, T. H., Elliot, M., Service, M., Pomfret, J. and Johnson, D. (1990). *Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites*. Scottish Fisheries Information Pamphlet, No. 18: 78pp

² Rees, H.L. and Service, M.A. (1993). Development of improved strategies for monitoring the epibenthos at sewage sludge disposal sites. In: *Analysis and interpretation of benthic community data at sewage sludge disposal sites*. Aquatic Environmental Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, No. 37: 55-61.

³ Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M. (2001) *Marine Monitoring Handbook*, 405pp. JNCC Peterbrough, UK.

⁴ Boyd, S.E. (2002). *Guidelines for the conduct of benthic studies at aggregate dredging sites*. Department for Transport, Local Government and the Regions (DTLR)/CEFAS: London, UK. 117 pp.

⁵ Proudfoot, R.K, Elliott, M., Dyer, M.F., Barnett, B.E., Allen, J.H., Proctor, N.V., Cutts, N.D., Nikitik, C., Turner, G., Breen, J., Hemingway, K.L. and Mackie, T (1997). Proceedings of the Humber benthic field methods workshop, University of Hull.

Formalin was decanted from the sample through a 212µm sieve using appropriate exposure prevention controls as detailed in the Health & Safety documentation. Material retained on the sieve was washed back into the sample. The sample was then washed through 1mm mesh stainless steel sieve of 20cm diameter, to remove excess preservative as well as fine mud and sand particles. The residue from the 1mm sieve was then gently washed into a white tray. Water was added to the tray and the contents examined by eye using a 1.5x illuminated magnifier. Large specimens were removed and sorted into major phyla. The fauna derived were retained and stored by group in appropriately labelled containers, preserved using 70% IMS and passed on for taxonomic identification. Sieves and trays were washed thoroughly between samples to ensure there was no contamination of subsequent samples. During the sample processing phase a sample proforma was completed to include client, project, area, sample number, date, name of sorter and identifier, description of residue characteristics, notable features, sieve mesh size, whether or not sub-sampling was undertaken and whether any problems were encountered.

Taxonomic Identification

Identification was carried out using Olympus SZX7 and SZ40 zoom microscopes with 10X and 20X eyepieces, giving a maximum magnification of up to 80X. An additional 2X objective was used to increase the potential magnification to 160X. Olympus BX41 compound microscopes were used for further magnification, if necessary, up to 1000X.

Identification of infaunal samples was to the highest possible taxonomic separation (i.e. species). During identification, all individuals were initially separated into families, with part animals being assigned to families where possible. The macrofaunal animals were identified to species level using standard taxonomic keys, low and high power stereoscopic microscopes and dissection when necessary. Incomplete animals without anterior ends were not recorded as individuals to be included in the quantitative dataset. However they were identified where possible and recorded as being present. Similarly, motile and colonial sessile epibenthic taxa and meiofauna were recorded but not included in the main quantitative data set.

IECS follow strict AQC procedures. In addition, regular cross reference identification was carried out by IECS' Senior taxonomists throughout the identification process. As IECS is part of the NMBAQC Scheme, the identification of any difficult specimens can be undertaken following consultation and external verification from David Hall (Unicomarine). However, this service was not required during the processing stages.

The taxonomic literature used is essentially as given in and expanded from Rees *et al.* (1990)⁶ and reporting nomenclature used Howson, C.M. & Picton, B.E., (1997)⁷ and the World Register of Marine Species (WoRMS).

-

⁶ Rees, H.L., Moore, D. C., Pearson, T. H., Elliot, M., Service, M., Pomfret, J. and Johnson, D. (1990). Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites. *Scottish Fisheries Information Pamphlet*, No. 18: 78pp

⁷ Howson CM and Picton BE (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas.* Ulster museum and the Marine Conservation Society.

Particle Size Analysis (PSA) samples

The particle size analysis was carried out by a combination of dry sieving and laser particle size analysis (for the fraction <1mm) using a Malvern Mastersizer 2000. The sediment samples were then split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment. The <1mm fraction of the sample was then analysed using the Malvern Mastersizer 2000 and the >1mm fraction discarded. The second sub-sample was passed through a nest of sieves, including 1mm, 1.4mm, 2mm, 2.8mm, 5.6mm and 11.2mm. Each fraction, including the <1mm fraction, was then oven dried at 85°C for 24 hours and weighed. Data generated from these methods of analysis was merged and used to derive statistics such as mean grain size, bulk sediment classes (% silt, sand & gravel), skewness and sorting coefficient. These methods are consistent with the procedures identified at the NMBAQC PSA workshop on laboratory methods, which was held at the Cefas Lowestoft laboratory in July 2009.

Organic Carbon Samples

Organic carbon was expressed as loss on ignition (percentage), following combustion at 475° C for four hours. The sample was oven dried at 85° C until the weight stabilised (\pm 0.001g) and the weight recorded. The sample was then placed in a muffle furnace, at 475° C, for four hours. Once the sample had cooled, it was re-weighed and the difference between the two weights was expressed as a percentage of the total sediment.

Sediment contaminant samples

Contaminant samples were collected from the grab samples by scooping sediment directly into the containers. Nitrile gloves were worn to prevent sample contamination. Samples to test for organics were taken in glass containers as hydrocarbons can be lost through plastic. Samples to test for volatiles were collected in smaller containers so there was less headspace for them to be lost in. Samples for inorganics were taken using plastic containers. The containers used for each test were:

EPH by FID
GRO by GC-FID
Metals by iCap-OES
Organotins
PAH by GCMS
PCBs by GCMS
250g glass jar
Plastic container
250g glass jar
250g glass jar
250g glass jar

2.2 Epifaunal Trawls

2.2.1 SAMPLE COLLECTION

A VideoRay system was deployed at each of the epifaunal trawl stations before sampling took place to verify the absence of any significant amount of habitat of conservation interest (i.e. *Sabellaria* biogenic reef). Full details of the drop down video sampling programme is the subject of a separate report (ZBB776-ECRDDV-D-2011).

Following the deployment of the VideoRay a 2m beam trawl with a 5m long net and 40mm mesh liner inside and 5mm (knot to knot) square mesh cod-end liner was deployed along the same line. The trawl was lowered from the survey vessel to the seabed at the predetermined start point and towed for approximately 10-20 minutes over a path of approximately 500m while maintaining a speed of between 1-1.5 knots. The 2m Beam trawl comprised of two 60mm x 500mm x 500mm steel detachable shoes, with a 2120mm steel tube brace. A tickler chain was attached to the footrope to provide extra weight to ensure valid samples were obtained. The beam trawl was operated from the stern of the survey vessel using a towing line approximately three times the depth of the area. The trawl line was logged using DGPS at the start (lock of the winch) and end of the trawl (engagement of the winch). The 1m cod end with 5mm mesh was hauled aboard with the aid of a lifting rope to ensure the cod end could be lifted independently of the beam. A single tow was carried out at each identified trawl line.

The cod end was opened over a large fish box to contain the whole catch; the net was checked for any remaining epifauna and fish, before the cod end was re-fastened prior to redeployment at the next trawl site. The catch was roughly sorted on board with the fish species separated from the epifaunal invertebrates. A survey log was maintained at all times recording survey date, water depth at the start of the trawl line, time in and out of water, GPS position (using Magellan ProMark3 GPS) and speed of survey vessel during trawling along with weather and sea condition and digital images. IECS experience indicates that the quality of the catch greatly deteriorates under rough sea conditions. As such, IECS operated the beam trawl within a weather window consisting of wave heights less than 1.5m and wind speed of less than F3.

Photographs of all catches were taken after any large debris had been removed. Any large specimens were identified onboard the vessel, recorded, photographed and then returned to the water. The remaining catch was transferred to a clean labelled bucked and fixed using 4% formalin. The fixed epifaunal invertebrates and fish were transferred to the IECS laboratory where they were separated to species level where possible and enumerated with examples of each species retained for a reference collection. The taxonomic literature used is essentially as given in Wheeler (1969⁸, 1978⁹) and Whitehead *et al.* (1984¹⁰). All fish were measured to the millimetre (rounding down) (total length or an appropriate measure in case of species with extreme body shape; i.e. skates and rays). If catches were large, any species present at low density were identified and removed before a subsample was taken for length distribution of the more abundant species. A subsample (ca. 30-50 fish) was measured to enable length frequency analysis. Any other observations from individual trawls (e.g. high amounts of shell, rocks, cobbles, weed and other debris, presence of ray egg cases, whelk eggs etc) were recorded on the survey log.

⁸ Wheeler, A. 1969. *The fishes of the British Isles and North West Europe*. Michigan State University Press, 613pp.

⁹ Wheeler, A. 1977. Key to the Fishes of Northern Europe. Frederick Warne, London. 380pp.

¹⁰ Whitehead, P.J.P., Bauchot, M.L., Hureau, J.-C., Nielsen, J. And Tortonese, E. (Eds.) 1984. *Fishes of the North-eastern Atlantic and the Mediterranean*, Vol. 1-3. UNESCO.

3. RESULTS

3.1 Survey Summary and Area Map

The benthic and epibenthic surveys along the proposed cable route were undertaken during two separate deployments, the first in April onboard MV Clupea and the second in June onboard SV Chartwell. In total, 19 infaunal grab sites and 5 sediment contaminant sites were identified along the proposed cable route (Figures 1 & 2). All 5 contaminant samples were collected, however only 16 infaunal, Particle Size Analysis (PSA) and Organic Carbon (OC) samples were collected. All sites for the epibenthic and video trawls were successfully sampled.

Survey logs for both the infaunal and epifaunal sampling programmes are given in Appendices 1-3, 5 and 6 detailing time and position of samples, sediment type, notable features and infaunal sample volumes.

The weather conditions were recorded throughout the survey deployments (Table 1).

Table 1. Weather conditions recorded while on site along the proposed export cable route.

Date	Time	Swell (m)	Wind (Beaufort scale)	Comments
19/04/2011	06:25	1.5	2	
19/04/2011	13:05	1.5	0	
19/04/2011	23:43	1	4	
20/04/2011	06:00	0.5	0	Heavy fog, Visibility 100m maximum.
20/04/2011	16:43	1	1	Fog lifted.
20/04/2011	19:30	0.5	1	
21/04/2011 21/04/2011	04:53 08:06	0.5 0.5	2 2	
27/06/2011 27/06/2011	10.30 18:00	<0.5 0.5+	2 3	

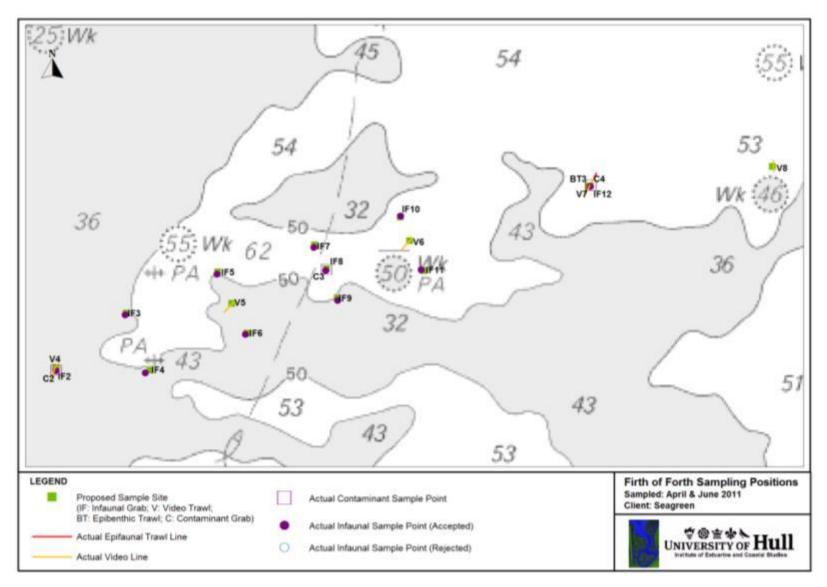


Figure 1 Proposed and completed sampling locations along the export cable route (east section)

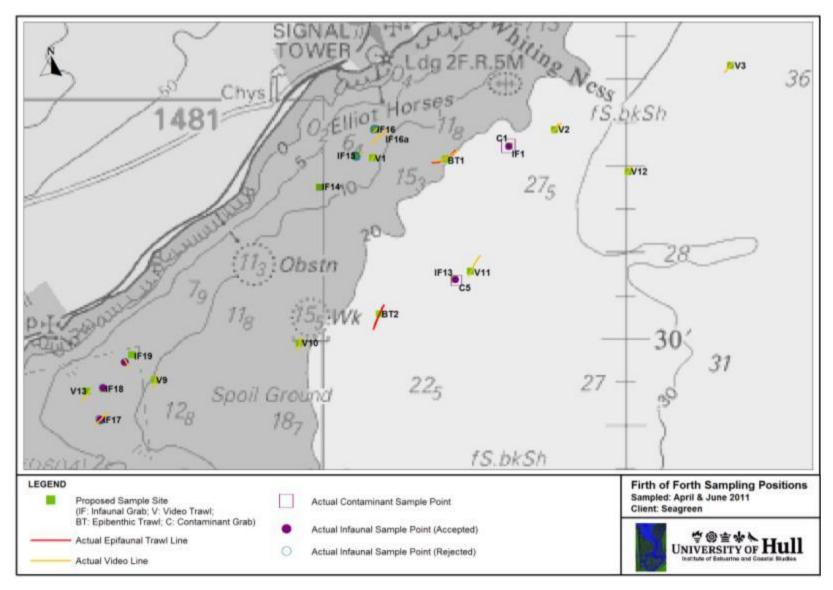


Figure 2 Proposed and completed sampling locations along the export cable route (west section)

3.2 Benthic Infaunal Data

3.2.1 INFAUNAL GRAB SAMPLING

Towards the inshore section of the proposed ERC numerous marker buoys for static fishing gear were observed (Plate 2a & 2b). Close communication was maintained during the survey between the IECS survey team, the Fisheries Liaison Officers (FLO) and Seagreen Ltd. No fishing gear was present within the boundary of the ERC, however sites IF14, IF16, IF17 and IF19 were located outside the ERC boundary and as such it was not possible to survey the proposed sampling locations at sites IF14 and IF19 due to the presence of fishing gear. Where possible, and following communication with Seagreen Ltd, the sites were repositioned closer to the cable route, and away from any fishing gear.

Plate 2a. Numerous marker buoys and flags located along the Arbroath coast

Plate 2b. Marker buoy and flag located near to the proposed export cable route

Plate 2. Static fishing gear encountered within the export cable route

Infaunal samples containing <5 litres of sediment were classed as being undersized. Where necessary 5 attempts were made at each site to collect an infaunal sample of adequate size, however undersized samples were retained at 5 sites (IF2, IF13, IF17, IF18 & IF19) (Appendix 2). Infaunal samples containing 4-5 litres were classed as acceptable, however at 3 sites (IF2, IF17 & IF19) the infaunal samples contained <4 litres. At these sites the VideoRay was deployed in order to gain additional information upon the nature of the seabed and support the information derived from the undersized grabs. Footage collected from Site IF19 confirm the presence of flat expanses of sand with some coarse shell punctuated by outcrops of bedrock and boulders with dense *Alcyonium spp, Asterias rubens* and Hydroids (Plate 3f). Footage from Site IF2 (Plate 3a) showed rippled sand while Site IF17 (Plate 3e) revealed sand and shell similar to that separating the rocky outcrops at the other infaunal grab stations.

No benthic samples were retained from Sites IF15 and IF16 despite 5 attempts to collect samples. The majority of the attempts at these sites did not retain any sediment, with the exception of two attempts at site IF15 where a single cobble was retained during the first attempt and a very small amount of gravel was retained during the fourth attempt (Appendix 2). Therefore, a VideoRay was deployed at sites IF15 & IF16 to confirm the sediment type.

At Site IF16 footage displayed two areas of boulders and cobbles with *Alcyonium spp*, Asteriidae and Hydroids separated by an area of flat sand with some coarse shell (Plate 3c).

Additional video footage was collected starting in the vicinity of site IF16 and travelling towards Site IF14 (Video line No. 16a), in order to provide a cross section of the sediment types across the proposed ECR. The trawl line was positioned to avoid static fishing gear in the area, however the camera became stuck on rocks and was hauled to the surface. Twelve minutes of video footage was recorded which displayed areas of bedrock, boulders and cobbles separated by flat sand with some coarse shell (Plate 3d).

At site IF15 only 3 minutes of video footage was recorded before the camera became caught on bedrock/boulders. The vessel came to an abrupt stop and efforts were made to retrieve the camera, as such the camera was not deployed in this area to gain more footage due to health and safety concerns. However, the footage collected displayed an expanse of bedrock and boulders (Plate 3b).

The difficulties encountered while trying to collect viable grab samples along inshore sections of the ECR, combined with video footage and an abundance of static fishing gear in the area, all suggests the area is dominated by sections of firm ground eg. bedrock and boulders.

A complete survey log was maintained throughout both deployments (Appendices 1-3) and photographs were taken of each sample (Appendix 7). The full infaunal species list for the export cable route is given in Appendix 4.

Plate 3a: Still image recorded from site IF2

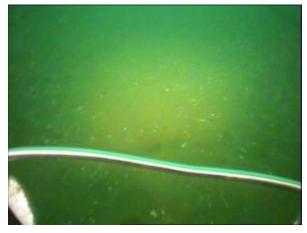

Plate 3b: Still image recorded from site IF15

Plate 3c: Still image recorded from site IF16

Plate 3d: Still image recorded from site IF16a

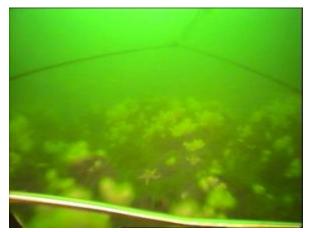


Plate 3e. Still image recorded from site IF17

Plate 3f. Still image recorded from site IF19

Plate 3. Sediment images captured at infaunal sample sites including possible cobble and bedrock reef habitats.

3.2.2 Species and Habitats of Conservation Interest

No areas containing Sabellaria reef were identified along the export cable route.

Stony reef habitat was identified at V1 and IF15. Footage from IF15 revealed extensive bedrock and boulders (Plate 3b) before the camera became caught under a large rock. Due to health and safety concerns no further footage was collected from this station and the camera was only dropped down at V1 to confirm the presence of bedrock before being retrieved. V1 was the only video trawl site to contain significant amounts of bedrock.

Further possible stony reef was identified at IF16, IF16a and IF19 (Plate 3c,d and f). These stations contained stretches of sand and shell with patchy, but sometimes extensive, areas of matrix supported cobbles, boulders and bedrock.

3.2.3 PROPOSED AND ACTUAL CO-ORDINATES

Proposed and actual survey coordinates were recorded for each site and the distance between them noted (Appendix 3). All samples were taken within 50m of the proposed sampling position with the exception of three infaunal grab sites (IF4, IF9 & IF19). Site IF4 was positioned in close proximity to a wreck, and Site IF19 was surrounded by static fishing gear, therefore both sites were relocated (115m and 217m respectively). Site IF9 was 51m from the proposed sample location therefore the sample was accepted.

3.3 Particle Size Analysis and Organic Content Data

Summarised statistics for Particle Size Analysis (PSA) and organic content (OC) are given in Table 2.

Table 2. Export cable route PSA summary and organic carbon

Cita	Toutural Crown	Co	mposition	(%)	% oc	Descriptive :	Statistics (Fo	lk and Ward I	Method) (µm)	Descriptive	Statistics (Fo	olk and Ward	Method) (ø)
Site	Textural Group	Gravel	Sand	Mud	% OC	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
IF1	Slightly Gravelly Muddy Sand	13.8	89.5	10.3	1.05	275.2	2.307	-0.377	1.686	1.862	1.206	0.377	1.686
IF2	Slightly Gravelly Muddy Sand	5.1	69.3	30.6	1.69	70.39	2.666	-0.437	1.565	3.828	1.415	0.437	1.565
IF3	Slightly Gravelly Muddy Sand	0.6	68.5	30.8	1.93	72.26	2.942	-0.357	1.509	3.791	1.557	0.357	1.509
IF4	Slightly Gravelly Muddy Sand	2.9	68.3	28.8	1.72	102.0	4.395	-0.245	1.146	3.293	2.136	0.245	1.146
IF5	Slightly Gravelly Muddy Sand	1.7	62.6	35.8	2.21	62.22	3.871	-0.344	1.245	4.006	1.953	0.344	1.245
IF6	Gravelly Muddy Sand	10.2	77.8	12.0	1.31	364.5	4.232	-0.183	1.768	1.456	2.081	0.183	1.768
IF7	Slightly Gravelly Muddy Sand	0.2	67.6	32.2	1.97	66.18	3.296	-0.460	1.263	3.917	1.721	0.460	1.263
IF8	Slightly Gravelly Muddy Sand	1.5	70.2	28.2	1.91	78.87	3.583	-0.436	1.263	3.664	1.841	0.436	1.263
IF9	Slightly Gravelly Sand	0.6	93.7	5.7	1.13	322.6	1.872	-0.262	1.889	1.632	0.904	0.262	1.889
IF10	Slightly Gravelly Muddy Sand	2.6	77.0	20.4	1.39	136.1	3.841	-0.475	1.511	2.877	1.942	0.475	1.511
IF11	Slightly Gravelly Muddy Sand	1.2	73.3	25.5	1.83	83.79	3.815	-0.525	1.323	3.577	1.932	0.525	1.323
IF12	Slightly Gravelly Sand	1.2	89.7	9.1	1.20	239.0	2.194	-0.341	2.348	2.065	1.133	0.341	2.348
IF13	Slightly Gravelly Sand	0.2	94.1	5.7	1.13	152.6	1.693	-0.096	1.029	2.712	0.760	0.096	1.029
IF17	Slightly Gravelly Sand	1.0	93.6	5.4	0.68	198.4	1.807	-0.227	1.808	2.334	0.854	0.227	1.808
IF18	Slightly Gravelly Sand	1.2	91.7	7.0	0.74	193.6	1.941	-0.261	2.001	2.369	0.957	0.261	2.001
IF19	Slightly Gravelly Sand	0.1	91.3	8.6	0.90	152.5	1.832	-0.172	1.141	2.713	0.873	0.172	1.141

3.4 Sediment Contaminant Data

Sediment contaminant results are given in Appendix 10.

3.5 Epibenthic Trawl Data

An enumerated species list for the epibenthic trawl stations is presented in Table 3. The high total abundance recorded at BT1 was due to large numbers of the common starfish *Asterias rubens.*

Photographs of the epibenthic trawl samples are presented in Appendix 8 and fish length measurements from the epibenthic trawls are given in Appendix 9.

Table 3. Species list for the export cable route epibenthic trawl stations.

MC	S Code	Taxon	Taxon Qualifier	BT1	BT2	ВТ3
Υ	185	Flustridae		Р		Р
D	597	Alcyonium	Species	Р		Р
D	662	ACTINARIA		4		1
Р	1324	Serpulidae		Р		
S	1377	Pandalus montagui		25	10	4
S	1384	Crangon allmanni			5	161
S	1386	Crangon bispinosus neglecta				3
S	1457	Pagurus bernhardus		1		2
S	1462	Pagurus prideaux				2
S	1471	Galathea dispersa		1		6
S	1474	Galathea nexa				2
S	1532	Macropodia rostrata		8		
S	1566	Cancer pagurus		1		
S	1580	Liocarcinus depurator		12	1	7
S	1581	Liocarcinus holsatus		19		5
S	1589	Necora puber		2		
W	1771	Pecten maximus				1
W	2166	Hiatella arctica		1		
W	2329	Sepiola atlantica			1	1
ZB	26	Astropecten irregularis				6
ZB	83	Henricia oculata		1		
ZB	100	Asterias rubens		1358	88	77
ZB	124	Ophiothrix fragilis		19		2
ZB	147	Ophiopholis aculeata				1
ZB	170	Ophiura ophiura		8	464	
ZB	172	Ophiura sarsi				1
ZB	198	Echinus esculentus		1		
ZD		ASCIDIACEA		Р		Р
ZG	116	Gadus morhua		3		
ZG	123	Merlangius merlangus				1
ZG	265	Eutrigla gurnardus		1		
ZG	281	Myxocephalus scorpius		3		
ZG	291	Agonus cataphractus			4	5
ZG	442	Ammodytes	Species			1
ZG	453	Callionymus maculatus				3
ZG	477/480	Pomatoschistus lozanoi / norvegicus			3	4
ZG	567	Hippoglossoides platessoides			1	4
ZG	572	Limanda limanda		28	41	7
ZG	578	Pleuronectes platessa		12	18	3
		Total Abundance		1508	636	310
		No. Quantitative Taxa		20	11	25
		No. Colonial Taxa		4	0	3
		Total Taxa		24	11	28

APPENDIX 1. BENTHIC SURVEY LOG INCLUDING SEDIMENT DESCRIPTION & NOTABLE FEATURES

ID	Sample type	Sample description	Sand eels present	Sabellaria present	Comments
IF1	Infaunal	Fine sand with a fine shell and a little course shell.	No	No	
C1	Contaminant	Fine sand with a fine shell and a little course shell.	No	No	
IF2	Infaunal	Very fine mud and sand, washing out of grab.	No	No	
C2	Contaminant	Mud and fine sand.	No	No	
IF3	Infaunal	Mud and fine sand with a little coarse shell.	No	No	
IF4	Infaunal	Mud and fine sand.	No	No	Repositioned due to presence of a wreck
IF5	Infaunal	Mud and fine sand with a little coarse shell.	No	No	
IF6	Infaunal	Medium and coarse sand with some coarse shell and a little mud.	No	No	
IF7	Infaunal	Mud and Fine sand with a little coarse shell.	No	No	
IF8	Infaunal	Mud and fine sand.	No	No	
C3	Contaminant	Mud and fine sand.	No	No	
IF9	Infaunal	Fine sand and shell with a little coarse cand and shell.	No	No	
IF10	Infaunal	Mud, fine sand and shell with a little coarse shell.	No	No	
IF11	Infaunal	Mud and Fine sand with a little coarse shell.	No	No	
IF12	Infaunal	Fine sand and shell with some coarse shell.	No	No	
C4	Contaminant	Fine sand and shell with some coarse shell.	No	No	
IF13	Infaunal	Fine sand, fine shell and a little coarse shell.	No	No	
C5	Contaminant	Fine sand, fine shell and a little coarse shell.	No	No	
IF14	Infaunal	No infaunal sample	No	No	
IF15	Infaunal	No infaunal sample	No	No	
IF16	Infaunal	No infaunal sample	No	No	
IF17	Infaunal	Fine sand with fine and course shell.	No	No	
IF18	Infaunal	Fine sand with fine and course shell.	No	No	
IF19	Infaunal	Fine sand with fine and course shell.	No	No	Repositioned due to presence of static fishing gear

APPENDIX 2. BENTHIC SURVEY LOG INCLUDING SAMPLE VOLUME

ID	Sample Type	Date	Time	Sea bed depth (m)	No. of rejected samples	Volume of Grab (Litres)	PSA sample collected	Undersized infaunal sample accepted	Supporting video footage collected
IF1	Infaunal	27/06/2011	09:44	27	0	5	Yes	No	No
C1	Contaminant	27/06/2011	09:50	27	0	4.5	No	n/a	No
IF2	Infaunal	19/04/2011	15:50	47	4	3.5	Yes	Yes	No
C2	Contaminant	19/04/2011	16:26	47	4	2.3	No	n/a	No
IF3	Infaunal	19/04/2011	15:23	54	0	6.75	Yes	No	No
IF4	Infaunal	19/04/2011	10:10	48	1	9.5	Yes	No	No
IF5	Infaunal	19/04/2011	14:49	64	0	13.25	Yes	No	No
IF6	Infaunal	19/04/2011	14:23	49	1	6	Yes	No	No
IF7	Infaunal	19/04/2011	13:46	63	0	11.6	Yes	No	No
IF8	Infaunal	19/04/2011	13:03	64	0	9.6	Yes	No	No
С3	Contaminant	19/04/2011	13:10	64	0	9.6	No	No	No
IF9	Infaunal	19/04/2011	11:52	50	1	5.25	Yes	No	No
IF10	Infaunal	19/04/2011	10:43	63	3	5.25	Yes	No	No
IF11	Infaunal	19/04/2011	11:19	68	1	8	Yes	No	No
IF12	Infaunal	19/04/2011	09:35	55	1	7.2	Yes	No	No
C4	Contaminant	19/04/2011	09:28	55	0	7.2	No	No	No
IF13	Infaunal	19/04/2011	18:42	25	4	4.25	Yes	Yes	No
C5	Contaminant	19/04/2011	19:46	25	4	2.25	No	No	No
IF14	Infaunal	27/06/2011		•	Noi	nfaunal sample co	llected		
IF15	Infaunal	27/06/2011			No i	nfaunal sample co	llected		
IF16	Infaunal	27/06/2011			No i	nfaunal sample co	llected		
IF17	Infaunal	27/06/2011	12:18	11	4	2.8	Yes	Yes	
IF18	Infaunal	27/06/2011	12:01	10.8	4	4.1	Yes	Yes	
IF19	Infaunal	27/06/2011	13:06	10.8	4	3.1	Yes	Yes	

APPENDIX 3. BENTHIC SAMPLE COORDINATES (PROPOSED AND ACTUAL)

ID	Samula tima	Proposed grab cod	ordinates (WGS 84)	Actual grab coor	dinates (WGS 84)	Distance between actual 9 managed accordington
שו	Sample type	Lat (N)	Long(W)	Lat(N)	Long(W)	Distance between actual & proposed coordinates
IF1	Infaunal	56.537248	-2.540594	56.537180	-2.540723	11
C1	Contaminant	56.537248	-2.540594	56.537280	-2.540775	12
IF2	Infaunal	56.564721	-2.401945	56.564429	-2.402164	35
C2	Contaminant	56.564722	-2.401936	56.564542	-2.402093	22
IF3	Infaunal	56.575476	-2.377822	56.575099	-2.378126	46
IF4	Infaunal	56.564573	-2.369506	56.564053	-2.371121	Repositioned 115m from site due to presence of a wreck
IF5	Infaunal	56.583299	-2.346020	56.575099	-2.378126	49
IF6	Infaunal	56.571598	-2.336014	56.571381	-2.336477	38
IF7	Infaunal	56.588453	-2.312492	56.588020	-2.312755	51
IF8	Infaunal	56.583901	-2.308316	56.583577	-2.308624	41
C3	Contaminant	56.583901	-2.308316	56.583880	-2.308425	7
IF9	Infaunal	56.578343	-2.304682	56.577899	-2.304457	51
IF10	Infaunal	56.593855	-2.282823	56.593976	-2.282678	16
IF11	Infaunal	56.583610	-2.274776	56.583698	-2.275504	46
IF12	Infaunal	56.599790	-2.217015	56.599665	-2.216896	16
C4	Contaminant	56.599790	-2.217015	56.599889	-2.216729	21
IF13	Infaunal	56.511547	-2.559524	56.511488	-2.559247	19
C5	Contaminant	56.511517	-2.559633	56.511350	-2.558972	41
IF14	Infaunal	56.529335	-2.606597	No infaunal sa	mple collected	n/a
IF15	Infaunal	56.535280	-2.593833	No infaunal sa	mple collected	n/a
IF16	Infaunal	56.540419	-2.587337	No infaunal sa	mple collected	n/a
IF17	Infaunal	56.484362	-2.683135	56.484518	-2.683172	17
IF18	Infaunal	56.490431	-2.682036	56.490590	-2.682092	17
IF19	Infaunal	56.496999	-2.672193	56.495548	-2.674572	Repositioned 217m from site due to static fishing gear

APPENDIX 4. BENTHIC INFAUNAL SPECIES LIST

М	ICS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
D	155	Corymorpha nutans		5															
D	240	Leuckartiara octona														Р			
D	287	Merona cornucopiae													Р				
D	336	Lovenella clausa													Р	Р		Р	Р
D	413	Diphasia																Р	
D	424	Hydrallmania falcata							Р										
D	433	Sertularia	spp.												Р				
D	519	Obelia dichotoma							Р										
D	521	Obelia longissima							Р										
D	597	Alcyonium digitatum							Р										
D	759	Edwarsiidae				1			1				1		2				
F	2	TURBELLARIA								1	1			2	1				
G	1	NEMERTEA		2	4	1	2	1	6	1	4	2	1	4	2		1		1
N	28	Thysanocardia procera									2								
Р	19	Aphrodita aculeata					1												
Р	44	Enipo kinbergi					1												
Р	49	Gattyana cirrosa																1	
Р	50	Harmothoe							1									1	
Р	-	Malmgrenia darbouxi				1	2		1		1			2					
Р	-	Pholoe baltica					2		1				1		1				
Р	92	Pholoe inornata							1										
Р	104	Sigalion mathildae														4		5	2
Р	109	Sthenelais limicola			1			1	1		1	2		1		1			
Р	141	Anaitides groenlandica															1		
Р	143	Anaitides longipes					1												
Р	117/118	Eteone flava/longa															1	1	3
Р	164	Eumida bahusiensis				1													
Р	167	Eumida sanguinea							3										
Р	176	Paranaitis kosteriensis						1											
Р	256	Glycera alba		1					1						1				
Р	260	Glycera lapidum										2							
Р	263/ -	Glycera rouxii/unicornis						1			1								
Р	268	Glycinde nordmanni					1		3										
Р	271	Goniada maculata				2	1		1				1	2	1		1	2	
Р	291	Sphaerodorum gracilis			1														

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	313	Ophiodromus flexuosus					1								1				1
Р	319	Podarkeopsis capensis							1		1					1			
Р	380	Eusyllis blomstrandi							1										
Р	434	Autolytus	sp.						1										1
Р	475	Nereis longissima					1												
Р	494	Nephtys	juvenile						4				1					1	
Р	495	Nephtys assimilis													1				
Р	498	Nephtys cirrosa													4		1		
Р	499	Nephtys hombergii			2	1	2	2		1	2				1	1			1
Р	502	Nephtys kersivalensis					1			2	1		1				1	1	
Р	-	Lumbrineris cingulata	Prev. L. gracilis						20	1	1				8				
Р	597	Notocirrus scoticus							1										
Р	665	Orbinia (Orbinia) sertulata												1					
Р	672	Scoloplos armiger		6		1	1						3	2					1
Р	685	Aricidea (Acmira) cerrutii										1			1				
Р	693	Levinsenia gracilis					1				1								1
Р	699	Paradoneis lyra					1								1				1
Р	718	Poecilochaetus serpens						1	2		1	1			1				
Р	733	Laonice bahusiensis							2										
Р	747	Minuspio cirrifera						2											
Р	754	Dipolydora flava												1					
Р	779	Scolelepis bonnieri		1													1	2	
Р	789	Spio decorata		3													4	6	4
Р	794	Spiophanes bombyx		10		1		1		1	2			4	6	1	18	25	17
Р	796	Spiophanes kroyeri				1		4	1					1					
Р	804	Magelona alleni				1	1		2		3			1					
Р	805	Magelona filiformis												1		1	2	5	1
Р	-	Magelona johnstoni														2	14	24	30
Р	-	Aphelochaeta	sp. A							1			1						
Р	-	Cirratulus caudatus								1									
Р	-	Chaetozone christiei		2											2	1	8	3	2
Р	831	Chaetozone zetlandica							1					1					
Р	834	Chaetozone setosa				2		1	1					3					
Р	846	Tharyx killariensis					1		2			2							
Р	878	Diplocirrus glaucus			2	6	1	1	5		2		1	8	1				
Р	919	Mediomastus fragilis										1							
Р	920	Notomastus				1		1	2	1		3		1	1			1	
Р	925	Peresiella clymenoides				1	3	3	1				1	3					
Р	927	Pseudonotomastus southerni					1						1	2					1

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	313	Ophiodromus flexuosus					1								1			-	
Р	319	Podarkeopsis capensis							1		1					1			
Р	380	Eusyllis blomstrandi							1										
Р	434	Autolytus	sp.						1										
Р	475	Nereis longissima	· ·				1												
Р	494	Nephtys	juvenile						4				1					1	
Р	495	Nephtys assimilis													1				
Р	498	Nephtys cirrosa													4		1		
Р	499	Nephtys hombergii			2	1	2	2		1	2				1	1			1
Р	502	Nephtys kersivalensis					1			2	1		1				1	1	
Р	-	Lumbrineris cingulata	Prev. L. gracilis						20	1	1				8			<u> </u>	
P	597	Notocirrus scoticus	J						1										
Р	665	Orbinia (Orbinia) sertulata												1					
Р	672	Scoloplos armiger		6		1	1						3	2					1
Р	685	Aricidea (Acmira) cerrutii										1	J		1				
Р	693	Levinsenia gracilis					1				1								
P	699	Paradoneis lyra					1								1				
Р	718	Poecilochaetus serpens					·	1	2		1	1			1				
Р	733	Laonice bahusiensis							2						·				
Р	747	Minuspio cirrifera						2											
Р	754	Dipolydora flava												1					
Р	779	Scolelepis bonnieri		1													1	2	
Р	789	Spio decorata		3													4	6	4
Р	794	Spiophanes bombyx		10		1		1		1	2			4	6	1	18	25	17
Р	796	Spiophanes kroyeri				1		4	1					1					
Р	804	Magelona alleni				1	1		2		3			1					
Р	805	Magelona filiformis												1		1	2	5	1
Р	-	Magelona johnstoni														2	14	24	30
Р	-	Aphelochaeta	sp. A							1			1						
Р	-	Cirratulus caudatus	·							1									
Р	-	Chaetozone christiei		2											2	1	8	3	2
Р	831	Chaetozone zetlandica							1					1					
Р	834	Chaetozone setosa				2		1	1					3				1	
Р	846	Tharyx killariensis					1		2			2						1	
Р	878	Diplocirrus glaucus			2	6	1	1	5		2		1	8	1				
P	919	Mediomastus fragilis							Ť		ΙĪ	1							
P	920	Notomastus				1		1	2	1		3		1	1			1	
P	925	Peresiella clymenoides				1	3	3	1			Ť	1	3					
P	927	Pseudonotomastus southerni			 	· ·	1	Ť	<u> </u>				1	2				†	

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	944	Praxillura longissima													1				
Р	953	Clymenella cincta					1												
Р	958	Clymenura johnstoni							1			6			2				
Р	963	Euclymene lumbricoides							2										
Р	964	Euclymene oerstedii				1			1				1						
Р	990	Rhodine gracilior					2		1				1	1					
Р	999	Ophelia borealis										12	2		16				
Р	1014	Ophelina acuminata							1										
Р	1027	Scalibregma inflatum		1															
Р	1093	Galathowenia oculata				3	1		1		3	2	1		1				
Р	1098	Owenia fusiformis		28	3	1	1							2	3			1	
Р	1102	Amphictene auricoma				2	2							2					
Р	1107	Lagis koreni		4	1		2					1					1	10	1
Р	1147	Anobothrus gracilis				1			5		1	3		3					
Р	1178	Trichobranchus roseus					2	2		3	3			4					
Р	1195	Lanice conchilega		5					1								1	3	1
Р	1215	Phisidia aurea							2										
Р	1233	Lysilla loveni					1												
Р	1235	Polycirrus	juv./indet.					1			1			1					
Р	1239	Polycirrus denticulatus							1						1				
Р	1241	Polycirrus latidens/medusa										1							
Р	1264	Chone										1							
Р	1334	Hydroides norvegica							1										
Р	1425	Tubificidae					1												
Р	1524	Grania	sp.									1							
Q	44	Anoplodactylus petiolatus													1				
R	2426	Cylindroleberis mariae							1										
S	44	Gastrosaccus spinifer															1	1	1
S	131	Perioculodes longimanus		1													1		
S	138	Synchelidium maculatum															1		
S	140	Westwoodilla caecula				1	1		1										
S	248	Urothoe elegans		5					2										
S	254	Harpinia antennaria			4	1	3			1	2		1	7		3			
S	257	Harpinia pectinata				2				1									
S	301	Lepidepecreum longicorne							1			1							
S	328	Scopelocheirus hopei							1										
S	360	Argissa hamatipes		1							1								
S	427	Ampelisca brevicornis			2					1					2				1
S	440	Ampelisca tenuicornis			1	3	4	2	1		2			1					

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
S	452	Bathyporeia elegans		1		1							1		1	1	1	2	2
S	459	Bathyporeia tenuipes														1			
S	489	Megaluropus agilis															1		
S	505	Cheirocratus intermedius						1											
S	539	Gammaropsis cornuta							1										
S	541	Gammaropsis maculata							1										
S	583	Autonoe longipes										1							
S	619	Siphonoecetes striatus											1			1			
S	657	Phtisica marina							1										
S	949	Arcturella	sp. indet.				2												
S	1142	Tanaopsis graciloides	·											1					
S	1208	Eudorella truncatula								2									
S	1210	Eudorellopsis deformis														1			
S	1248	Diastylis bradyi															2	1	
S	-	Diastylis goodsiri												1					
S	1415	Callianassa subterranea					1						1	1					
S	1449	Anapagurus laevis						1											
S	1457	Pagurus bernhardus							1										
S	1552	Corystes cassivelaunus																1	
S	1580	Liocarcinus depurator							1										
W	8	Chaetoderma nitidulum			1	2	4			1	3			2		1			
W	270	Turritella communis			3	2	2	1			2								
W	985	Turbonilla (Pyrgiscus) crenata											3		1				
W	1028	Cylichna cylindracea			1						2								
W	1519	Antalis entalis			1										1	1			
W	1569	Nucula (Nucula) nitidosa		1	1											12	9	4	5
W	1577	Nuculoma tenuis													1				
W	1715	Crenella decussata										1							
W	1827	Myrtea spinifera						1											
W	1829	Lucinoma borealis					1	4			2		2	4		1			
W	1837	Thyasira (Thyasira) flexuosa		1	6	16	20	16	4	11	24			10		2			
W	1898	Devonia perrieri					1												
W	1902	Tellimya ferruginosa				1								1		2	5		
W	1906	Mysella bidentata		4		2	9						2	19		1			
W	1972	Mactra stultorum		1															1
W	1978	Spisula subtruncata			3								1			2			
W	1984	Lutraria lutraria	juvenile																1
W	2006	Phaxas pellucidus		6			4	1			2			1			6	2	1
W	2019	Fabulina fabula		3												1	29	49	32

MCS code		Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
W	2023	Moerella pygmaea										1							
W	2051	Gari (Psammobia) fervensis			1							2	1		1				
W	2059	Abra alba		6													1	2	2
W	2061	Abra nitida			2	1	3	7		2	3								
W	2062	Abra prismatica		4			1					12	6		11	1			2
W	2072	Arctica islandica		1	1	1					3	1							1
W	2098	Chamelia striatula		2	27	25	6				6	10		1		8	5	6	10
W	2104	Timoclea ovata													1				
W	2130	Dosinia (Asa) exoleta					1				1	4				1		1	1
W	2139	Mysia undata			1			1											
W	2147	Mya (Mya) truncata		8	1	2	1											1	
W	2157	Corbula gibba												1					
W	2229	Thracia convexa				1	1				1			2					
W	2231	Thracia phaseolina			2											1	10	13	6
W	2239	Cochlodesma praetenue		2					1			11	2		2	10			
Υ	165	Eucratea loricata							Р					Р					
Υ	187	Flustra foliacea													Р				
Υ	194	Securiflustra securifrons													Р				
Υ	310	Cribrilina punctata													Р				
ZA	3	Phoronis			1	1					1			1		119			
	149	Amphiura	juvenile	5	2											7	1	5	1
ZB	151	Amphiura brachiata														1		1	
ZB	154	Amphiura filiformis		5	3	13	27		2		2		9	2	6	27			
ZB	165	Ophiuridae	juvenile								1								
	167	Ophiocten affinis		8											1				
ZB	168	Ophiura albida		2		2	2		3				1						
ZB	170	Ophiura ophiura			3											1	2		
ZB	212	Echinocyamus pusillus										3			1				
ZB	223	Echinocardium cordatum			1									1		3	1	1	
ZB	292/296	Leptosynapta bergensis/inhaerens				1	1							3					
ZB	279	Leptopentacta elongata				1			1										
ZD	85	Ascidiella scabra							1										
ZD	99	STOLIDOBRANCHIATA	juvenile						1										
ZD 112 Polycarpa fibrosa														1					
	Total Abundance			135	82	108	134	58	109	32	90	88	49	112	91	221	131	182	131
			0	0	0	0	0	5	0	0	0	0	1	6	2	0	2	1	
	Quantitative Species			32	29	39	50	25	56	17	36	27	28	42	38	33	30	32	27
		Total Species		32	29	39	50	25	61	17	36	27	28	43	44	35	30	34	28

APPENDIX 5. VIDEO AND EPIFAUNAL TRAWL LOG

Trawl site	Trawl type	Date	Length (m)	Duration (hh:mm:ss)	Time (hh:mm:ss)		•	tart Position S 84)	Actual Sta (WG	rt Position S 84)	Actual End Position (WGS 84)		
0.10			()		Start	End	Long (W)	Lat (N)	Long (W)	Lat (N)	Long (W)	Lat (N)	
V1	Video	27/06/2011	5	00:00:26	18:26:06	18:26:32	-2.588206	56.534993	Within 50m of the proposed start position			osition	
V2	Video	27/06/2011	289	00:09:00	17:44:00	17:53:00	-2.524736	56.540408	-2.522495	56.541652	-2.525928	56.539947	
V3	Video	20/04/2011	289	00:10:30	20:43:55	20:54:25	-2.463455	56.552772	-2.462468	56.553467	-2.465503	56.551485	
V4	Video	20/04/2011	309	00:10:20	20:03:40	20:14:00	-2.402264	56.565079	-2.401755	56.565777	-2.403701	56.563223	
V5	Video	20/04/2011	338	00:11:15	19:09:50	19:21:05	-2.341149	56.577333	-2.340178	56.577852	-2.344002	56.57567	
V6	Video	20/04/2011	327	00:08:25	18:24:50	18:33:15	-2.279503	56.589314	-2.278633	56.589874	-2.28229	56.587736	
V7	Video	20/04/2011	504	00:22:05	16:51:40	17:13:45	-2.217595	56.599676	-2.219264	56.597682	-2.215395	56.60167	
V8	Video	20/04/2011	237	00:12:40	13:18:05	13:30:45	-2.153775	56.603512	-2.153521	56.602537	-2.153386	56.604644	
V9	Video	21/04/2011	333	00:12:10	05:52:50	06:05:00	-2.664148	56.492122	-2.664824	56.490436	-2.663258	56.493263	
V10	Video	21/04/2011	320	00:11:40	06:34:55	06:46:35	-2.613794	56.499247	-2.614398	56.497767	-2.613203	56.500544	
V11	Video	21/04/2011	513	00:17:40	07:24:15	07:41:55	-2.554046	56.513101	-2.55477	56.512152	-2.550746	56.516171	
V12	Video	20/04/2011	238	00:10:35	21:28:20	21:38:55	-2.499096	56.532312	-2.497777	56.533422	-2.49995	56.531658	
V13	Video	27/06/2011	261	00:09:00	15:50:00	15:59:00	-2.687700	56.489929	-2.686602	56.490146	-2.689106	56.488365	
BT1	Epifaunal	27/06/2011	594				-2.562880	56.534804	-2.559547	56.536491	-2.567407	56.534135	
BT2	Epifaunal	21/04/2011	507	00:20:40	09:05:20	09:26:00	-2.585741	56.504908	-2.584196	56.506734	-2.587664	56.502613	
BT3	Epifaunal	20/04/2011	499	00:13:45	17:38:45	17:52:30	-2.217592	56.599676	-2.218921	56.598361	-2.214896	56.602257	

APPENDIX 6. VIDEO AND EPIFAUNAL TRAWL SAMPLE DESCRIPTION

Trawl site	Trawl type	Date	Comments	
V1	Video	27/06/2011	Bedrock with Dead men's fingers, Starfish and Hyrdroids	
V2	Video	27/06/2011	Mixed sediment, cobbles and muddy sand with Dead men's fingers and Hydroids	
V3	Video	20/04/2011	Rippled sand, Starfish, Sand eels.	
V4	Video	20/04/2011	Rippled sand, Starfish, boulder >1m, Sunstar.	
V5	Video	20/04/2011	Flat sand and shell, Dead men's fingers, hermit crab, 1m rock.	
V6	Video	20/04/2011	Rippled sand, some coarse shell, Dead men's fingers, starfish, crab.	
V7	Video	20/04/2011	Rippled sand, some coarse shell, Sand eels.	
V8	Video	20/04/2011	Rippled sand, poor visability due to suspended sediment, Sand eels.	
V9	Video	21/04/2011	Rippled sand, some coarse shell, poor visability due to suspended sediment.	
V10	Video	21/04/2011	Rippled muddy sand, very poor visability due to suspended sediment.	
V11	Video	21/04/2011	Muddy sand, very poor visability due to suspended sediment	
V12	Video	20/04/2011	Rippled sand, Starfish, Dead men's fingers.	
V13	Video	27/06/2011	Rippled sand with some coarse shell.	
BT1	Video	27/06/2011	Muddy sand changing to boulders, cobbles and muddy sand	
BT1	Epifaunal	27/06/2011	Two boulders. Predominantly Dead men's fingers and Starfish with some flatfish and other epifauna	
BT2	Video	21/04/2011	Muddy sand, very poor visability	
BT2	Epifaunal	21/04/2011	Starfish, Brittlestars and flatfish with some dislodged kelp	
BT3	Video	20/04/2011	Mega-ripples. Rippled sand with some coarse shell and Sand eels	
BT3	Epifaunal	20/04/2011	Predominantly Flustra and Dead men's fingers with fish and other epifauna	

APPENDIX 7. BENTHIC GRAB PHOTOGRAPHS (EXPORT CABLE ROUTE)

Infaunal Grab Sample No. IF1

Contamination Grab Sample No. C1

Infaunal Grab Sample No. IF2

Contamination Grab Sample No. C2

Infaunal Grab Sample No. IF3

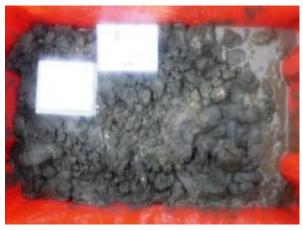
Infaunal Grab Sample No. IF4

Infaunal Grab Sample No. IF5

Infaunal Grab Sample No. IF6

Infaunal Grab Sample No. IF7

Infaunal Grab Sample No. IF8


Contaminant Grab Sample No. C3

Infaunal Grab Sample No. IF9

Infaunal Grab Sample No. IF10

Infaunal Grab Sample No. IF11

Infaunal Grab Sample No. IF12

Contaminant Grab Sample No. C4

Infaunal Grab Sample No. IF13

Contaminant Grab Sample No. C5

No sample collected

Infaunal Grab Site No. IF15 (example of rejected infaunal grab attempt)

Infaunal Grab Sample No. IF14

Infaunal Grab Site No. IF15 (example of rejected infaunal grab attempt)

No sample collected

Infaunal Grab Sample No. IF17

Infaunal Grab Sample No. IF18

Infaunal Grab Sample No. IF19

APPENDIX 8. EPIBENTHIC TRAWL PHOTOGRAPHS

Epibenthic Trawl Sample No. 1

Epibenthic Trawl Sample No. 2

Epibenthic Trawl Sample No. 3

APPENDIX 9. EPIBENTHIC TRAWL FISH LENGTH MEASUREMENTS

Site	Species	Length (mm)
BT1	Limanda limanda	144
BT1	Limanda limanda	156
BT1	Limanda limanda	36
BT1	Limanda limanda	94
BT1	Limanda limanda	106
BT1	Limanda limanda	97
BT1	Limanda limanda	103
BT1	Limanda limanda	100
BT1	Limanda limanda	96
BT1	Limanda limanda	90
BT1	Limanda limanda	136
BT1	Limanda limanda	106
BT1	Limanda limanda	94
BT1	Limanda limanda	110
BT1	Limanda limanda	95
BT1	Limanda limanda	103
BT1	Limanda limanda	72
BT1	Limanda limanda	148
BT1	Limanda limanda	179
BT1	Limanda limanda	165
BT1	Limanda limanda	224
BT1	Limanda limanda	154
BT1	Limanda limanda	164
BT1	Limanda limanda	144
BT1	Limanda limanda	165
BT1	Limanda limanda	148
BT1	Limanda limanda	145
BT1	Limanda limanda	200
BT1	Myxocephalus scorpius	209
BT1	Myxocephalus scorpius	171
BT1	Myxocephalus scorpius	118
BT1	Pleuronectes platessa	126
BT1	Pleuronectes platessa	130
BT1	Pleuronectes platessa	130
BT1	Pleuronectes platessa	106
BT1	Pleuronectes platessa	139
BT1	Pleuronectes platessa	129
BT1	Pleuronectes platessa	125
BT1	Pleuronectes platessa	167
BT1	Pleuronectes platessa	146
BT1	Pleuronectes platessa	127

Site	Species	Length (mm)
BT1	Pleuronectes platessa	147
BT1	Pleuronectes platessa	166
BT1	Eutrigla gurnardus	124
BT1	Gadus morhua	57
BT1	Gadus morhua	47
BT1	Gadus morhua	50
BT2	Limanda limanda	206
BT2	Limanda limanda	139
BT2	Limanda limanda	179
BT2	Limanda limanda	64
BT2	Limanda limanda	111
BT2	Limanda limanda	127
BT2	Limanda limanda	183
BT2	Limanda limanda	113
BT2	Limanda limanda	127
BT2	Limanda limanda	113
BT2	Limanda limanda	206
BT2	Limanda limanda	67
BT2	Limanda limanda	237
BT2	Limanda limanda	175
BT2	Limanda limanda	118
BT2	Limanda limanda	116
BT2	Limanda limanda	127
BT2	Limanda limanda	73
BT2	Limanda limanda	152
BT2	Limanda limanda	199
BT2	Limanda limanda	121
BT2	Limanda limanda	71
BT2	Limanda limanda	70
BT2	Limanda limanda	129
BT2	Limanda limanda	68
BT2	Limanda limanda	133
BT2	Limanda limanda	126
BT2	Limanda limanda	65
BT2	Limanda limanda	53
BT2	Limanda limanda	65
BT2	Limanda limanda	55
BT2	Limanda limanda	127
BT2	Limanda limanda	115
BT2	Limanda limanda	220
BT2	Limanda limanda	40
BT2	Limanda limanda	115

Site	Species	Length (mm)
BT2	Limanda limanda	68
BT2	Limanda limanda	76
BT2	Limanda limanda	80
BT2	Limanda limanda	62
BT2	Limanda limanda	68
BT2	Hippoglossoides platessoides	225
BT2	Pleuronectes platessa	142
BT2	Pleuronectes platessa	110
BT2	Pleuronectes platessa	100
BT2	Pleuronectes platessa	85
BT2	Pleuronectes platessa	85
BT2	Pleuronectes platessa	93
BT2	Pleuronectes platessa	88
BT2	Pleuronectes platessa	86
BT2	Pleuronectes platessa	86
BT2	Pleuronectes platessa	89
BT2	Pleuronectes platessa	110
BT2	Pleuronectes platessa	126
BT2	Pleuronectes platessa	89
BT2	Pleuronectes platessa	88
BT2	Pleuronectes platessa	87
BT2	Pleuronectes platessa	77
BT2	Pleuronectes platessa	116
BT2	Pleuronectes platessa	90
BT2	Agonus cataphractus	52
BT2	Agonus cataphractus	65
BT2	Agonus cataphractus	56
BT2	Agonus cataphractus	70
BT2	Pomatoschistus norvegicus / lozanoi	48
BT2	Pomatoschistus norvegicus / lozanoi	47
BT2	Pomatoschistus norvegicus / lozanoi	41
BT3	Merlangius merlangus	195
BT3	Hippoglossoides platessoides	192
BT3	Hippoglossoides platessoides	166
BT3	Hippoglossoides platessoides	130
BT3	Hippoglossoides platessoides	97
BT3	Pleuronectes platessa	194
BT3	Pleuronectes platessa	121
BT3	Pleuronectes platessa	254
BT3	Limanda limanda	180
BT3	Limanda limanda	130
BT3	Limanda limanda	117

Site	Species	Length (mm)
BT3	Limanda limanda	135
BT3	Limanda limanda	118
BT3	Limanda limanda	105
BT3	Limanda limanda	72
BT3	Agonus cataphractus	76
BT3	Agonus cataphractus	74
BT3	Agonus cataphractus	79
BT3	Agonus cataphractus	60
BT3	Agonus cataphractus	68
BT3	Callionymus maculatus	90
BT3	Callionymus maculatus	50
BT3	Callionymus maculatus	49
BT3	Ammodytes	126
BT3	Pomatoschistus norvegicus / lozanoi	50
BT3	Pomatoschistus norvegicus / lozanoi	49
BT3	Pomatoschistus norvegicus / lozanoi	44
BT3	Pomatoschistus norvegicus / lozanoi	47

APPENDIX 10. SEDIMENT CONTAMINANT RESULTS

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

 Date:
 05 August 2011

 Customer:
 H_UNIHULL_HUL

 Sample Delivery Group (SDG):
 110725-52

Your Reference: ZBB776
Location: Firth of Forth - Cable Route

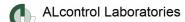
Report No: 143792

This report has been revised and directly supersedes 142887 in its entirety.

We received 5 samples on Friday July 22, 2011 and 5 of these samples were scheduled for analysis which was completed on Friday August 05, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.


Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: 110725-52 Location: Firth of Forth - Cable Route Order Number: FJ023335 H_UNIHULL_HUL-6 143792 Job: **Customer:** University of Hull Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3948650	C1-ECR			27/06/2011
3948651	C2-ECR			19/04/2011
3948652	C3-ECR			19/04/2011
3948654	C4-ECR			19/04/2011
3948655	C5-ECR			19/04/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

110725-52 FJ023335 SDG: Location: Firth of Forth - Cable Route Order Number: Job: H_UNIHULL_HUL-6 Customer: University of Hull 143792 Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Client Reference: ZBB776		Attention		An	n L	_eig	ntor	1
SOLID Results Legend X Test	Lab Sample I	No(s)	3948650		3948651	3948652		3948655 3948654
No Determination Possible	Custome Sample Refer	C2-ECR C1-ECR		C2-ECR	C3-ECR		C4-ECR	
	AGS Refere							
	Depth (m							
	Containe		60g VOC (ALE215) 250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215) 250g Amber Jar (AL 60g VOC (ALE215)
EPH by FID	All	NDPs: 0 Tests: 5	X	X		X	X	X
GRO by GC-FID (S)	All	NDPs: 0 Tests: 5	×		X)		x x
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 5	X	X		X	X	X
	Cadmium	NDPs: 0 Tests: 5	X	X		X	X	X
	Chromium	NDPs: 0 Tests: 5	X	X		X	X	X
	Copper	NDPs: 0 Tests: 5	X	X		X	X	X
	Lead	NDPs: 0 Tests: 5	X	X		X	X	X
	Mercury	NDPs: 0 Tests: 5	X	X		X	X	X
	Nickel	NDPs: 0 Tests: 5	X	X		X	X	X
	Selenium	NDPs: 0 Tests: 5	X	X		X	X	X
	Zinc	NDPs: 0 Tests: 5	X	X		X	X	X
Organotins on soils*	All	NDPs: 0 Tests: 5	X	X		X	X	X
PAH by GCMS	All	NDPs: 0 Tests: 5	X	X		X	X	X
PCBs by GCMS	All	NDPs: 0 Tests: 5	X	X		X	X	X
Sample description	All	NDPs: 0 Tests: 5	X	X		X	X	x

Validated

 SDG:
 110725-52

 Job:
 H_UNIHULL_HUL-6

 Client Reference:
 ZBB776

Location: Firth of F
Customer: University
Attention: Ann Leig

Firth of Forth - Cable Route University of Hull Ann Leighton Order Number: Report Number: Superseded Report: FJ023335 143792 142887

Sample Descriptions

Grain Sizes

very fine	<0.0)63mm	fine	0.063mm - 0	.1mm	medium	0.1mm	- 2mm	coarse	2mm - 10	mm	very coarse	>10mm
Lab Sample	No(s)	Custom	er Sample R	ef. Dep	oth (m)	Co	olour	Description	1 6	Grain size	Inclusi	ions I	nclusions 2
394865	0		C1-ECR			Dark	Brown	Sand	0	.1 - 2 mm	Non	е	None
394865	51		C2-ECR			Dark	Brown	Silt	0.00	63 - 0.1 mm	Non	е	None
394865	2		C3-ECR			Dark	Brown	Sand	0	.1 - 2 mm	Non	е	None
394865	i4		C4-ECR			Dark	Brown	Sand	0	.1 - 2 mm	Non	е	None
394865	5		C5-ECR			Dark	Brown	Silt	0.00	63 - 0.1 mm	Non	е	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

CERTIFICATE OF ANALYSIS

110725-52 H_UNIHULL_HUL-6 Firth of Forth - Cable Route FJ023335 SDG: Location: Order Number: Job: University of Hull 143792 **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Results Legend	(Customer Sample R	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR	
# ISO17025 accredited. M mCERTS accredited.								
§ Non-conforming work.		Depth (m)						
aq Aqueous / settled sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	27/06/2011	19/04/2011	19/04/2011	19/04/2011	19/04/2011	
* Subcontracted test.		Date Received	22/07/2011	22/07/2011	22/07/2011	22/07/2011	22/07/2011	
** % recovery of the surrogate standa		SDG Ref	110725-52	110725-52	110725-52	110725-52	110725-52	
check the efficiency of the method. results of individual compounds wi		Lab Sample No.(s)	3948650	3948651	3948652	3948654	3948655	
samples aren't corrected for the rec		AGS Reference						
(F) Trigger breach confirmed								
Component	LOD/Unit	ts Method						
EPH Surrogate %	%	TM061	96.3	105	103	103	101	
recovery**			M	#	M	М	#	
EPH Range >C10 - C40	<35	TM061	424	86.9	<35	<35	36.2	
3	mg/kg		М	#	М	М	#	
PCB congener 28	<3 µg/k		<3	<3	<3	<3	<3	
1 OB congener 20	10 ру/к	ig IIIII00	M	-U	M	M	#	
DCD50	42	TN44C0						
PCB congener 52	<3 µg/k	g TM168	<3	<3 	<3	<3	<3 	
707	- "		M	#	M	M	#	
PCB congener 101	<3 µg/k	(g TM168	<3	<3	<3	<3	<3	
			M	#	M	M	#	
PCB congener 118	<3 µg/k	kg TM168	<3	<3	<3	<3	<3	
			М	#	M	М	#	
PCB congener 138	<3 µg/k	g TM168	<3	<3	<3	<3	<3	
	- 25,11	~ ······•	M	#	М	M	#	
PCB congener 153	<3 µg/k	g TM168	<3	<3	<3	<3	<3	
. Ob congener 100	- υ μg/κ	.9 1W1100	\sqrt{3}	\s\ #	~3 M	M	\ #	
DCD congress 400	-0 ····"	C T14400						
PCB congener 180	<3 µg/k	g TM168	<3	<3	<3	<3	<3	
			M	#	M	M	#	
Sum of detected PCB 7	μg/kg	TM168	none detected					
Congeners								
PCB congener 105	<3 µg/k	g TM168	<3	<3	<3	<3	<3	
	"	-	М	#	М	М	#	
PCB congener 156	<3 μg/k	g TM168	<3	<3	<3	<3	<3	
1 CB congener 150	-5 μg/κ	ig HW100	M	, 5	M	M	,5	
Araonia	<0.6	TM181	10.3	4.72	12.3	9	4.99	
Arsenic								
	mg/kg		M	#	M	M	#	
Cadmium	<0.02	TM181	0.383	0.293	0.27	0.277	0.245	
	mg/kg		M	#	M	M	#	
Chromium	<0.9	TM181	17.6	90.6	23.8	21.4	19.5	
	mg/kg		M	#	M	М	#	
Copper	<1.4	TM181	5.86	85.9	15.5	9.54	9.08	
	mg/kg		М	#	М	M	#	
Lead	<0.7	TM181	16.3	8.92	6.39	9.42	6.56	
Leau	1		10.5 M	0.92 #	0.59 M	9.42 M	0.50 #	
Management	mg/kg							
Mercury	<0.14		<0.14	<0.14	<0.14	<0.14	<0.14	
	mg/kg		M	#	M	M	#	
Nickel	<0.2	TM181	11.5	14.3	10.1	6.78	7.74	
	mg/kg		M	#	M	M	#	
Selenium	<1 mg/k	kg TM181	<1	<1	<1	<1	<1	
			#	#	#	#	#	
Zinc	<1.9	TM181	31.1	47.9	22.5	21.9	23.1	
	mg/kg		М	#	M	M	#	
	.,,							
		+						
	-	+						
		_						
		1						
		+						
	-	+						
		_						
		T						
		 						
		+						

Validated

110725-52 FJ023335 SDG: Location: Firth of Forth - Cable Route Order Number: H_UNIHULL_HUL-6 University of Hull 143792 Job: **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

GRO by GC-FID (S) Results Legend Customer Sample R C1_FCR C2_FCR C3_FCR C4_FCR C5_FCR											
# ISO17025 accredited.		Customer Sample R	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR				
M mCERTS accredited. § Non-conforming work.		Bouth (m)									
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid				
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	27/06/2011	19/04/2011	19/04/2011	19/04/2011	19/04/2011				
** % recovery of the surrogate standar		Date Received SDG Ref	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52				
check the efficiency of the method. results of individual compounds with		Lab Sample No.(s)	3948650	3948651	3948652	3948654	3948655				
samples aren't corrected for the rec (F) Trigger breach confirmed	overy	AGS Reference									
Component	LOD/Uni	ts Method									
GRO >C5-C12	<44	TM089	<44	<44	<44	<44	<44				
Methyl tertiary butyl ether	µg/kg		∠E	<5	-E	<5	<5				
(MTBE)	<5 µg/l	kg TM089	<5 #	\5 #	<5 #	\ 5	\ 5				
Benzene	<10	TM089	<10	<10	<10	<10	<10				
	µg/kg		M	#		M	#				
Toluene	<2 µg/ŀ	kg TM089	<2 M	<2 #	<2 M	<2 M	<2 #				
Ethylbenzene	<3 µg/l	kg TM089	<3	<3	<3	<3	<3				
	ο μg/.		M	#		M	#				
m,p-Xylene	<6 µg/ŀ	kg TM089	<6	<6	<6	<6	<6				
o Vylono	<2 ua/l	ra TM090	M	#		M	#				
o-Xylene	<3 µg/l	kg TM089	<3 M	<3 #	<3 M	<3 M	<3 #				
sum of detected mpo	μg/kg	TM089	none detected								
xylene by GC											
sum of detected BTEX by	µg/kg	TM089	none detected								
GC											
	<u></u>				<u> </u>						
	<u> </u>										
		_									
		+			-						
		 									
		1]			
		_									

Validated

110725-52 H_UNIHULL_HUL-6 Firth of Forth - Cable Route FJ023335 SDG: Location: Order Number: Job: University of Hull 143792 **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

	it Reference. ZDD7			Attention. An			Ouperscaed Repe		
Orgai	notins on soils* Results Legend								
	Results Legend	Cı	stomer Sample R	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR	
#	ISO17025 accredited.			0.20.0	02 20.1	00 20.1	0.20.0	00 20.1	
М	mCERTS accredited.								
§	Non-conforming work.		Depth (m)						
aq	Aqueous / settled sample.		Sample Type	Soil/Solid	Soil/Solid	Cail/Calid	Soil/Solid	Soil/Solid	
	Dissolved / filtered sample.		Sample Type			Soil/Solid			
	Total / unfiltered sample.		Date Sampled	27/06/2011	19/04/2011	19/04/2011	19/04/2011	19/04/2011	
*	Subcontracted test.		Date Received	22/07/2011	22/07/2011	22/07/2011	22/07/2011	22/07/2011	
**	% recovery of the surrogate standa	rd to	SDG Ref	110725-52	110725-52	110725-52	110725-52	110725-52	
	check the efficiency of the method.	The	.ab Sample No.(s)	3948650	3948651	3948652	3948654	3948655	
	results of individual compounds wi								
(F)	samples aren't corrected for the rec	covery	AGS Reference						
	Trigger breach confirmed								
Compo	onent	LOD/Units	Method						
Tribut	ul tin*	<0.02	SUB	<5	<5	<5	<5	<5	
Hibut	yı ull		300	~5				~5	
		μg/kg							
Triphe	enyl tin*	<0.05	SUB	<50	<50	<50	<50	<50	
mpine	,,,,,		000	-00	.00	1		.00	
		μg/kg							
Dibuty	/l tin*	<0.02	SUB	<5	<5	<5	<5	<5	
2.241)			002	, and the second			Ĭ	Ĭ	
		μg/kg							
Tetrat	outyl tin*	<0.02	SUB	<5	<5	<5	<5	<5	
1				_	_	_	_	-	
		μg/kg							
		I	1						
		I	1						
		_	_						
		I	1						
		I	1						
		<u> </u>	1						
		I	1						
		I	1						
		—	+						
		I	1						
		I	1						
		 	1						
1									
		I	1						
		I	1						
		I	1						
		I	1						
		I	1						
1									
		I	1						
		I	1						
		I	1						
		I	1						
		I	1						
			_						
		I	1						
		I	1						
		 							
		I	1						
		I	1						
		 	+						
		I	1						
			_						
		1	1						
		I	1						
			_						
		1	1						
		1	1						
			_						
1		I	1						
1		I	1						
		I	1						

Validated

110725-52 FJ023335 SDG: Location: Firth of Forth - Cable Route Order Number: Job: H_UNIHULL_HUL-6 University of Hull 143792 **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

PAH by GCMS										
Results Legend # ISO17025 accredited.	C	Sustomer Sample R	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR			
M mCERTS accredited. § Non-conforming work.										
aq Aqueous / settled sample.		Depth (m) Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid			
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	27/06/2011	19/04/2011	19/04/2011	19/04/2011	19/04/2011			
* Subcontracted test. ** % recovery of the surrogate standa	rd to	Date Received	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52	22/07/2011 110725-52			
check the efficiency of the method. results of individual compounds wi	The	SDG Ref Lab Sample No.(s)	3948650	3948651	3948652	3948654	3948655			
samples aren't corrected for the red		AGS Reference								
(F) Trigger breach confirmed Component	LOD/Units	s Method								
Naphthalene-d8 %	%	TM218	92.1	96.1	93.4	93.8	94.9			
recovery**										
Acenaphthene-d10 %	%	TM218	91.5	95.4	93.2	92.4	94.2			
recovery** Phenanthrene-d10 %	%	TM218	88.2	91.8	89.6	88.8	90.2			
recovery**	/0	1101210	00.2	91.0	09.0	00.0	90.2			
Chrysene-d12 %	%	TM218	83.3	86.7	84.6	83.6	85.1			
recovery**										
Perylene-d12 % recovery**	%	TM218	83.8	87.3	84	82.8	84.3			
Naphthalene	<9 µg/kg	g TM218	<9	<9	15.1	<9	<9			
. Tapinanaiono	o µg/	9	M	#	М	M	#			
Acenaphthylene	<12	TM218	<12	<12	<12	<12	<12			
Assaulth	μg/kg	T T 40.10	M	#	M	M	#			
Acenaphthene	<8 µg/kg	g TM218	<8 M	<8 #	<8 M	<8 M	<8 #			
Fluorene	<10	TM218	<10	<10	<10	<10	<10			
	μg/kg		M	#	M	M	#			
Phenanthrene	<15	TM218	24.9	<15	31	<15	<15			
Anthrocon	μg/kg	TM218	<16	# <16	<16	<16	# <16			
Anthracene	<16 µg/kg	1101218	< 16 M	<16 #	<16 M	<16 M	<10 #			
Fluoranthene	<17	TM218	25.2	<17	<17	<17	<17			
	μg/kg		M	#	М	M	#			
Pyrene	<15	TM218	24.4	23.4	<15	<15	<15			
Dana (a) anthur and	µg/kg	TMO40	M	#	M	M	# <14			
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14 #	<14 M	<14 M	< 14 #			
Chrysene	<10	TM218	<10	13.5	<10	<10	<10			
	μg/kg		M	#	M	M	#			
Benzo(b)fluoranthene	<15	TM218	<15	23.8	<15	<15	<15			
Benzo(k)fluoranthene	μg/kg <14	TM218	<14	# <14	M_	<14	# <14			
Benzo(k)ndorantnene	μg/kg	1101210	M	*	~14 M	M	*			
Benzo(a)pyrene	<15	TM218	<15	<15	<15	<15	<15			
	μg/kg		M	#	M	M	#			
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 M	<18 #	<18 M	<18 M	<18 #			
Dibenzo(a,h)anthracene	μg/kg <23	TM218	<23	<23	<23	<23	<23			
2.5020(4,)4	μg/kg		M	=5	M	M	#			
Benzo(g,h,i)perylene	<24	TM218	<24	<24	<24	<24	<24			
DALL Tatal Data start	μg/kg	T14040	M		M	M	#			
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	<118	<118	<118	<118	<118			
COLITATO	рулку									
		1								

Validated

110725-52 Location: Firth of Forth - Cable Route FJ023335 Order Number: H_UNIHULL_HUL-6 143792 Job: **Customer:** University of Hull Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Extractable Petroleum Hydrocarbons (EPH) By GC-FID EPH (DRO) (C10-C40)

Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3981233	C5-ECR		SOLID	36.2	No Identification Possible
3981367	C4-ECR		SOLID	<35.0	No Identification Possible
3981443	C3-ECR		SOLID	<35.0	No Identification Possible
3981493	C2-ECR		SOLID	86.9	No Identification Possible
3981840	C1-ECR		SOLID	424	PAHS

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics):- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

Validated

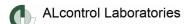

SDG: 110725-52 Location: Firth of Forth - Cable Route FJ023335 Order Number: H_UNIHULL_HUL-6 143792 Job: **Customer:** University of Hull Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Table of Results - Appendix

REPOR	REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7										
NDP	No Determination Possible	#	ISO 17025 Accredited		Subcontracted Test	М	MCERTS Accredited				
NFD	No Fibres Detected	PFD	Possible Fibres Detected		Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)				

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
SUB		Subcontracted Test		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

110725-52 FJ023335 SDG: Location: Firth of Forth - Cable Route Order Number: H_UNIHULL_HUL-6 University of Hull 143792 Job: **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Test Completion Dates

Lab Sample No(s)	3948650	3948651	3948652	3948654	3948655
Customer Sample Ref.	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR
AGS Ref.					
Depth					
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
EPH by FID	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011
GRO by GC-FID (S)	30-Jul-2011	30-Jul-2011	30-Jul-2011	30-Jul-2011	01-Aug-2011
Metals by iCap-OES (Soil)	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011
Organotins on soils*	05-Aug-2011	05-Aug-2011	05-Aug-2011	05-Aug-2011	05-Aug-2011
PAH by GCMS	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011
PCBs by GCMS	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011
Sample description	28-Jul-2011	28-Jul-2011	28-Jul-2011	28-Jul-2011	28-Jul-2011

16:19:52 05/08/2011

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

Report No:

ALcontrol Hawarden Unit7-8, Hawarden Business Park Manor Road (off Manor Lane) Hawarden, Deeside Flintshire, CH5 3US

Date Received: 27/07/2011 Date Tested: 02/08/2011 to 05/08/2011

11-23799/1

Date Issued: 05/08/2011

Page: 1 of 2

For the attention of: Alcontrol Chester (Schedulers) By email

5 soil samples received from ALcontrol Hawarden (O/N: 179683; Project: 110725-52) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory reference	Client reference	Other reference	tributyltin (low level) ug/kg Sn 56573-85-4	triphenyltin (low level) ug/kg Sn 668-34-8	tetrabutyltin (low level) ug/kg Sn
193196	3955788	n/a	< 5.0	< 50.0	< 5.0
193197	3955821 C2	n/a	< 5.0	< 50.0	< 5.0
193198	3955876	n/a	< 5.0	< 50.0	< 5.0
193199	3955909	n/a	< 5.0	< 50.0	< 5.0
193200	3955951	n/a	< 5.0	< 50.0	< 5.0

Report No: 11-23799/1

Date Received: 27/07/2011

Date Tested: 02/08/2011 to 05/08/2011

Date Issued: 05/08/2011

Page: 2 of 2

Laboratory reference	Client reference	Other reference	dibutyltin (low level) ug/kg Sn 1002-53-5
193196	3955788 C1-ECR	n/a	< 5.0
193197	3955821 C2 ECR	n/a	< 5.0
193198	3955876 C3-ECR	n/a	< 5.0
193199	3955909 C4-ECR	n/a	< 5.0
193200	3955951 C5-ECR	n/a	< 5.0

Robin T R Macdonald

Operational Director

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

110725-52 F.I023335 SDG Location: Firth of Forth - Cable Route Order Number: H UNIHULL HUL-6 University of Hull 143792 Job: **Customer:** Report Number: Client Reference: ZBB776 Attention: Ann Leighton Superseded Report: 142887

Appendix

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4-C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTIHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID GCFID
EPH (MINOIL)	D&C	HEXANEACETONE	END OVEREND	GCFID GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40) EZ FLASH	WET	HEXANEACETONE	SHAKER	GCEZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	9C-EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	extraction Method	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
EPH .	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
EPH CWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
MINERAL OIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 700 NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
svoc	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST COP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TPH byINFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERAL OIL byIR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amosite	BrownAsbestos
Orodoblite	Blue Asbestos
Fibrous Adinoite	=
Florous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

INSTITUTE of ESTUARINE and COASTAL STUDIES

Firth of Forth (Round 3) Offshore Wind Farm Development: Post Survey Report Benthic Services

Report to Seagreen Wind Energy Ltd.

Institute of Estuarine and Coastal Studies University of Hull

12th July 2012

Author(s): M. J. Bailey, A. Leighton, T. M. Smith & S. Thomson

Report: ZBB776-P1-F-2012

Institute of Estuarine & Coastal Studies (IECS)

The University of Hull Cottingham Road Hull HU6 7RX UK

Tel: ⁺44 (0)1482 464120 Fax: ⁺44 (0)1482 464130

E-mail: iecs@hull.ac.uk

Web site: http://www.hull.ac.uk/iecs

Seagreen Wind Energy Ltd.

Firth of Forth (Round 3) Offshore **Wind Farm Development: Post Survey Report Benthic Services**

12th July 2012

Reference Number: ZBB776-P1-F-2012

This report has been prepared by the Institute of Estuarine and Coastal Studies, with all reasonable care, skill and attention to detail as set within the terms of the Contract with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

Printed on 100% recycled paper

TABLE OF CONTENTS

TABLE OF CONTENTS	
1. Introduction	1
2. METHODS	2
2.1 Benthic Infaunal Samples	2
2.1.1 Sample Collection	2
2.1.2 Post Survey Analysis	3
2.2 Epifaunal Trawl Samples	5
2.2.1 Sample Collection	5
3. Results	7
3.1 Survey Summary and Area Map	
3.1.1 Benthic Survey	
3.1.2 Epibenthic Survey	
3.1.3 Supporting Video Footage	
3.2 Benthic Infaunal Data	
3.2.1 Species of Conservation Interest	
3.3 Epibenthic Trawl Data	
3.4 Particle Size Analysis and Organic Content Data	12
3.5 Sediment Contaminant Data	
APPENDIX 1. BENTHIC GRAB PHOTOGRAPHS	17
APPENDIX 2. EPIBENTHIC TRAWL PHOTOGRAPHS	47
APPENDIX 3. VIDEO ANALYSIS RECORD SHEETS	59
APPENDIX 4. SEDIMENT CONTAMINATION REPORT	72

1. INTRODUCTION

SSE Renewables (SSER) and Flour (UK) Ltd under the Limited company of Seagreen Wind Energy have been awarded the Firth of Forth Round 3 Zone for offshore wind developments. Seagreen aim to deliver a generation capacity of 3.5GW across an area of 2,852km² with the development being undertaken in three phases.

The Institute of Estuarine & Coastal Studies (IECS) was commissioned by Seagreen Wind Energy Limited to undertake an offshore benthic survey. This survey work and associated sample analysis was designed to enable characterisation of the benthic and epibenthic ecology of the area, the physical characteristics of the sample sites, and the chemical properties of sediments sampled.

In order to provide adequate sampling coverage of the proposed development site Seagreen Wind Energy Ltd., in conjunction with Royal Haskoning, identified 150 benthic sampling sites and 50 video and epibenthic trawl sites within the Phase 1 area, in addition to 3 Met Mast sites across the Phase 1 & 2 areas. All survey work was completed between February and April 2011 and the subsequent sample analysis completed by August 2011.

The following report documents the survey work completed in the Phase 1 area and the sediment, infaunal and epifaunal results. Data analysis was not included within the scope of this report.

2. METHODS

2.1 Benthic Infaunal Samples

2.1.1 SAMPLE COLLECTION

A total of 150 benthic stations were identified by Seagreen in the Phase 1 area as well as three Met Mast sites across Phases 1 and 2. A mini Hamon grab was deployed to collect a single replicate sample for infaunal analysis (Plate 1), from which a PSA sample was also taken, as per the specification. A second grab was collected for contaminant analysis. A full survey log was maintained throughout the survey detailing time of sampling, position (DGPS derived), station, water depth, volume of sample, physical characteristics of the sample, digital image number (cross referencing (QA)), presence of *Sabellaria spinulosa* and any other relevant features.

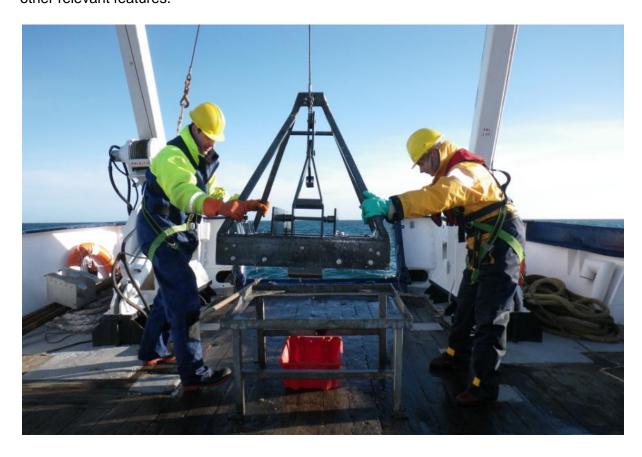


Plate 1. Retrieval of mini hamon grab on board MV Clupea.

The infaunal samples were processed on a sequential basis utilising a nested sieving technique. Each acceptable sample was removed from the grab, photographed with an internal label, placed into a hopper and sieved onboard through a nest of 5mm and 1mm sieves. A nested sieve approach was used in order to separate large sediment types and reduce damage to invertebrates. The sieved residue was gently back-washed into a sealable container and borax buffered 4% formo-saline solution containing Rose Bengal vital stain added as a fixative. Each sample was labelled clearly on the bucket and the internal label placed in the container, noting the client, survey, date and station number.

The PSA and organic carbon samples were stored in separate plastic bags, which were clearly labelled, and frozen onboard the vessel. The samples were kept frozen during transportation back to the IECS laboratory. At the laboratory the samples were stored in the freezer. The IECS methodology followed the protocol given by Rees *et al.* (1990)¹ & (1993)², Davies *et al.* (2001)³, Boyd (2002)⁴ and Proudfoot *et al.* (2004)⁵.

Valid Sample Criteria

Samples comprising hard substrata (e.g. broken shell, rocks or gravel) were rejected if a minimum sample volume of 5 litres was not achieved. When samples were within these limits, each sample was photographed (digital image) and subsequently processed. Five attempts were made at each site to collect a valid infaunal sample, however if a sample with a volume of <4 litres was retained, the VideoRay was deployed at the site in order to obtain supporting video footage of the seabed.

2.1.2 POST SURVEY ANALYSIS

Benthic infaunal samples

General Requirements

All members of IECS undertaking the sample sorting and taxonomic analysis phases of the laboratory work were qualified marine biologists or ecologists. Those staff carrying out the taxonomic analysis had at least eight years marine biological experience with a wide range of expertise in the field of benthic sample analysis and interpretation. The analyses were quality checked by the Senior Benthic Taxonomist who has more than 10 years experience.

Sample Sorting

The procedure for sieving and sorting benthic core samples was as follows:

Formalin was decanted from the sample through a 212µm sieve using appropriate exposure prevention controls as detailed in the Health & Safety documentation. Material retained on the sieve was washed back into the sample. The sample was subsequently washed through

¹ Rees, H.L., Moore, D.C., Pearson, T.H., Elliot, M., Service, M., Pomfret, J. & Johnson, D. (1990). *Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites*. Scottish Fisheries Information Pamphlet, No. 18: 78pp.

² Rees, H.L. & Service, M.A. (1993). Development of improved strategies for monitoring the epibenthos at sewage sludge disposal sites. In: *Analysis and interpretation of benthic community data at sewage sludge disposal sites*. Aquatic Environmental Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, No. 37: 55-61.

³ Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M. (2001) *Marine Monitoring Handbook*, 405pp. JNCC Peterborough, UK.

⁴ Boyd, S.E. (2002). *Guidelines for the conduct of benthic studies at aggregate dredging sites*. Department for Transport, Local Government and the Regions (DTLR)/CEFAS: London, UK. 117 pp.

⁵ Proudfoot, R.K, Elliott, M., Dyer, M.F., Barnett, B.E., Allen, J.H., Proctor, N.V., Cutts, N.D., Nikitik, C., Turner, G., Breen, J., Hemingway, K.L. & Mackie, T. (1997). *Proceedings of the Humber benthic field methods workshop*, University of Hull.

a 20cm diameter 1mm mesh stainless steel sieve to remove excess fixative as well as fine mud and sand particles. The residue from the 1mm sieve was then gently washed into a white tray. Water was added to the tray and the contents examined by eye using a 1.5x illuminated magnifier. Large specimens were removed and sorted into major phyla. The fauna derived were retained and stored by group in appropriately labelled containers, preserved using 70% Industrial Methylated Spirits (IMS) and passed on for identification.

Sieves and trays were washed thoroughly between samples to ensure there was no contamination of subsequent samples. During the sample processing phase a sample proforma was completed to include client, project, area, sample number, date, name of sorter and identifier, description of residue characteristics, notable features, sieve mesh size and whether any problems were encountered.

Taxonomic Identification

Identification was undertaken using Olympus SZX7 and SZ40 zoom microscopes with 10x and 20x eyepieces, giving a maximum magnification of up to 80x. An additional 2x objective was used to increase the potential magnification to 160x. Olympus BX41 compound microscopes were used for further magnification if necessary, up to 1000x.

Identification of infaunal samples was to the highest possible taxonomic separation (i.e. species). During identification, all individuals were initially separated into families, with part animals being assigned to families where possible. The macrofaunal animals were identified to species level using standard taxonomic keys, low and high power stereoscopic microscopes and dissection when necessary. Incomplete animals without anterior ends were not recorded as individuals to be included in the quantitative dataset. However, they were identified where possible and recorded as being present. Similarly, motile and colonial sessile epibenthic taxa and meiofauna were recorded but not included in the main quantitative data set.

IECS follow strict AQC procedures. In addition, regular cross reference identification was carried out by IECS' Senior taxonomists throughout the identification process. As IECS is part of the NMBAQC Scheme, the identification of any difficult specimens could have been undertaken following consultation and external verification from David Hall (Thomson Unicomarine). However, this service was not required during the processing stage.

The taxonomic literature used was essentially as given in and expanded from Rees *et al.* (1990)⁶ and reporting nomenclature used Howson and Picton (1997)⁷ and the World Register of Marine Species (WoRMS).

-

⁶ Rees, H.L., Moore, D.C., Pearson, T.H., Elliot, M., Service, M., Pomfret, J. & Johnson, D. (1990). Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites. *Scottish Fisheries Information Pamphlet*, No. 18: 78pp.

⁷ Howson, C.M. & Picton, B.E. (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas*. Ulster museum and the Marine Conservation Society.

Particle Size Analysis (PSA) samples

The particle size analysis was carried out using a combination of dry sieving and laser particle size analysis (for the fraction <1mm) using a Malvern Mastersizer 2000. The sediment samples were then split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment. The <1mm fraction of the sample was subsequently analysed using the Malvern Mastersizer 2000 and the >1mm fraction discarded. The second sub-sample was passed through a nest of sieves, including 1mm, 1.4mm, 2mm, 2.8mm, 5.6mm and 11.2mm. Each fraction, including the <1mm fraction, was then oven dried at 85°C for 24 hours and weighed. Data generated from these methods of analysis was merged and used to derive statistics such as mean grain size, bulk sediment classes (% silt, sand & gravel), skewness and sorting coefficient. These methods are consistent with the procedures identified at the NMBAQC PSA workshop on laboratory methods, which was held at the Cefas Lowestoft laboratory in July 2009.

Organic Carbon samples

Organic carbon was expressed as loss on ignition (percentage), following combustion at 475°C for four hours. The sample was oven dried at 85°C until the weight stabilised (± 0.001g) and the weight recorded. The sample was then placed in a muffle furnace at 475°C for four hours. Once the sample had cooled, it was re-weighed and the difference between the two weights was expressed as a percentage of the total sediment.

Sediment Contaminant samples

Contaminant samples were collected from the grab samples by scooping sediment directly into the containers. Nitrile gloves were worn to prevent sample contamination. Samples to test for organics were taken in glass containers as hydrocarbons can be lost through plastic. Samples to test for volatiles were collected in smaller containers so there was less headspace for them to be lost in. Samples for inorganics were taken using plastic containers. The containers used for each test were:

EPH by FID
 GRO by GC-FID
 Metals by iCap-OES
 Organotins
 PAH by GCMS
 PCBs by GCMS
 250g glass jar
 Plastic container
 250g glass jar
 250g glass jar
 250g glass jar

2.2 Epifaunal Trawl Samples

2.2.1 SAMPLE COLLECTION

A VideoRay system was deployed at each of the epifaunal trawl stations before sampling took place to verify the absence of any significant amount of habitat of conservation interest (i.e. *Sabellaria* biogenic reef) and provide additional information on the nature of the seabed. Full details of the drop down video sampling programme are the subject of a separate report (ZBB776-DDV-F-2012).

Following the deployment of the VideoRay, a 2m beam trawl with a 5m long net and 40mm mesh liner inside and 5mm (knot to knot) square mesh cod-end liner was deployed in close proximity to the video line. The trawl was lowered from the survey vessel to the seabed at the predetermined start point and towed for approximately 10-20 minutes over a path of approximately 500m while maintaining a speed of between 1 - 1.5 knots. The 2m Beam trawl was comprised of two 60mm x 500mm x 500mm steel detachable shoes, with a 2120mm steel tube brace. A tickler chain was attached to the footrope to provide extra weight to ensure valid samples were obtained.

The beam trawl was operated from the stern of the survey vessel using a towing line approximately three times the depth of the area. The trawl line was logged using DGPS at the start (lock of the winch) and end of the trawl (engagement of the winch). The 1m cod end with 5mm mesh was hauled aboard with the aid of a lifting rope to ensure the cod end could be lifted independently of the beam. A single tow was carried out at each identified trawl line.

The cod end was opened over a large fish box to contain the whole catch; the net was checked for any remaining epifauna and fish, before the cod end was re-fastened prior to redeployment at the next trawl site. The catch was roughly sorted on board with the fish species separated from the epifaunal invertebrates. A survey log was maintained at all times recording survey date, water depth at the start of the trawl line, time in and out of water, DGPS position (using Magellan ProMark3 GPS) and speed of survey vessel during trawling along with weather and sea condition and digital images.

IECS experience indicates that the quality of the catch greatly deteriorates under rough sea conditions. As such, IECS operated the beam trawl within a weather window resulting in wave heights less than 1.5m and wind speed of less than F3.

Photographs of all catches were taken after any large debris had been removed. Any large specimens were identified onboard the vessel, recorded, photographed and then returned to the water. The remaining catch was transferred to a clean labelled bucket and fixed using 4% formo-saline solution.

The fixed epifaunal invertebrates and fish were transferred to the IECS laboratory where they were separated to species level where possible and enumerated with examples of each species retained for a reference collection. The taxonomic literature used is essentially as given in Wheeler (1969⁸, 1978⁹) and Whitehead *et al.* (1984¹⁰). All fish were measured to the millimetre below (total length or an appropriate measure in case of species with extreme body shape; i.e. skates and rays). If catches were large, any species present at low density were identified and removed before a subsample was taken for length distribution of the more abundant species. A subsample (*c.* 30-50 fish) were measured to enable length frequency analysis. Any other observations from individual trawls (e.g. high amounts of shell, rocks, cobbles, weed and other debris, presence of ray egg cases, whelk eggs etc.) were recorded on the survey log.

⁸ Wheeler, A. (1969). *The fishes of the British Isles and North West Europe*. Michigan State University Press, 613pp.

⁹ Wheeler, A. (1977). Key to the Fishes of Northern Europe. Frederick Warne, London. 380pp.

¹⁰ Whitehead, P.J.P., Bauchot, M.L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.) (1984). *Fishes of the North-eastern Atlantic and the Mediterranean*, Vol. 1-3. UNESCO.

3. RESULTS

3.1 Survey Summary and Area Map

3.1.1 BENTHIC SURVEY

Over the course of four separate deployments between February and April 2011, the IECS survey team sampled all 153 benthic sites identified as priority sites, including sites G0 to G149 within the Phase 1 area and the three Met Mast sampling locations in Phases 1 and 2 (Figure 1). In total, 147 benthic infaunal and 147 PSA samples were collected, stored appropriately and returned to the IECS laboratory. In addition, 46 contaminant samples were collected.

No infaunal samples were retrieved from 6 sites (G34, G58, G123, G125, G135 and MM2) despite 5 attempts to collect a sample. In addition, no contaminant samples were retrieved from 3 sites (G56, G103 and G123), despite 5 attempts. At all 8 sites only a small amount of sediment was retrieved (<1 litre) due to the presence of either cobbles, boulders or compacted sediments. However, an approximate assessment of the sediment type was recorded and a VideoRay was deployed at each site to collect supporting video footage

At all sites where an infaunal sample was retained with a volume of <4 litres or no infaunal sample was collected, additional video footage was collected. Still images from the video footage and a sediment description are provided (Appendix 3). Edited video footage collected at each site has been provided on DVD.

The position of site G126 was moved approximately 60m from the original site and a benthic infaunal and PSA samples collected, as the original site was located in close proximity to a wreck. As such, both the skipper and survey team agreed that no survey equipment could be deployed at the original site for Health and Safety reasons, as well as the potential risk of damage or loss of survey equipment.

3.1.2 EPIBENTHIC SURVEY

A total of 50 video and epibenthic trawl sites were identified across the Phase 1 area. Video trawls were undertaken at all 50 proposed sites. However, during the video trawls *Sabellaria* was initially identified at sites V3 and V7, therefore no epibenthic trawls were undertaken at these sites (Figure 2).

A complete survey log was maintained throughout all deployments and photographs taken of each sample (Appendix 1 & 2). Survey logs are documented in the Post Survey reports (ZBB776-PSv1-F-2012 to ZBB776-PSv4-F-2012)

3.1.3 SUPPORTING VIDEO FOOTAGE

Infaunal samples containing <5 litres of sediment were classed as being undersized. Where necessary 5 attempts were made at each site to collect an infaunal sample of adequate size, however undersized samples were retained from 24 of the 147 sites where infaunal samples were retained. Infaunal samples containing 4 to 5 litres were classed as acceptable, however at 16 sites the infaunal samples contained <4 litres. At these sites the VideoRay was deployed in order gain additional information on the nature of the sea bed and support the undersized grab samples.

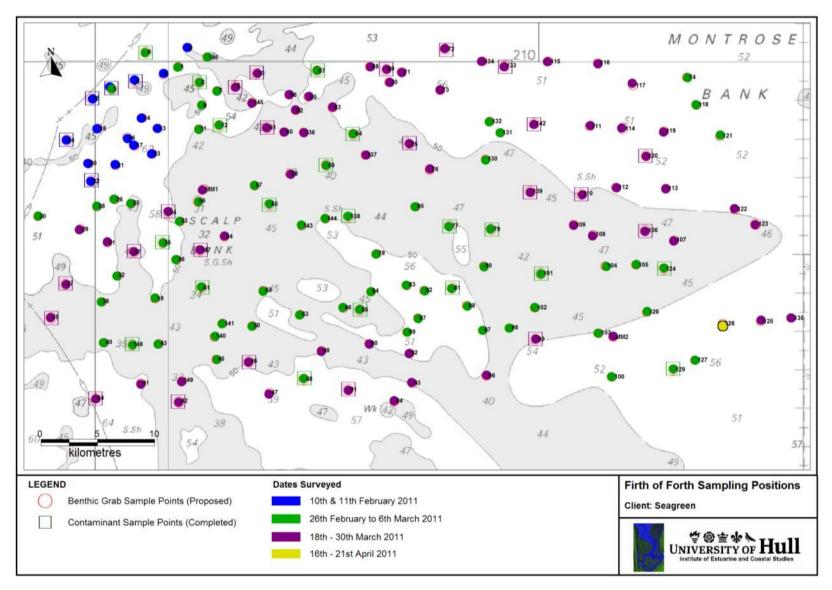


Figure 1. Proposed and actual benthic sample locations.

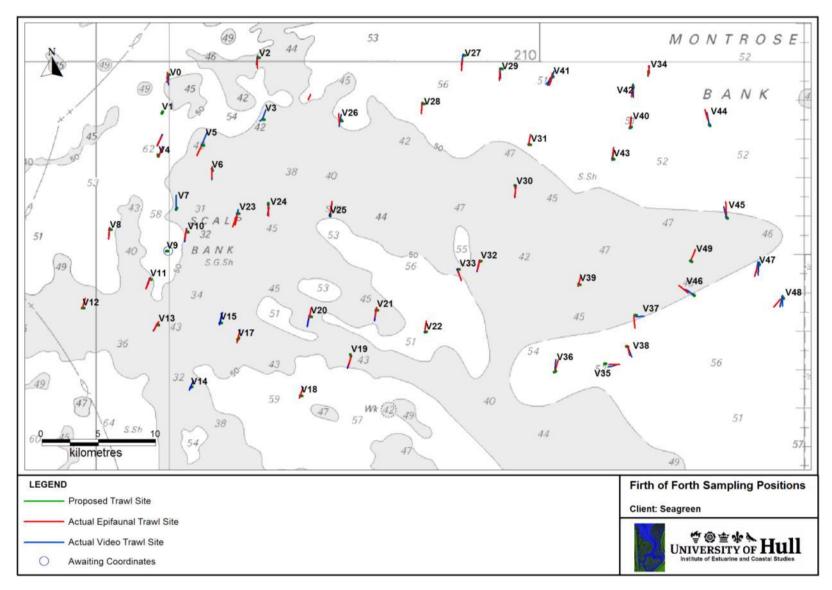


Figure 2. Proposed and actual video and epifaunal trawl locations.

3.2 Benthic Infaunal Data

Species diversity ranged from 11 to 141 species with an average of 54 species per sample. Abundance ranged from 20 to 939 individuals, with an average of 208, though 3 samples had 6,537, 8,560 and 9625 individuals, due to very high numbers of fish larvae and eggs.

The benthic infaunal dataset is not included within the appendix of this report, as it is too extensive. Therefore an electronic copy in excel format has been forwarded to Seagreen Wind Energy Ltd.

Two main community types across are evident across the Phase 1 area. The first, and most common community type recorded is associated with sandy mixed sediments resulting in low abundances and medium to high species diversity. The community is polychaete dominated in terms of abundance and diversity, and shares many species from the more sandy low diversity community. However, the mixed nature of the sediment allows encrusting fauna such as Hydroids, Bryozoans and Ascidians to flourish which also have their own associated fauna. Common species found from this community include the polychaetes *Pholoe spp.*, *Eulalia spp.*, *Eumida sanguinea*, *Glycera lapidum*, *Polydora spp.*, *Cirratulus cirratus*, *Pomatoceros triqueter*, *Hydroides norvegica*, *Ampharete lindstroemi*, *Polycirrus spp.*; the bivalves *Cochlodesma praetenue*, *Astarte montagui*, *Timoclea ovata*, *Dosinia exoleta*, *Hiatella arctica*; and the ascidian *Ascidiella scabra*.

The second community type is associated with sandy sediments resulting in low abundance and diversity values. Again this community is polychaete dominated though there is a higher proportion of Amphipoda and Bivalves. Common species found from this community include the polychaetes *Ophelia borealis*, *Chaetozone christiei*, *Spiophanes bombyx*, *Spio armata*, *Nephtys cirrosa*, the amphipod *Bathyporeia spp.*, and the bivalves *Abra prismatica*, *Cochlodesma praetenue*, *Moerella pygmaea* and *Spisula* spp. *Ammodytes spp.* is also present in a large number of these samples.

3.2.1 Species of Conservation Interest

Species of conservation importance identified across the Phase 1 area include the reef forming species *Sabellaria spinulosa* and *Modiolus modiolus*, as well as the bivalve *Arctica islandica*. Both *S. Spinulosa* and *A. islandica* were identified in the OSPAR list of Threatened and/or Declining Species and Habitats (Region II - Greater North Sea) and have been identified at sites across the survey area (Figure 3). *A. islandica* was recorded at 22 sites, however only juveniles were found, with a maximum abundance of 4 specimens per $0.1m^2$ grab sample. Abundance values for *S. spinulosa* range from 1 - 488 individuals per grab sample with small aggregations attached to pebbles. *M. modiolus* beds are listed as a habitat of conservation importance in the Priority Marine Features for Scottish territorial waters. However, only a single specimen has been recorded (site 103) and there has been no evidence of *M. modiolus* beds across the survey area.

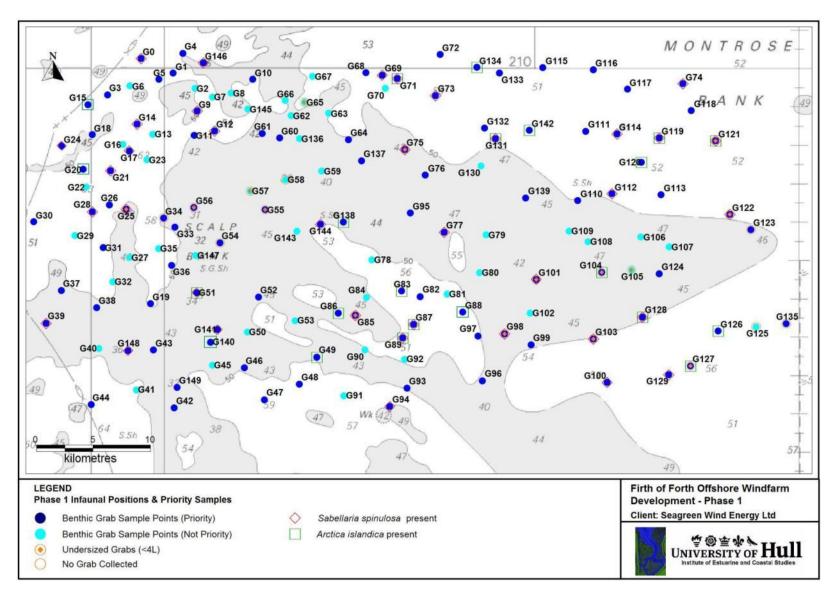


Figure 3. Species of conservation importance in the Phase 1 area.

3.3 Epibenthic Trawl Data

A diverse epifaunal community was recorded across the Phase 1 area with a total of 130 taxa identified within the epifaunal trawl samples. The most abundant taxa recorded included *Crangon allmanni*, *Pandalina brevirostris* and *Pandalus montagui* (shrimp), *Asterias rubens* (common starfish), *Ophiothrix fragilis* (common brittlestar) and *Galathea intermedia* (squat lobster). In terms of fish species the most abundant species were *Ammodytes* spp. (Sand eel), *Agonus cataphractus* (Pogge), *Limanda limanda* (Dab) and *Pomatoschistus lozanoi / norvegicus* (Lozano's goby / Norway goby). The full epibenthic dataset is provided in excel format.

A subsample of all fish species was retained and total length measurements recorded. All length measurements are provided in excel format.

3.4 Particle Size Analysis and Organic Content Data

Summarised statistics for Particle Size Analysis (PSA) and Organic Content (OC) are provided in Table 1. Full PSA data is provided in excel format. The Phase 1 area was dominated by sandy sediments containing varying degrees of gravel. Large boulders were occasionally recorded in sandy areas. The organic content of sediments collected was low, ranging from 0.20% to 2.49% with an average of 0.98%.

3.5 Sediment Contaminant Data

Sediment contaminant results are provided in Appendix 4.

Table 1. Particle Size Analysis and Organic Content Summary.

0:4-	Tautural Orașia	Con	nposition	(%)	00 (0/)	Descriptive S	Statistics (Fo	lk and Ward N	Method) (µm)	Descriptive Statistics (Folk and Ward Method) (ø)			
Site	Textural Group	Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G0	Gravelly Sand	14.6	78.0	7.4	0.81	392.8	4.623	0.265	2.127	1.348	2.209	-0.265	2.127
G1	Slightly Gravelly Sand	0.3	94.6	5.1	0.96	265.2	1.961	-0.191	1.603	1.915	0.972	0.191	1.603
G3	Slightly Gravelly Sand	0.2	90.1	9.7	0.88	185.2	2.099	-0.351	2.184	2.433	1.070	0.351	2.184
G4	Slightly Gravelly Sand	0.6	99.4	0.0	1.09	404.8	1.510	0.025	0.998	1.305	0.595	-0.025	0.998
G5	Slightly Gravelly Sand	1.6	97.1	1.3	1.22	311.7	1.859	0.189	1.228	1.682	0.894	-0.189	1.228
G9	Gravelly Sand	14.8	79.3	5.9	0.64	481.7	3.605	0.243	1.646	1.054	1.850	-0.243	1.646
G10	Gravelly Sand	10.1	89.9	0.0	1.05	469.9	2.367	0.376	1.360	1.090	1.243	-0.376	1.360
G11	Gravelly Sand	5.3	93.5	1.2	0.75	329.4	1.896	0.262	1.689	1.602	0.923	-0.262	1.689
G12	Gravelly Sand	8.3	83.6	8.1	0.72	335.2	3.179	-0.002	2.670	1.577	1.669	0.002	2.670
G14	Gravelly Sand	12.2	81.1	6.7	1.58	376.3	3.977	0.237	2.309	1.410	1.992	-0.237	2.309
G15	Slightly Gravelly Sand	3.1	91.0	5.9	1.31	266.1	2.392	-0.100	1.973	1.910	1.258	0.100	1.973
G17	Slightly Gravelly Sand	0.3	95.6	4.1	1.28	279.1	1.526	-0.064	1.028	1.841	0.610	0.064	1.028
G18	Slightly Gravelly Sand	1.1	98.9	0.0	1.32	332.6	1.480	0.054	1.015	1.588	0.565	-0.054	1.015
G19	Slightly Gravelly Sand	0.8	99.2	0.0	1.58	552.0	1.558	-0.078	0.882	0.857	0.639	0.078	0.882
G20	Slightly Gravelly Sand	0.2	99.8	0.0	1.21	314.6	1.448	0.037	0.977	1.669	0.534	-0.037	0.977
G21	Gravelly Sand	20.2	71.9	8.0	1.41	523.0	5.362	0.236	1.326	0.935	2.423	-0.236	1.326
G24	Gravelly Sand	7.7	89.5	2.8	1.37	314.8	2.328	0.339	1.551	1.667	1.219	-0.339	1.551
G25	Gravelly Sand	22.7	74.3	3.0	1.31	681.6	3.920	0.280	0.940	0.553	1.971	-0.280	0.940
G26	Slightly Gravelly Sand	2.6	91.8	5.6	1.29	303.1	2.138	-0.123	1.959	1.722	1.096	0.123	1.959
G28	Gravelly Muddy Sand	29.1	62.4	8.5	0.94	1083.5	8.681	0.239	1.157	-0.116	3.118	-0.239	1.157
G30	Slightly Gravelly Sand	0.5	99.5	0.0	0.99	344.2	1.521	0.046	0.962	1.539	0.605	-0.046	0.962
G31	Slightly Gravelly Sand	3.5	92.4	4.2	0.99	334.7	1.872	0.161	1.589	1.579	0.904	-0.161	1.589
G33	Slightly Gravelly Sand	0.8	99.2	0.0	1.85	466.9	1.622	-0.015	0.927	1.099	0.697	0.015	0.927
G34	Sandy Gravel	48.3	50.1	1.6	1.19	1999.6	6.726	0.154	0.634	-1.000	2.750	-0.154	0.634
G36	Slightly Gravelly Sand	1.3	97.5	1.3	1.29	337.4	1.682	0.070	1.102	1.567	0.750	-0.070	1.102
G37	Slightly Gravelly Sand	0.8	99.2	0.0	0.71	397.3	1.563	0.066	1.037	1.332	0.644	-0.066	1.037
G38	Gravelly Sand	12.6	87.4	0.0	0.83	459.1	2.897	0.546	2.912	1.123	1.535	-0.546	2.912
G39	Slightly Gravelly Muddy Sand	3.6	86.5	9.9	1.61	329.2	3.076	-0.162	2.101	1.603	1.621	0.162	2.101
G42	Sandy Gravel	41.7	57.1	1.2	0.69	1799.1	5.265	0.432	0.634	-0.847	2.396	-0.432	0.634
G43	Slightly Gravelly Sand	3.3	95.8	0.9	0.63	457.6	1.901	0.153	1.131	1.128	0.927	-0.153	1.131

0:4	T. (Composition (%)		00 (00)	Descriptive \$	Statistics (Fo	lk and Ward I	Method) (µm)	Descriptive Statistics (Folk and Ward Method) (ø)				
Site	Textural Group	Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G44	Slightly Gravelly Sand	1.8	90.0	8.2	1.04	244.2	2.468	-0.194	1.827	2.034	1.303	0.194	1.827
G46	Slightly Gravelly Sand	2.9	94.1	3.0	0.56	293.3	1.597	0.042	1.132	1.770	0.675	-0.042	1.132
G47	Slightly Gravelly Sand	0.2	94.2	5.6	0.96	203.1	1.796	-0.286	1.912	2.300	0.845	0.286	1.912
G48	Slightly Gravelly Sand	0.3	91.9	7.8	0.94	209.8	1.992	-0.321	2.238	2.253	0.994	0.321	2.238
G49	Slightly Gravelly Sand	0.9	99.1	0.0	0.47	337.2	1.478	0.047	1.000	1.568	0.564	-0.047	1.000
G51	Slightly Gravelly Sand	1.0	99.0	0.0	1.30	395.5	1.561	0.071	1.053	1.338	0.642	-0.071	1.053
G52	Slightly Gravelly Sand	4.3	95.7	0.0	0.61	344.2	1.759	0.245	1.517	1.539	0.815	-0.245	1.517
G54	Sandy Gravel	40.7	54.6	4.7	1.68	1491.6	4.622	-0.017	1.048	-0.577	2.209	0.017	1.048
G55	Sandy Gravel	34.9	65.1	0.0	0.82	1655.4	6.055	0.625	0.642	-0.727	2.598	-0.625	0.642
G56	Sandy Gravel	56.9	39.0	4.1	2.37	2685.9	6.948	-0.127	0.846	-1.425	2.797	0.127	0.846
G60	Slightly Gravelly Sand	1.2	98.8	0.0	0.90	445.5	1.592	0.056	1.016	1.167	0.671	-0.056	1.016
G61	Slightly Gravelly Sand	0.4	99.6	0.0	0.77	419.1	1.448	0.056	0.972	1.255	0.534	-0.056	0.972
G64	Slightly Gravelly Sand	3.3	96.7	0.0	1.32	527.1	1.867	0.385	1.234	0.924	0.901	-0.385	1.234
G68	Slightly Gravelly Sand	1.9	98.1	0.0	0.72	460.6	1.641	0.022	0.973	1.119	0.714	-0.022	0.973
G69	Gravelly Sand	7.9	92.1	0.0	1.21	480.6	2.232	0.423	1.317	1.057	1.159	-0.423	1.317
G71	Slightly Gravelly Sand	2.2	94.3	3.5	0.49	333.2	1.788	0.072	1.231	1.585	0.838	-0.072	1.231
G72	Slightly Gravelly Sand	3.0	97.0	0.0	0.93	369.2	1.775	0.140	1.188	1.438	0.828	-0.140	1.188
G73	Gravelly Sand	9.9	81.9	8.2	1.25	387.0	3.818	0.048	1.874	1.369	1.933	-0.048	1.874
G74	Gravelly Sand	20.9	73.2	5.9	1.13	550.8	5.743	0.413	1.398	0.860	2.522	-0.413	1.398
G75	Sandy Gravel	52.8	46.2	1.1	1.82	3736.9	7.215	0.176	0.528	-1.902	2.851	-0.176	0.528
G76	Slightly Gravelly Sand	1.7	98.3	0.0	0.73	551.9	1.713	0.112	0.996	0.858	0.777	-0.112	0.996
G77	Sandy Gravel	54.0	43.9	2.1	2.49	3484.9	6.487	-0.058	0.604	-1.801	2.698	0.058	0.604
G82	Slightly Gravelly Sand	4.1	95.9	0.0	0.44	303.5	1.792	0.218	1.488	1.720	0.842	-0.218	1.488
G83	Gravelly Sand	25.2	74.8	0.0	0.38	1232.2	6.060	0.631	1.015	-0.301	2.599	-0.631	1.015
G85	Gravelly Sand	6.4	86.6	6.9	0.70	371.9	2.965	-0.049	1.792	1.427	1.568	0.049	1.792
G86	Slightly Gravelly Sand	2.8	97.2	0.0	0.57	393.1	1.605	0.096	1.092	1.347	0.682	-0.096	1.092
G87	Sandy Gravel	49.9	47.6	2.5	0.63	2197.6	7.616	0.062	0.549	-1.136	2.929	-0.062	0.549
G88	Slightly Gravelly Sand	2.9	97.1	0.0	0.24	286.9	1.656	0.227	1.596	1.802	0.728	-0.227	1.596
G89	Slightly Gravelly Sand	0.8	95.9	3.3	0.59	308.2	1.642	-0.010	1.012	1.698	0.715	0.010	1.012
G93	Gravelly Sand	5.1	94.9	0.0	0.20	303.2	1.841	0.284	1.779	1.721	0.881	-0.284	1.779
G94	Gravelly Sand	5.7	94.3	0.0	0.88	411.0	1.965	0.232	1.319	1.283	0.974	-0.232	1.319

Cita	Tautural Craus	Con	nposition	(%)	00 (0/)	Descriptive S	Statistics (Fo	lk and Ward I	Vlethod) (µm)	Descriptive Statistics (Folk and Ward Method) (ø)			
Site	Textural Group	Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G95	Slightly Gravelly Sand	3.4	96.6	0.0	0.67	472.6	1.713	0.081	1.111	1.081	0.777	-0.081	1.111
G96	Slightly Gravelly Sand	2.9	92.1	5.0	0.69	279.2	2.048	0.164	1.638	1.840	1.035	-0.164	1.638
G97	Gravelly Sand	16.2	83.8	0.0	0.68	513.1	3.434	0.588	1.753	0.963	1.780	-0.588	1.753
G98	Slightly Gravelly Sand	0.8	97.5	1.6	0.74	289.7	1.602	0.036	1.018	1.788	0.680	-0.036	1.018
G99	Slightly Gravelly Sand	4.9	95.1	0.0	0.65	290.8	1.883	0.273	1.677	1.782	0.913	-0.273	1.677
G100	Gravelly Sand	5.4	89.2	5.4	0.92	344.8	2.522	-0.001	1.649	1.536	1.335	0.001	1.649
G101	Gravelly Sand	25.7	72.4	1.9	1.62	926.3	3.327	0.151	1.054	0.110	1.734	-0.151	1.054
G103	Sandy Gravel	41.7	56.3	2.0	0.91	1833.6	8.017	0.517	0.534	-0.875	3.003	-0.517	0.534
G104	Gravelly Sand	5.4	94.6	0.0	1.31	605.8	1.888	0.189	1.038	0.723	0.917	-0.189	1.038
G110	Slightly Gravelly Sand	2.1	97.9	0.0	1.01	306.1	1.780	0.177	1.190	1.708	0.832	-0.177	1.190
G111	Slightly Gravelly Sand	3.8	92.5	3.7	0.78	274.4	1.837	0.245	1.756	1.866	0.877	-0.245	1.756
G112	Gravelly Sand	19.8	76.0	4.2	1.25	741.0	4.081	-0.114	1.098	0.432	2.029	0.114	1.098
G113	Gravelly Sand	13.4	82.6	3.9	1.09	474.9	3.120	0.258	0.798	1.074	1.642	-0.258	0.798
G114	Gravelly Sand	19.9	77.3	2.9	1.20	548.1	3.363	0.314	0.748	0.867	1.750	-0.314	0.748
G115	Gravelly Sand	5.8	92.1	2.1	1.03	653.8	2.202	-0.060	0.879	0.613	1.139	0.060	0.879
G116	Slightly Gravelly Sand	4.1	95.9	0.0	0.62	350.5	1.908	0.267	1.411	1.512	0.932	-0.267	1.411
G117	Gravelly Sand	8.0	89.9	2.1	1.21	482.1	2.656	0.176	0.811	1.053	1.409	-0.176	0.811
G118	Slightly Gravelly Sand	0.3	99.7	0.0	0.62	345.1	1.608	0.086	1.008	1.535	0.685	-0.086	1.008
G119	Gravelly Sand	9.9	86.6	3.5	0.75	310.9	2.566	0.434	2.130	1.686	1.359	-0.434	2.130
G120	Slightly Gravelly Sand	1.0	99.0	0.0	0.66	273.2	1.540	0.052	1.025	1.872	0.623	-0.052	1.025
G121	Sandy Gravel	45.2	53.6	1.1	0.74	2068.5	3.611	0.121	1.122	-1.049	1.853	-0.121	1.122
G122	Gravelly Sand	11.9	85.1	3.0	0.85	396.2	3.374	0.551	1.961	1.336	1.755	-0.551	1.961
G123	Sandy Gravel	48.0	48.5	3.4	2.11	1587.2	4.475	-0.145	1.412	-0.666	2.162	0.145	1.412
G124	Gravelly Sand	13.7	86.3	0.0	0.38	501.6	2.914	0.429	0.918	0.995	1.543	-0.429	0.918
G126	Gravelly Sand	8.0	87.1	4.9	0.64	338.6	2.390	0.229	1.972	1.562	1.257	-0.229	1.972
G127	Slightly Gravelly Sand	0.5	99.5	0.0	0.69	255.4	1.545	0.044	0.979	1.969	0.628	-0.044	0.979
G128	Slightly Gravelly Sand	1.9	98.1	0.0	0.53	238.0	1.561	0.097	1.045	2.071	0.643	-0.097	1.045
G129	Gravelly Sand	16.6	79.1	4.3	0.44	721.3	2.932	0.018	1.042	0.471	1.552	-0.018	1.042
G131	Slightly Gravelly Sand	2.3	93.8	4.0	0.80	276.9	1.908	0.122	1.415	1.852	0.932	-0.122	1.415
G132	Gravelly Sand	19.2	80.8	0.0	0.78	626.5	3.603	0.582	1.170	0.675	1.849	-0.582	1.170
G133	Slightly Gravelly Sand	1.9	97.7	0.3	0.65	363.8	1.740	0.154	1.174	1.459	0.799	-0.154	1.174

Site	Textural Group	Composition (%)			00 (9/)	Descriptive Statistics (Folk and Ward Method) (μm)				Descriptive Statistics (Folk and Ward Method) (ø)			
		Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G134	Slightly Gravelly Sand	3.4	96.6	0.0	0.53	334.0	1.667	0.179	1.304	1.582	0.737	-0.179	1.304
G137	Slightly Gravelly Sand	2.2	97.8	0.0	0.72	466.3	1.606	0.167	1.159	1.101	0.684	-0.167	1.159
G138	Slightly Gravelly Sand	2.4	97.6	0.0	0.44	416.2	1.601	0.165	1.255	1.265	0.679	-0.165	1.255
G139	Slightly Gravelly Sand	4.5	95.5	0.0	0.69	612.4	1.980	0.059	0.975	0.708	0.985	-0.059	0.975
G140	Slightly Gravelly Sand	2.1	97.9	0.0	0.72	340.8	1.658	0.178	1.221	1.553	0.729	-0.178	1.221
G141	Gravelly Sand	9.2	86.3	4.5	1.36	431.7	2.549	0.309	1.453	1.212	1.350	-0.309	1.453
G142	Slightly Gravelly Sand	0.7	99.3	0.0	1.47	376.1	1.635	0.096	1.023	1.411	0.709	-0.096	1.023
G144	Gravelly Sand	9.2	90.8	0.0	1.28	430.8	2.198	0.413	1.635	1.215	1.136	-0.413	1.635
G146	Gravelly Sand	12.1	85.2	2.7	0.85	502.0	3.241	0.467	2.344	0.994	1.696	-0.467	2.344
G148	Muddy Sandy Gravel	52.7	41.8	5.5	1.69	2799.1	9.275	-0.150	0.663	-1.485	3.213	0.150	0.663
G149	Muddy Sandy Gravel	58.6	36.5	5.0	1.98	5218.3	9.269	-0.699	0.604	-2.384	3.212	0.699	0.604

APPENDIX 1. BENTHIC GRAB PHOTOGRAPHS

The state of the s

Infaunal Grab Sample No. 0

Contaminant Grab Sample No. 0

Infaunal Grab Sample No. 1

Infaunal Grab Sample No. 2

Contaminant Grab Sample No. 2

Infaunal Grab Sample No. 3

Page 1 for the state of the sta

Infaunal Grab Sample No. 7

Infaunal Grab Sample No. 8

Contaminant Grab Sample No. 8

Infaunal Grab Sample No. 9

Infaunal Grab Sample No. 11

Infaunal Grab Sample No. 12

The state of the s

Contaminant Grab Sample No. 12

Infaunal Grab Sample No. 19

PSA Grab Sample No. 25

Infaunal Grab Sample No. 25

Infaunal Grab Sample No. 26

Infaunal Grab Sample No. 27

5.

Contaminant Grab Sample No. 27

Infaunal Grab Sample No. 29

Infaunal Grab Sample No. 30

Infaunal Grab Sample No. 31

Infaunal Grab Sample No. 32

The office of the original and the origi

Infaunal Grab Sample No. 33

Contaminant Grab Sample No. 34

PSA Grab Sample No. 34

Infaunal Grab Sample No. 35

Contaminant Grab Sample No. 35

Infaunal Grab Sample No. 36

Project Engine Facility

Project Engine Facility

State on State

State of State

Sta

Infaunal Grab Sample No. 37

Contaminant Grab Sample No. 37

Infaunal Grab Sample No. 38

Infaunal Grab Sample No. 39

Contaminant Grab Sample No. 39

Infaunal Grab Sample No. 40

Process Trail
Process Service and displaced Services (1994)
Process Service and displaced Services (1994)
Process Service (1994)
Process (199

Infaunal Grab Sample No. 41

Infaunal Grab Sample No. 42

Contaminant Grab Sample No. 42

Infaunal Grab Sample No. 43

Infaunal Grab Sample No. 44

Contaminant Grab Sample No. 44

Project: Insurement plans of form OWN EX Plans Statement in the Statement

Infaunal Grab Sample No. 45

Infaunal Grab Sample No. 46

Contaminant Grab Sample No. 46

Infaunal Grab Sample No. 47

Infaunal Grab Sample No. 48

Contaminant Grab Sample No. 48

The area of the second of the

Infaunal Grab Sample No. 49

Infaunal Grab Sample No. 50

Infaunal Grab Sample No. 51

Contaminant Grab Sample No. 51

Infaunal Grab Sample No. 52

Infaunal Grab Sample No. 53

Final Information

Final S 55

But 01/03/11

COUTA-IJAUT

Infaunal Grab Sample No. 55

Contaminant Grab Sample No. 55

Infaunal Grab Sample No. 56

Infaunal Grab Sample No. 57

Infaunal Grab Sample No. 59

Contaminant Grab Sample No. 59

Hamilton State of the Control of the

Infaunal Grab Sample No. 60

Infaunal Grab Sample No. 61

Contaminant Grab Sample No. 61

Infaunal Grab Sample No. 62

Infaunal Grab Sample No. 63

Infaunal Grab Sample No. 64

Products Resignment from all forms of them to the state of the state o

Contaminant Grab Sample No. 64

Infaunal Grab Sample No. 65

Infaunal Grab Sample No. 66

Infaunal Grab Sample No. 67

Contaminant Grab Sample No. 67

Infaunal Grab Sample No. 68

The state of the s

Infaunal Grab Sample No. 69

Infaunal Grab Sample No. 70

Infaunal Grab Sample No. 71

Infaunal Grab Sample No. 72

Infaunal Grab Sample No. 73

Program registers from all registers of the control of the control

Infaunal Grab Sample No. 74

Infaunal Grab Sample No. 75

Contamination Grab Sample No. 75

Infaunal Grab Sample No. 76

Infaunal Grab Sample No. 77

Contaminant Grab Sample No. 77

Infaunal Grab Sample No. 78

Infaunal Grab Sample No. 79

Contaminant Grab Sample No. 79

Infaunal Grab Sample No. 80

Infaunal Grab Sample No. 81

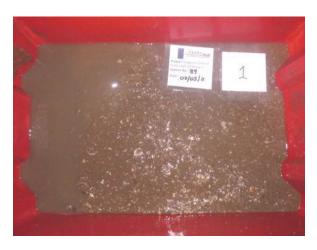
Contaminant Grab Sample No. 81

Infaunal Grab Sample No. 83

Infaunal Grab Sample No. 84

Infaunal Grab Sample No. 85

Contaminant Grab Sample No. 85


Infaunal Grab Sample No. 86

Present become Pringle State to the State of the State of

Infaunal Grab Sample No. 87

Infaunal Grab Sample No. 88

Infaunal Grab Sample No. 89

Infaunal Grab Sample No. 90

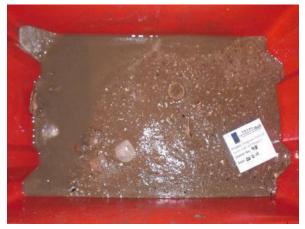
Infaunal Grab Sample No. 91

Contaminant Grab Sample No. 91

Property Justices of the State of the State

Infaunal Grab Sample No. 92

Infaunal Grab Sample No. 94


Infaunal Grab Sample No. 95

Infaunal Grab Sample No. 96

Infaunal Grab Sample No. 97

Prince State of 19th of Control of 19th o

Infaunal Grab Sample No. 98

Infaunal Grab Sample No. 99

Contaminant Grab Sample No.99

Infaunal Grab Sample No. 100

Infaunal Grab Sample No. 101

Contaminant Grab Sample No. 101

Infaunal Grab Sample No. 102

Infaunal Grab Sample No. 103

Infaunal Grab Sample No. 104

Infaunal Grab Sample No. 105

Infaunal Grab Sample No. 106

Contaminant Grab Sample No. 106

Print limit the state of the st

Infaunal Grab Sample No. 107

Infaunal Grab Sample No. 109

Infaunal Grab Sample No. 110

Contaminant Grab Sample No. 110

Infaunal Grab Sample No. 111

Price to serve that a state to the CVT'S that to CVT'S the control of the CVT'S the control of t

Infaunal Grab Sample No. 112

Infaunal Grab Sample No. 113

Infaunal Grab Sample No. 114

Conaminant Grab Sample No. 114

Infaunal Grab Sample No. 115

Infaunal Grab Sample No. 116

This is the state of the state

Infaunal Grab Sample No. 117

Infaunal Grab Sample No. 118

Infaunal Grab Sample No. 119

Infaunal Grab Sample No. 120

Contaminant Grab Sample No. 120

Infaunal Grab Sample No. 121

5

PSA Grab Sample No. 121

Infaunal Grab Sample No. 122

Infaunal Grab Sample No. 124

Contaminant Grab Sample No. 124

Infaunal Grab Sample No. 125

Infaunal Grab Sample No. 126

The state of the s

Infaunal Grab Sample No. 127

Infaunal Grab Sample No. 128

Infaunal Grab Sample No. 129

Contaminant Grab Sample No. 129

Infaunal Grab Sample No. 130

Infaunal Grab Sample No. 131

Infaunal Grab Sample No. 132

Infaunal Grab Sample No. 133

Contaminant Grab Sample No. 133

Infaunal Grab Sample No. 134

Infaunal Grab Sample No. 136

Infaunal Grab Sample No. 137

Frage 1 Manage and a second se

Infaunal Grab Sample No. 138

Contaminant Grab Sample No. 138

Infaunal Grab Sample No. 139

Contaminant Grab Sample No. 139

Infaunal Grab Sample No. 140

Infaunal Grab Sample No. 141

8

Infaunal Grab Sample No. 142

Contaminant Grab Sample No. 142

Infaunal Grab Sample No. 143

Infaunal Grab Sample No. 144

Infaunal Grab Sample No.145

Infaunal Grab Sample No. 146

Project Sugment Firth of Figure 100 M (1977)

Date: (A (2) A)

Colonia 20 M (1978)

Infaunal Grab Sample No. 147

Contamination Grab Sample No. 147

Infaunal Grab Sample No. 148

Contaminant Grab Sample No. 148

Infaunal Grab Sample No. 149

Infaunal Grab Sample No. MM1

Infaunal Grab Sample No. MM1 Phase 2

APPENDIX 2. EPIBENTHIC TRAWL PHOTOGRAPHS

Property in the Hall Property of the Hall Property of the Hall Transfer of the Hall Transfer

Epibenthic Trawl Sample No. V0

Epibenthic Trawl Sample No. V1

Epibenthic Trawl Sample No. V2

Epibenthic Trawl Sample No. V4

Epibenthic Trawl Sample No. V5

Epibenthic Trawl Sample No. V6

The state of the s

Epibenthic Trawl Sample No. V8

Epibenthic Trawl Sample No. V9

Epibenthic Trawl Sample No. V10

Epibenthic Trawl Sample No. V11

Epibenthic Trawl Sample No. V12

Epibenthic Trawl Sample No. V13

Epibenthic Trawl Sample No. V15

Epibenthic Trawl Sample No. V16

Epibenthic Trawl Sample No. V17

Epibenthic Trawl Sample No. V18

Epibenthic Trawl Sample No. V19

Epibenthic Trawl Sample No. V20

Epibenthic Trawl Sample No. V21

Epibenthic Trawl Sample No. V21

Epibenthic Trawl Sample No. V22

Epibenthic Trawl Sample No. V23

Epibenthic Trawl Sample No. V24

Epibenthic Trawl Sample No. V24

Project Suggreen Siett of Frank No. 2.5

Trank No. 2.5

Date: 18-4-11

Epibenthic Trawl Sample No. V24

Epibenthic Trawl Sample No. V25

Epibenthic Trawl Sample No. V25

Epibenthic Trawl Sample No. V26

Epibenthic Trawl Sample No. V27

Epibenthic Trawl Sample No. V27

Property Segment Fight of feath County at Phane 1 Travel for 2 to 2 to 3 | 1 |

Epibenthic Trawl Sample No. V27

Epibenthic Trawl Sample No. V28

Epibenthic Trawl Sample No. V28

Epibenthic Trawl Sample No. V29

Epibenthic Trawl Sample No. V30

Epibenthic Trawl Sample No. V30

Epibenthic Trawl Sample No. V31

Epibenthic Trawl Sample No. V31

Epibenthic Trawl Sample No. V32

Epibenthic Trawl Sample No. V32

Epibenthic Trawl Sample No. V33

Epibenthic Trawl Sample No. V33

The state of the s

Epibenthic Trawl Sample No. V34

Epibenthic Trawl Sample No. V35

Epibenthic Trawl Sample No. V36

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V37

The CA S A CA

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V38

Epibenthic Trawl Sample No. V38

Epibenthic Trawl Sample No. V38

Epibenthic Trawl Sample No. V39

Epibenthic Trawl Sample No. V40

Projects to season a remain and the season are the

Epibenthic Trawl Sample No. V41

Epibenthic Trawl Sample No. V42

Epibenthic Trawl Sample No. V42

Epibenthic Trawl Sample No. V43

Epibenthic Trawl Sample No. V44

Epibenthic Trawl Sample No. V44

The state of the s

Epibenthic Trawl Sample No. V45

Epibenthic Trawl Sample No. V46

Epibenthic Trawl Sample No. V47

Epibenthic Trawl Sample No. V47

Epibenthic Trawl Sample No. V47

Epibenthic Trawl Sample No. V48

Epibenthic Trawl Sample No. V49

APPENDIX 3. VIDEO ANALYSIS RECORD SHEETS

Video analysis record sheets

Infaunal grab drop down video - G25

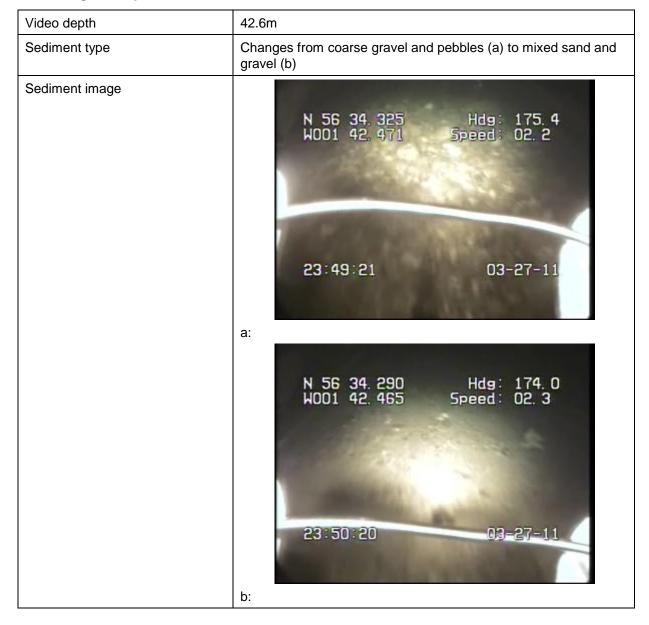
Video depth	51.3m
Sediment type	Mixed gravel and sand with occasional cobbles
Sediment image	N 56 36.371 Hdg: 004.3 W002 01.766 Speed: 01.6
	08:02:06 03-28-11

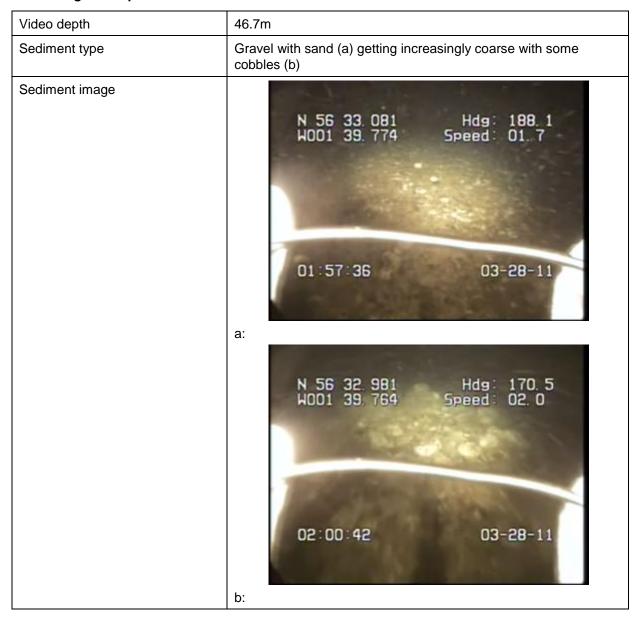
Video depth	54.8m
Sediment type	Mixed gravel, sand and occasional cobbles
Sediment image	N 56 36.149 Hdg: 010.5 W002 00.017 Speed: 01.1

Video depth	Not recorded
Sediment type	Gravel, sand, cobbles and boulders Brittlestar bed
Sediment image	N 56 35, 487 Hdg; 023, 8 W001 57, 333 Speed; 01, 1 06:44:17 03-25-11

Video depth	46.8m
Sediment type	Rippled sand with some coarse shell
Sediment image	N 56 36, 286 Hdg; 022, 0 W001 55, 242 Speed; 01, 5
	09:59:59 03-28-11

Video depth	35.1m
Sediment type	Matrix supported stony, cobbled sediment
	View partially obscured by dense brittlestars
Sediment image	N 56 36, 437 Hdg: 024, 2 H001 58, 575 Speed: 01, 2 08:33:46 03-28-11

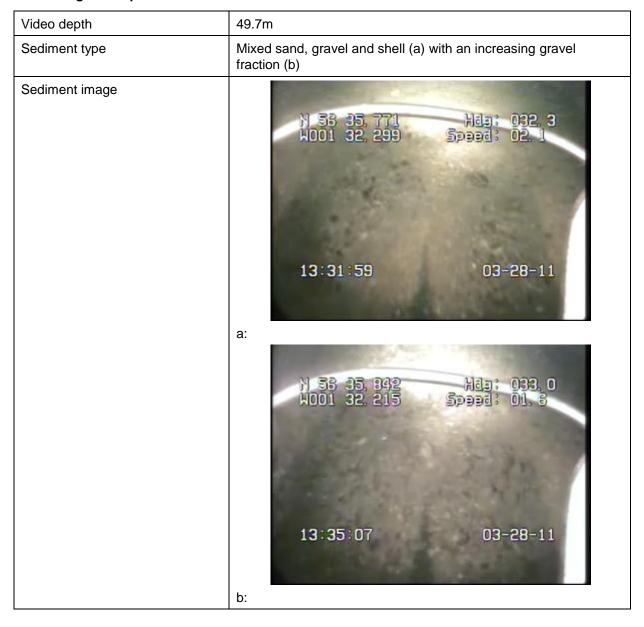

Video depth	45.4m
Sediment type	Mixed sediment. Stony/gravel
Sediment image	N 58 38, 702 Hdg; 007, 1 W001 55, 964 Speed; 00, 4
	09:29:05 03-28-11

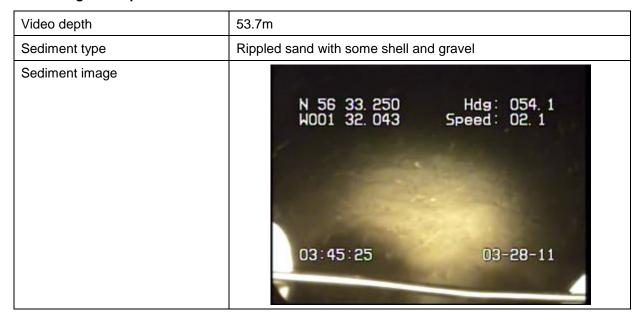

Video depth	44m
Sediment type	Gravel and occasional cobbles
Sediment image	N 56 37.172 Hdg: 012.3 W001 54.220 Speed: 01.0

Video depth	42.9m
Sediment type	Sand, shell and gravel. Boulder with dense brittlestars.
Sediment image	N 56 37.821 Hdg: 012.8 W001 48.655 Speed: 01.2

Video depth	47.4m
Sediment type	Coarse gravel
Sediment image	N 58 33, 559 Hdg: 027.6 W001 50.957 Speed: 01.4

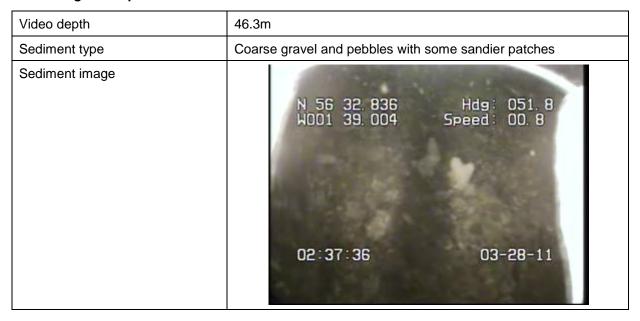
Video depth	53.2m
Sediment type	Rippled sand and coarse shell with patchy gravelly sand
Sediment image	N 56 33.069 Hdg: 185.1 W001 43.927 Speed: 01.6


Video depth	51m
Sediment type	Mixed gravel with sand
Sediment image	N 56 34, 802 Hds; 213, 8 W001 39, 254 Speed; 02, 6


Video depth	53.3m
Sediment type	Mixed gravel, coarse shell and sand
Sediment image	N 58 34, 695 Hag: 027, 4 W001 37, 952 Speed: 02, 2 12:54:37 03-28-11

Video depth	54m
Sediment type	Mixed gravel, sand and shell
Sediment image	N 56 38, 284 Hdg: 192, 8 H001 38, 555 Speed: 00, 8
	15:50:41 03-28-11

Video depth	51.4m
Sediment type	Mixed gravel, sand and shell
Sediment image	N 56 38, 138 Hdg: 202.6 W001 39 907 Speed: 01.5 15:10:13 03-28-11


Video depth	56.6m
Sediment type	Sand, coarse shell and gravel
Sediment image	N 56 36.189 Hdg: 349.9 W001 33.247 Speed: 01.7

Video depth	57.2m
Sediment type	Rippled sand with some coarse shell and gravel
Sediment image	N 56 32.213 Hdg: 062.3 Speed: 01.7

Video depth	55.9m
Sediment type	Rippled sand with some coarse shell and gravel
Sediment image	N 56 33.308 Hdg: 172.0 Speed: 01.1

APPENDIX 4. SEDIMENT CONTAMINATION REPORT

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU₆ 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

Date: 21 March 2011 H_UNIHULL_HUL **Customer:** Sample Delivery Group (SDG): 110215-30 Your Reference: **ZBB 776** Location: Sea Green Report No: 121410

We received 5 samples on Tuesday February 15, 2011 and 5 of these samples were scheduled for analysis which was completed on Monday March 21, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan

Operations Manager

Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2871958	G15		64.80	10/02/2011
2871954	G22		54.30	11/02/2011
2871955	G24		59.00	11/02/2011
2871956	G3		75.00	10/02/2011
2871957	G6		62.30	10/02/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

 SDG:
 110215-30
 Location:
 Sea Green
 Order Number:
 FJ023335

 Job:
 H_UNIHULL_HUL-5
 Customer:
 University of Hull
 Report Number:
 121410

 Client Reference:
 ZBB 776
 Attention:
 Ann Leighton
 Superseded Report:

Client Reference: ZBB 776 Attention: Ann Leighton **SOLID** 2871954 2871956 2871957 2871955 Results Legend Lab Sample No(s) X Test No Determination Possible Customer G15 G22 G24 G6 G3 Sample Reference **AGS Reference** 62.30 64.80 54.30 59.00 75.00 Depth (m) 60g VOC 250g Amber Jar Container EPH by FID All NDPs: 0 Tests: 5 GRO by GC-FID (S) All NDPs: 0 Tests: 5 Metals by iCap-OES (Soil) Arsenic NDPs: 0 Tests: 5 Cadmium NDPs: 0 Tests: 5 Chromium NDPs: 0 Tests: 5 Copper NDPs: 0 Tests: 5 Lead NDPs: 0 Tests: 5 Х Mercury NDPs: 0 Tests: 5 Nickel NDPs: 0 Tests: 5 Selenium NDPs: 0 Tests: 5

Zinc

All

All

All

All

NDPs: 0 Tests: 5

Organotins on soils*

PAH by GCMS

PCBs by GCMS

Sample description

Validated

110215-30 SDG: Job: H_UNIHULL_HUL-5 Client Reference:

ZBB 776

Location: **Customer:** Attention:

Sea Green University of Hull Ann Leighton

Order Number: Report Number: Superseded Report: FJ023335

121410

Sample Descriptions

Grain Sizes

very fine	₹0.0	163mm	fine	0.063mm - 0.1mm	medium	0.1mm	- 2mm	coarse	2mm - 1	umm	very coarse	>10mi
Lab Sample	No(s)	Custom	er Sample Re	f. Depth (m)	Co	olour	Description	1 (Grain size	Inclu	sions	Inclusions 2
287195	66		G3	75.00	Dark	Brown	Sand	().1 - 2 mm	No	ne	None
287195	57		G6	62.30	Dark	Brown	Sand	().1 - 2 mm	No	ne	None
287195	58		G15	64.80	Dark	Brown	Sand	().1 - 2 mm	No	ne	None
287195	54		G22	54.30	Dark	Brown	Sand	().1 - 2 mm	Sto	nes	None
287195	55		G24	59.00	Dark	Brown	Sand	C).1 - 2 mm	No	ne	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 110215-30 **Job**: H_UNIHUL

Client Reference:

H_UNIHULL_HUL-5
erence: ZBB 776

Location: Customer: Attention:

Sea Green University of Hull Ann Leighton Order Number: Report Number: FJ023335 121410

Superseded Report:

				-				
Results Legend		Customer Sample R	G3	G6	G15	G22	G24	
# ISO17025 accredited. M mCERTS accredited.		·						
§ Non-conforming work.		Depth (m)	75.00	62.30	64.80	54.30	59.00	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type		Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
tot.unfilt Total / unfiltered sample.		Date Sampled	10/02/2011	10/02/2011	10/02/2011	11/02/2011	11/02/2011	
* subcontracted test. ** % recovery of the surrogate	standard to	Date Received		15/02/2011	15/02/2011	15/02/2011	15/02/2011	
check the efficiency of the m	ethod. The	SDG Rei Lab Sample No.(s)		110215-30 2871957	110215-30 2871958	110215-30 2871954	110215-30 2871955	
results of the individual com within the samples are not c		AGS Reference						
this recovery.								
Component	LOD/U							
EPH Surrogate %	%	TM061	102	97.7	108	104	103	
recovery**	-01	T TN 1001	M 40.7	M	M	M	M 50.4	
EPH Range >C10 - C40	<3!		49.7 M	53.5 M	47.6 M	38.4 M	52.4 M	
PCB congener 28	mg/k <3 μς		<3	<3	<3	<3	<3	
PCB congener 26	~3 μ <u>ς</u>	J/Kg IIVIIOO	M	M	M	M	M	
PCB congener 52	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
1 OB congener oz	ν με	7.119	M	M	M	M	M	
PCB congener 101	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
			M	М	M	М	М	
PCB congener 118	<3 µg	g/kg TM168	<3	<3	<3	<3	<3	
			M	M	M	M	M	
PCB congener 138	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
			M	M	M	M	M	
PCB congener 153	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
DOD 122			M	M	M	M	M	
PCB congener 180	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
PCBs, Total ICES 7		a/ka TM168	M	M	M	M	M	
PUBS, TOTALICES /	<3 μς	J/Kg 1M168	<3	<3	<3	<3	<3	
PCB congener 105	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
1 Op condener 100	- νο μίζ	g/11/9 1 1 1 1 1 1 1 1 1	M	M	M	M	<3 M	
PCB congener 156	<3 μς	g/kg TM168	<3	<3	<3	<3	<3	
1 Ob congener 150	νο μίζ	J/Kg TWTTOO	M	M M	M	M	M	
Arsenic	<0.	6 TM181	5.24	6.78	5.99	14	10.7	
	mg/k		M	М	М	M	М	
Cadmium	<0.0		<0.02	<0.02	<0.02	<0.02	<0.02	
	mg/k		M	М	М	М	М	
Chromium	<0.	9 TM181	15	13.8	15.4	13.6	13.3	
	mg/k		M	M	M	M	M	
Copper	<1.		1.74	7.98	7.41	2.38	3.74	
	mg/k		M	M	M	M	M	
Lead	<0.		5.23	5.33	5.96	10.5	12.2	
NA	mg/k		M	M	M	M	M	
Mercury	<0.1		<0.14 M	<0.14 M	<0.14 M	<0.14 M	<0.14 M	
Nickel	mg/k <0		5.08	12.7	16.4	5.92	7.33	
Nickei	mg/k		5.06 M	12.7 M	16.4 M	5.92 M	7.33 M	
Selenium	<1 mg/k		<1	<1	<1	<1	<1	
Ocionium	- 1 113	9/19 11/11/01	" #	#	#	#	#	
Zinc	<1.	9 TM181	20.1	21.8	21.1	18.5	21.7	
	mg/k		M		M	М	M	
			 					
			 					
			-					

Validated

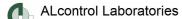
 SDG:
 110215-30
 Location:
 Sea Green
 Order Number:
 FJ023335

 Job:
 H_UNIHULL_HUL-5
 Customer:
 University of Hull
 Report Number:
 121410

ZBB 776 Attention: Ann Leighton Superseded Report:

Client Reference: CRO by GC-FID (S)

GRO by GC-FID (S) Results Legend		Customer Comple D	00	00	045	000	224	
# ISO17025 accredited.		Customer Sample R	G3	G6	G15	G22	G24	
M mCERTS accredited. § Non-conforming work.		Depth (m)	75.00	00.00	04.00	54.00	50.00	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	75.00 Soil/Solid	62.30 Soil/Solid	64.80 Soil/Solid	54.30 Soil/Solid	59.00 Soil/Solid	
tot.unfilt Total / unfiltered sample.		Date Sampled	10/02/2011	10/02/2011	10/02/2011	11/02/2011	11/02/2011	
* subcontracted test. ** % recovery of the surrogate standar		Date Received	15/02/2011	15/02/2011	15/02/2011	15/02/2011	15/02/2011	
check the efficiency of the method.	The	SDG Ref	110215-30 2871956	110215-30 2871957	110215-30 2871958	110215-30 2871954	110215-30 2871955	
results of the individual compounds within the samples are not corrected	3	Lab Sample No.(s) AGS Reference	2871956	28/195/	2871958	2871954	2871955	
this recovery.	u ior	AGS Reference						
Component	LOD/Un	its Method						
GRO >C5-C12	<44	TM089	<44	<44	<44	<44	<44	
	μg/kg							
Methyl tertiary butyl ether	<5 µg/	kg TM089	<5	<5	<5	<5	<5	
(MTBE)			#	#	#	#	#	
Benzene	<10	TM089	<10	<10	<10	<10	<10	
	μg/kg		M	M	M	М	М	
Toluene	<2 µg/	kg TM089	<2	<2	<2	<2	<2	
			M	M	M	M	M	
Ethylbenzene	<3 µg/	kg TM089	<3	<3	<3	<3	<3	
			M	M	M	M	М	
m,p-Xylene	<6 µg/	kg TM089	<6	<6	<6	<6	<6	
			M	M	M	M	M	
o-Xylene	<3 µg/	kg TM089	<3	<3	<3	<3	<3	
			M	M	M	M	M	
m,p,o-Xylene	<10		<10	<10	<10	<10	<10	
	μg/kg							
BTEX, Total	<10		<10	<10	<10	<10	<10	
	μg/kg							
		_						


Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 University of Hull 121410 **Customer:** Report Number:

Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Orgai	notins	on	soils*	
		Pocult	Logond	

Orgar	Customer Sample R G3 G6 G15 G22 G24 G24 G3 G6 G15 G22 G24 G3 G6 G15 G22 G24 G3 G6 G15 G22 G24 G24 G3 G6 G15 G22 G24 G24 G24 G24 G25 G25								
#	Results Legend ISO17025 accredited.		Customer Sample R	G3	G6	G15	G22	G24	
M § aq diss.filt tot.unfilt *	mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample.	The	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	75.00 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871956	62.30 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871957	64.80 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871958	54.30 Soil/Solid 11/02/2011 15/02/2011 110215-30 2871954	59.00 Soil/Solid 11/02/2011 15/02/2011 110215-30 2871955	
Compo		LOD/Unit							
Tribut	yl tin*	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	
Triphe	nyl tin*	mg/kg <0.05 mg/kg	SUB	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibuty	'l tin*	<0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	
Tetrat	outyl tin*	mg/kg <0.02 mg/kg	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	

Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 University of Hull 121410 **Customer:** Report Number:

Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

PAH	by	GCMS
		Poculto

PAH by GCMS								
# ISO17025 accredited.	(Customer Sample R	G3	G6	G15	G22	G24	
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. *% recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The 3 d for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	75.00 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871956	62.30 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871957	64.80 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871958	54.30 Soil/Solid 11/02/2011 15/02/2011 110215-30 2871954	59.00 Soil/Solid 11/02/2011 15/02/2011 110215-30 2871955	
Component	LOD/Unit		114	112	113	113	104	
Naphthalene-d8 % recovery**	%	TM218	114	113	113	113	104	
Acenaphthene-d10 % recovery**	%	TM218	114	112	113	112	102	
Phenanthrene-d10 % recovery**	%	TM218	111	109	110	110	99.1	
Chrysene-d12 % recovery**	%	TM218	111	109	109	110	99.2	
Perylene-d12 % recovery**	%	TM218	113	111	110	113	98.9	
Naphthalene	<9 µg/k		<9 M	<9 M	<9 M	<9 M	14.6 M	
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	<12 M	<12 M	<12 M	
Acenaphthene	<8 µg/k	g TM218	<8 M	<8 M	<8 M	<8 M	<8 M	
Fluorene	<10 µg/kg	TM218	<10 M	<10 M	<10 M	<10 M	<10 M	
Phenanthrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Anthracene	<16 µg/kg	TM218	<16 M	<16 M	<16 M	<16 M	<16 M	
Fluoranthene	<17 µg/kg	TM218	<17 M	<17 M	<17 M	<17 M	<17 M	
Pyrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Chrysene	<10 µg/kg	TM218	<10 M	<10 M	<10 M	<10 M	<10 M	
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Benzo(a)pyrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 M	<18 M	<18 M	<18 M	<18 M	
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23 M	<23 M	<23 M	<23 M	<23 M	
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24 M	<24 M	<24 M	<24 M	<24 M	
Polyaromatic hydrocarbons, Total	<118 µg/kg	TM218	<118 M	<118 M	<118 M	<118 M	<118 M	

Validated

FJ023335 110215-30 Sea Green SDG: Location: Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Extractable Petroleum Hydrocarbons (EPH) By GC-FID

EPH (DRO) (C10-C40)

Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3047439	G15	64.80	SOLID	47.6	No Identification Possible
3091095	G6	62.30	SOLID	53.5	No Identification Possible
3091135	G3	75.00	SOLID	49.7	No Identification Possible
3091146	G24	59.00	SOLID	52.4	PAHS
3091160	G22	54.30	SOLID	38.4	No Identification Possible

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics):- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Table of Results - Appendix

REPOF	REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7						
NDP	No Determination Possible	#	ISO 17025 Accredited		Subcontracted Test	М	MCERTS Accredited
NFD	No Fibres Detected	PFD	Possible Fibres Detected	»	Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits	lote: Method detection limits are not always achievable due to various circumstances beyond our control								
Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected					
PM001		Preparation of Samples for Metals Analysis							
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material							
SUB		Subcontracted Test							
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)							
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)							
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils							
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES							
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546							

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Test Completion Dates

				•	
Lab Sample No(s)	2871956	2871957	2871958	2871954	2871955
Customer Sample Ref.	G3	G6	G15	G22	G24
AGS Ref.					
Depth	75.00	62.30	64.80	54.30	59.00
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
EPH by FID	17-Mar-2011	17-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011
GRO by GC-FID (S)	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011
Metals by iCap-OES (Soil)	11-Mar-2011	11-Mar-2011	11-Mar-2011	11-Mar-2011	11-Mar-2011
Organotins on soils*	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011
PAH by GCMS	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	14-Mar-2011
PCBs by GCMS	12-Mar-2011	13-Mar-2011	13-Mar-2011	12-Mar-2011	12-Mar-2011
Sample description	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011

11:16:31 21/03/2011

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

Report No:

By email

Date Received:

ALcontrol Hawarden Unit7-8, Hawarden Business Park Manor Road (off Manor Lane) Hawarden, Deeside Flintshire, CH5 3US

Date Tested: 14/03/2011 to 18/03/2011

11-21714/1

10/03/2011

Date Issued: 18/03/2011

Page: 1 of 2

For the attention of: Tracy Dykes

5 soil samples received from ALcontrol Hawarden (O/N: 168049; Project: 110215-30) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory re	eference	184304 3031717 G24-59.00	184305 3031739 G22-54.30	184306 3031810 G3-75.00
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21714/1

Date Received: 10/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 2 of 2

Laboratory re	184307 3031857 G6-62.30	184308 3031889 G15-64.80	
dibutyltin	[1002-53-5] mg/kg S	n < 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg S	n < 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg S	n < 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg S	n < 0.05	< 0.05

Emma Winter Laboratory Manager

ALcontrol Laboratories

SCAN/SEARCH and TOF-MS TICS

CERTIFICATE OF ANALYSIS

F.I023335 SDG 110215-30 Location: Sea Green Order Number: H UNIHULL HUL-5 University of Hull 121410 Job: **Customer:** Report Number: Attention: Ann Leighton Superseded Report:

Client Reference: ZBB 776

Appendix 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following:

Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS

- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request
- 12. Results relate only to the items tested
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, ethylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 3-Methylphenol 2.5 Dimethylphenol. Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample
- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do
- 23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTAL SULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOWS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	BND OVERBND	GCFD
EPH (MINOIL)	D&C	HEXANEACETONE	BND OVERBND	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40) EZ FLA9H	WET	HEXANEACETONE	SHAKER	GCEZ.
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	GC:EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	extraction Method	ANALYS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
EPH .	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPH CWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
MINERALCIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 7CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
svoc	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST OOP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TPH byINFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERALCILbyIR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk

Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orododite	Blue Asbestos
Fibrous Adinoite	-
Fibrous Anthophylite	-
Fibraus Tremalile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264. The identification of asbestos containing materials falls within our schedule of tests for

we hold UKAS accreditation, however opinions, interpretations and information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

 Date:
 22 March 2011

 Customer:
 H_UNIHULL_HUL

 Sample Delivery Group (SDG):
 110309-48

 Your Reference:
 ZBB 776

 Location:
 Sea Green

 Report No:
 121539

We received 20 samples on Wednesday March 09, 2011 and 20 of these samples were scheduled for analysis which was completed on Tuesday March 22, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan

Operations Manager

1291 GROUE

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121539 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Received Sample Overview

Lab Cample Na/a)	Customer Comple Def	•	Donth (m)	Compled Date
Lab Sample No(s) 3030228	Customer Sample Ref.	AGS Ref.	Depth (m) 58.00	Sampled Date 05/03/2011
3030232	02		52.50	06/03/2011
3030212	101		43.70	26/02/2011
3030233	12		53.10	06/03/2011
3030213	124		55.40	27/02/2011
3030215	129		54.50	27/02/2011
3030220	138		50.40	01/03/2011
3030227	148		40.00	04/03/2011
3030223	34		49.40	03/03/2011
3030224	35		61.90	03/03/2011
3030221	48		62.00	02/03/2011
3030225	51		39.40	04/03/2011
3030219	55		46.20	01/03/2011
3030231	59		42.80	05/03/2011
3030230	64		49.00	05/03/2011
3030234	67		56.70	06/03/2011
3030216	77		49.80	28/02/2011
3030218	79		52.90	28/02/2011
3030217	81		53.50	28/02/2011
3030222	85		46.40	02/03/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

110309-48 H_UNIHULL_HUL-5 FJ023335 SDG: Location: Sea Green Order Number: Job: Customer: University of Hull Report Number: 121539 Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Client Reference: ZBB 776		Attention:				: Ann Leighton							Superseded Report:											
SOLID Results Legend X Test	Lab Sample I	No(s)	3030228		3030232	3030233	3030223	3030224	3030221	3030225	3030219	3030231	3030230	0000204	00000	3030346	3030218	3030217	3030222	3030212	3030213	3030215	3030220	3030227
No Determination Possible	Custome Sample Refe		O	9 6	000 :	12	34	35	48	51	ហ	59	, o	0.00		77	79	81	85	101	124	129	138	148
	AGS Refere	nce																						
	Depth (m)	58.00	1 0	52 50	53.10	49.40	61.90	62.00	39.40	46.20	42.80	49.00	30.70	19:00	40 80	52.90	53.50	46.40	43.70	55.40	54.50	50.40	40.00
	Containe	r	60g VOC 250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar 60g VOC	60g VOC	60g VOC	60g VOC 250g Amber Jar	60g VOC 250g Amber Jar	60g VOC 250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar	250g Amber Jar 60g VOC	60g VOC	60g VOC	60g VOC 250g Amber Jar				
EPH by FID	All	NDPs: 0 Tests: 20	X	X	x	x)	(x	x	X	X	x	x	x	x	X		x	x	x	X	X	X
GRO by GC-FID (S)	All	NDPs: 0 Tests: 20	×	()	x	x	X	X	x	x	×	×	×	2 >	()	K :	x	X	x	x	x	x	x	X
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 20	x	x	X	X)	(X	X	X	X	X	X	X	X	X		x	X	X	X	X	x
	Cadmium	NDPs: 0 Tests: 20	X	X	x	x)	(X	x	X	X	X	X	X	X	X		x	X	X	X	X	X
	Chromium	NDPs: 0 Tests: 20	x	X	X	×)	(X	×	X	X	X	X	X	×	X		x	X	×	X	X	X
	Copper	NDPs: 0 Tests: 20	X	X	X	×)	(X	×	×	X	X	X	X	X	X		x	X	×	X	X	x
	Lead	NDPs: 0 Tests: 20	x	X	x	x)	(x	X	×	X	X	x	x	x	X		x	X	X	X	X	x
	Mercury	NDPs: 0 Tests: 20	x	x	x	x)	(X	x	×	X	X	X	X	X	X		x	X	x	X	X	X
	Nickel	NDPs: 0 Tests: 20	x	X	x	x)	(X	x	X	X	x	x	x	×	X		x	X	×	X	X	X
	Selenium	NDPs: 0 Tests: 20	x	X	X	X)	(X	X	X	X	X	X	X	X	X		x	X	X	X	X	X
Organotins on soils*	All	NDPs: 0 Tests: 20	x	X	x	x)	(X	×	X	X	x	X	x	×	X		x	X	×	X	X	X
PAH by GCMS	All	NDPs: 0 Tests: 20	x	X	x	×)	(X	×	X	X	X	X	X	X	X		×	X	×	X	X	X
PCBs by GCMS	All	NDPs: 0 Tests: 20 NDPs: 0	x	X	x	×)	(X	×	X	X	X	X	X	X	X		×	X	×	X	X	X
Sample description	All	Tests: 20	x	X	x	x)	(X	×	X	X	X	X	X	X	X		×	X	X	X	X	X
остро сезоприон	, ui	Tests: 20	X	X	X	X)	(X	X	X	X	X	X	X	X	X		x	X	X	X	X	X

Validated

110309-48 SDG: Job: Client Reference:

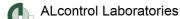
H_UNIHULL_HUL-5 ZBB 776

Location: **Customer:** Attention:

Sea Green University of Hull Ann Leighton

Order Number: Report Number: Superseded Report: FJ023335 121539

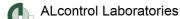
Sample Descriptions


Grain Sizes

very fine	<0.063mm	fine	0.063mm - 0.1mm	me	edium	0.1mm	- 2mm	coarse 2mm - 1		10mm	very coars	se >10mr		
Lab Sample N	o(s) Custor	mer Sample R	ef. Depth (m)		Cole	our	Description	on	Grain size	Incl	usions	Inclusions 2		
3030228		0	58.00		Dark E	Brown	Sandy Cl	ay	0.1 - 2 mm	St	ones	None		
3030232		02	52.50		Dark E	Brown	Sand		0.1 - 2 mm		ones	None		
3030233		12	53.10		Light E	Brown	Sand	nd 0.1 - 2 mm		St	ones	N/A		
3030223		34	49.40		Dark E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030224		35	61.90		Light E	Brown	Sand		0.1 - 2 mm	N	one	None		
3030221		48	62.00		Dark E	Brown	Sand		0.1 - 2 mm	N	one	None		
3030225		51	39.40		Light E	Brown	Sand		0.1 - 2 mm	St	ones	None		
3030219		55	46.20		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030231		59	42.80		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030230		64	49.00		Light E	Brown	Sand		0.1 - 2 mm		ones	N/A		
3030234		67	56.70		Light E	Brown	Sand		0.1 - 2 mm	St	ones	None		
3030216		77	49.80		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030218		79	52.90		Dark E	Brown	Sand		0.1 - 2 mm	N	one	None		
3030217		81	53.50		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030222		85	46.40		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030212		101	43.70		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030213		124	55.40		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030215		129	54.50		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		
3030220		138	50.40		Dark E	Brown	Sand		0.1 - 2 mm		0.1 - 2 mm None		one	None
3030227		148	40.00		Light E	Brown	Sand		0.1 - 2 mm	St	ones	N/A		

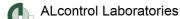
These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.


Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

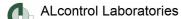
Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull 121539 Report Number:


Results Legend		Customer Sample R	0	02		12		34		35		48	
# ISO17025 accredited.		Customer Sample K	U	02		12		34		35		48	
M mCERTS accredited. § Non-conforming work.		Depth (m)	58.00	52.50		53.10		49.40		64.00		62.00	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid		Soil/Solid		Soil/Solid		61.90 Soil/Solid		Soil/Solid	
tot.unfilt Total / unfiltered sample. * subcontracted test.		Date Sampled	05/03/2011	06/03/2011		06/03/2011		03/03/2011		03/03/2011		02/03/2011	
** % recovery of the surrogate standar		Date Received SDG Ref	09/03/2011 110309-48	09/03/2011 110309-48		09/03/2011 110309-48		09/03/2011 110309-48		09/03/2011 110309-48		09/03/2011 110309-48	
check the efficiency of the method.' results of the individual compounds		Lab Sample No.(s)	3030228	3030232		3030233		3030223		3030224		3030221	
within the samples are not corrected this recovery.	d for	AGS Reference											
Component	LOD/Un	its Method											
EPH Surrogate %	%	TM061	101	110		107		103		103		107	
recovery**	-05	TN1004	M	07.4	M	-05	M		M	70.4	М	-05	M
EPH Range >C10 - C40	<35 mg/kg	TM061	<35 M	37.4	М	<35	М	38.5	м	73.1	М	<35	М
PCB congener 28	<3 μg/		<3	<3	101	<3	101	<3	VI	<3	IVI	<3	IVI
1 11 31 1			M		М		М		И		М		М
PCB congener 52	<3 µg/	kg TM168	<3	<3		<3		<3	.	<3		<3	
PCB congener 101	<3 µg/	kg TM168	<3	<3	М	<3	М	<3	М	<3	М	<3	M
F CB congener 101	-5 μg/	kg TWT00	~3 M	\ \	М	~3	М		М	~5	М	\3	М
PCB congener 118	<3 µg/	kg TM168	<3	<3		<3		<3		<3		<3	
			M	_	М	-	М		M		М		М
PCB congener 138	<3 µg/	kg TM168	<3 M	<3	М	<3	N.A	<3	м	<3	М	<3	N.4
PCB congener 153	<3 µg/	kg TM168	<3	<3	IVI	<3	М	<3	vi	<3	IVI	<3	M
. 55 55gonor 100	-5 μg/	-	M		М		М		М		М		М
PCB congener 180	<3 µg/	kg TM168	<3	<3		<3		<3		<3		<3	
DOD: T:1 11050 5		T	M		М		М		М	•	М		M
PCBs, Total ICES 7	<3 µg/	kg TM168	<3	<3		<3		<3		<3		<3	
PCB congener 105	<3 μg/	kg TM168	<3	<3		<3		<3		<3		<3	
. ez congene. rec	0 49		М		М		М		М		М		М
PCB congener 156	<3 µg/	kg TM168	<3	<3		<3		<3		<3		<3	
		T1404	M	10.5	М	15.0	М		M		М	5.10	M
Arsenic	<0.6 mg/kg		8.84 M	10.5	М	15.2	М	11.1	м	29.9	М	5.48	М
Cadmium	<0.02		<0.02	<0.02	IVI	<0.02	IVI	<0.02	VI	<0.02	IVI	<0.02	IVI
	mg/kg		M		М		М		И		М		М
Chromium	<0.9		16.6	11.3		11		17.9		13.2		13.7	
Common	mg/kg		M	4.0	М	4.4	М		M	4.44	М	-4.4	M
Copper	<1.4 mg/kg		2.66 M	1.8	М	1.4	М	3.49	М	1.41	М	<1.4	М
Lead	<0.7		10.7	6.11	101	7.32	101	24.5	VI	12.5	IVI	4.61	IVI
	mg/kg	1	M		М		М		M		М		М
Mercury	<0.14		<0.14	<0.14		<0.14		<0.14	.	<0.14		<0.14	
Nickel	mg/kg <0.2		9.5	4.32	M	5.27	M	8.58	М	4.7	M	3.29	M
Nickei	mg/kg		9.5 M	4.52	М	5.27	М		М	4.7	М	3.29	М
Selenium	<1 mg/		<1	<1		<1		<1		<1		<1	
			#		#		#		#		#		#
Zinc	<1.9		23.6 M	14.5	М	13.8	М	26	м	17.9	М	12	М
	mg/kg	1	IVI		IVI		IVI		VI		IVI		IVI

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull 121539 Report Number:


#	Results Legend ISO17025 accredited.		Customer Sample R	51	55	59	64	67	77
М	mCERTS accredited.								
§ aq	Non-conforming work. Aqueous / settled sample.		Depth (m)	39.40	46.20	42.80	49.00	56.70	49.80
diss.filt	Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
tot.unfilt	Total / unfiltered sample. subcontracted test.		Date Sampled Date Received	04/03/2011 09/03/2011	01/03/2011 09/03/2011	05/03/2011 09/03/2011	05/03/2011 09/03/2011	06/03/2011 09/03/2011	28/02/2011 09/03/2011
**	% recovery of the surrogate standar		SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48
	check the efficiency of the method. results of the individual compounds		Lab Sample No.(s)	3030225	3030219	3030231	3030230	3030234	3030216
	within the samples are not corrected this recovery.		AGS Reference						
Compo	-	LOD/Ur	nits Method						
	Surrogate %	%	TM061	102	104	102	104	105	99.2
recove	-	, ,		M	М	М	М	M	M
	Range >C10 - C40	<35	TM061	36.6	<35	103	37.8	<35	53.5
		mg/k		M	M	M	M	M	M
PCB c	ongener 28	<3 µg	/kg TM168	<3	<3	<3	<3	<3	3.1
DOD		-	" T14400	M	M	M	M	M	M
PCB c	ongener 52	<3 µg	/kg TM168	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
PCB c	ongener 101	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
l ob c	ongener for	γυμg	/kg TWITOO	M	M M	M	M	-S M	M
PCB c	ongener 118	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
	ŭ	. 0	٠	M	М	M	М	М	M
PCB c	ongener 138	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
B 0 =			,	M	M	M	M	M	M
PCB o	ongener 153	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
PCR o	ongener 180	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3 M
FCBC	ongener 160	\ 5 μy	/kg TiviToo	~3 M	M	M	M	√ 3 M	_3 M
PCBs.	Total ICES 7	<3 µg	/kg TM168	<3	<3	<3	<3	<3	3.1
		- ۳9							
PCB c	ongener 105	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
				M	M	M	M	M	M
PCB c	ongener 156	<3 µg	/kg TM168	<3	<3	<3	<3	<3	<3
Araani	in .	-0.6	5 TM181	9.51	10.7	11.4	18.4	M 18.3	17.1
Arseni	C	<0.6 mg/k		9.51 M	10.7 M	11. 4 M	10. 4 M	10.3 M	17.1 M
Cadm	ium	<0.0		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Juann		mg/k		M	M	M	M	M	M
Chron	nium	<0.9		8.53	8.19	14.3	5.5	9.93	14.6
		mg/k	g	M	M	M	M	М	M
Coppe	er	<1.4		3.17	1.46	8.7	<1.4	<1.4	11.5
ļ		mg/k		M	M	M	M	M	M
Lead		<0.7 mg/k		8.25 M	4.75 M	12 M	7.31 M	7.5 M	9.59 M
Mercu	rv	<0.1		<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Wichea	' '	mg/k		М	10.14 M	M	M	M	M
Nickel		<0.2		5.82	4.17	14.7	7.73	4.58	9.99
		mg/k	g	M	M	M	M	М	М
Seleni	um	<1 mg	/kg TM181	<1	<1	<1	<1	<1	<1
				#	#	#	#	#	#
Zinc		<1.9		30.1	13.7 M	25.3	13	14.6 M	49.1
		mg/k	9	M	IVI	M	M	IVI	M
									7
L									

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull 121539 Report Number:

Results Legend	Cu	stomer Sample R	79	81	85	101	124	129
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	52.90 Soil/Solid	53.50 Soil/Solid	46.40 Soil/Solid	43.70 Soil/Solid	55.40 Soil/Solid	54.50 Soil/Solid
tot.unfilt Total / unfiltered sample.		Date Sampled	28/02/2011	28/02/2011	02/03/2011	26/02/2011	27/02/2011	27/02/2011
* subcontracted test. ** % recovery of the surrogate standard t		Date Received SDG Ref	09/03/2011 110309-48	09/03/2011 110309-48	09/03/2011 110309-48	09/03/2011 110309-48	09/03/2011 110309-48	09/03/2011 110309-48
check the efficiency of the method. The results of the individual compounds	L	ab Sample No.(s)	3030218	3030217	3030222	3030212	3030213	3030215
within the samples are not corrected for this recovery.	or	AGS Reference						
	LOD/Units	Method	400	400	402	00.4	404	400
EPH Surrogate % recovery**	%	TM061	100 M	109 M	103 M	90.1 M	101 M	102 M
EPH Range >C10 - C40	<35 mg/kg	TM061	<35 M	<35 M	<35 M	1380 M	89.9 M	42.7 M
PCB congener 28	<3 µg/kg	TM168	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
PCB congener 52	<3 µg/kg	TM168	<3	<3	<3	<3	<3 M	<3
PCB congener 101	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3 M
PCB congener 118	<3 µg/kg	TM168	<3	<3	<3	<3 M	<3 M	<3 M
PCB congener 138	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3 M
PCB congener 153	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3
PCB congener 180	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3
PCBs, Total ICES 7	<3 μg/kg	TM168	<3	<3	<3	<3	M <3	<3 M
PCB congener 105	<3 μg/kg	TM168	<3	<3	<3	<3	<3	<3
PCB congener 156	<3 μg/kg	TM168	<3 M	<3 M	<3 M	<3 M	-3	
	<0.6	TM181	8.37	12.9	7.76	9.37	11.2	8.35
Arsenic	mg/kg		M	М	М	M	М	M
Cadmium	<0.02 mg/kg	TM181	<0.02 M	<0.02 M	<0.02 M	<0.02 M	<0.02 M	<0.02 M
Chromium	<0.9 mg/kg	TM181	7.09 M	7.44 M	10.3 M	6.07 M	7.87 M	12.1 M
Copper	<1.4 mg/kg	TM181	<1.4 M	1.86 M	3.07 M	1.7 M	<1.4 M	<1.4 M
Lead	<0.7 mg/kg	TM181	3.65 M	4.78 M	4.58 M	8.27 M	4.17 M	5.25 M
Mercury	<0.14 mg/kg	TM181	<0.14 M	<0.14 M	<0.14 M	<0.14 M	<0.14 M	<0.14 M
Nickel	<0.2 mg/kg	TM181	2.71 M	2.91 M	4.35 M	3.13 M	1.46 M	2.29 M
Selenium	<1 mg/kg	TM181	<1 #	<1	<1	<1	<1	<1 #
Zinc	<1.9 mg/kg	TM181	8.51 M	11.6	13.8	13.8	8.61	10.1 M
	mg/kg		IVI	141	IVI	III.	IVI	IVI

Validated

 SDG:
 110309-48
 Location:
 Sea Green
 Order Number:
 FJ023335

 Job:
 H_UNIHULL_HUL-5
 Customer:
 University of Hull
 Report Number:
 121539

Job:H_UNIHULL_HUL-5Customer:University of HullReport Number:1215Client Reference:ZBB 776Attention:Ann LeightonSuperseded Report:

#	Results Legend ISO17025 accredited.		Customer Sample R	138	148			
# M	mCERTS accredited.							
§	Non-conforming work. Aqueous / settled sample.		Depth (m)	50.40	40.00			
aq diss.filt	Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid			
tot.unfilt	Total / unfiltered sample.		Date Sampled	01/03/2011	04/03/2011			
**	subcontracted test. % recovery of the surrogate standar	rd to	Date Received SDG Ref	09/03/2011 110309-48	09/03/2011 110309-48			
	check the efficiency of the method.	The	Lab Sample No.(s)	3030220	3030227			
	results of the individual compounds within the samples are not corrected		AGS Reference					
	this recovery.							
Compo		LOD/Ur						
	Surrogate %	%	TM061	107	105			
recove				M		M		
EPHF	Range >C10 - C40	<35		<35	<35			
DOD		mg/k	g " T14400	M		M		
PCB c	ongener 28	<3 µg	/kg TM168	<3	<3			
				M	_	M		
PCB c	congener 52	<3 µg	/kg TM168	<3	<3			
DOD :		-0	// TN4400	M	.0	M		
PCB 0	congener 101	<3 µg	/kg TM168	<3 M	<3	М		
DCD o	ongoner 110	-2 ···	//ca TM160		<3	IVI		
LORG	congener 118	<3 µg	/kg TM168	<3 M	<3	М		
PCB o	congener 138	<3 µg	/kg TM168	<3	<3	IVI		
1,000	ongener 100	-υ μy	7 NG 1101100	M	``	М		
PCB o	congener 153	<3 µg	/kg TM168	<3	<3	IVI		
LOBO	ongener 100	-υ μg	rng HVH00	M	``	М		
PCR o	congener 180	<3 µg	/kg TM168	<3	<3	ivi		
350		~ µ9		M		М		
PCR _e	, Total ICES 7	<3 µg	/kg TM168	<3	<3			
550,	, ,	- ۳9						
PCB c	congener 105	<3 µg	/kg TM168	<3	<3			
	J	'	ŭ	М		М		
PCB c	congener 156	<3 µg	/kg TM168	<3	<3			
	Ü	. 0	ı ı	M		M		
Arseni	ic	<0.6	6 TM181	11.8	4.35			
		mg/k	g	M		М		
Cadm	ium	<0.0	2 TM181	<0.02	<0.02			
		mg/k		M		M		
Chron	nium	<0.9	9 TM181	8.25	8.92			
		mg/k		M		М		
Coppe	er	<1.4		<1.4	1.93			
		mg/k		M		M		
Lead		<0.7		4.69	5.24			
24		mg/k		M	.0.44	M		
Mercu	ry	<0.1		<0.14	<0.14			
Nickel		mg/k <0.2		4.71	3.64	M		
INICKEI		mg/k		4.71 M	3.04	М		
Seleni	ium	<1 mg		<1	<1	IVI		
Jocielli	uiii	\ \ I IIIg	7/kg 11/11/01	#	`'	#		
Zinc		<1.9	9 TM181	12.5	17.6			
		mg/k		M		М		
		3.11						
1								
1								
1								

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull 121539 Report Number:

GRO	by	GC-FID	(S)
		Populto Lo	gond

GRO by GC-FID (S) Results Legend Customer Sample R 0 02 12 34 35 48										
Results Legend # ISO17025 accredited.	(Customer Sample R	0	02		12		34	35	48
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. ** % recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The s	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	58.00 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030228	52.50 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030232		53.10 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030233		49.40 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030223	61.90 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030224	62.00 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030221
Component	LOD/Unit	ts Method								
GRO >C5-C12	<44 µg/kg	TM089	<44	<44		<44		<44	<44	<44
Methyl tertiary butyl ether (MTBE)	<5 μg/kg		< 5	<5	#	<5	#	<5 #	<5 #	<5 #
Benzene	<10 µg/kg	TM089	<10 M	<10	М	<10	М	<10 M	<10 M	<10 M
Toluene	<2 µg/k		<2 M	<2	М	<2	М	<2 M	<2 M	<2 M
Ethylbenzene	<3 µg/k	rg TM089	<3 M	<3	М	<3	М	<3 M	<3 M	<3 M
m,p-Xylene	<6 µg/k	(g TM089	<6 M	<6	М	<6	М	<6 M	<6 M	<6 M
o-Xylene	<3 µg/k	(g TM089	<3 M	<3	М	<3	М	<3 M	<3 M	<3 M
m,p,o-Xylene	<10 µg/kg	TM089	<10	<10		<10		<10	<10	<10
BTEX, Total	<10 µg/kg	TM089	<10	<10		<10		<10	<10	<10
	F-31-1-3									

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 University of Hull 121539 **Customer:** Report Number: Client Reference:

ZBB 776 Attention: Ann Leighton Superseded Report:

GRO	by	GC-FID	(S)	
-----	----	--------	-----	--

Cheff Reference. 2007			Attention. An	ii Leighton		Ouperseucu repo		
GRO by GC-FID (S) Results Legend								
# ISO17025 accredited.	Cu	stomer Sample R	51	55	59	64	67	77
M mCERTS accredited. § Non-conforming work.								
aq Aqueous / settled sample.		Depth (m)	39.40	46.20	42.80	49.00	56.70	49.80
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 04/03/2011	Soil/Solid 01/03/2011	Soil/Solid 05/03/2011	Soil/Solid 05/03/2011	Soil/Solid 06/03/2011	Soil/Solid 28/02/2011
* subcontracted test.		Date Received	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011
** % recovery of the surrogate standar check the efficiency of the method.		SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48
results of the individual compounds	, L	ab Sample No.(s)	3030225	3030219	3030231	3030230	3030234	3030216
within the samples are not corrected this recovery.	d for	AGS Reference						
Component	LOD/Units	Method						
GRO >C5-C12	<44	TM089	<44	<44	<44	<44	<44	<44
	μg/kg							
Methyl tertiary butyl ether	<5 µg/kg	TM089	<5	<5	<5	<5	<5	<5
(MTBE)			#	#	#	#	#	#
Benzene	<10	TM089	<10	<10	<10	<10	<10	<10
	µg/kg		M	M	M	M	M	M
Toluene	<2 µg/kg	TM089	<2	<2	<2	<2	<2	<2
Ethiulb come a	40//	TM000	M	M M	M	M	M	M
Ethylbenzene	<3 µg/kg	TM089	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
m,p-Xylene	<6 µg/kg	TM089	<6	<6	<6	<6	<6	<6
m,p Aylene	το μg/ng	110000	M	М	M	M	М	М
o-Xylene	<3 µg/kg	TM089	<3	<3	<3	<3	<3	<3
			М	М	М	М	М	М
m,p,o-Xylene	<10	TM089	<10	<10	<10	<10	<10	<10
	μg/kg							
BTEX, Total	<10	TM089	<10	<10	<10	<10	<10	<10
	μg/kg							
		+						
		+						
		<u> </u>						
		+						
		+						
		+						
		 						

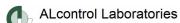
Validated

 SDG:
 110309-48
 Location:
 Sea Green
 Order Number:
 FJ023335

 Job:
 H_UNIHULL_HUL-5
 Customer:
 University of Hull
 Report Number:
 121539

GRA	hv	GC-FID	12)
GRU	IJΥ	GC-FID	(3)

RO by GC-FID (S) Results Legend Customer Sample R 79 81 85 101 124 129										
Results Legend # ISO17025 accredited.		Customer Sample R	79	81		85		101	124	129
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. ** % recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The s	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	52.90 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030218	53.50 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030217		46.40 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030222		43.70 Soil/Solid 26/02/2011 09/03/2011 110309-48 3030212	55.40 Soil/Solid 27/02/2011 09/03/2011 110309-48 3030213	54.50 Soil/Solid 27/02/2011 09/03/2011 110309-48 3030215
Component	LOD/Unit	ts Method								
GRO >C5-C12	<44 µg/kg	TM089	<44	<44		<44		<44	<44	<44
Methyl tertiary butyl ether (MTBE)	<5 μg/kg		< 5	<5	#	<5	#	<5 #	<5 #	< 5
Benzene	<10 µg/kg	TM089	<10 M	<10	М	<10	М	<10 M	<10 M	<10 M
Toluene	<2 µg/k		<2 M	<2	М	<2	М	<2 M	<2 M	<2 M
Ethylbenzene	<3 µg/k	kg TM089	<3 M	<3	М	<3	М	<3 M	<3 M	<3 M
m,p-Xylene	<6 µg/k		<6 M	<6	М	<6	М	<6 M	<6 M	<6 M
o-Xylene	<3 µg/k	kg TM089	<3 M	<3	М	<3	М	<3 M	<3 M	<3 M
m,p,o-Xylene	<10 µg/kg	TM089	<10	<10		<10		<10	<10	<10
BTEX, Total	<10 µg/kg	TM089	<10	<10		<10		<10	<10	<10



Validated

 SDG:
 110309-48
 Location:
 Sea Green
 Order Number:
 FJ023335

 Job:
 H_UNIHULL_HUL-5
 Customer:
 University of Hull
 Report Number:
 121539

GRO by	GRO by GC-FID (S) Results Legend Customer Sample R 138 148										
	Results Legend 017025 accredited.	Cus	stomer Sample R	138	148						
M mC	ERTS accredited. n-conforming work.		B								
aq Aqu	ueous / settled sample. solved / filtered sample.		Depth (m) Sample Type	50.40 Soil/Solid	40.00 Soil/Solid						
tot.unfilt Tota	tal / unfiltered sample.		Date Sampled	01/03/2011	04/03/2011						
** % re	bcontracted test. recovery of the surrogate standar		Date Received SDG Ref	09/03/2011 110309-48	09/03/2011 110309-48						
	eck the efficiency of the method. I sults of the individual compounds		ab Sample No.(s)	3030220	3030227						
with	within the samples are not corrected for this recovery.		AGS Reference								
Componen	nt	LOD/Units	Method								
GRO >C5	5-C12	<44	TM089	<44	<44						
Mothyd to	rtiary butyl ether	µg/kg	TM089	<5	<5						
(MTBE)	iliary bulyretrier	<5 µg/kg	TIVIOOS	\ 5		#					
Benzene		<10	TM089	<10	<10						
		µg/kg		M		М					
Toluene		<2 µg/kg	TM089	<2 M	<2	М					
Ethylbenz	zene	<3 µg/kg	TM089	<3	<3	IVI					
		- 133		M		М					
m,p-Xyler	ne	<6 µg/kg	TM089	<6	<6						
o-Xylene		<3 µg/kg	TM089	<3	<3	М					
0-Ayielle		-υ μg/kg	I IVIOOS	 		М					
m,p,o-Xyl	lene	<10	TM089	<10	<10						
		μg/kg									
BTEX, To	otal	<10 µg/kg	TM089	<10	<10						
		µg/Kg			<u> </u>						
					-						
					-						
					+						
					+						
					1						
					 						
					+						
					<u> </u>						
					-						
					1						

Validated

FJ023335 121539 110309-48 H_UNIHULL_HUL-5 SDG: Location: Sea Green Order Number: Job: Customer: Report Number:

University of Hull Ann Leighton Client Reference: ZBB 776 Attention: Superseded Report:

	it Reference. ZDD /			Attention. Ann Leighton Superseded Report.					
Orgai	notins on soils* Results Legend								
	Results Legend		Customer Sample R	0	02	12	34	35	48
# M § aq diss.filt tot.unfilt *	ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standar	rd to	Depth (m) Sample Type Date Sampled Date Received	Soil/Solid 05/03/2011 09/03/2011	52.50 Soil/Solid 06/03/2011 09/03/2011	53.10 Soil/Solid 06/03/2011 09/03/2011	49.40 Soil/Solid 03/03/2011 09/03/2011	61.90 Soii/Solid 03/03/2011 09/03/2011	62.00 Soii/Solid 02/03/2011 09/03/2011
	check the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The	SDG Ref Lab Sample No.(s) AGS Reference	110309-48 3030228	110309-48 3030232	110309-48 3030233	110309-48 3030223	110309-48 3030224	110309-48 3030221
Compo	onent	LOD/Uni	ts Method						
Tribut	yl tin*	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Triphe	enyl tin*	mg/kg <0.05	SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
		mg/kg							
Dibuty		<0.02 mg/kg		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Tetrat	outyl tin*	<0.02 mg/kg		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull 121539 Report Number:

Oro	ano	line	on	soils*
OIU	ιαιιυ	uns	OII	SUIIS

Client Referer			Attention: An	in Leignton	Superseded Report:			
Organotins o	n soils*	Customer Sample R	E4	55	E0.	64	67	77
# ISO17025 acc	redited.	Customer Sample R	51	55	59	64	67	77
check the eff results of the within the sai this recovery	ing work. Ittled sample. Itered samp	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Soil/Solid 04/03/2011 09/03/2011 110309-48 3030225	46.20 Soil/Solid 01/03/2011 09/03/2011 110309-48 3030219	42.80 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030231	49.00 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030230	56.70 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030234	49.80 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030216
Component		/Units Method						
Tributyl tin*		0.02 SUB g/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Triphenyl tin*	<(0.05 SUB g/kg	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibutyl tin*	<(0.02 SUB g/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Tetrabutyl tin*	<(0.02 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Validated

110309-48 H_UNIHULL_HUL-5 FJ023335 121539 SDG: Location: Sea Green Order Number: University of Hull Ann Leighton Job: Customer: Report Number:

Client Reference: ZBB 776 Attention: Superseded Report:

	it itelefelice. ZDD /			Attention. An		oupersoucu report.				
Orgar	notins on soils* Results Legend									
#	Results Legend ISO17025 accredited.		Customer Sample R	79	81	85	101	124	129	
М	mCERTS accredited.									
§	Non-conforming work.		Depth (m)	52.90	53.50	46.40	43.70	55.40	54.50	
aq diss.filt	Aqueous / settled sample. Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
			Date Sampled	28/02/2011	28/02/2011	02/03/2011	26/02/2011	27/02/2011	27/02/2011	
	subcontracted test.		Date Received	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011	
**	% recovery of the surrogate standar	rd to	SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48	
	check the efficiency of the method.	The	Lab Sample No.(s)	3030218	3030217	3030222	3030212	3030213	3030215	
	results of the individual compounds within the samples are not corrected	d for	AGS Reference							
	this recovery.									
Compo	nent	LOD/Un	its Method							
Tributy		<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
111000	,	mg/kg		10.02	-0.02	10.02	.0.02	10.02	10.02	
Tripho	nul tin*	<0.05	5 SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Tripne	nyl tin*			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
		mg/kg	1							
Dibuty	l tin*	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
		mg/kg	1							
Tetrab	utyl tin*	<0.02	2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
	-	mg/kg								
		,,,								
L										

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 University of Hull 121539 **Customer:** Report Number: Client Reference:

ZBB 776 Attention: Ann Leighton Superseded Report:

Orgar	าotins ต	on soils	S*
	Re	esults Legend	

Orgar	notins on soils* Results Legend		O				1	
# M § aq	ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample.		Customer Sample R Depth (m) Sample Type	50.40 Soil/Solid	148 40.00 Soil/Solid			
	Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard check the efficiency of the method. T	d to The	Date Sampled Date Received SDG Ref	01/03/2011 09/03/2011 110309-48 3030220	04/03/2011 09/03/2011 110309-48 3030227			
results of the individual compounds within the samples are not corrected for this recovery. Component LOD/U			Lab Sample No.(s) AGS Reference	3030220	3030227			
Tributy	yl tin*	<0.02	2 SUB	<0.02	<0.02			
Triphe	nyl tin*	mg/kg <0.0	5 SUB	<0.05	<0.05			
Dibuty	l tin*	mg/kg <0.02	2 SUB	<0.02	<0.02			
Tetrab	outyl tin*	mg/kg <0.02	2 SUB	<0.02	<0.02			
		mg/kg	g					
			•					

Validated

FJ023335 121539 110309-48 H_UNIHULL_HUL-5 SDG: Location: Sea Green Order Number: University of Hull Ann Leighton Job: Customer: Report Number: Superseded Report:

Client Reference: ZBB 776 Attention:

PAH I	y GCMS								
#	Results Legend ISO17025 accredited.		Customer Sample R	0	02	12	34	35	48
M § aq diss.filt tot.unfilt * **	mCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	58.00 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030228	52.50 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030232	53.10 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030233	49.40 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030223	61.90 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030224	62.00 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030221
Compo		LOD/Un	its Method						
Napht	halene-d8 %	%	TM218	104	96.5	100	99.7	99.1	104
	phthene-d10 %	%	TM218	105	95.5	100	98.8	97.4	104
	inthrene-d10 %	%	TM218	103	93.6	99.3	97.4	94.5	102
	ene-d12 %	%	TM218	116	96.5	101	98.3	92.9	111
Peryle	ne-d12 % recovery**	%	TM218	130	101	111	104	88.7	123
Napht	halene	<9 µg/	/kg TM218	<9 M	<9 M	<9 M	<9 M	<9 M	<9 M
Acena	phthylene	<12 µg/kg		<12 M	<12 M	<12 M	<12 M	<12 M	<12 M
Acena	phthene	<8 µg/		<8 M	<8 M	<8 M	<8 M	<8 M	<8 M
Fluore		<10 µg/kg	1	<10 M	<10 M	<10 M	<10 M	<10 M	<10 M
Phena	inthrene	<15 µg/kg	1	<15 M	<15 M	<15 M	<15 M	<15 M	<15 M
Anthra	acene	<16 µg/kg		<16 M	<16 M	<16 M	<16 M	<16 M	<16 M
Fluora	nthene	<17 µg/kg		<17 M	<17 M	<17 M	<17 M	<17 M	<17 M
Pyren	е	<15 µg/kg		<15 M	<15 M	<15 M	<15 M	<15 M	<15 M
Benz(a)anthracene	<14 µg/kg		<14 M	<14 M	<14 M	<14 M	<14 M	<14 M
Chrys	ene	<10 µg/kg		<10 M	<10 M	<10 M	<10 M	<10 M	<10 M
Benzo	(b)fluoranthene	<15 µg/kg		<15 M	<15 M	<15 M	<15 M	<15 M	<15 M
Benzo	(k)fluoranthene	<14 µg/kg		<14 M	<14 M	<14 M	<14 M	<14 M	<14 M
Benzo	(a)pyrene	<15 µg/kg		<15 M	<15 M	<15 M	<15 M	<15 M	<15 M
Inden	o(1,2,3-cd)pyrene	<18 µg/kg		<18 M	<18 M	<18 M	<18 M	<18 M	<18 M
Diben	zo(a,h)anthracene	<23 µg/kg	1	<23 M	<23 M	<23 M	<23 M	<23 M	<23 M
	(g,h,i)perylene	<24 µg/kg	1	<24 M	<24 M	<24 M	<24 M	<24 M	<24 M
	omatic carbons, Total	<118 µg/kg		<118 M	<118 M	<118 M	<118 M	<118 M	<118 M

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull Report Number: 121539

Client Reference: ZBB 776 Attention: Ann Leighton

Superseded Report:

Client Reference: ZBB 7	76		Attention:	An	n Leighton				Superseded	Repo	ort:		
PAH by GCMS													
Results Legend	Cı	ustomer Sample R	51		55		59		64		67		77
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settied sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	The I	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	39.40 Soil/Solid 04/03/2011 09/03/2011 110309-48 3030225		46.20 Soil/Solid 01/03/2011 09/03/2011 110309-48 3030219		42.80 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030231		49.00 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030230		56.70 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030234		49.80 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030216
Component	LOD/Units	Method											
Naphthalene-d8 %	%	TM218	97.7		115		100		91.8		105		107
recovery**													-
Acenaphthene-d10 %	%	TM218	97.6		114		99.6		89.7		103		109
recovery**													
Phenanthrene-d10 % recovery**	%	TM218	93.2		112		96.5		86.1		99.9		107
Chrysene-d12 %	%	TM218	91.6		114		91.6		82.2		99.1		107
recovery**	/0	1111210	01.0				01.0		02.2		00.1		107
Perylene-d12 % recovery**	%	TM218	88.5		123		95.8		81.4		95.5		117
	- "						_				_		
Naphthalene	<9 µg/kg	TM218	<9	М	<9	М	<9	М	<9	М	<9	М	<9 M
Acenaphthylene	<12	TM218	<12	IVI	<12	IVI	<12	IVI	<12	IVI	<12	IVI	<12
, conapharyione	μg/kg	1111210		М	· ·-	М	···-	М	·	М		М	M
Acenaphthene	<8 µg/kg	TM218	<8		<8		<8		<8		<8		<8
				M		М		M		M		М	M
Fluorene	<10	TM218	<10		<10		<10		<10		<10		<10
Phenanthrene	μg/kg <15	TM218	<15	M	<15	M	<15	M	<15	M	<15	M	<15
Filerialitillerie	μg/kg	1101210	~13	М	\13	М	\ 15	М	\ \13	М	\13	М	~13 M
Anthracene	<16	TM218	<16		<16		<16		<16		<16		<16
	μg/kg			М		М		M		M		М	M
Fluoranthene	<17	TM218	<17	N 4	<17		<17	N 4	<17	N 4	<17		<17
Pyrene	μg/kg <15	TM218	<15	M	<15	M	<15	M	<15	M	<15	М	<15
1 yielle	μg/kg	1101210	110	М	113	М	110	М	113	М	110	М	M
Benz(a)anthracene	<14	TM218	<14		<14		<14		<14		<14		<14
	µg/kg			M		М		M		M		М	M
Chrysene	<10	TM218	<10	М	<10		<10	N 4	<10	N 4	<10	М	<10
Benzo(b)fluoranthene	μg/kg <15	TM218	<15	IVI	<15	M	<15	M	<15	M	<15	IVI	<15
Benze(b)nderanarene	μg/kg	1111210	110	М		М		М		М		М	M
Benzo(k)fluoranthene	<14	TM218	<14		<14		<14		<14		<14		<14
Day = 2 (2) 22 22 22	µg/kg	T14040	-45	M	<15	М	.45	M	.45	M	.45	М	M
Benzo(a)pyrene	<15 µg/kg	TM218	<15	М	<15	М	<15	М	<15	М	<15	М	<15 M
Indeno(1,2,3-cd)pyrene	<18	TM218	<18		<18		<18		<18		<18	- 11	<18
	μg/kg			М		М		М		M		М	M
Dibenzo(a,h)anthracene	<23	TM218	<23	М	<23		<23		<23		<23	М	<23
Benzo(g,h,i)perylene	μg/kg <24	TM218	<24	IVI	<24	M	<24	M	<24	M	<24	IVI	<24
	μg/kg			М		М		М		М		М	M
Polyaromatic	<118	TM218	<118		<118		<118		<118		<118		<118
hydrocarbons, Total	µg/kg	+		M		M		M		M		М	M
		+											
		1											

Validated

FJ023335 121539 110309-48 H_UNIHULL_HUL-5 SDG: Location: Sea Green Order Number: Job: Report Number: **Customer:**

University of Hull Ann Leighton Client Reference: ZBB 776 Attention: Superseded Report:

PAH by GCMS								
Results Legend # ISO17025 accredited.	Cus	stomer Sample R	79	81	85	101	124	129
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. ** % recovery of the surrogate standarcheck the efficiency of the method. results of the individual compounds	The Li	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s)	52.90 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030218	53.50 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030217	46.40 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030222	43.70 Soil/Solid 26/02/2011 09/03/2011 110309-48 3030212	55.40 Soil/Solid 27/02/2011 09/03/2011 110309-48 3030213	54.50 Soil/Solid 27/02/2011 09/03/2011 110309-48 3030215
within the samples are not corrected this recovery.	d for	AGS Reference						
Component	LOD/Units	Method						
Naphthalene-d8 % recovery**	%	TM218	99.9	106	98.1	103	110	104
Acenaphthene-d10 % recovery**	%	TM218	100	105	97.9	100	108	103
Phenanthrene-d10 %	%	TM218	99.1	101	95.7	98.4	105	100
recovery** Chrysene-d12 %	%	TM218	99.6	100	98	93.6	102	96.9
recovery** Perylene-d12 % recovery**	%	TM218	104	97.7	103	97.9	106	100
refylene-u12 % recovery	/0		104	97.7	103			100
Naphthalene	<9 µg/kg	TM218	<9 M	<9 M	<9 M	17.9 M	15.5 M	11.5 M
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	<12 M	<12 M	<12 M	<12 M
Acenaphthene	<8 μg/kg	TM218	<8 M	<8 M		10.7 M	<8 M	
Fluorene	<10 µg/kg	TM218	<10 M	<10 M	<10 M	<10 M	<10 M	<10 M
Phenanthrene	<15	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	<15 M
Anthracene	μg/kg <16	TM218	<16	<16	<16	<16	<16	<16
Fluoranthene	μg/kg <17	TM218	<17	<17	<17	<17	<17	<17
Pyrene	μg/kg <15	TM218	<15	<15	<15	<15	<15	<15
Benz(a)anthracene	μg/kg <14	TM218	<14	<14	<14	<14	<14	<14
Chrysene	μg/kg <10	TM218	<10 M					
Benzo(b)fluoranthene	μg/kg <15	TM218	<15	<15	<15	<15	<15	<15
Benzo(k)fluoranthene	μg/kg <14	TM218	<14	<14	<14	<14	<14	<14
Benzo(a)pyrene	μ <u>g</u> /kg <15	TM218	M <15					
Indeno(1,2,3-cd)pyrene	μg/kg <18	TM218	M <18	<18	M <18	<18	M <18	M <18
Dibenzo(a,h)anthracene	μg/kg <23	TM218	<23	M <23	M <23	<23	M <23	M <23
<u> </u>	μg/kg		M	M	M	M	М	М
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24 M	<24 M	<24 M	<24 M	<24 M	<24 M
Polyaromatic hydrocarbons, Total	<118 µg/kg	TM218	<118 M	<118 M	<118 M	<118 M	<118 M	<118 M

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 University of Hull 121539 **Customer:** Report Number: Client Reference:

ZBB 776 Attention: Ann Leighton Superseded Report:

PAH by GCMS						
Results Legend	Cus	stomer Sample R	138	148		
# ISO17025 accredited. M mCERTS accredited.						
Non-conforming work. aq Aqueous / settled sample.		Depth (m)	50.40	40.00		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 01/03/2011	Soil/Solid 04/03/2011		
* subcontracted test.		Date Received	09/03/2011	09/03/2011		
** % recovery of the surrogate standa check the efficiency of the method.	The	SDG Ref	110309-48	110309-48		
results of the individual compound	s La	ab Sample No.(s)	3030220	3030227		
within the samples are not correcte this recovery.	d for	AGS Reference				
Component	LOD/Units	Method				
Naphthalene-d8 %	%	TM218	101	117		
recovery**						
Acenaphthene-d10 %	%	TM218	101	119		
recovery**	0/	T14040	05.0	447		
Phenanthrene-d10 % recovery**	%	TM218	95.6	117		
Chrysene-d12 %	%	TM218	93.6	114		
recovery**	/*	1111210	30.0	117		
Perylene-d12 % recovery**	%	TM218	86.2	128		
·						
Naphthalene	<9 µg/kg	TM218	<9	<9		
			M	M		
Acenaphthylene	<12	TM218	<12	<12		
Acenaphthene	µg/kg <8 µg/kg	TM218	M <8	M <8		
Асепарпинене	<8 µg/kg	1 IVI∠ 10	<8 M	<8 M		
Fluorene	<10	TM218	<10	<10		
	μg/kg	210	M	M		
Phenanthrene	<15	TM218	<15	<15		
	μg/kg		М	М		
Anthracene	<16	TM218	<16	<16		
	μg/kg	=11212	M	M		
Fluoranthene	<17	TM218	<17 M	<17 M		
Pyrene	μg/kg <15	TM218	<15	<15		
Fylene	μg/kg	1101210	~13 M	M		
Benz(a)anthracene	<14	TM218	<14	<14		
· /	μg/kg		М	М		
Chrysene	<10	TM218	<10	<10		
	μg/kg		M	М		
Benzo(b)fluoranthene	<15	TM218	<15	<15		
Benzo(k)fluoranthene	μg/kg <14	TM218	<14	<14		
Belizo(k)ildorantilelle	μg/kg	1101210	~14 M	M		
Benzo(a)pyrene	<15	TM218	<15	<15		
. 713	μg/kg		М	М		
Indeno(1,2,3-cd)pyrene	<18	TM218	<18	<18		
	μg/kg		M	M		
Dibenzo(a,h)anthracene	<23	TM218	<23	<23		
Benzo(g,h,i)perylene	μg/kg <24	TM218	M <24	<24		
Berizo(g,ii,i)peryierie	ν24 μg/kg	1101210	\24 M	_24 M		
Polyaromatic	<118	TM218	<118	<118		
hydrocarbons, Total	μg/kg		М			
	1	1		I		1

Validated

110309-48 Location: Sea Green H_UNIHULL_HUL-5 Job: **Customer:** Client Reference: ZBB 776

University of Hull Attention: Ann Leighton

Order Number: Report Number: Superseded Report: FJ023335 121539

Extractable Petroleum Hydrocarbons (EPH) By GC-FID EPH (DRO) (C10-C40)

Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3048141	129	54.50	SOLID	42.7	No Identification Possible
3048321	101	43.70	SOLID	1380	PAHS
3050062	51	39.40	SOLID	36.6	No Identification Possible
3050175	67	56.70	SOLID	<35.0	No Identification Possible
3051644	35	61.90	SOLID	73.1	PAHS
3054618	79	52.90	SOLID	<35.0	No Identification Possible
3054630	138	50.40	SOLID	<35.0	No Identification Possible
3054648	48	62.00	SOLID	<35.0	No Identification Possible
3054676	0	58.00	SOLID	<35.0	No Identification Possible
3054729	02	52.50	SOLID	37.4	No Identification Possible
3056569	85	46.40	SOLID	<35.0	No Identification Possible
3056753	55	46.20	SOLID	<35.0	No Identification Possible
3056797	12	53.10	SOLID	<35.0	No Identification Possible
3056835	148	40.00	SOLID	<35.0	No Identification Possible
3056900	81	53.50	SOLID	<35.0	No Identification Possible
3056934	77	49.80	SOLID	53.5	No Identification Possible
3056964	34	49.40	SOLID	38.5	No Identification Possible
3060035	64	49.00	SOLID	37.8	No Identification Possible
3091083	59	42.80	SOLID	103	PAHS
3091103	124	55.40	SOLID	89.9	PAHS

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics):- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

Validated

FJ023335 SDG: 110309-48 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121539 Job: **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Table of Results - Appendix

REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7										
NDP	No Determination Possible	#	ISO 17025 Accredited		Subcontracted Test	M	MCERTS Accredited			
NFD	No Fibres Detected	PFD	Possible Fibres Detected		Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)			

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
SUB		Subcontracted Test		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

110309-48 H_UNIHULL_HUL-5 FJ023335 SDG: Location: Sea Green Order Number: Job: University of Hull 121539 **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Test Completion Dates

	rest Completion Dates											
Lab Sample No(s)	3030228	3030232	3030233	3030223	3030224	3030221	3030225	3030219	3030231	3030230		
Customer Sample Ref.	0	02	12	34	35	48	51	55	59	64		
AGS Ref.												
Depth	58.00	52.50	53.10	49.40	61.90	62.00	39.40	46.20	42.80	49.00		
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID		
EPH by FID	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	17-Mar-2011	16-Mar-2011		
GRO by GC-FID (S)	16-Mar-2011	22-Mar-2011	16-Mar-2011	16-Mar-2011	22-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011	22-Mar-2011	16-Mar-2011		
Metals by iCap-OES (Soil)	15-Mar-2011	15-Mar-2011	15-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011		
Organotins on soils*	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011		
PAH by GCMS	14-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	16-Mar-2011	12-Mar-2011	12-Mar-2011		
PCBs by GCMS	13-Mar-2011	13-Mar-2011	14-Mar-2011	14-Mar-2011	13-Mar-2011	13-Mar-2011	13-Mar-2011	14-Mar-2011	13-Mar-2011	13-Mar-2011		
Sample description	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011		
Lab Sample No(s)	3030234	3030216	3030218	3030217	3030222	3030212	3030213	3030215	3030220	3030227		
Customer Sample Ref.	67	77	79	81	85	101	124	129	138	148		
AGS Ref.												
Depth	56.70	49.80	52.90	53.50	46.40	43.70	55.40	54.50	50.40	40.00		
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID		
EPH by FID	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011		
GRO by GC-FID (S)	16-Mar-2011	16-Mar-2011	17-Mar-2011	22-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011	16-Mar-2011	22-Mar-2011	17-Mar-2011		
Metals by iCap-OES (Soil)	14-Mar-2011	15-Mar-2011	15-Mar-2011	15-Mar-2011	15-Mar-2011	14-Mar-2011	14-Mar-2011	11-Mar-2011	15-Mar-2011	15-Mar-2011		
Organotins on soils*	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011		
PAH by GCMS	15-Mar-2011	16-Mar-2011	16-Mar-2011	15-Mar-2011	16-Mar-2011	13-Mar-2011	12-Mar-2011	12-Mar-2011	15-Mar-2011	16-Mar-2011		
PCBs by GCMS	13-Mar-2011	14-Mar-2011	13-Mar-2011	14-Mar-2011	13-Mar-2011	13-Mar-2011	13-Mar-2011	13-Mar-2011	13-Mar-2011	14-Mar-2011		
Sample description	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011		

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

Report No:

By email

Date Received:

ALcontrol Hawarden Unit7-8, Hawarden Business Park Manor Road (off Manor Lane) Hawarden, Deeside Flintshire, CH5 3US

Date Tested: 14/03/2011 to 18/03/2011

11-21745/1

11/03/2011

Date Issued: 18/03/2011

Page: 1 of 7

For the attention of: Tracy Dykes

20 soil samples received from ALcontrol Hawarden (O/N: 168084; Project: 110309-48) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory re	eference	184472 3034633 64-49.0	184473 3034707 59-42.80	184474 3035777 101-43.70
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

United Kingdom | Ireland | The Netherlands | Poland | USA | Canada | Australia

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 2 of 7

Laboratory re	eference	184475 3035810 124-55.40	184476 3035986 129-54.50	184477 3036035 35-61.90
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 3 of 7

Laboratory r	eference	184478 3036066 51-39.40	184479 3036068 0-58.00	184480 3036090 77-49.80
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 4 of 7

Laboratory re	eference	184481 3036108 48-62.00	184482 3036118 67-56.70	184483 3036119 81-53-50
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 5 of 7

Laboratory r	eference	184484 3036150 55-46.20	184485 3036181 85-46.40	184486 3036217 34-49.90
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 6 of 7

Laboratory re	eference	184487 3036242 148-40.0	184488 3036268 12-53.10	184489 3036355 138-50.40
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No: 11-21745/1

Date Received: 11/03/2011

Date Tested: 14/03/2011 to 18/03/2011

Date Issued: 18/03/2011

Page: 7 of 7

Laboratory re	184490 3036464 79-52.90	184491 3036554 02-52.50	
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02
triphenyltin	[668-34-8] mg/kg Sn	< 0.05	< 0.05

Emma Winter Laboratory Manager

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

F.I023335 SDG 110309-48 Location: Sea Green Order Number: H UNIHULL HUL-5 University of Hull 121539 **Customer:** Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Appendix

Job:

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request
- 12. Results relate only to the items tested
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, ethylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 3-Methylphenol 2.5 Dimethylphenol. Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample
- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do
- 23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	SEYJANA
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
BLEMENTAL SULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GC:FID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (OLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40) EZ FLASH	WET	HEXANEACETONE	SHAVER	GC-EZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	GC-EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GC/MS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	extraction Method	SEYJANA
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
EPH .	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
EPHCMG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
MINERALCIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GC FID
POB 7CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
svoc	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST OCP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TPH byINFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERALCILbyIR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk

Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name	
Chrysofile	White Asbestos	
Amoste	BrownAsbestos	
Orodddite	Blue Asbestos	
Fibrous Adinoite	-	
Florous Anthophylite	-	
Fibrous Tremolite	-	

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials falls within our schedule of tests for we hold UKAS accreditation, however opinions, interpretations and all information contained in the report are outside the scope of UKAS accreditation.