

ABERDEEN HARBOUR EXPANSION PROJECT November 2015

> Volume 3: Technical Appendices

APPENDIX 6-C GROUND INVESTIGATION REPORT FOR BAY OF NIGG HARBOUR DEVELOPMENT

REPORT QUALITY ASSURANCE SHEET						
Title:						

GROUND INVESTIGATION REPORT

FOR

BAY OF NIGG HARBOUR DEVELOPMENT ABERDEEN VOLUME ONE

Report Status:	Description:	Date:	Written By:	Checked By:	Approved By:
Draft	GIR	22/11/2013	M.I. Townsley	P. Rodgers	M.J. Baldwin
Final	GIR	18/12/2013	M.I. Townsley	R. Rogers	M.J. Baldwin

Distribution: Arch Henderson LLP

: Internal Copy

The report is not to be used for contractual or engineering purposes unless this sheet is signed where indicated by both the originator of the report and the approver, and the report is designated "Final" on this report quality assurance sheet.

Opinions and interpretations expressed in the report are outside the scope of UKAS accreditation.

This report has been prepared for the sole internal use and reliance of the named Employer. This report should not be relied upon or transferred to any other parties without the express written authorisation of Soil Engineering. If an unauthorised third party comes into possession of the report they rely on it at their peril and Soil Engineering owes them no duty of care and skill.

Report No. SE-RRG-F-002 Issue. Revision Number 1.01 Issue Date 16/01/2012

GROUND INVESTIGATION REPORT: BAY OF NIGG HARBOUR DEVELOPMENT, ABERDEEN

REPORT CONTENTS

REPO	RT QUALITY ASSURANCE SHEET	
EXECU	UTIVE SUMMARY	7
1.0	INTRODUCTION	8
2.0	PURPOSE, SCOPE AND REPORT FORMAT	8
2.1 2.2 2.3 2.4	Purpose Scope of Work Limitations Report Format	3 3
2.5	Key Sources of Information	
3.0	DESK STUDY INFORMATION	
3.1 3.2 3.3 3.4 3.5 3.6	Scope of Study	10 10
4.0	FIELDWORK	12
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Scope of Fieldwork Magnetometer Survey Inspection Pits Cable Percussion Boreholes Rotary Drilling Grab Sampling Trial Pits	13 13 13 14
5.0	LABORATORY TESTING	14
5.1 5.2 5.3 5.4	Scope of Testing Geotechnical Soils Testing Geotechnical Rock Testing Environmental Testing	1 ²
6.0	SUMMARY OF RESULTS OF THE INVESTIGATION	16
6.1 6.2 6.3 6.4 6.5 6.6	Scope of Commentary	16 16 16
7.0	GEOTECHNCIAL PARAMETRIC ASSESSMENT	22
7.1 7.2 7.2.1 7.2.2	General Comment	22 22
7.3	Earthworks Classification	

7.4	Shear Strength Parameters	24
7.4.1	Triaxial Tests	24
7.4.2	Standard Penetration Test	24
7.4.2	Effective Stress Shear Strength Parameters	25
7.5	Granular Strata Density Classification	25
7.5.1	Shear Box Tests	25
7.5.2	Standard Penetration Testing	26
7.6	Consolidation Parameters	
7.7	Soil Unit Weight	
7.7.1	Particle Density of Granular Materials	
7.7.2	Bulk Density	
7.8	Rock Classification	
7.8.1	Moisture Content	
7.8.2	Point Load Tests	
7.8.3	Unconfined Compressive Strength Tests	
7.9	Sulfate and Related Test Results	
7.10	Summary of Geotechnical Parameters	
7.10		
8.0	GEOTECHNICAL ENGINEERING ASSESSMENT	31
8.1	Proposals	31
8.2	Site Conditions	
8.3	Summary of Subsurface Conditions	
8.4	Development of Site	
8.5	Foundations	
8.5.1	Summary	
8.5.2	Spread Foundations	
8.5.3	Piled Foundations	
8.6	Access Channel and Harbour Excavations	
8.7	Breakwater Construction	
8.8	Sulfate and pH Aggressivity	
8.9	Mining	
	•	
9.0	CONCLUSIONS AND RECOMMENDATIONS	38
REPOR	RT REFERENCES	39
LIST OI	F TABLES	Page or section
Table 1	Summary of Strata Types Recorded in the British Geological Survey Borehole Data Pack Ref. Bh_119433_1	11
Table 2		12
Table 3	Summary of In Situ Test Results from the British Geological Survey Borehole Data Pack Ref. Bh_119433_1	12
Table 4	Summary of Strata Types Encountered in Boreholes from the Soil Engineering 2013 Investigation - C And D Series Boreholes	17
Table 5		18
Table 6	Summary of Strata Types Encountered in Boreholes from the Soil Engineering 2013 Investigation - E Series Boreholes	19
Table 7	Summary of Strata Types Encountered in Boreholes from the Soil Engineering 2013 Investigation - Trial Pits	20
Table 8	Summary of Ground Conditions from Soil Engineering 2013 Investigation	21

Table 9	Summary of Moisture Content Test Results from Soil Engineering 2013	22
Table 3	Investigation	22
Table 10	Summary of Moisture Content and Atterberg Limit Test Results for Marine	22
	Deposits From Soil Engineering 2013 Investigation	
Table 11	Summary of Moisture Content and Atterberg Limit Test Results for Glacial Till from Soil Engineering 2013 Investigation	23
Table 12	Summary of Laboratory Determined CBR Test Results for Clay Units within the Marine Sand Deposits From Soil Engineering 2013 Investigation	24
Table 13	Summary of Undrained Shear Strength Values from Soil Engineering 2013 Investigation	24
Table 14	Summary of Effective Stress Shear Strength Values for Consolidated Undrained Triaxial Compression Effective Stress Tests on Glacial Till Samples from Soil Engineering 2013 Investigation	25
Table 15	Summary of Shear Strength Values for Small Shear Box Testing on Samples of Marine Sand Deposits from Soil Engineering 2013 Investigation	26
Table 16	Assumed Values of Volume Compressibility (mv) Based on In Situ and Laboratory Index Testing for the Soil Engineering 2013 Investigation	27
Table 17	Summary of Particle Density Test Results from Soil Engineering 2013 Investigation	27
Table 18	Summary of Laboratory Determined Bulk Density Values from Soil Engineering 2013 Investigation	27
Table 19	Summary of Derived Soil Unit Weight Parameters	28
Table 20	Summary of Rock Moisture Content Test Results from Soil Engineering 2013 Investigation	28
Table 21	Summary of Point Load Is50 Test Results	29
Table 22	Summary of Unconfined Compressive Strength (UCS) Test Results	29
Table 23	Results of Chemical Tests for Concrete Design from Soil Engineering 2013 Investigation	29
Table 24	Summary of Geotechnical Parameters from Soil Engineering 2013 Investigation	30
Table 25	Summary of Groundwater Inflows Recorded in Exploratory Holes	Section A

GROUND INVESTIGATION REPORT: BAY OF NIGG HARBOUR DEVELOPMENT, ABERDEEN

Report Contents (Continued)

LIST OF FIGURES

Figure 1	Moisture Content Versus Depth Plot	Section E
Figure 2	A Line Plot for Glacial Till and Marine Deposits	Section E
Figure 3	Plastic Index Versus Depth Plot for Glacial Till and Marine Deposits	Section E
Figure 4	Summary of PSD Test Results for Made Ground	Section E
Figure 5	Summary of PSD Test Results for Marine Deposits	Section E
Figure 6	Summary of PSD Test Results for Glacial Till	Section E
Figure 7	Plot of Shear Strength Versus Depth for Glacial Till	Section E
Figure 8	Plot of SPT'N' Value by Depth for Glacial Till	Section E
Figure 9	Plot of SPT'N' Value by Depth for Marine Deposits	Section E
Figure 10	Plot of Vertical Effective Stress verses SPT 'N60' Value for Marine Sand and Sand	Section E
	& Gravel Deposits	
Figure 11	Plot of SPT'N' Value by Depth for Glacial Granular Deposits	Section E
Figure 12	Plot of Bulk Density versus Depth for Glacial Till	Section E
Figure 13	Rock Moisture Content versus Depth Plot	Section E
Figure 14	Point Load Is50 versus Depth Plot for Granitic Gneiss	Section E
Figure 15	Point Load Is50 versus Elevation Plot for Granitic Gneiss	Section E
Figure 16	Unconfined Compressive Strength versus Depth Plot for Granitic Gneiss	Section E
Figure 17	Unconfined Compressive Strength versus Elevation Plot for Granitic Gneiss	Section E
Figure 18	Section A - A Through Boreholes E105, E106, E107, E108, E109, E110, E111, E112, E115 and E116	Section E
Figure 19	Section B - B Through Boreholes B61, E65, E66, E69, E71, E72, E74, E75, D100, E115 and E116	Section E
Figure 20	Section C - C Through Boreholes A34, A36, A39, C88 and C96	Section E
Figure 21	Section D - D Through Exploratory Holes A05, A08, A11, TP15 and TP16	Section E
Figure 22	Section E - E Through Exploratory Holes TP01, TP02, TP16, A39, A42, A47, E74 and E75	Section E
Figure 23	Section F - F Through Exploratory Holes TP18, A19, A26, A36, A51, E72 and C79	Section E
Figure 24	Section G - G Through Exploratory Holes TP10, TP11, A05, A63, E65, C87and C88	Section E
Figure 25	Section H - H Through Exploratory Holes TP03, TP16, A19, A29, A31, B61, E66 and C84	Section E
Figure 26	Section I - I Through Boreholes A41, A51, A54, A57, B61, A63 and D101	Section E
Figure 27	Point Load Is50 versus Unconfined Compressive Strength Plot	Section E
Figure 28	Composite Plot of Unconfined Compressive Strength versus Depth from all	Section E
	Laboratory Data (UCS and Point Load)	
Figure 29	Site Location Plan	Section C
Figure 30	Exploratory Hole Location Plan	Section C

SUPPORTING FACTUAL DATA

SECTION A: EXPLORATORY HOLE RECORDS AND FIELD DATA

- Exploratory Hole Log Legend and Notation Sheet
- Cable Percussion and Rotary Drilling Records
- Excavation Records
- Groundwater / Gas Monitoring Results

GROUND INVESTIGATION REPORT: BAY OF NIGG HARBOUR DEVELOPMENT, ABERDEEN Report Contents (Continued)

SECTION B: LABORATORY TEST RESULTS

- Laboratory Test Data Key Sheet
- Laboratory Test Summary Sheets (Soils)
- Laboratory Test Data Sheets (Soils)

VOLUME 2

- Laboratory Test Data Sheets (Soils) Continued
- Laboratory Test Summary Sheets (Rock)
- Laboratory Test Data Sheets (Rock)
- Chemical Test Results

SECTION C: SITE PLANS

- Site Location Plan
- Exploratory Hole Location Plan

SECTION D: PHOTOGRAPHS

- Core Photographs
- Excavation Photographs

VOLUME 3

SECTION E: SUPPORTING TECHNICAL DATA

- Cross Sections
- Parameter Plots

APPENDICES

APPENDIX 1: NOTES ON FIELDWORK, LOGGING AND LABORATORY TESTING

- Notes on Fieldwork Procedures
- Terminology used in Soil Descriptions
- Terminology used in the Description of Made Ground
- Peat and Organic Soil Description Terminology
- Terminology used in the Description and Classification of Rock
- Assessment of Aggressive Ground and Groundwater Conditions
- APPENDIX 2: COASTLINE SUVREYS LTD: MAGNETOMETER SURVEY JUNE 2013
- APPENDIX 3: BRITISH GEOLOGICAL SURVEY: GEO RECORDS PLUS BOREHOLE DATA PACK

EXECUTIVE SUMMARY

This summary contains an over view of the key findings and conclusions of this report. It is emphasised however that no reliance should be placed on any part of this summary without referring to the relevant sections of the report. These sections within the main body of the report, together with linking laboratory data and plans etc., may contain information which puts into context findings which are highlighted within this summary.

Soil Engineering Geoservices Limited were instructed by Arch Henderson LLP (The Engineer) acting for and on behalf of Aberdeen Harbour Board (The Employer), to provide a geotechnical assessment for the proposed new Bay of Nigg Harbour Development at Aberdeen. This assessment in the form of a ground investigation report (GIR) was to be based on the ground investigation also carried out by Soil Engineering between June and November 2013, together with previous borehole information provided by the British Geological Survey.

It is proposed to develop Nigg Bay as a new harbour facility with the construction of new breakwaters, quays and a navigation channel and harbour area. The construction of the navigation channel and harbour area will involve dredging of parts of Nigg Bay to reduce its level to approximately -9.0mchart datum with the approach channel at -10.5mchart datum.

Nigg Bay is located at the eastern end of St Fittick's Road, some 6km to the south-east of Aberdeen city centre (centred on approximate National Grid reference NJ 970 046). The site is irregular in shape and comprises the over water and inter tidal area of Nigg Bay between the headlands occupied by Balnagask Golf Course to the north and Loirston Country Park to the south.

Geological maps show that the land adjacent to the site is underlain by superficial Pleistocene deposits comprising glacial meltwater deposits (sand and gravels with lenses of silt and clay) and glacial till (clay, sandy clay or sand with a significant gravel, cobble and boulder content). At greater depth, the adjacent land is shown to be underlain by metasedimentary rocks (psammites, semipelites and subsidiary pelites) of the Aberdeen Formation of the Dalradian supergroup of Precambrian age.

In the vicinity of the proposed new harbour development only local and limited thicknesses of made ground was encountered beneath the south western corner of the site. A significant and variable thickness of superficial deposits were encountered beneath the site typically comprising medium dense or dense marine granular deposits overlying typically very stiff and hard glacial till strata and very dense glacial granular strata with thicknesses of superficial deposits between not encountered and 38.00m recorded in the exploratory holes. The superficial deposits appear to infill an east west trending valley feature incised into the underlying weak, medium strong and strong Dalradian rock strata.

The ground conditions encountered beneath the site appear to be generally favourable for the development. The exploratory holes indicate that the areas where breakwaters are to be constructed are underlain by medium dense, dense and very dense marine granular materials, very stiff and hard glacial till and granitic gneiss rock strata. In the area of the new quay, a similar sequence of superficial strata was encountered with variable thicknesses and type of superficial deposits and rockhead levels encountered. Based on the current borehole information dredging of the new harbour basin and approach channel will excavate marine granular deposits and the underlying glacial till and granular glacial deposits.

The concrete design classification for the site is calculated as DS-1 with an ACEC class AC-1.

1.0 INTRODUCTION

In June 2013 Soil Engineering Geoservices Limited were instructed by Arch Henderson LLP (The Engineer) acting for and on behalf of Aberdeen Harbour Board (The Employer), to carry out a ground investigation for the Bay of Nigg Harbour Development. The investigation comprised the formation of cable percussive boreholes selectively extended by rotary drilling together with trial pitting, grab sampling, in situ testing and a geophysical magnetometer survey. Most of the work was to be undertaken overwater or within the intertidal area of the bay.

This ground investigation report (GIR) comprises the results of the fieldwork and laboratory testing together with an interpretation of the geoenvironmental conditions at the site. The fieldwork was carried out between 5th June and 2nd November 2013.

2.0 PURPOSE, SCOPE AND REPORT FORMAT

2.1 Purpose

The purpose of this investigation was to determine the subsurface ground, and groundwater conditions at the site. An interpretative geoenvironmental (GIR) report was also required in order that appropriate material parameters for the design of the proposed structures could be ascertained.

2.2 Scope of Work

The brief for this Ground Investigation Report comprised the following items:

- 1. To form exploratory holes on site.
- 2. To install gas and ground water monitoring instruments.
- 3. To monitor on site installations.
- 4. To undertake laboratory tests scheduled by the Engineer on samples recovered from exploratory holes
- 5. Review and provide a written appraisal of readily available published geotechnical information and geotechnical and historical information provided by the Engineer
- 6. Provide a written appraisal of the ground and water conditions
- 7. Provide analysis and interpretation of factual data for the classification and derivation of design parameters for each stratum encountered
- 8. Provide geotechnical engineering assessment

The sources of information used in the compilation of this report are detailed in the list of references on page 39.

2.3 Limitations

This report has been prepared using the site investigation data and / or desk study / historical information referenced in the report text. Soil Engineering has prepared the report in accordance with the specification and scope of works for this project, which was designed by Arch Henderson LLP together with the relevant European and British Standards.

It should be noted that the investigation data on which this report is based is only indicative of the actual ground, groundwater and ground gas conditions that exist at the locations of the exploratory holes and may not be representative of the conditions that exist on the site as a whole.

Soil Engineering accept no liability for any adverse geotechnical or environmental impacts on the proposed

development, that result from ground not investigated as part of this project. Similarly, Soil Engineering is not liable for any adverse effects that arise as a result of conditions that exist on land adjacent to the subject site.

2.4 Report Format

This report is presented in the following format:

- Description of fieldwork
- Summary of Desk Study Information
- Geotechnical Appraisal, Interpretation and Engineering Assessment
- Exploratory hole logs
- Laboratory test results
- Data Plots and Sections
- Maps and plans

2.5 Key Sources of Information

- Arch Henderson, Drawing No 121106-01
- BGS 1:50,000 scale geological map for the area, Sheet 77-Scotland, Solid (1982) and Drift (1980) editions for Aberdeen.
- BGS Memoir for the 1:50 000 Sheet 77-Scotland (1986) entitled Geology of the country around Aberdeen.
- British Geological Survey Borehole Data Pack, Ref BH_119433_1, dated 28 October 2013

3.0 DESK STUDY INFORMATION

3.1 Scope of Study

A formal comprehensive desk study was not requested or supplied by the Engineer for this investigation. Information from the British Geological Survey on the site geology and historical borehole records for the area was provided by the Engineer and is appended to this report.

The following sections provide general details of site location, site description and site geology as ascertained from published maps and memoirs.

3.2 Site Location and Description

The site is located at the eastern end of St Fittick's Road, some 6km to the south-east of Aberdeen city centre (centred on approximate National Grid reference NJ 970 046). The site is irregular in shape and comprises the over water and inter tidal area of Nigg Bay between the headlands occupied by Balnagask Golf Course to the north and Loirston country park to the south. The site is bounded by the two aforementioned headlands/golf courses to the north and south, by rough ground, pasture land and the Nigg Bay Waste Water treatment plant to the west and by the North Sea to the east. A road (Coast Road and Greyhope Road) approximately bounds the northern, western and south-eastern edges of the site. The site is currently unoccupied and comprises Nigg Bay, an area of tidal open seawater, as well as the bounding intertidal areas comprising open sand, roughly vegetated areas as well as exposed rock headland.

The site is located in a predominantly semi-rural coastal area to the south east of Aberdeen with the mouth of the River Dee and Aberdeen harbour located approximately 1km to the north of the site to the north of the bounding northern headland.

The site has a complex relief with elevated headland areas to the north and south, a lower lying area to the east and the bay topography generally sloping towards the centre of the bay and out to sea.

The location of the site is indicated on Figure 1 in Section C of this report.

3.3 Site History

No information on the history of the site was provided by the Engineer.

3.4 Geology

The 1:50,000 scale Geological Survey map for the area, sheet 77-(Scotland) for Aberdeen, Solid (1982) and Drift (1980) editions, shows the land adjacent to the site to be underlain by Pleistocene deposits comprising glacial meltwater deposits (sand and gravels with lenses of silt and clay) and glacial till (clay, sandy clay or sand with a significant gravel, cobble and boulder content). The map also records a glacial melt water channel as entering the bay from the south. At greater depth, the adjacent land is shown to be underlain by metasedimentary rocks (psammites, semipelites and subsidiary pelites) of the Aberdeen Formation of the Dalradian supergroup of Precambrian age. Subsidiary discordant sheets of amphibolite and hornblende schist are also recorded. The map records outcrops of Dalradian rock strata underlying the Pleistocene deposits on the headlands to the north and south of the site. The map also records foliation and banding within the Dalradian strata as dipping to the north-west and north-east with dips between 45° and 90° recorded. The nearest faulting is recorded as the north-east south-west trending Dee Fault which is recorded approximately 1.5km to the north west of the centre of the site.

Further information on the superficial deposits is contained within the geological maps and information in the British Geological Survey Borehole Data Pack, Ref BH_119433_1, dated 28 October 2013 (presented in the appendix to this report). This records a variable sequence of glacial sand and gravel deposits overlying glacial till on both headlands to the north and south of Nigg Bay. Alluvium is recorded infilling the shallow valley behind the bay and a sequence of marine beach deposits is recorded lining the shore of the bay.

Information from the BGS geological memoir for the area (BGS Memoir for the 1:50 000 Sheet 77-Scotland (1986) entitled Geology of the country around Aberdeen) indicates that the bay area is underlain by silts, sands and gravels classified by the BGS as marine beach deposits of Quaternary age. The memoir also records raised beach deposits in the Aberdeen area sometimes with associated deposits of peat. Nigg Bay is recorded by the memoir as being underlain by an infilled former glacial melt out channel and possible former course of the River Dee. The memoir records that boreholes drilled within the bay indicate anomalous drift depths associated with a buried channel and glacial deposits underlying more recent marine beach deposits. The buried channel is recorded as being infilled with glacial (largely till) deposits with a thickness of 30m noted from boreholes. Geophysical surveys mentioned in the memoir indicate that the channel may extend at least 1km out to sea and the publication speculates that the channel may be a subglacial or pre Devensian feature. The glacial tills in the Aberdeen area are noted by the memoir to be variable with at least three till units noted. The memoir suggests lodgement, melt-out and flow till origins for individual till units with the melt-out and flow till units typically being more granular in nature and with all types of till containing coarse granular materials.

The memoirs record significant weathering of rock to depths of up to 20m in the Aberdeen area with the psammites being less prone to weathering than other types of rock however the weathering is noted to be variable and difficult to predict. This deep weathering is thought to be associated with relatively warm interglacial periods that occurred during the last glaciation and preceding this, during the Tertiary period. The Dalradian rocks are interpreted as sedimentary rocks altered by low grade metamorphism and the amphibolite and hornblende schist is thought to represent metamorphosed basic igneous intrusions.

3.5 Hydrology and Hydrogeology

No information on the Hydrology and Hydrogeology of the site was provided by the Engineer.

3.6 Previous Investigations

The Engineer has supplied details of a geophysical and bathymetric survey carried out on the site in 2012 by Caledonian Geotech Ltd. This investigation comprised sub-bottom profile, bathymetry and side scan sonar surveys. For further information, reference should be made to the full report, which is listed on page 39 of this report. This investigation produced an isopach map of rockhead depths in Nigg Bay area and opposite the adjacent headlands based on the results of the sonar survey. Although quite variable, the general pattern indicated is for rockhead depths to gradually increase out to sea opposite the headland areas (depths between 14.0m and 26.0m below chart datum are indicated approximately 500m out from the headlands). In the central part of the bay, a roughly east-west trending channel with a width of approximately 200m to 300m is indicated. In the area of Nigg Bay rockhead depths are indicated to increase away from the headlands towards the centre of the channel however, the channel appears to have relatively steep sides in some areas and local plateau areas indicated to either side of this. Although the base of the channel is indicated to be relatively level, an uneven and undulating local topography is indicated. The channel is also indicated to gradually increase in depth out to sea (with rock head depths increasing from 14.0m to in excess of 40.0m below chart datum indicated).

The Engineer supplied a British Geological Survey (BGS) Borehole Data Pack, Ref BH_119433_1, dated 28 October 2013 containing a description of the geology of the area and also database records for twelve exploratory holes undertaken within Nigg Bay and the surrounding vicinity principally for the Aberdeen Sea Outfall. The boreholes were mainly drilled in the bay area, along the southern headland (Greg Ness) and out to sea from this. A summary of the strata and ground water encountered in these records together with key in situ testing results are summarised in the following tables. For further detailed information, reference should be made to Section 7.2 and to the full report, which is listed on page 39 of this report.

TABLE 1: SUMMARY OF STRATA TYPES RECORDED IN THE BRITISH GEOLOGICAL SURVEY BOREHOLE DATA PACK REF. BH_119433_1

Borehole No	Made Ground (mbgl)	Sand and Sand and Gravel, Local Cobbles (mbgl)	Glacial Till (Variably Sandy Variably Gravelly Clay) (mbgl)	Glacial Silt (mbgl)	Sand, Gravel Cobbles and Boulders (mbgl)	Weathered Granite and Gneiss (mbgl)	Less Weathered Granite and Gneiss (mbgl)
NJ90SESE7119 1A	NE	GL-15.20P	NE	NE	15.20-20.0+	-	-
NJ90SESE7807 8	NE	GL-3.43	NE	3.43-4.42	35.97-40.54	40.54-54.56	54.56-66.29+
		4.42-5.33	5.33-35.97	NE			
NJ90SESE7807 21	GL – 5.50	5.50 - 6.50	6.50 - 11.00+	-	-	-	-
NJ90SESE7119 1	NE	NE	NE	NE	GL-6.50+	-	-
NJ90SESE7807 22	GL-3.63	NE	NE	NE	NE	3.62-5.70+	-
NJ90SESE7807 7	NE	GL-2.44	NE	2.44-25.25	25.25-29.26+	-	-
NJ90SESE7807 26	NE	NE	NE	NE	GL-20.50	NE	20.50-29.50+
NJ90SESE7807 27		GL-0.60	0.60-18.50	NE	NE	18.50-19.00	19.00-29.50+
NJ90SESE7807 10	NE	NE	NE	NE	NE	GL-1.22	1.22-64.24+
NJ90SESE7807 11	NE	GL-3.05	NE	NE	3.05-4.12	4.12-8.48+	-
NJ90SESE7113 16	NE	GL-6.50	6.50-9.50	NE	9.5 -11.00	NE	11.00-33.50+
NJ90SESE7113 17	NE	GL-6.30	NE	NE	NE	6.30-9.50	9.50-34.50+

Notes: + Denotes base of strata not encountered

NE Not encountered

P Strata contains peat bands

Table 1 indicates that seven main material types were identified during the various investigations. The table also indicates the variability of the superficial materials encountered around the edge of Nigg Bay and especially along the northern edge of the Greg Ness headland where they principally comprise variable granular and cohesive glacial deposits. On the tip of the headland itself, rock was encountered at shallow depth with superficial deposits thickening to the east of this towards Nigg Bay. Two boreholes within these investigations proved granite and gneiss bedrock to depths in excess of 60.00m.

Limited ground water data was obtained during the various investigations contained in the BGS report. These are summarised in Table 2.

TABLE 2: SUMMARY OF GROUNDWATER OBSERVATIONS FROM THE BRITISH GEOLOGICAL SURVEY BOREHOLE DATA PACK REF. BH_119433_1

Borehole No	Strike Depth (m)	Standing Level (m)	Strata	Notes
NJ90SESE7119 1A	5.00	4.00	Sand & Gravel	
NJ90SESE7807 8	-	-	-	Not Recorded
NJ90SESE7807 21	Dry	-	-	Borehole Dry
NJ90SESE7119 1	Dry	-	-	Borehole Dry
NJ90SESE7807 22	Dry	-		Borehole Dry
NJ90SESE7807 7	-	-	-	Not Recorded
NJ90SESE7807 26	Dry	-	-	Borehole Dry
NJ90SESE7807 27	Dry	-	-	Borehole Dry
NJ90SESE7807 10	-	-	-	Not Recorded
NJ90SESE7807 11	-	-	-	Not Recorded
NJ90SESE7113 16	-	-	-	Not Recorded
NJ90SESE7113 17	_	-	-	Not Recorded

TABLE 3: SUMMARY OF IN SITU TEST RESULTS FROM THE BRITISH GEOLOGICAL SURVEY BOREHOLE DATA PACK REF. BH_119433_1

DATA : ACK KET : DIT_110 100_1									
In situ test	Made	Sand and	Glacial Till	Glacial	Sand,	Weathered	Less		
type	Ground	Sand and Gravel, Local Cobbles	(Variably Sandy Variably Gravelly Clay)	Silt	Gravel Cobbles and Boulders	Granite and Gneiss	Weathered Granite and Gneiss		
SPT 'N' value (blows)	-	8 - 97	54 - 89	-	46 - 79	-	-		

Note: SPT trip hammer efficiency unknown

Limited in situ testing was undertaken during the various investigations contained in the BGS report. This is summarised in Table 3 and comprised standard penetration testing.

4.0 FIELDWORK

4.1 Scope of Fieldwork

The scope of the fieldwork was specified by the Engineer and was undertaken in general accordance with Eurocode 7 Part 2 (BS EN 1997-2: 2007) and where there is no conflict also with BS 5930: 1999 + A2: 2010. Soil and rock logging has been undertaken in accordance with the relevant European Standards, listed in the references for this report. Soil Engineering had responsibility for setting out and surveying all exploratory holes while the Engineer had responsibility for determining the in situ testing and sampling regime. Cable percussion boreholes selectively extended by rotary drilling were formed together with mechanically excavated trial pits, seabed and magnetometer surveys and grab sampling. The exploratory hole locations are shown on the site plan presented in Section C of this report.

4.2 Magnetometer Survey

A detailed marine magnetometer survey was undertaken by Coastline Surveys Limited in June 2013. The results of the survey show thirty-three targets with magnetic signature significantly above background levels

For further information, reference should be made to the full survey report, included as an appendix to this report.

4.3 Inspection Pits

In order to reduce the risk of damaging buried services, the location of exploratory hole L01 was scanned using a cable avoidance tool (CAT). As a further precaution, an inspection pit was hand excavated to a depth of 1.20m, followed by a further scan of the base of the pit with the CAT. Inspection pits were not excavated for the remaining boreholes, as they were formed overwater from a jack-up platform.

4.4 Cable Percussion Boreholes

A total of forty-nine over-water boreholes and a single land based borehole were formed to depths between 0.10m and 10.40m using conventional light cable percussion techniques together with 200mm and 150mm diameter temporary steel casings. The boreholes were all formed in order to obtain samples for laboratory testing and to provide geotechnical information for foundation design.

In granular materials, cohesive materials and rock Standard Penetration Tests were carried out using either a split spoon sampler or a solid 60° cone. The results of these tests are given as a Standard Penetration "N" value or as a blow count for a given penetration at the appropriate position on the borehole logs, where the use of either the sampler or cone is also recorded.

Representative disturbed samples of all materials encountered were obtained and these were placed in sealed containers for transport to the laboratory.

Where appropriate / required, environmental samples were obtained for chemical testing.

The samples recovered from the boreholes were described by an Engineering Geologist, in accordance with the terminology presented in Appendix 1 of this report. A detailed description of all strata encountered, groundwater conditions and the position and type of samples taken are included on the borehole logs presented in Section A of this report.

4.5 Rotary Drilling

In order to obtain information on the solid geology beneath the site and/or where the stiffness of the cohesive material and presence of coarse granular material prevented the progression of the cable percussion drilling, boreholes were extended using rotary drilling techniques. These boreholes were extended to depths between 4.00m and 40.00m, using a combination of SWF, Geobore S or T6116 core barrels together with a protective semi rigid plastic liner and a Polycrystalline Diamond (PCD) or Diamond Impregnated (Impreg) core bit with water flush to produce cores of 107, 102 or 89mm nominal diameter respectively.

Details of the strata encountered are given on the borehole logs along with the Engineering Geologist's assessment of Total Core Recovery (TCR), Solid Core Recovery (SCR), and Rock Quality Designation (RQD) each expressed as a percentage of the individual core runs. Where applicable a fracture spacing (I_f) has also

been determined and this information is given on the logs.

The symbols and abbreviations used on the rotary borehole logs are explained on the exploratory hole log legend and notation sheet presented in Section A of this report.

The core samples recovered were photographed and described by an Engineering Geologist in accordance with the terminology presented in Appendix 1 of this report. Where suitable, sub-samples of the cored superficial deposits were taken. These sub-samples were sealed in wax to prevent moisture loss and transported to the Leeds laboratory of Soil Engineering for geotechnical testing. The borehole logs are presented in Section A of this report and photographic records are presented in Section D of this report.

4.6 Grab Sampling

In order to establish contamination levels for proposed dredged material, twenty-six grab samples were undertaken using a Van Veen grab sampler.

The recovered samples were described by an Engineering Geologist and the descriptions of the samples recovered are shown on the relevant logs presented in Section A of this report.

4.7 Trial Pits

Eighteen trial pits designated TP01 to TP18 inclusive were excavated using a 20 tonne tracked excavator to depths between 1.70m and 4.40m. The pits were located around the inter-tidal foreshore of the site to provide a reasonable indication of the presence of any made ground and in particular to assess the mass soil fabric of the near surface natural deposits.

The trial pits were not shored and were logged from the surface by an Engineering Geologist. The Engineering Geologist provided a detailed description of the ground conditions encountered in each pit and also obtained disturbed soil samples at regular intervals for geotechnical analysis. The strata encountered in the trial pits are described on the trial pit logs presented in Section A of this report and the location of each of the trial pits is indicated on the site plan presented in Section C of this report. Trial pit photographs are included in Section D of this report.

5.0 LABORATORY TESTING

5.1 Scope of Testing

All geotechnical (soils) and chemical (contamination) testing was scheduled by the Engineer. The scope of the testing was required to enable comments regarding the dredgability of overburden and rock and the suitability of soil and rock for construction of quay walls and breakwaters to be made and for potential site contamination levels to be established.

5.2 Geotechnical Soils Testing

The programme of laboratory testing was carried out in accordance with BS 1377. The testing was carried out at the Leeds laboratory of Soil Engineering, a UKAS accredited testing laboratory No 1265.

Results are given on the summary sheets with individual test plots presented in Section B of this report.

In addition, chemical (sulfate and pH) testing was undertaken by SAL, a UKAS accredited testing laboratory No. 1549. Testing was undertaken in order to assess concrete requirements from BRE Special Digest No 1. Samples were prepared in general accordance with BS 1377, although final analysis of total sulfate was

performed using ICP and aqueous extract using Ion Chromatography.

5.3 Geotechnical Rock Testing

In order to provide an indication of the strength of the rock encountered, point load testing and unconfined compressive strength testing was undertaken on selected core samples. These tests were performed in accordance with the specifications indicated on the individual test plots.

Results are presented in Section B of this report.

5.4 Environmental Testing

A programme of environmental testing was scheduled on the samples recovered utilising the Van Veen grab sampler. Testing was carried out by SAL, a UKAS accredited testing laboratory No. 1549.

Testing was carried out in accordance with the methods identified in the test reports.

The results of the environmental testing are presented in Section B of this report.

6.0 SUMMARY OF RESULTS OF THE INVESTIGATION

6.1 Scope of Commentary

The results of this investigation appear to conflict to some extent with the published geology summarised in Section 3.3 of this report but generally agreed with the findings of the previous investigations carried out on this site and referenced in Section 3.4 of this report. Although the superficial deposits were as predicted by the published geological information, the solid geology differed to some extent for the published records. The following sections are only intended to provide a summary of the ground conditions encountered during this investigation whilst the logs presented in Section A of this report give detailed descriptions of all the strata observed.

6.2 Made Ground

Made ground typically between 0.60m and 3.70m in thickness was only encountered in trial pits TP08 and TP10 to TP15 inclusive in the south western corner of the bay. The made ground was generally seen to comprise a granular mix of coarse and very coarse materials comprising a variable mix of sand and gravel, cobble and boulder sized fragments of metamorphic rock, igneous rock, concrete, tarmac, brick, plastic pipe, packaging and metal. Other materials were also identified including wood fragments, cast iron pipe pieces and polystyrene.

6.3 Superficial Deposits

Underlying any made ground, topsoil or at ground/seabed level, a variable sequence of sand, sand and gravel, cobbles, boulders, and variably sandy variably gravelly clay with cobbles and boulders was encountered. The sequence typically comprised an upper principally granular formation of marine deposits comprising a variable mix of sand, gravel, cobbles and boulders underlain by glacial deposits comprising variably sandy variably gravelly clay with cobbles and boulders with interbedded granular materials comprising sand, gravel, cobbles and boulders.

Two distinct units were noted within the upper marine granular formation with both being discontinuous and not encountered in all exploratory holes. Typically, the uppermost unit comprised a fine to coarse sand with varying fine gravel, silt and cobble content. This unit was encountered in the majority of the boreholes to depths between 0.20m and 10.10m below bed level and typically increased in thickness towards the mouth of Nigg Bay. This unit was locally underlain by a unit of very coarse material typically comprising cobbles and boulders of mixed igneous and metamorphic lithologies with a sand and gravel matrix. It was noted that the coarse granular deposit was more prevalent in the intertidal and foreshore areas especially in the north western quadrant of the bay to the south of the Girdle Ness headland while towards the centre of the bay the unit thins and in this area sometimes comprises isolated cobbles and boulders.

Underlying the upper marine granular formation glacial deposits comprising till with subsidiary granular materials and/or bedrock was encountered. The glacial deposits, where present, were seen to principally comprise units of glacial till generally consisting of brown or greyish brown, stiff, very stiff and hard clay with varying sand, gravel, cobble and boulder content. Localised variation in the clay included a reddish brown clay layer within this stratum. The glacial till strata also contained variable granular units comprising sand and gravel often with a significant cobble and boulder content. The glacial deposits were noted to be very variable in thickness with thicknesses in excess of 25.00m noted along a roughly east-west trending axis running through the centre of the bay.

6.4 Dalradian Rock Strata

The depth to rockhead was very variable across the site. Rock was encountered at ground/bed level or at

shallow depth adjacent to the headlands but depths to rockhead in excess of 30.00m were recorded in exploratory holes drilled along a roughly east-west trending axis running through the centre of the bay. The topography of the buried valley as illustrated by varying rockhead levels in boreholes appears to be quite complex with plateau areas and areas of steeply sloping ground indicated (e.g. between boreholes A31 and A34).

Twenty-eight boreholes were extended into rock in order to assess the solid geology. These boreholes encountered a banded granitic gneiss, comprising of interbanded units of micaceous schist, gneiss and coarse grained granitic materials frequently in thin to thickly banded units. The granitic gneiss was proved to a maximum depth of 40.00m in borehole A05. The rock appeared to be variably weathered and typically appeared to be slightly or moderately weathered but also contained weaker moderately and highly weathered strata. The distribution of the weathered material between boreholes appeared to follow no set pattern and was very variable.

A summary of the ground conditions encountered during this investigation is presented as Tables 4, 5, 6 and 7.

Additional information on the ground conditions is available from the British Geological Survey Borehole Data Pack and a summary of this information is given in Table 1.

TABLE 4: SUMMARY OF STRATA TYPES ENCOUNTERED IN BOREHOLES FROM THE SOIL ENGINEERING 2013 INVESTIGATION - C AND D SERIES BOREHOLES

Borehole No	Made Ground (mbgl)	Marine Deposits (Sand and Sand and Gravel) (mbgl)	Marine Deposits (Sand, Gravel, Cobbles and Boulders) (mbgl)	Glacial Till (Variably Sandy Variably Gravelly Clay with Cobbles and Boulders)	Glacial Sand, Gravel Cobbles and Boulders (mbgl)	Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)	Less Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)
C79	NE	GL-0.90	NE	NE	NE	6.13-8.00+	0.90-6.13
C81	NE	GL – 2.50	2.50-4.40	4.40-8.00+	-	-	-
C83	NE	GL-2.30	2.30-2.50	2.50-10.10+	-	-	-
C84	NE	GL-1.00	1.00-1.40	1.40-7.40+	-	-	-
C87	NE	GL-1.10	1.10-1.20	1.20-8.50+	-	-	-
C88	NE	GL-1.00	1.00-1.20	1.20-8.25+	-	-	-
C96	NE	GL-4.50	NE	NE	NE	4.50-7.30+	-
D98	NE	GL-2.00	NE	NE	NE	NE	2.00-4.10+
D99	NE	GL-4.10	NE	4.10-7.10+	-	-	-
D100	NE	GL-3.10	NE	NE	NE	NE	3.10-4.00+
D101	NE	GL-4.80	NE	4.80-8.80+	-	-	-
D102	NE	GL-3.00+	-	-	-	-	-
D104	NE	GL-7.95	7.95-8.25	8.25-11.60+	-	-	-

Notes: + Denotes base of stratum not encountered
NF Not encountered

TABLE 5: SUMMARY OF STRATA TYPES ENCOUNTERED IN BOREHOLES FROM THE SOIL ENGINEERING 2013 INVESTIGATION - A, B, GS AND L SERIES BOREHOLES

		Marine	Marine Deposits (Sand,	Glacial Till (Variably Sandy	Glacial	Weathered Gneiss	Less
Borehole No	Made Ground (mbgl)	Deposits (Sand and Sand and Gravel) (mbgl)	Gravel, Cobbles and Boulders) (mbgl)	Variably Gravelly Clay with Cobbles and Boulders) (mbgl)	Sand, Gravel Cobbles and Boulders (mbgl)	(Granite, Gneiss and Schist) (mbgl)	Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)
A05	NE	GL-1.80	NE	1.80-14.50	14.50-19.40	38.00-40.00+	-
				19.40 - 38.00			
A08	NE	GL – 1.60	NE	1.60-32.40	32.40 - 35.60	-	-
				35.60-36.00+			
A11	NE	GL-1.20	NE	1.20-14.60	14.60-17.10	NE	28.20-32.80+
				17.10-27.50	27.50-28.20		
A19	NE	NE	NE	GL-1.40	1.40-4.50	NE	4.50-9.80+
A26	NE	NE	GL-2.80?	2.80-3.20	NE	3.20-6.34	6.34-8.10+
A29	NE	GL-2.30	2.30-2.65?	2.65-22.50	NE	NE	22.50-28.00+
A31	NE	GL-1.35	1.35-1.80	1.80-26.00	NE	NE	26.00-34.00+
A34	NE	GL-2.30	NE	2.30-10.35	NE	NE	10.35-15.30+
A36	NE	NE	GL-4.65	NE	NE	NE	4.65-9.70+
A39	NE	NE	GL-1.50	NE	NE	2.83-12.60+	1.50-2.83
A42	NE	NE	GL-2.20	2.20-2.50?	NE	NE	2.50-12.50+
A47	NE	NE	NE	NE	NE	NE	GL-10.10+
A51	NE	GL-2.10	2.10-5.20	NE	NE	NE	5.20-10.20+
A54	NE	GL-4.65	NE	4.65-11.25	11.25-11.65	NE	11.65-16.50
A57	NE	GL-5.60	NE	5.60-27.00	NE	27.00-28.50	28.50-32.00+
A59	NE	GL-4.10	4.10-4.60	4.60-29.50	29.50-31.00+	-	-
A63	NE	GL-6.00	NE	6.00-18.80	18.80-25.00	-	-
				25.00-25.50+			
B61	NE	GL-4.50	4.50-5.00	5.00-31.30	NE	NE	31.30-36.80+
GS011	NE	NE	GL-2.40	2.40-19.00+	-	-	-
L01	NE	GL-3.50	3.50-6.80	13.00-20.30	6.80-13.00	NE	20.30-25.55+

Notes: + Denotes base of stratum not encountered NE Not encountered

TABLE 6: SUMMARY OF STRATA TYPES ENCOUNTERED IN BOREHOLES FROM THE SOIL ENGINEERING 2013 INVESTIGATION - E SERIES BOREHOLES

Borehole No	Made Ground (mbgl)	Marine Deposits (Sand and Sand and Gravel) (mbgl)	Marine Deposits (Sand, Gravel, Cobbles and Boulders) (mbgl)	Glacial Till (Variably Sandy Variably Gravelly Clay with Cobbles and Boulders) (mbgl)	Glacial Sand, Gravel Cobbles and Boulders (mbgl)	Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)	Less Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)
Northern	Breakwater						
E65	NE	GL-7.50	NE	7.50-10.60+	-	-	-
E66	NE	GL - 10.10	10.10-10.70	10.70-14.25+	-	-	-
E69	NE	GL-6.90	6.90-7.30	7.30-10.60+	-	-	-
E71	NE	GL-9.50	NE	9.50-13.30+	-	-	-
E72	NE	GL-6.15	6.15-6.66	6.66-6.90?	NE	6.90-9.60+	-
E74	NE	NE	GL-3.50	NE	NE	NE	3.50-6.10+
E75	NE	GL-3.60	NE	NE	NE	3.60-6.90+	NE
Southern	Breakwater						
E105	NE	GL-6.00+	-	-	-	-	-
E106	NE	GL-6.00+	-	-	-	-	-
E107	NE	GL-2.95	2.95-4.50	-	-	-	-
		4.95-6.00+					
E108	NE	GL-3.65	NE	NE	NE	NE	3.65-6.65+
E109	NE	GL-5.80	-	-	-	5.80-5.90?+	-
E110	NE	GL-2.15	NE	NE	NE	NE	2.15-5.85+
E111	NE	GL-3.30	NE	NE	NE	3.30-4.00	4.00-6.00+
E112	NE	GL-2.70	NE	NE	NE	NE	2.70-6.05+
E115	NE	GL-1.50	NE	NE	NE	1.70-4.35+	4.35-5.70+
E116	NE	GL-1.00	NE	NE	NE	NE	1.00-4.50+

Notes: + Denotes base of stratum not encountered

NE Not encountered

TABLE 7: SUMMARY OF STRATA TYPES ENCOUNTERED IN BOREHOLES FROM THE SOIL ENGINEERING 2013 INVESTIGATION - TRIAL PITS

Borehole No	Made Ground (mbgl)	Marine Deposits (Sand and Sand and Gravel with Clay Interbeds) (mbgl)	Marine Deposits (Sand, Gravel, Cobbles and Boulders) (mbgl)	Glacial Till (Variably Sandy Variably Gravelly Clay with Cobbles and Boulders) (mbgl)	Glacial Sand, Gravel Cobbles and Boulders (mbgl)	Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)	Less Weathered Gneiss (Granite, Gneiss and Schist) (mbgl)
TP01	NE	GL-0.85	NE	NE	NE	0.85-1.70+	-
TP02	NE	GL-0.40	NE	0.40-1.00	NE	1.00-2.10+	-
TP03	NE	GL-0.55	NE	0.55-2.40	NE	2.40-2.70+	-
TP04	NE	GL-0.50	NE	0.50-3.30+	-	-	-
TP05	NE	GL-1.30	NE	1.30-3.20+	-	-	-
TP06	NE	GL-3.00+	-	-	-	-	-
TP07	NE	GL-2.00+	-	-	-	-	-
TP08	GL-2.50	2.50-3.80+	-	-	-	-	-
TP09	NE	NE	GL-2.40	2.40-3.80+	-	-	-
TP10	GL-2.40	2.40-3.20	NE	3.20-4.40+	-	-	-
TP11	GL-2.30	NE	NE	2.30-3.10+	-	-	-
TP12	GL-3.70+	-	-	-	-	-	-
TP13	GL-2.50	NE	NE	2.50-3.50+	-	-	-
TP14	GL-3.50+	-	-	-	-	-	-
TP15	GL-0.60	0.60-2.90+	-	-	-	-	-
TP16	NE	GL-2.50	NE	NE	NE	NE	2.50-2.80+
TP17	NE	GL-4.40+	-	-	-	-	-
TP18	NE	GL-2.00+		-	-		-

Notes: + Denotes base of stratum not encountered

NE Not encountered

The information obtained from all the investigations undertaken on the site has been summarised in a simplified form in Table 8. This table provides the main stratum types together with their depth ranges and a general description of the material composition.

6.5 Groundwater

During the investigation, minor ground water inflows were recorded in most of the exploratory holes formed on land at depths in the range 0.00m to 3.10m below ground level. The majority of the inflows were recorded within the made ground and granular superficial deposits but inflows were also recorded within the clay and rock strata. The majority of these inflows were recorded as seepages or minor inflows.

TABLE 8: SUMMARY OF GROUND CONDITIONS FROM SOIL ENGINEERING 2013 INVESTIGATION

Stratum	Depth to top (mbgl)	Depth to base (mbgl)	Typical Description
Made ground (generally absent)	GL	0.60 - >3.70	A granular mix of coarse and very coarse materials comprising a mix of sand and gravel, cobble and boulder sized fragments of metamorphic rock, igneous rock, concrete, tarmac, brick, plastic pipe, packaging and metal
Marine Sands and Sand & Gravel Deposits (locally absent)	GL - 2.50	0.40 - 10.10	Typically medium dense and dense fine to coarse sand with varying fine gravel, silt and cobble content
Marine Very Coarse Deposits (locally absent)	GL - 10.10	1.80 - 10.70	Cobbles and boulders of mixed igneous and metamorphic lithologies with a sand and gravel matrix
Glacial Till (locally absent)	0.40 - 13.00	1.00 - 38.00	Firm and stiff brown or greyish brown clay with varying sand, gravel, cobble and boulder content
Glacial Granular Deposits (locally absent)	1.40 - 32.40	4.50 – 35.60	Dense and very dense sand and gravel often with a significant cobble and boulder content
Weathered Gneiss (locally absent)	0.85 - 38.00	1.70 - >40.00	Extremely weak, very weak and weak often fractured banded granitic gneiss, comprising of interbanded units of micaceous schist, gneiss and coarse grained granitic materials
Less Weathered Gneiss	GL - 31.30	>40.00	Weak medium strong and strong banded granitic gneiss, comprising of interbanded units of micaceous schist, gneiss and coarse grained granitic materials

6.6 Summary

The strata encountered in the various exploratory holes formed on or adjacent to this site are summarised in tables 1, 4, 5, 6 and 7. Table 8 describes the general sequence of strata encountered on the site. These tables illustrate the variability of the sequence across the site.

An inspection of the exploratory holes and the strata they encountered in relation to their location on the site generally confirms the findings of the geophysics bathometric survey and previous geological information in relation to the location of the infilled buried valley beneath Nigg Bay. The investigation confirmed the geological information that the buried valley is, to the depths investigated, infilled principally with glaciogenic materials (glacial till and granular deposits). These are overlain by a predominantly granular sequence of marine deposits that generally appear to thicken towards the mouth of the bay.

7.0 GEOTECHNCIAL PARAMETRIC ASSESSMENT

7.1 General Comment

The data obtained during both the current investigation has been used in the parametric assessment and material geotechnical parameters are given in the following sections.

It should be noted that the geotechnical parameters detailed in Section 7 are based on a general assessment of the data. The values stated should be reviewed by the designer and specific characteristic values determined in order to make them applicable to the individual design requirements.

7.2 Soil Classification

7.2.1 Moisture Content and Atterberg Limits

Moisture content testing and Atterberg Limits testing was undertaken on the glacial till deposits.

The natural moisture content test results obtained from these deposits are summarised in Table 9 below.

TABLE 9: SUMMARY OF MOSITURE CONTENT TEST RESULTS FROM SOIL ENGINEERING 2013 INVESTIGATION

Strata	No of Tests	Minimum Moisture Content %	Maximum Moisture Content %	Average Moisture Content %
Marine Deposits	3	9.4	25	19.5
Glacial Till	70	3.6	32	9.7

A plot of moisture content against depth is presented in Figure 1 in Section E of this report. The plot illustrates the relatively low and consistent moisture content of the glacial till which shows little variation with depth apart from slightly elevated values near its top.

Three Atterberg Limits tests were performed on potentially cohesive samples taken from the marine deposits. Both of the test results indicate that the material tested is non-plastic.

The results of the Atterberg Limits testing on marine deposits are shown in Table 10.

TABLE 10: SUMMARY OF MOISTURE CONTENT AND ATTERBERG LIMIT TEST RESULTS FOR MARINE DEPOSITS FROM SOIL ENGINEERING 2013 INVESTIGATION

Parameter	No of Tests	Minimum	Maximum	Average
Natural mc %	3	9.4	25	19.5
Plastic Limit %	3	NP	21	NP
Liquid Limit %	3	22	36	28
Plasticity Index %	3	NP	15	NP
Note: NP Non Plastic				

Twenty-nine Atterberg Limits tests were performed on samples taken from the glacial till. The majority of the test results indicate that the material tested is clay, with only one sample classifying as non-plastic. The plasticity of the samples is relatively consistent with the classification on the A line plot which is shown as Figure 2 in Section E, indicating that the material is of low plasticity (86% of the till samples tested) but with a few samples of intermediate and high plasticity also determined and with most of the test results

plotting close to the T Line. The relative consistency of the material is also illustrated by a plot of Plasticity Index against depth detailed in Figure 3 in Section E of this report.

The results of the Atterberg Limits testing on Marine Alluvium are shown in Table 11.

TABLE 11: SUMMARY OF MOISTURE CONTENT AND ATTERBERG LIMIT TEST RESULTS FOR GLACIAL TILL FROM SOIL ENGINEERING 2013 INVESTIGATION

No of Tests	Minimum	Maximum	Average
70	3.6	32	9.7
29	13	21	17
29	22	52	31
29	7	31	14
	70 29 29	70 3.6 29 13 29 22	70 3.6 32 29 13 21 29 22 52

Based on these results a moderately conservative value of 15% has been adopted for the Plasticity Index in glacial till.

7.2.2 Particle size Distribution

Eighty seven particle size distribution tests were carried out on selected samples from the marine deposits, thirty eight tests were undertaken on the glacial till and six tests were undertaken on made ground and the results are presented in Figures 4, 5, and 6 in Section E of this report. The samples from the glacial till deposits generally classify as being slightly gravelly sandy clays with a variable content of very coarse material with seven samples classifying as slightly sandy slightly gravelly clays, three samples classifying as slightly sandy gravely clays and one sample classifying as slightly sandy clay all with a variable content of very coarse material. The fines content of this material indicates that it is on the borderline of cohesive and granular.

The earthworks classification of the glacial till has been assessed in accordance with the Highway Agency Specification Series 600. The particle size distribution curves for the tests undertaken on the glacial till are plotted in Figure 6 in Section E of this report, with the material class envelopes for Class 2C - Stony Cohesive Fill shown as a black solid line. Results indicate that the samples of the glacial till generally fall within the Class 2C envelope.

Eighty-seven particle size distribution tests were carried out on selected samples from the marine deposits and the results are presented in Figure 5 in Section E of this report. The majority of samples classify as a slightly silty or silty variably gravelly sand with only four samples classifying as very clayey variably gravelly sand and eight samples classifying as variably clayey variably sandy gravel or sand and gravel. It is noted that some of these strata had a significant content of very coarse material and the very coarse marine deposits noted in Section 6 were generally not tested because of the difficulty of sampling this stratum.

The earthworks classification of the marine deposits has been assessed in accordance with the Highway Agency Specification Series 600. The particle size distribution curves for the tests undertaken on the marine deposits are plotted in Figure 5 in Section E of this report, with the material class envelopes for Class 1 - General Granular Fill shown as a black solid line. Results indicate that the samples of the sand marine deposits tested generally fall within the Class 1 envelope and may also be suitable as Class 6 for fill to structures.

Six particle size distribution tests were carried out on selected samples from the made ground deposits and the results are presented in Figure 4 in Section E of this report. The plot demonstrates the generally granular nature of this material with the majority of samples classify as a slightly silty or silty sandy or very sandy gravel with a low to medium content of very coarse material.

7.3 Earthworks Classification

Laboratory determinations of California bearing Ratio (CBR) tests were carried out on two samples of remoulded material from beds of clay encountered within the marine sand deposits. The tests were performed on samples from depths between 1.00m and 1.50m below existing ground level obtained on land while trial pitting. Results of these tests are shown in Table 12.

TABLE 12: SUMMARY OF LABORATORY DETERMINED CBR TEST RESULTS FOR CLAY UNITS WITHIN THE MARINE SAND DEPOSITS FROM SOIL ENGINEERING 2013 INVESTIGATION

Strata	Number of Tests	Average Natural MC%	CBR % Min value	CBR% Max Value	CBR % Average
Clay beds within Marine Sand Deposits	4	15	0.31	0.65	0.48

These results indicate that based on the results of laboratory testing a conservative value of 1% is recommended for the marine sand deposits encountered on land. Although a higher California Bearing Ratio value could reasonably be anticipated for the granular materials within this unit, the lower bound 1% value is proposed because of the weak clay units within this stratum.

7.4 Shear Strength Parameters

7.4.1 Triaxial Tests

A total of thirty-eight total stress undrained triaxial tests were performed on the glacial till encountered within the exploratory holes. Single stage tests were performed and these yielded value of undrained shear strength (Cu). A summary of the test results obtained for the three material types is given in Table 13.

TABLE 13: SUMMARY OF UNDRAINED SHEAR STRENGTH VALUES FROM SOIL ENGINEERING 2013 INVESTIGATION

Material Type	No of Tests	Minimum Shear Strength Cu kPa	Maximum Shear Strength Cu kPa	Average Shear Strength Cu kPa
Glacial Till	38	58	488	291

All of the test results are shown on Figure 7 in Section E of this report in which they are plotted against depth. The trend within the glacial till shows little variation with depth and the results show considerable variability. From the triaxial test data, a moderately conservative undrained shear strength of 260kPa is considered appropriate to the glacial till. In terms of Eurocode EC7, the parameters detailed above are for moderately conservative large volume assessments of strength. Other strength assessments for instance for local failure conditions are also detailed on Figure 7.

7.4.2 Standard Penetration Test

Standard Penetration Tests (SPT) were carried out in all of the boreholes and window sampler holes. The undrained shear strength of the cohesive materials tested has been estimated using the relationship developed by Stroud, where:

Cu = f1 x SPT N60 value

The value of f1 is dependent on the Plasticity Index (Ip). By using the moderately conservative Plasticity Index of 15% for the glacial till a moderately conservative value of f1 = 5.0 has been derived.

Results from one hundred and ninety eight SPT N60 values in the glacial till are plotted against depth in Figure 8 in Section E of this report and suggest that the majority of the material is typically in the very high and extremely high strength category with shear strengths varying from 175kPa to in excess of 750kPa. As with the triaxial testing the results show little trend with depth and a considerable variation in values. Based on these results a moderately conservative assessment of undrained shear strength of 350kPa has been derived.

In terms of Eurocode EC7, the parameters detailed above are for moderately conservative large volume assessments of strength. Other strength assessments, for instance, for local failure are also detailed in Figure 8.

7.4.2 Effective Stress Shear Strength Parameters

A total of three consolidated undrained triaxial compression test with pore water pressure measurement was performed on the glacial till materials encountered within the exploratory holes. Multistage tests were performed and these yielded value of effective cohesion c' and effective angle of shearing resistance Ø'. A summary of the test results obtained for the glacial till deposits is given in table 14.

TABLE 14: SUMMARY OF EFFECTIVE STRESS SHEAR STRENGTH VALUES FOR CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION EFFECTIVE STRESS TESTS ON GLACIAL TILL SAMPLES FROM SOIL ENGINEERING 2013 INVESTIGATION

Material Type and Parameter	No of Tests	Minimum	Maximum	Average *
Glacial Till				
Effective cohesion c' (kPa) Effective angle of shearing resistance Ø' (°)	3 3	17 29.5	19 35.5	18 32.7

7.5 Granular Strata Density Classification

7.5.1 Shear Box Tests

A total of six small shear box tests were performed on the granular materials encountered within the exploratory holes with all six tests performed on the marine sand deposits. Multistage small shear box tests were performed to record peak shear strength parameters and these yielded value of peak cohesion c' and peak angle of shearing resistance \mathcal{O}' . On three tests, residual values were also determined. A summary of the test results obtained for the creek deposits is given in table 15.

TABLE 15: SUMMARY OF SHEAR STRENGTH VALUES FOR SMALL SHEAR BOX TESTING ON SAMPLES OF MARINE SAND DEPOSITS FROM SOIL ENGINEERING 2013 INVESTIGATION

Material Type and Parameter	No of Tests	Minimum	Maximum	Average
Marine Sand Deposits				
Peak cohesion $c_{p'}$ (kPa) Peak angle of shearing resistance $\emptyset_{p'}$ (°)	6 6	0.3 35.5	10 42	5.9 39.5
Residual cohesion c _r ' (kPa) Residual angle of shearing resistance Ø _r ' (°)	3 3	1.0 34	4.9 38	2.6 35.5

7.5.2 Standard Penetration Testing

The results of one hundred and seventy two Standard Penetration Tests normalised to 60% trip hammer energy ratio (N60) undertaken within the marine deposits ranged from N60 = 3 to N60 = 129 (upper value extrapolated) with these values generally falling in the medium dense, dense and very dense categories. The results are plotted against depth in Figure 9 in Section E of this report and based on these results a moderately conservative design line of N60 = 24 at 0.50mdepth increasing to N60 = 90 at 9.50mdepth has been adopted for these data. The SPT N60 values for the marine deposits are plotted against vertical effective stress in Figure 10 in Section E of this report together with curves generated by Mitchell for angles of internal friction. The results detailed on this plot should be treated with caution because of the relatively low values of effective stress encountered however based on these results an effective angle of shearing resistance of 42° is assessed for the marine sand deposits from this testing.

The results of nine Standard Penetration Tests normalised to 60% trip hammer energy ratio (N60) undertaken within the granular glacial deposits ranged from N60 = 43 to N60 = 117 (upper value extrapolated) with these values falling in the dense and very dense categories. The results are plotted against depth in Figure 11 in Section E of this report and based on these results a conservative local design value of N60 = 50 has been adopted for these data because of the low number of test results. Based on these results an effective angle of shearing resistance of 45° is assessed for these deposits.

In terms of Eurocode EC7, the parameters detailed above are for moderately conservative large volume assessments of relative density. Other strength assessments, for instance, for local failure are also detailed on Figure 9.

7.6 Consolidation Parameters

No odometer or Row cell (consolidation) tests were performed on samples because the coarse granular material encountered within the glacial till prevented compliant testing. Five consolidation test results obtained from effective stress testing during consolidation yielded an m_{vi} value in the range 0.04 m²/MN 0.09 m²/MN with an average of 0.07 m²/MN over an appropriate stress range.

The modulus of volume compressibility m_v of the cohesive materials tested has been estimated from SPT data using the relationship developed by Stroud, where:

 $m_v = 1 / f2 \times SPT N60 \text{ value}$

The value of f2 is dependent on the Plasticity Index (Ip). By using the moderately conservative Plasticity Index of 15% for the glacial till a moderately conservative value of f1 = 0.5 has been derived. The results of SPT testing detailed in Figure 8 in Section E of this report indicates that compressibility values do not vary

much with depth.

For the glacial till a moderately conservative design value of $m_v = 0.04$ m²/ MN has been adopted for design. A summary of adopted design values is given in Table 16.

TABLE 16: ASSUMED VALUES OF VOLUME COMRESSIBILITY (mv) BASED ON IN SITU AND LABORATORY INDEX TESTING FOR THE SOIL ENGINEERING 2013 INVESTIGATION

Material Type	mv (MN/m²)	Assumptions
Glacial Till	0.04	mv calculated for load increment po + 100kPa

7.7 Soil Unit Weight

7.7.1 Particle Density of Granular Materials

In order to confirm assessments of soil unit weight in granular materials particle density testing was undertaken on eleven samples of the granular marine deposits.

The particle density test results obtained from these deposits are summarised in Table 17 below.

TABLE 17: SUMMARY OF PARTICLE DENSITY TEST RESULTS FROM SOIL ENGINEERING 2013 INVESTIGATION

Strata	No of Tests	Minimum Particle Density (Sg)	Maximum Particle Density (Sg)	Average Particle Density (Sg)
Marine Deposits	12	2.61	2.68	2.67

The results are relatively consistent and show little variance indicating a relatively consistent mineralogy of the sand in the marine deposits.

7.7.2 Bulk Density

Bulk density testing was undertaken on forty-three samples from the Glacial Till. In all cases the test values were derived as part of triaxial and odometer testing. Table 18 summarises the results of bulk density testing and values of laboratory determined bulk density are plotted against depth for all samples tested in Figure 12 in Section E of this report. Figure 12 demonstrates the high and relatively consistent bulk density of the glacial till which appears to vary little but shows a slight decrease in density over the depth interval assessed.

TABLE 18: SUMMARY OF LABORATORY DETERMINED BULK DENSITY VALUES FROM SOIL ENGINEERING 2013 INVESTIGATION

Material Type	Number of Tests	Minimum γ (Mg/m³)	Maximum γ (Mg/m³)	Average γ (Mg/m 3)
Glacial Till	48	1.96	2.40	2.28

All of the laboratory results have also been correlated with published values in the literature and values of unit weight for design are summarised in Table 19.

TABLE 19: SUMMARY OF DERIVED SOIL UNIT WEIGHT PARAMETERS

Material Type	γ (kN/m³)	Assumptions	Source
Made Ground	16	Unsaturated rock fill	CIRIA C580:2003
Marine Sand Deposits	21.5	Saturated medium dense and dense medium sand	CIRIA C580:2003 & Laboratory Testing
Marine Sand, Gravel Cobble and Boulder Deposits	20	Saturated loose gravel	CIRIA C580:2003
Glacial Till	22	Very Stiff and Hard Clay	CIRIA C580:2003 & Laboratory Testing
Granular Glacial Deposits	21	Saturated dense gravel	CIRIA C580:2003

7.8 Rock Classification

7.8.1 Moisture Content

Moisture content testing was undertaken on the granitic gneiss strata.

The natural moisture content test results obtained from these strata are summarised in Table 20 below.

TABLE 20: SUMMARY OF ROCK MOSITURE CONTENT TEST RESULTS FROM SOIL ENGINEERING 2013 INVESTIGATION

Strata	No of Tests	Minimum Moisture Content %	Maximum Moisture Content %	Average Moisture Content %
Granitic Gneiss	48	0.1	2.9	0.48

A plot of rock moisture content against depth is presented in Figure 13 in Section E of this report. The plot illustrates the relatively low and consistent moisture content of the granitic gneiss strata which shows little variation with depth but is quite variable.

7.8.2 Point Load Tests

Point Load testing was performed on a number of rock core samples of both the weathered and less weathered granitic gneiss. One hundred and ninety four tests were performed on weathered granitic gneiss and seven hundred and thirty four on the less weathered granitic gneiss. The results of these tests are shown in Table 21. Plots of point load Is50 verses depth and elevation for the samples tested are presented in Figure 14 and Figure 15 respectively. Values in both plots show little variation with depth/elevation but a considerable variation in values indicating there is little topographic variation in rock strength but a large variation in the strength properties of the rock mass.

TABLE 21: SUMMARY OF POINT LOAD IS50 TEST RESULTS

Material Type	No of Tests	Minimum (MN/m2)	Maximum (MN/m2)	Average (MN/m2)
Weathered Granitic Gneiss	194	0.0	16.6	2.1
Less Weathered Gneiss	734	0.0	22.4	3.9

7.8.3 Unconfined Compressive Strength Tests

Unconfined Compressive Strength (UCS) testing was undertaken on three samples of weathered granitic gneiss and twenty-two tests were performed on samples of less weathered granitic gneiss. These tests yielded results as presented in Table 22. Plots of UCS verses depth and elevation for the samples tested are presented in Figure 16 and Figure 17 respectively. As with point load test data UCS values in both plots show little variation with depth/elevation but a considerable variation in values indicating there is little topographic variation in rock strength but a large variation in the strength properties of the rock mass.

TABLE 22: SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH (UCS) TEST RESULTS

(0.00) 1.00 1.100.100							
Material Type	No of Tests	Minimum (MN/m2)	Maximum (MN/m2)	Average (MN/m2)			
Weathered Granitic Gneiss	3	8.46	16.5	11.7			
Less Weathered Gneiss	22	35.1	111	68.6			

7.9 Sulfate and Related Test Results

TABLE 23: RESULTS OF CHEMICAL TESTS FOR CONCRETE DESIGN FROM SOIL ENGINEERING 2013 INVESTIGATION

Material Type	Water Soluble SO4 (mg/l)	рН	Nitrate (mg/kg)	CI (mg/kg)	Mg (mg/l)	BRE Design Class	ACEC Class
Made Ground	60	8.5	10	93	5300	DS-1	AC-1
Marine Sand Deposits	480	8.3	-	4100	77000	DS-1	AC-1
Glacial Till	255	8.2	1	2950	43500	DS-1	AC-1s

The tests outlined in BRE Special Digest 1 for determining appropriate concrete class for use on this site were performed on a total of seventeen soil samples. Water soluble Sulfate, pH, Nitrate, Chloride and Magnesium testing was undertaken on two samples from the made ground, six samples from the marine sand deposits and nine samples from the glacial till. The characteristic values for these tests for the three material types and groundwater are shown in Table 23. The table also details the aggressive chemical environment for concrete (ACEC) classification for undisturbed ground.

7.10 Summary of Geotechnical Parameters

A summary of the geotechnical parameters discussed in the preceding sections is given in Table 24 below. If any additional information on ground conditions is obtained before design is undertaken, these values should be reassessed.

TABLE 24: SUMMARY OF GEOTECHNICAL PARAMETERS FROM SOIL ENGINEERING 2013 INVESTIGATION

	Stratum type									
	Made Ground	Marine Sand Deposits	Marine Sand, Gravel, Cobble and Boulder Deposits	Glacial Till	Glacial Sand, Gravel, Cobble and Boulder Deposits	Weathered Gneiss	Less Weathered Gneiss			
SPT 'N60' Value	-	2 - >65	>65	35 - >65	43 - >65	>65	>65			
Moisture Content %	-	24 - 25	-	3.6 - 32	-	0.1	- 2.9			
PI %	-	-	NP	15	-	-	-			
PSD range	Figure 4	Figure 5	-	Figure 6	-	-	-			
Saturated Unit Weight (kN/m³)	16	21.5	20	22	21	-	-			
California Bearing Ratio %	-	1	-	-	-	-	-			
Undrained Shear Strength (kPa)	-	-	-	300	-	-	-			
Odometer mv value (MN/m²)	-	-	-	0.04	-	-	-			
Effective Angle of Shearing Resistance Ø'°	-	40	35	33	45	-	-			
Effective Cohesion c' (kPa)	-	0	-	0	0	-	-			
Critical State Angle of Shearing Resistance ${\mathscr O}'_{\operatorname{crit}}{}^\circ$	-	32	-	30	36	-	-			
Point Load Is50 (MPa)	-	-	-	-	-	0 - 16.6	0 - 22.4			
Unconfined Compressive Strength (MPa)	-	-	-	-	-	8.5 - 16.5	35.1 - 111			
Concrete Class (disturbed)	DS - 1	DS - 1	-	DS - 1	-	-	-			

8.0 GEOTECHNICAL ENGINEERING ASSESSMENT

8.1 Proposals

It is understood that the site investigated is to be developed as a new port with a general layout as shown on Arch Henderson drawing No. 121106 - 01 Rev. D dated 31/01/1 and cross section drawings DKR4708/300/D002 and DKR4708/300/D003 dated 12/10/2012. The proposed development will include the construction of new breakwaters, quays and a navigation channel and harbour area. The construction of the navigation channel and harbour area will involve dredging of parts of Nigg Bay to reduce its level.

Two breakwaters constructed of quarried rock materials are to be constructed to enclose the bay. The northern breakwater is indicated to run roughly north - south and extend from the end of Girdle Ness headland with a crest level of 11.5m (chart datum) indicated. Breakwater heights from seabed of approximately 17.0m to 18.0m are indicated with the width of the crest indicated at 14.7m and the breakwater flanks indicated at an inclination id 1.33 horizontal to 1 vertical. The southern breakwater is indicated to run roughly south west - north east and extend from the end of the Greg Ness headland with a crest level of 12.3m (chart datum) indicated. For this breakwater, heights from seabed of approximately 21.8m to 24.8m are indicated with the width of the crest indicated at between 14.4m and 16.5m and the breakwater flanks indicated at an inclination id 1.33 horizontal to 1 vertical.

The approach channel running between the breakwaters is indicated to have a level of -10.5m chart datum and this links into the roughly circular main harbour basin behind the breakwaters with a base level of -9.0m indicated.

For the quay and harbour side a concrete deck supported by precast concrete beam units with a level of +6.5m chart datum is indicated. The drawing also indicates steel tubular piles are proposed to support the deck.

8.2 Site Conditions

A description of the site location, its condition, and general environs has already been given in section 3.2 of this report. It is considered however that the following factors noted during the site works or taken from the desk study report prepared by the Engineer and in a site check type report prepared by and supplied by the Employer may be of engineering and environmental significance with regard to the proposed development.

A walkover survey carried out by the site engineering geologist noted that the site comprised a wide bay area between two rock headlands. Rock comprising fractured granitic gneiss was noted on both headlands and on the northern headland, some evidence of superficial deposits overlying this can also be seen in the cliff section. Rock was seen at the end of the southern headland and a distinct contact between granitic gneiss and glacial superficial deposits can be seen in the south western corner of the bay. To the west of this contact, a large section of glacial superficial deposits can be seen in the cliff face that appear to extend all the way to beach level. The western end of the bay comprised a sloping sand, gravel and cobble beach backed by the coastal road and open grassland. At the southern end of the beach, a level area backing onto the cliff behind is evident with some evidence of bituminous surfacing exposed at its top and blocks of concrete and brick and other man made materials noted in exposed and eroded materials.

Historical exploratory hole data noted in Section 3.6 of this report confirm the rapid thickening of superficial deposits behind the Greg Ness headland to the north west of the soil rock contact noted in the preceding paragraph in the south western corner of the bay. It is also noted that the borehole from the historical information drilled in Nigg Bay (borehole NJ90SESE7807 7) recorded a considerable thickness of glacial silt overlying bedrock and this information is at variance with all the data from this current

investigation.

8.3 Summary of Subsurface Conditions

The ground conditions encountered in the exploratory holes have been described in section 6.0 of this report. Within this section, however the general stratigraphy encountered during the investigation is reviewed, the engineering significance of individual strata is discussed and design information is summarised. Any particular problem areas are also highlighted.

A variable and in places thick sequence of superficial deposits infilling a buried valley and overlying metamorphic rock strata was encountered by the investigation. Cross sections of borehole data presented as Figures 18 to 26 inclusive in Section E of this report demonstrate the buried valley topography of the soil rock contact. A reasonably well defined sequence of predominantly granular marine deposits overlying typically cohesive glacial deposits that infill a buried valley incised into the underlying granitic gneiss bedrock is indicated by the current boreholes. The strata encountered in these exploratory holes are also summarised in Tables 4, 5, 6 and 7 in Section 6 of the report.

The made ground encountered was very limited in extent and was only encountered in trial pits dug in the south western corner of the bay with thicknesses between 2.60m and in excess of 3.70m recorded. The made ground appears to be largely inert comprising predominantly granular materials with a variable mix of sand and gravel, cobble and boulder sized fragments of metamorphic rock, igneous rock, concrete, tarmac, brick, plastic pipe, packaging and metal observed.

Two distinct units were noted within the upper marine granular formation with both being discontinuous and not encountered in all exploratory holes drilled around the bay. Typically, the uppermost unit comprised a fine to coarse sand with varying fine gravel, silt and cobble content and this locally overlies a variable sequence of very coarse material comprising a mix of sand, gravel, cobbles and boulders.

The marine sand deposits were encountered in most boreholes drilled in the bay but were variable in thickness. This stratum typically exceeded 4.00m in the mouth of the bay (beneath the ends of both breakwaters) and decreased in thickness towards the beach and headlands as illustrated by cross sections B-B, C-C and G-G. The strata comprised units of generally well sorted fine to coarse sand with varying fine gravel, silt and cobble content. In situ test and laboratory test data associated with the marine sand deposits are summarised and discussed in Section 7 while Figures 5, 9 and 10 presented in Section E of this report provide summary plots of in situ and laboratory test data for the stratum. Based on this information a moderately conservative design SPT "N60" value of N60 = 24 at 0.50m depth increasing to N60 = 90 at 9.50m is assessed for design where large volumes of this material are affected. Based on SPT results and the results of shear box testing an effective angle of shearing resistance of 40° and a critical state angle of shearing resistance of 32° is assessed with effective cohesion of 0kPa in both cases.

The very coarse marine deposits were mainly encountered in boreholes drilled in the northern and north western parts of the bay to the south of the Girdle Ness Headland. This stratum was very variable in thickness as illustrated by sections B-B, C-C, E-E and F-F. The stratum was principally granular typically comprising cobbles and boulders of mixed igneous and metamorphic lithologies with a sand and gravel matrix. In situ SPT testing in this stratum was largely ineffective as tests refused on cobble and boulder obstructions and similarly sampling of this material proved difficult. Consequently, a conservative effective angle of shearing resistance of 35 ° is proposed for this material.

In all of the boreholes and trial pits that fully penetrated the marine deposits these strata were underlain by glacial till, glacial granular deposits and/or rock. The glacial till and glacial granular strata varied considerably in thickness as illustrated by sections B-B, C-C, and D-D and these sections illustrate that the buried valley feature has been principally infilled with glacial deposits. The glacial till lithology comprised

the predominant material for these deposits with the granular materials generally interlensed with the glacial till. The top of the glacial deposits where present was recorded at depths between 0.40m and 13.00m below ground level and the strata was proved to depths of up to 38.00m below ground level in the exploratory holes and probes undertaken.

The glacial till material comprised very stiff and hard brown or greyish brown clay with varying sand, gravel, cobble and boulder content. Figure 6 illustrates the variable fines content of this material and in some cases the material analysed appears to be borderline cohesive/granular. This is also illustrated by Figure 2 which shows the till to be of generally low plasticity. In situ test and laboratory test data associated with the glacial till are summarised and discussed in Section 7 while Figures 3 to 3 inclusive, 6, to 8 inclusive and 12 presented in Section E of this report provide summary plots of in situ and laboratory test data for the stratum. Based on this information, a moderately conservative design undrained shear strength of 300 kPa is assessed with undrained shear strength appearing to vary little with depth. A preliminary design compressibility of mv = 0.04 MN/m² is also assessed for the glacial till with little variation with depth indicated from in situ testing. The above values are assessed for structural design and should not be applied to an assessment of the excavatability of this stratum. To evaluate this all of the data presented in Figures 6 to 8 inclusive should be assessed.

The granular glacial material comprised variable granular units of sand and gravel often with a significant cobble and boulder content. In situ test and laboratory test data associated with the glacial granular deposits are summarised and discussed in Section 7 while Figures 6 and 11 presented in Section E of this report provide summary plots of in situ and laboratory test data for the stratum. Based on this information a moderately conservative design value of N60 = 50 has been adopted for these data because of the low number of test results. Based on these results an effective angle of shearing resistance of 45° is assessed for these deposits is assessed for design where large volumes of this material are affected and a critical state angle of shearing resistance of 36° is assessed with effective cohesion of 0kPa in both cases.

In all boreholes that fully penetrated the made ground and superficial deposits rock comprising granitic gneiss was encountered. As previously noted rockhead depths were very variable and pick out an east - west trending valley running beneath Nigg Bay. This is illustrated by cross sections A-A to G-G inclusive presented in Section E of this report. The lithology if the banded granitic gneiss varied on a relatively small scale with this material comprising of interbanded units of micaceous schist, gneiss and coarse grained granitic materials frequently in thin to thickly banded units. The rock appeared to be variably weathered and typically appeared to be slightly or moderately weathered but also contained weaker moderately and highly weathered strata. The distribution of the weathered material between boreholes appeared to follow no set pattern and was very variable. In situ test and laboratory test data associated with the granitic gneiss are summarised and discussed in Section 7 while Figures 13 to 17 inclusive presented in Section E of this report provide summary plots of in situ and laboratory test data for the stratum. These plots indicate a considerable variation in unconfined compressive strength and point load test results with values showing little trend with depth or elevation indicating strength variations within the rock mass are on a local rather than a site wide scale.

During laboratory testing point load testing was undertaken on a few of the same samples selected for UCS testing in order to establish a site correlation between the two strength parameters and the results of this testing is detailed in Figure 18. Based on this testing a site correlation of UCS = 10.7 Is50 MPa was derived. Based on this correlation the results of point load testing were converted to equivalent unconfined compressive strength values and a composite plot of laboratory UCS and derived point load UCS against depth is presented in Figure 19. When analysing point load test data for this plot only sets of 10 tests have been included and the average value excluding the two highest and lowest Is50 values has been calculated. For the less weathered granitic gneiss strata based on this information a moderately conservative design rock strength value of UCS = 30 MPa has been assessed for structural design where large volumes of this material are affected and a local strength value of 6MPa has also been derived. The results detailed in

Tables 21 and 22 indicate that the weathered rock material has lower strength and moderately conservative design rock strength value of UCS = 6 MPa has been assessed for structural design where large volumes of the weathered gneiss material are affected and a local strength value of 1MPa is assessed for this material. The above values are assessed for structural design and should not be applied to an assessment of the excavatability of rock strata. To evaluate this all of the data presented in Figures 13 to 19 inclusive should be assessed.

With regard to groundwater most of the site was below sea level or within the intertidal zone. The limited exploratory holes undertaken on land indicate that in these parts of the site the groundwater table beneath the site appears to be encountered at shallow depth within the rock strata or superficial deposits with strikes recorded between 0.00m to 3.10m below ground level during the formation of the exploratory holes.

8.4 Development of Site

As noted in section 8.3 above, the boreholes show that there is only local and limited thicknesses of made ground present beneath the south western corner of the site. The remaining ground conditions encountered beneath the site are generally favourable for the development with typically medium dense or dense marine granular deposits encountered overlying typically very stiff and hard glacial till strata and very dense glacial granular strata and at greater depth typically weak, medium strong and strong Dalradian rock strata

The proposed development of the site will need to take into account the nature, thickness and variability of the superficial deposits and the variability of rockhead levels and rock strata beneath the site.

The main structures with significant associated loads are indicated to be:

- North and South Breakwaters
- Harbour access channel and harbour area
- Quay area comprising reinforced concrete deck supported by tubular steel piles

The remaining proposals which could include car parking areas, access roads and storage areas are unlikely to have significant loads associated with them.

For the purposes of assessing foundation levels, it has been assumed that the majority of the site will remain at existing levels.

8.5 Foundations

8.5.1 Summary

Piled foundations have been indicated to support part of the quay area in the northern side of the bay (cross section drawings DKR4708/300/D002 and DKR4708/300/D003). Any foundation solution will however have to take account of the site geology and the nature of the development and the site location adjacent to the North Sea.

Spread foundations are likely to be suitable for lightly loaded structures constructed on land on the site. For those more heavily loaded structures which require settlement to be maintained at minimal levels, and for structures constructed over water piled foundations would be suitable for use on the site.

8.5.2 Spread Foundations

Shallow spread foundations could be used to support parts of the quay structure where this abuts the

Project No: TA7148 Document No. F01

Girdle Ness headland and beach area.

Based on the results of the in situ and laboratory testing it is considered that a net allowable bearing pressure of 185kPa may be placed the marine sand strata at a depth of 1.00m by a conventional spread strip foundation of least width 0.6 to 1.0 metre at the location of borehole L01. For pad foundations, a net allowable bearing pressure of 175 kPa may be placed on the same material at the same depths by a conventional pad foundation of dimensions 2.0m by 2.0m. A minimum adequacy factor in excess of 3.0 was assessed for this foundation configuration and consequently the GEO limit state requirement is satisfied. The quoted net allowable bearing pressure is for settlement not exceeding 25mm. Shallow spread foundations should be founded on the marine sand strata and because of the low shrinkage potential of this strata a minimum founding depth of 0.80m should be adopted. Care should be exercised to confirm the density of the founding granular strata on the shore area as any windblown sand deposits are likely to be less compact and have lower bearing pressures.

Higher allowable bearing pressures would be available on the granitic gneiss rock strata. Based on the results of the in situ and laboratory testing it is considered that a net allowable bearing pressure of 2.5MPa may be placed the less weathered granitic gneiss strata with a fracture spacing greater than 100mm by a conventional spread strip foundation of least width 0.6 to 1.0 metre. For pad foundations, the same net allowable bearing pressure may be placed on the same material by a conventional pad foundation of dimensions 2.0m by 2.0m. For the weathered granitic gneiss strata, a lower net allowable bearing pressure of 0.5MPa is assessed for the same strip and pad foundation dimensions and rock fracture spacing detailed above. The quoted net allowable bearing pressure is for settlement not exceeding 25mm.

Prior to blinding, the base of foundation excavations should be carefully examined for pockets of organic, soft or loose material. If encountered, these should be removed and replaced with compacted lean mix concrete. Over excavation and compacted back filling must be avoided.

8.5.3 Piled Foundations

If it is considered that some or all of the proposed structures need to be supported on foundations that will guarantee very limited settlement, or for foundations to be constructed over water, a piled foundation solution could be adopted. The suspended reinforced concrete deck for the quay could be supported on closed or open-ended steel tubular driven piles as proposed by the Engineer provided that ground vibration and noise can be tolerated during construction. The advice of specialist piling contractors should be sought on the suitability and load carrying capacity of their proprietary systems for use at the site. Cross sections C-C, D-DE-E, F-F, H-H and I-I indicate very variable rockhead depths over the area of the proposed quay. Whereas sections E-E and F-F indicate that rockhead is typically less than 5.00m along the northern edge of the bay, rockhead depths increase rapidly towards the centre of the bay and this will impact on the installation of piles in these areas. The presence of cobble and boulder obstructions within the very coarse granular marine deposits (for example as detailed on cross section F-F) and glacial till and granular deposits will present difficulties for driven piles in these materials and suitable protection or other measures may be required to ease passage through this material.

Piles will need to be extended to sufficient depth within the glacial till or less weathered granitic gneiss and based on the borehole information this could mean that piles between 6.0m to in excess of 30.0m length would be required to support a suspended concrete deck at the level indicated (+6.5m chart datum). The exploratory hole logs, the data presented in Tables 1 to 25 inclusive together with Figures 1 to 28 inclusive should be made available to piling contractors.

It is recommended that limited pile load tests should be carried out to verify design loads although it is acknowledged that this testing may be restricted by the cost of these tests. When reviewing the pile load test programme the design economies associated with the Eurocode UK National Annex should be

Project No: TA7148 Document No. F01

considered. It is also recommended that if piles are considered to be necessary for this scheme, piling contractors are consulted about the most suitable type of pile for use on the site.

8.6 Access Channel and Harbour Excavations

As part of the harbour development parts of the bay are to be dredged and the ground level lowered to construct a harbour basin and approach channel. The approach channel running between the breakwaters is indicated to have a level of -10.5m chart datum and this links into the roughly circular main harbour basin behind the breakwaters with a base level of -9.0m indicated.

The dredge levels detailed on drawing 121106-AB-01 are indicated on cross sections B-B, C-C, G-G and H-H. These sections indicate that excavations will principally be undertaken within the marine sand deposits, the coarse granular marine deposits and the underlying glacial till. Although the levels detailed on the drawing are limited excavation levels do not appear to intersect the extrapolated rockhead levels drawn on the cross sections. It is noted however that rockhead levels in this type of buried valley feature are often very variable and this is to some extent confirmed by the geophysical survey and consequently excavations intersecting the underlying rock strata cannot be discounted based on the current distribution of exploratory holes.

Dredging excavations within the marine sand deposits and coarse granular marine deposits should be readily achievable with marine dredging plant although the dredging plant should be capable of handling the very coarse (cobble and boulder) materials noted in the very coarse marine strata. The underlying glacial till materials will prove more difficult to excavate because of the high undrained shear strength of this material. A review of the data for the glacial till presented in Figures 7 and 8 indicates an inferior local undrained shear strength value of 175kPa and a superior local strength value of around 750kPa and the dredging plant employed on this project should be capable of readily excavating till materials within this strength range. It is also noted that the glacial till stratum contains very coarse (cobble and boulder) materials that could also cause excavation difficulties.

8.7 Breakwater Construction

Cross sections A-A, B-B and I-I indicate that both breakwaters will be constructed on ground that is variable both in terms of thickness and lithology. Depth to rockhead varies considerably beneath both breakwaters with this being especially so beneath the northern breakwater. The thickness of the individual strata beneath the breakwaters also varies considerably as indicated by the above cross sections. The above cross sections all indicate that the base of both breakwaters will mainly be founded on the marine sand deposits but locally (e.g. cross section B-B) the breakwater bases may found on the very coarse granular marine deposits.

For the northern breakwater, the topographic survey information indicates that for much of its length the base will be founded at approximately -8.00m chart datum with the height of the crest indicated at 11.5m chart datum. Based on these values and assuming a saturated bulk density of 20 kN/m³ for the rock fill forming the bund and a sea level of 0.00m chart datum total settlements in the centre of the breakwater at its northern end (at the location of BHE74) are assessed to be in the range 25mm to 70mm while at the southern end of the northern breakwater (at the location of BHB61) total settlements are assessed to be in the range 160mm to 400mm.

For the southern breakwater, assessments of settlement at its north eastern end are difficult because the depth of rockhead has not been determined. The breakwater will stress the ground to a considerable depth because of its width (the depth at which the stress increase due to loading is equal to 20% effective stress is estimated to be approximately 70m) and consequentially information in ground conditions to rockhead would be required in this area for a full assessment. The topographic survey information indicates that for

Project No: TA7148 Document No. F01

much of its length the base of the southern breakwater will be founded at approximately -13.00m chart datum with the height of the crest indicated at 12.3m chart datum. Based on these values and assuming a saturated bulk density of 20 kN/m^3 for the rock fill forming the bund and a sea level of 0.00m chart datum total settlements in the centre of the breakwater at its southern end (at the location of BHE112) are assessed to be in the range 35mm to 100mm while at the northern end of the southern breakwater (at the location of BHE106) total settlements are assessed to be in the range 65mm to in excess of 150mm.

In the above assessment, it is estimated that between 50% and 90% of settlement will occur during construction depending on its location along the breakwater.

8.8 Sulfate and pH Aggressivity

A total of seventeen soil samples were analysed for water soluble sulfate content, chloride content, water soluble magnesium content and pH levels. Selected soil samples were also analysed for nitrate content. The results of the analyses are given on the summary sheets in Section C. The results of the soil analysis indicate that a characteristic value for water soluble sulfate levels of 420 mg/l exist in the ground and that pH levels lie in the range pH = 7.9 to pH = 9.0. Chloride content values are in the range 81 to 3000 mg/kg and nitrate content values are in the range 5 to 10mg/kg.

Referring to Table C1 in BRE Special Digest 1 the recorded sulfate, pH and other test results would require the use of Design Sulfate Class DS-1 concrete and an ACEC class of AC-1 on this site. This is in agreement with the characteristic values and material classification for the various individual strata as detailed in Table 23. All other recommendations given in the Digest should be followed when designing concrete mixes for use on this site.

8.9 Mining

This report has been prepared on the basis that the site is stable with regard to mining activities. No evidence of economically viable minerals or mining was encountered within the depth zone penetrated by the exploratory holes formed as part of this investigation.

BAY OF NIGG HARBOUR DEVELOPMENT
ABERDEEN

Project No: TA7148 Document No. F01

9.0 CONCLUSIONS AND RECOMMENDATIONS

The information available for the site has been gathered from a historical ground investigation and from the current ground investigation. Together with the desk study information, these investigations have provided sufficient and suitable data from which design parameters have been derived.

Although sufficient information has been obtained to allow a preliminary assessment of the project additional exploratory hole information would be required for final design. This would include additional exploratory holes on land to facilitate the development of structures associated with the harbour and additional boreholes within the bay to fill in parts of the site where exploratory hole coverage is poor. In addition, an assessment of the stability of the high slope of superficial deposits observed in the south western corner of the site should be considered if its failure will impact on the new facility.

For and on behalf of **Soil Engineering Geoservices Ltd**

Principal Engineering Geologist

P. Rodgers Reports Manager

REPORT REFERENCES

- BRE Special Digest 1: 2005: Concrete in Aggressive Ground. BRE Construction Division.
- Building Research Establishment: 1991: Report BR 212. Construction of new buildings on gas contaminated land.
- BGS Scotland Sheets 77: 1982: 1:50,000 scale solid edition and 2004: 1:50,000 scale drift edition.
 British Geological Survey
- British Geological Survey Local Memoir, The Geology of the Country Around Aberdeen, 1986.
- British Geological Survey Borehole Data Pack Ref. BH_119433_1, 28th October 2013
- BS EN 1997-1: 2004: Eurocode 7 Geotechnical Design Part 1: General Rules
- BS EN 1997-2: 2007: Eurocode 7 Geotechnical Design Part 2: Ground Investigation and Testing
- BS EN ISO 22475-1: 2005: Geotechnical investigation and testing –Sampling methods and groundwater measurements. Part 1: Technical principles for execution
- BS 5930: 1999 + A2:2010: Code of Practice for Site Investigation. British Standards Institution.
- BS 1377: 1990: Parts 1 to 9: Methods of Test for Soils For Civil Engineering Purposes. British Standards Institution
- Rock Characterization Testing and Monitoring ISRM Suggested Method for Determining Point Load Strength - 1985
- Rock Characterization Testing and Monitoring ISRM Suggested Methods 1981 Editor: E.T. Brown
- BS EN ISO 14688-1: 2002: Geotechnical Investigation and testing Identification and Classification of Soil Part 1: Identification and Description.
- BS EN ISO 14688-2: 2004: Geotechnical Investigation and testing Identification and Classification of Soil – Part 2: Principles for a Classification
- BS EN ISO 14689-1: 2003: Geotechnical Investigations and testing Identification and Classification of Rock Part 1: Identification and description.
- BS EN ISO 22476-3: 2005+A1:2011: Geotechnical Investigation and Testing Field Testing Part 3: Standard Penetration Test.
- BS 10175: 2001: Code of Practice for the Investigation of Potentially Contaminated Sites. British Standards Institution
- Tomlinson, M.J.: 1999, Foundation Design and Construction. Longman Scientific. 6th Ed.

Where any documents referenced above are subject to any amendment, then the latest version incorporating such amendment shall be deemed to apply, unless specifically stated otherwise.

SUPPORTING FACTUAL DATA

SECTION A

Exploratory Hole Records and Field Data

EXPLORATORY HOLE LOG LEGEND AND NOTATION SHEET

SECTION A: EXPLORATORY HOLE LOG LEGENDS

CODE	DESCRIPTION	LEGEND	CODE	DESCRIPTION	LEGEND
101	Topsoil		806	Coal	
102	Made Ground		807	Breccia	
104	Concrete		808	Conglomerate	00000
201	Clay		809	Fine Grained Igneous	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
301	Silt	×××××	810	Medium Grained Igneous	++++
401	Sand		811	Coarse Grained Igneous	****
501	Gravel		812	Fine Grained Metamorphic	
601	Peat	alle alle alle	813	Coarse / Medium Grained Metamorphic	
701	Cobbles	0 2 0 0	EVT	Evaporite	0000000
730	Boulders		MWS	Mine Workings	
801	Mudstone		904	Grout	
802	Siltstone	****** ******	905	Arisings	
803	Sandstone		BLK	Zone of No Recovery	
804	Limestone		WTR	Water	~~
805	Chalk	T T T	types are re	soils types comprise a mixture of particle presented graphically on the exploratory the legends shown on this sheet.	

SECTION A: EXPLORATORY HOLE LOG LEGENDS

SAMPLIN	IG NOTATION
u	Undisturbed U100 or U38 sample (size given on log)
ит	Thin wall open drive tube sampler (size given on log)
Р	Piston Sample
BLK	Block Sample
М	Mazier Sample
TW	Thin Walled Sample
L	Liner Sample obtained from windowless sampler
D	Small Disturbed Sample
В	Bulk Disturbed Sample
LB	Large Bulk Disturbed Sample
С	Core Sample
ES	Environmental Soil Sample
EW	Environmental Water Sample
W	Water Sample
UF	No Recovery in U Sample
UTF	No Recovery in UT Sample
PF	No Recovery in P Sample
TWF	No Recovery in TW Sample

IN SITU 1	TEST NOTATION
SPT	Standard Penetration Test with a Split Spoon
SPT(C)	Standard Penetration Test with a Cone
С	Cone Penetration Test
NP	No Penetration for SPT or SPT(C)
V	Vane Test
HV	Hand Vane
НР	Hand Penetrometer
CBR	California Bearing Ratio Test
K	Permeability Test (test type not differentiated)
	(test type not unierentiated)
Pr	Pressuremeter Test

OTHER N	IOTATION
TCR	Total Core Recovery
SCR	Solid Core Recovery
RQD	Rock Quality Designation
FI	Fracture Index
lf	Fracture Spacing
NI	Non Intact
NA	Data Not Applicable
NR	Data Not Recorded

GRAPHICS USED

Standing water level Joining bar indicates level risen Waterstrike level

SUPPORTING FACTUAL DATA

SECTION A

Exploratory Hole Records and Field Data

CABLE PERCUSSION AND ROTARY DRILLING RECORDS

Project Name Bay of Nigg Harbour Development Ground Investigation													Hole II											
Project		,	'01 Nig '148	y i iai	Dour De	/610 _F)IIIEII	Groun	U IIIve.	stiya	LIUII			Explo	ratory	Hole L	og	н	ole ID.					
Engine			140 h Hend	oreor	. II D									-	-			A	۸05					
Employ					our Board	ı												н	eader					
Ground I			3m CD	141 ~ .	Jui Dea			Coc	rdinate	s	3966	88.10 E,	80463	36.30 N Na	ntional Gric	<u> </u>								
Date Sta	rted	23/0	09/2013					Dat	e Comp	leted	29/09	9/2013				Inclina	tion Vert	cal						
Тор	Base	Туре	Date Sta	arted	Date Ende	d (Crew	Section Logged E	n Co By Ba	re rrel	Core Bit		Equip	ment	Sł Si	oring / upport	Remarks							
0.00 1.40	1.40 1.80	CP RO	23/09/2		23/09/201 23/09/201		IC WW	DT DT		-			Dando Deltaba	3000 se 520		Tr.								
1.80 8.50	8.50 14.00	RC	23/09/2	013	24/09/201 24/09/201	.3	WW TT	DT DT	T6:	116 VF	Impreg Impreg)eltaba	se 520 se 520										
14.00 14.50	14.50	RO	24/09/2	013	24/09/201 26/09/201	.3	TT	DT WW		116	Impreg)eltaba	se 520 se 520										
19.40 30.10 RC 26/09/2013 27/09/2013 WW/MM DT SWF Impreg Deltabase 520 30.10 38.00 RO 28/09/2013 28/09/2013 WW WW WW DT T6116 Impreg Deltabase 520 38.00 40.00 RC 28/09/2013 29/09/2013 WW/MM DT T6116 Impreg Deltabase 520																								
30.00	40.00	ic	20/03/2		29/09/2013 WW/MM DT T6116 Impreg Deltabase 520 WATER STRIKES																			
Date	-	Гime	Hole depth	Cas dep				Rema	arks			Dat	е	Time	Strike at depth	Rise to depth	Time taken	Ca at stril	sing dep	th seal				
23/09/20		2300	1.40	1.2	0 -1.10) En	d of CP/	Start of R	otary			-	чериі чериі			to rise	time	1	low					
24/09/20 24/09/20	13	0700 1900	8.50 14.50	1.8 9.1	0 -3.80 0 -3.60	En En	d of Shi d of Shi	ft/Start of ft	Shift															
26/09/20 26/09/20 27/09/20	13	0700 1800 0700	14.50 20.10 20.10	9.1 19.3 19.3	-5.70) En	art of Sh d of Shi art of Sh	ft																
27/09/20 28/09/20	13	1900 0700	25.60 30.10	19.3 19.4	30 -3.40) En	d of Shi	ft/Start of ft/Start of																
28/09/20 29/09/20	13	1900 0700	39.00 40.00	19.4 19.4	-3.70) En		ft/Start of																
			C	ABLE F	PERCUSSIO	N DE	TAILS								<u> </u>	SPT DETA	ILS							
Hard from		Depth to	Start		elling Duration		narks					Depth	Туре		nental blov etration in		Hammer No.	Energy ratio	Casing depth	Water depth				
0.80		1.40	hhm 210	nm	hhmm 0200		elling		_			0.50	SPT(C				AR362	%	N/A	-2.00				
							3					1.40 2.80	SPT(C SPT(C	[]] 50/80mm	n (25/75,50/ (25/0,50/0) n (6,11,25,25	/5)	AR362 AR362	75 75 75	1.20 1.80	-1.10 -1.10				
												4.30 5.80 7.30	SPT(C SPT(C SPT(C	C) 50/125m	n (9,17,25,25 m (6,12,18,3 n (25/25,50/	2/50)	AR362 AR362 AR362	75 75 75	1.80 1.80 1.80	-2.10 -3.00 -3.80				
												8.50 10.00	SPT(C	50/160m N=70 (7,1	m (10,14,21 .3,13,17,19,2	21,8/10) 21)	AR362 AR362	75 75 75	1.80 9.10	-2.30 -1.40				
				ROTAI	RY FLUSH [DETAI	_S					11.50 13.00 14.50	SPT(C SPT(C SPT(C	50/5mm 50/10mm 50/75mm	(25/10,50/5 n (25/0,50/1 n (18,25,38,1) 0) 2/0)	AR362 AR362 AR362	75 75 75	9.10 9.10 9.10	-2.30 -2.70 -3.10				
From deptl		To depth			Flush type		ret	ush urn		lush olour		20.10 22.00	SPT(C	50/80mm	ı (9,11,25,25 (25/0 50/0)	/5)	AR362 AR362	75	19.30 19.30	-3.00 NR				
1.80 8.50	1	8.50 9.00			Water Water		1	% 00 0	N	Лilky		24.00 26.20	SPT(C	50/160m 50/175m	m (6,8,17,23 m (5,9,11,18	,10/10) ,21/25)	AR362 AR362	75 75 75	19.30 19.40	NR -3.40				
9.00 39.00		39.00 40.00			Water Water		1	00		rown rown		27.70 29.20 32.00	SPT(C SPT(C	50/95mm 50/180m 50/0mm	n (7,18/70,41 m (4,10,18,1 (25/0,50/0)	9,13/30)	AR362 AR362 AR362	75 75 75	19.40 19.40 19.40	-2.10 -2.00 NR				
															ì (11,14,21,2	9/10)	AR362	75	19.40	NR				
HO Hole		METER h of Ca	/ CASINO	oth of	Тор	DY		SAMPL	ING Time	Pac	overy													
diameter 200	ho 1.4	le dian	neter ca	sing 20	ТОР	Dase	Die		hhmms		%													
150 145	19.4 19.4 38.0	0 1		9.40																				
116	40.0																							
	1	NSTALL	ATION DE	TAILS			PI	PE CON	STRUCT	ION														
Distance from G.L.	ID	Т	уре		onse zone	ID		Pipe	Dia.		e of													
Irom G.L.				То	p Base		Тор	Base	of pipe	; F	oipe													
															* Seating b	lows only.								
T4	: 1	Df			CKFILL DE	TAILS		D =							(GENERAL N	OTES							
Top of section 0.00		Base of section 38.00		Mater				Rem	arks															
38.00		40.00		Grou																				
NOTES:					neters in n			in hhmn	n									4						
Water strike rise time in minutes, hard strata time in hhmm For details of abbreviations, see key																								
					.og Print Da	ate Ar	d Time	: 23/12	/2013 1	L0:23:	06						SOI	L eng	inee	RING				

Log Print Date And Time: 23/12/2013 10:23:06

Issue Date 22/10/2012

Part of the Bachy Soletanche Group

Issue.Revision No. 1.05

Form No. SIEXPHOLEHDR

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148 Engineer Arch Henderson LLP Hole ID. Exploratory Hole Log A05

Employer Aberdeen Harbour Board

Ground Level -0.53 m CD Coordinates 396688.10 E, 804636.30 N National Grid

Description of Strata	Legend	Depth	Datum	Sampl	ling				ount A		In Situ Test	Ins
p	3	-1	Level	Details		Dia.	TCR	SCR	RQD	IF	Details	ati
nense brown silty gravelly fine to coarse SAND. Gravel is ngular to rounded fine to coarse of mixed igneous and netamorphic lithologies including granite, gneiss and schist. It is notes large cobbles and boulders. from 0.80m to 1.80m driller notes boulders								•			SPT(C)50/15mm - 0.50 0.59 -	
		1.80	-2.33	B001 1.40-1.	80						SPT(C)50/0mm - 1.40 1.40 -	
iff very high strength brown slightly gravelly sandy CLAY ith medium cobble content. Sand is fine to coarse. Gravel is ngular to rounded fine to coarse of mixed igneous and letamorphic lithologies including granite, gneiss, schist and ranite. Cobbles are angular to subrounded of granite and neiss.			-2.33	1.80	2.80	89	100	NA	NA			
				2.80	4.30	89	100	NA	NA		SPT(C)50/80mm - 2.80 3.03 - - - - - - - -	
				4.30	5.80	89	100	NA	NA NA		SPT(C)50/85mm - 4.30 4.54	
											SPT(C)50/125mm - 5.80 6.08 -	
				5.80	7.30	89	93	NA	NA		-	
from 7.20m to 7.30m assumed zone of no recovery				7.30	8.50	89	100	NA	NA		SPT(C)50/10mm - 7.30 7.34	
				8.50	9.00	107	80	NA	NA		SPT(C)50/160mm - 8.50 8.81 -	
from 8.90m to 9.00m assumed zone of no recovery				9.00	10.00	107	85	NA	NA		-	

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:11

Form No. SIEXPHOLELOG

ue.Revision No. 1.05

Issue Date 22/10/2012

Sheet 1 of 4

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148 Engineer Arch Henderson LLP Hole ID. Exploratory Hole Log A05

Employer Aberdeen Harbour Board

Ground Level -0.53 m CD Coordinates 396688.10 E, 804636.30 N National Grid
Hole Type CP+RC Inclination Vertical

Description of Strata	Legend	Depth	Datum Level	Sam	pling				ount A Recov		In Situ Test Details	Inst
			Level	Detai	ils	Dia.	TCR	SCR	RQD	IF	Details	atio
Remaining Detail : 9.85m - 10.00m : from 9.85m to 10.00m ssumed zone of no recovery	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -										SPT(C)70 10.00 10.45	
from 10.40m to 10.53m strong grey boulder of granite	P	10.70	-11.23	10.00	11 50	107	47	NA				
ussumed zone of no recovery. Stiff greyish brown boulder CLAY with large cobbles and granite boulders. (Driller's lescription)				10.00	11.50	107	47	INA	NA		<u>-</u>	
rm to stiff brown slightly gravelly sandy CLAY with medium obble content. Sand is fine to coarse. Gravel is angular to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.50 - - -	-12.03								SPT(C)50/5mm - 11.50 11.52	
ounded fine to coarse of mixed igneous and metamorphic ithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite and gneiss. from 11.95m to 12.10m angular coarse gravel sized fragments of granite and schist		12.10 -	-12.63	11.50	13.00	107	40	NA	NA		<u>-</u> - - -	
Assumed zone of no recovery. Stiff brown boulder CLAY with small bands of large gravels and granite boulders. (Driller's lescription)	9 6 9	13.00	-13.53								SPT(C)50/10mm 13.00 13.01	
irm to stiff brown slightly gravelly sandy CLAY with medium obble content. Sand is fine to coarse. Gravel is angular to ounded fine to coarse of mixed igneous and metamorphic ithologies including granite, gneiss and schist. Cobbles are ingular to subrounded of granite and gneiss.		13.40	-13.93	13.00	14.00	107	40	NA	NA			
Assumed zone of no recovery. Stiff brown boulder CLAY with mall bands of large gravels and granite boulders. (Driller's lescription)	P - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	14.00	-14.53	14.00	14.50	89	40	NA	NA			
stiff brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded ine to coarse of mixed igneous and metamorphic lithologies nocluding granite, gneiss and schist. Cobbles are angular to substrounded of granite and gneiss. from 14.20m to 14.50m assumed zone of no recovery		14.50 	-15.03							ļ	SPT(C)50/75mm - 14.50 14.73	
lo recovery. SAND. (Driller's description) from 14.50m to 14.90m driller notes boulders of granite											-	
											- - - - - -	
tiff brown slightly gravelly sandy CLAY with medium cobble ontent. Sand is fine to coarse. Gravel is angular to rounded	6	19.40 - - - -	-19.93	19.40	20.10	107	100	NA	NA	NA		

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:15

Form No. SIEXPHOLELOG

sue.Revision No. 1.05

Issue Date 22/10/2012

Sheet 2 of 4

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A05

Sheet 3 of 4

Employer Aberdeen Harbour Board Ground Level

-0.53m CD Coordinates

396688.10 E, 804636.30 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Samp	ling			low Count And mple Recovery			In Situ Test	Install
		·	Level	Details	5	Dia.	TCR	SCR	RQD	IF	Details	ation
fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite and gneiss.				20.10	20.80	107	100	NA	NA		SPT(C)50/80mm - 20.10 20.33 - - - -	
from 21.80m to 22.00m assumed zone of core loss				20.80	22.00	107	83	NA	NA		-	
			-	22.00	23.00 10	107	100	NA	NA		SPT(C)50/0mm	
Assumed zone of no recovery. Firm greyish brown very sandy boulder CLAY and large cobbles. (Driller's description)		23.65	-24.18	23.00	24.00	107	65	NA	NA		-	
Stiff brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to		24.00	-24.53	24.00	24.70	107	86	NA	NA	_	SPT(C)50/160mm— 24.00 24.31 - - - -	
subrounded of granite, gneiss and schist. from 24.46m to 24.60m medium strong grey boulder of gneiss from 24.60m to 24.709m assumed zone of no recovery				24.70	25.40	107	57	NA	NA	1	<u>-</u>	
from 25.10m to 25.40m assumed zone of no recovery	P. 0. 10	=								ļ		
from 25.50m to 25.60m assumed zone of no recovery from 25.60m to 25.80m subangular to rounded coarse gravel and subangular cobbles of granite and gneiss				25.40	25.60	107	67	NA NA	NA NA	<u>.</u>	- - -	
from 26.00m to 26.20m assumed zone of no recovery	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									_	SPT(C)50/175mm - 26.20 26.53 -	
from 26.46m to 26.55m medium strong grey boulder of granite from 26.70m to 26.95m assumed zone of no recovery	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			26.20	26.95	107	67	NA	NA			
Assumed zone of no recovery. Very stiff very sandy boulder CLAY with cobbles, boulders and small sand bands. (Driller's description)		27.20 -	-27.73	26.95	27.70	107	33	NA	NA		-	
Stiff brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist. from 28.30m to 28.70m and 29.00m to 29.20m assumed zone of		27.70	-28.23	27.70	28.70	107	60	NA	NA		SPT(C)50/95mm - 27.70 27.94 - - - - - -	
no recovery		=		28.70	29.20	107	60	NA	NA			
No recovery. Stiff greyish brown very sandy boulder CLAY with large cobbles and boulders. (Driller's description)		29.40 - - - - - - -	-29.93	29.20	30.10	107	22	NA	NA		5PI(C)50/180mm - 29.20 29.53 - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:18

Form No. SIEXPHOLELOG

Project Name	Bay of Nigg Harbour Development Ground Investigation		Hole ID.
Project No.	TA7148	Exploratory Hole Log	۸٥۶
Engineer	Arch Henderson LLP		A05
Employer	Aberdeen Harbour Board		Sheet 4 of 4

396688.10 E, 804636.30 N National Grid Ground Level -0.53m CD Coordinates

Hole Type CP+RC Inclination Vertical

Description of Strata	Legend	Depth	Datum	Sam	pling		Blo San	ow Co nple I	ount A Recov	And ery	In Situ Test	msta
			Level	Detai	ils	Dia.	TCR	SCR		IF	Details	ation
No recovery. Stiff greyish brown very sandy boulder CLAY with arge cobbles and boulders. (Driller's description)			Level	Detai	35.60	B9					SPT(C)50/0mm = 32.00 32.00	ation
Extremely weak dark grey locally stained dark reddish brown GNEISS. Recovered as non intact core (angular fine to coarse gravel sized fragments).		38.00	-38.53	38.00	39.00		100	0	0	· NI		

Form No. SIEXPHOLELOG

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Issue,Revision No. 1.05

Log Print Date And Time: 23/12/2013 10:23:23

Issue Date 22/10/2012

SOIL ENGINEERING

Project	ject Name Bay of Nigg Harbour Development Ground Investigation												Exploratory Hole Log Hole ID.										
Project		TA7												Explo	Tau	ory r	tole Lo	og	1	804			
Engine	er	Arch	n Hend	dersor	1 LLP														,	100			
Employ				Harbo	our Board	<u> </u>							22/2						Н	eader			
Ground Date Sta		0.18i 19/0	m CD 9/2013	3					ordinat te Com	ites npleted			80474	40.90 N N	lationa	al Grid	Inclinat	ion Vert	ical				
Тор	Base	_	Date S		Date Ende	d C	rew	Section	n	Core	Core		Equip	ment		Shc		Remarks					
0.00	1.20	СР	19/09/		19/09/201		IC	Logged I DT	By E	Barrel	Bit		Dando			Sup	oring / oport				-		
1.20 1.60 2.60 9.60	1.60 2.60 9.60 36.00	RO RC RC RC	19/09/ 19/09/ 19/09/ 20/09/	/2013 /2013 /2013	19/09/201 19/09/201 20/09/201 21/09/201	.3 N .3 N	WW MM MM r/WW	WW DT DT DT	T	SWF T6116 T6116	Impreg Impreg Impreg		Deltaba Deltaba Deltaba	use 520 use 520 use 520 use 520 use 520									
		PROGRESS WATER ST									44TED 0TD												
Date	Ті	me	Hole			er		Rem	narks			Dat	e	Time	Sti	rike at	ATER STRI	Time	Ca	sing dep	oth		
			depth	dep	oth dept	:h									ď	lepth	depth	taken to rise	at stril time	κe ĭ to	o seal flow		
19/09/20 19/09/20 19/09/20 20/09/20 20/09/20 21/09/20 21/09/20 22/09/20)13 1)13 1)13 0)13 1)13 0)13 1	755 800 900 7700 9900 7700 900 7700	1.20 1.60 2.60 9.60 14.50 22.80 30.70 36.00	1.2 - 2.3 5.5 10.1 17.4 24.9 34.0	NR -1.75 0 -2.00 15 -4.00 40 -1.80 90 -2.30	End End End End End End	End of CP/Start of RO End of RO/Start of RC End of Shift/Start of Shift End of Hole																
			(CABLE F	PERCUSSIO	N DET	AILS										SPT DETAI	LS					
Hard from	Strata	Depth to	Star	Chis t time	elling Duration	Rem	arks					Depth	Туре			al blow ion in n		Hammer No.	Energy ratio	Casing depth			
0.80	•	1.20		<u>mm</u> 600	0200	Chise	elling		—		$\overline{}$	0.50	SPT(C	C) 50/50mi				AR362	% 75	N/A	-3.00 -2.60		
								3.60 5.80 7.30 8.80 10.30 11.50 13.00 14.50	SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C	5) 50/95mi 5) 50/220n 5) N=48 (3, 6) N=47 (4, 6) N=59 (7, 7) 50/20mi 6) N=68 (1	(/ 7	0 /2 /201		AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75 75 75 75 75 75 75 7	2.30 2.30 2.30 2.30 2.30 9.60 9.60 9.60 9.60	-2.60 -2.20 -2.50 -3.00 -2.70 -3.60 -3.80 -4.40 -4.10						
Fron		To		KOTAI	Flush	/LIAIL	F	lush eturn		Flush		16.10 17.95	SPT(C SPT(C	50/225n 50/75m			(5)	AR362 AR362	75 75	10.15 17.40	-3.20		
1.60	"	depth 4.30			type Water	\dashv		% 100		Brown		19.75 21.25 22.80	SPT(C SPT(C SPT(C	50/0mm N=42 (4, 50/0mm	1 (25/0, ,6,11,9, 1 (25/0	,50/0) ,10,12) .50/0)		AR362 AR362 AR362	75 75 75	17.40 17.40 17.40	NR -2.40 -1.80		
4.30 9.60 10.30 14.70 17.40 17.95 21.25 22.00 22.80		9.60 10.30 14.50 17.40 17.95 21.25 22.00 22.80 30.70		V V V	Water Water Water Vater/Air Vater/Air Vater/Air Vater/Air Vater/Air		:	0 100 50 100 80 100 80 0 100		Brown Brown Brown Brown Brown Brown Brown		24.30 25.80 27.30 28.60	SPT(C SPT(C SPT(C	50/10m 50/0mm	m (25/1 n (25/1 n (25/1 m (25/1	5,50/10) 0,50/0) 0,50/0) 20,50/10	0)	AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75	24.30 24.90 24.90 24.90 24.90	-1.80 -2.90 -3.60 -2.50 NR		
	·	METER /						IC SAMPL															
Hole diameter 150 120 116) 15	neter c	epth of casing 24.90 36.00	Тор	Base	ase Diameter Time hhmmss %																
	II	ISTALLA	TION D	ETAILS			F	PIPE CON	ISTRUC	CTION]											
Distance from G.L		Ту	/pe	Resp	onse zone p Base	ID	Тор	Pipe Base	Dia of pi		pe of pipe												
				B/	ACKFILL DE	TAILS					$\overline{}$				* Se	eating blo	ows only. ENERAL NO	OTES					
Top o		ase of		Mater		T		Ren	narks														
sectio 0.00		ection 36.00		Arising	gs																		
NOTES	Water	strike r	ise tim	e in mii iations,	meters in m nutes, hard , see key Log Print Da	d strata	a time			3 10:23:	:38	I						SOI	L eng	inee	RING		

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

80A

Sheet 1 of 4

Employer Aberdeen Harbour Board Ground Level 0.18m CD

Engineer

Coordinates

396673.80 E, 804740.90 N National Grid

Hole Type CP+RC Inclination

Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, gneiss and schist. Assumed zone of no recovery. Firm brown boulder CLAY and some cobbles. (Oriller's description) Light gray gravelly COBBLES and BOULDERS with medium to coarse gravel sized pockets of sandy gravelly clay. (Driller notes boulder clay). In the gravelly cobbles and BOULDERS with medium to coarse gravel sized pockets of sandy gravelly clay. (Driller notes boulder clay). Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) Stiff very high strength brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is analysia to rounded fine to coarse drixed ignous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are analysial to subrounded of granite, gneiss and schist. From 5.20m to 5.30m assumed zone of no recovery from 6.10m to 6.20m angular to subrounded coarse gravel of granite, gneiss and schist.	Description of Strata	Legend	Depth	Datum	Sampli	ng	_		ount An Recover	v	!
from 0.20m to 1.60m driller notes cluster of large cobbles and boulders Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fire to coarse. Gravel is angular to rounded fine to coarse of make dispease and metamorphic lithologies including granite, gness, solist and quartz. Cobbles are angular to subrounded of granite, gness and schist. Assumed zone of no recovery. Firm brown boulder CLAY and some cobbles of comiler's description) 1,50 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60 3,60				Level	Details	Dia	TCR	SCR	RQD	IF Detail	is
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse of mixed igneous and metamorphic lithologies necluding granite, geniess, schist and quartz. Cobbles are angular to subrounded of granite, genies and schist. 2.18	from 0.20m to 1.60m driller notes cluster of large cobbles	* * * * * * * * * * * * * * * * * * * *	-		B001 0.50-0.8	0					0.55 -
ight grey gravely COBBLES and BOULDERS with medium to coarse gravel sized pockets of sandy gravely clay. (Driller notes outled clay). from 2.80m to 3.00m granite boulder sasumed zone of no recovery. Stiff brown boulder CLAY with cobbles and boulders of granite. (Driller's description) assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) 3.60 3.75 3.57 3.60 4.30 107 40 NA NA SPTICISO-25mm 3.60 3.77 3.57 3.60 4.30 107 7 NA NA Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) 3.60 3.75 3.60 4.30 4.30 5.30 88 89 90 NA NA SPTICISO-25mm 3.60 SP	content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies ncluding granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, gneiss and schist.		=		1.60	2.60 89	58	NA	NA		
cobbles and boulders of granite. (Driller's description) 3.75 3.60 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.7	cobbles. (Driller's description) Light grey gravelly COBBLES and BOULDERS with medium to coarse gravel sized pockets of sandy gravelly clay. (Driller notes boulder clay).		1		2.60	3.60 107	40	NA	NA		
Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) 4.30 5.30 89 90 NA NA STICOSO STIFF very high strength brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, gneiss and schist. from 5.20m to 5.30m assumed zone of no recovery from 6.10m to 6.20m angular to subrounded coarse gravel of granite, gneiss and schist from 7.10m to 7.30m assumed zone of no recovery Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's description) 7.90 - 7.72 7.30 8.80 89 40 NA	cobbles and boulders of granite. (Driller's description) Light grey gravelly COBBLES and BOULDERS with medium to coarse gravel sized pockets of sandy gravelly clay. (Driller notes		3.75 <u>-</u> 	-3.57	3.60	4.30 107	27	NA	NA		nm -
angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, gneiss and schist. from 5.20m to 5.30m assumed zone of no recovery from 6.10m to 6.20m angular to subrounded coarse gravel of granite, gneiss and schist from 7.10m to 7.30m assumed zone of no recovery Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's	cobbles and frequent boulders of granite. (Driller's description) Stiff very high strength brown slightly sandy gravelly CLAY		4.30 - - - - - -	-4.12	4.30	5.30 89	90	NA	NA		
from 6.10m to 6.20m angular to subrounded coarse gravel of granite, gneiss and schist 5.80 7.30 89 87 NA NA SPT(C)48 7.30 7.30 8.80 89 40 NA NA Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's	angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, gneiss and schist.				5.30	5.80 89	100	NA	NA	5.30 SPT(C)50/220	5.55 -
Assumed zone of no recovery. Stiff brown boulder CLAY with cobbles and frequent boulders of granite. (Driller's	from 6.10m to 6.20m angular to subrounded coarse gravel of granite, gneiss and schist				5.80	7.30 89	87	NA	NA		6.17 -
cobbles and frequent boulders of granite. (Driller's	Assumed zone of no recovery. Stiff brown boulder CLAY with		7.90	-7.72	7.30	8.80 89	40	NA	NA NA		7.75 -
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies 8.80 -8.62 SPT(C)47 8.80 9 8.80 9 8.80 9 8.80 9 8.80 9 8.80 9	description) Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded		8.80 -	-8.62							9.25

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:43

SOIL engineering

Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

80A

Sheet 2 of 4

Employer Aberdeen Harbour Board

0.18m CD Coordinates

396673.80 E, 804740.90 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	San	npling				ount A Recov		In Situ Test	Insta
·			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	ation
Stiff brown slightly sandy gravelly CLAY with medium cobble	0-0-0-	9 -									12	
content. Sand is fine to coarse. Gravel is angular to rounded	0 0 0	P =									CDT/C\EO	
fine to coarse of mixed igneous and metamorphic lithologies	2000	; =									SPT(C)59 - 10.30 10.75 -	
including granite, gneiss and schist. Cobbles are angular to	-0-0-	-									2	
subrounded of granite, gneiss and schist.	20 20 0	-									9	
from 10.00m to 10.30m assumed zone of no recovery	9	_		10.30	11.50	89	64	NA	NA			
	P - D - 7	11.07	-10.89	10.00	11.00	- 00	••				H	
Assumed zone of no recovery. Stiff to firm brown boulder CLAY	0 0	-	-10.65								3	
with large granite boulders and small sand and gravel bands.	0 0 0										5	
(Driller's description)	-0-10-1	11.50 -	-11.32								SPT(C)50/20mm -	
Stiff to firm brown slightly sandy gravelly CLAY with medium	2										11.50 11.54	
cobble content. Sand is fine to coarse. Gravel is angular to	P 9 7	S -									-	
ounded fine to coarse of mixed igneous and metamorphic	0 0 0	_										
ithologies including granite, gneiss and schist. Cobbles are	0 - 0 - 0	-									1	
angular to subrounded of granite, gneiss and schist.	0000	1 -		11.50	13.00	89	43	NA	NA		3	
	00000	5									1	
	10 -05	h -									1	
	30 + 05	-									1	
	9	-										
from 12.90m to 13.00m assumed zone of no recovery	0 0 0									İ	SPT(C)68 — 13.00 13.45 —	
6 4000 - 4040 - 1 - 1	0.00	-									15.50	
from 13.20m to 13.40m angular to subrounded coarse gravel	00-10-	13.40 -	-13.22								3	
and angular cobbles of granite, gneiss and schist	9 0110		15.22								1	
Assumed zone of no recovery. Stiff to firm brown boulder CLAY	P - u - 5			40.00	4/50				l		1	
with large granite boulders and small sand and gravel bands.	0 0 0	-		13.00	14.50	89	27	NA	NA		1 3	
(Driller's description)	0-40-) I										
	20200	-										
	- 0 P	9 -									19	
	P-9-0	14.50 -	-14.32								SPT(C)69	
Rotary openhole drilling. BOULDERS. (Driller's description)	0,00	_									14.50 14.95 -	
Ctiff brown aliabety and a gravally CLAV with madium ashble	9 - 10 - 7	14.70 -	-14.52								12	
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded	2000	-									1 3	
fine to coarse of mixed igneous and metamorphic lithologies	0 0 0										-	
including granite, gneiss and schist. Cobbles are angular to	10 +0 6			14.50	16.10	89	100	NA	NA		3	
subrounded of granite, gneiss and schist.	23 + 10	ļ. <u>-</u>		14.30	10.10	03	100	IVA	INA		2	
	8-6-6											
	0 0 0	<u> </u>									-	
	0 0 0										12	
	0-2-5	1010 -	-15.92								CDT/C)F0 /22F	
Assumed zone of no recovery. Firm to stiff greyish brown	0 0 0	16.10 -	-15.92								SPT(C)50/225mm = 16.10 16.48 =	
boulder CLAY and some cobbles. (Driller's description)	0 0 0	_									=	
	0 000	-									3	
	0000	-										
	200	-		16.10	17.40	89	0	NA	NA		9	
	0 0 0										Lī	
	0 0 0	(-									1	
	P 0 0 0	5 -									1	
Stiff very high strength greyish brown slightly sandy	20.20	17.40	-17.22							İ		
gravelly CLAY with medium cobble content. Sand is fine to	2000	ja I		47 10	47.00		100					
coarse. Gravel is angular to rounded fine to coarse of mixed	2000			17.40	17.95	89	100	NA	NA			
igneous and metamorphic lithologies including granite, gneiss	0 0	, -									SPT(C)50/75mm	
and schist. Cobbles are angular to subrounded of granite,	9 + 1p	h =									17.95 18.18	
gneiss and schist.	P 1 0 0	-									18	
	0 0 0											
	0 00	0									1	
	0	ji -									1	
	-0-0			17.95	19.75	89	100	NA	NA	NA	1 2	
	0.00	} =									=	
	0.00	1 - 1										
	0	-									-	
	0 0 0	-] 3	
	0 100	-									14	
	33202	_					 	-		1	SPT(C)50/0mm	
	10 10		1 1	l			l	1	I	I	19.75 19.75	11/2

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:48

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

80A

Sheet 3 of 4

Ground Level 0.18m CD Coordinates

396673.80 E, 804740.90 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Samı	pling			ow Co nple I			In Situ Test	Instal
·			Level	Detail	s	Dia.	TCR	SCR	RQD	IF	Details	ation
Stiff very high strength greyish brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist.				19.75	21.25	89	100	NA	NA		-	
		22.10 -	-21.92	21.25	22.10	89	100	NA	NA		SPT(C)42 21.25 21.70	
Assumed zone of no recovery. Stiff greyish brown boulder CLAY and some cobbles. (Driller's description)				22.10	22.80	89	0	NA	NA		SPT(C)50/0mm	
		- - - - 23.40 -	-23.22	22.80	23.40	89	0	NA	NA		22.80 22.80 -	
Light grey and brown gravelly COBBLES and BOULDERS with cobbkle sized pockets of sandy gravelly clay. (Driller notes boulder clay). Assumed zone of no recovery. Boulder CLAY with large granite		23.80	-23.62	23.40	24.30	89	44	NA	NA		- - - -	
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and gneiss.		24.30 - - - - - -	-24.12								SPT(C)50/10mm - 24.30 24.32	
Cobbles are subangular to subrounded of granite and gneiss. from 24.30m to 24.36m strong grey boulder of granite				24.30	25.80	89	93	NA	NA			
from 25.70m to 25.80m assumed zone of no recovery		- - - 26.20 -	-26.02	25.80	26.60	89	50	NA	NA		SPT(C)50/0mm 25.80 25.81	
Assumed zone of no recovery. Boulder CLAY with large granite boulders. (Driller's description)											-	
	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-27.12	26.60	27.30	89	0	NA	NA		SPT(C)50/0mm	
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse.Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist.		27.90 - 27.90 -	-27.72	27.30	28.60	89	46	NA	NA		27.30 27.31 -	
Assumed zone of no recovery. Boulder CLAY and large granite boulders. (Driller's description)	0 0 0	28.60 -	-28.42								SPT(C)50/10mm -	
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist. from 28.70m to 28.89m medium strong grey boulder of granite from 29.36m to 29.50m strong grey boulder of granite		28.60 -	-28.42	28.60	30.10	89	80	NA	NA		28.60 28.63 ·	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:51

Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Exploratory Hole Log A08 Sheet 4 of 4

Ground Level 0.18m CD Coordinates 396673.80 E, 804740.90 N National Grid

Hole Type CP+RC Inclination Vertica

Description of Strata	Legend	Depth	Datum	s	ampling				ount A Recov		In Situ Test	Instal
			Level	De	etails	Dia.		SCR		IF	Details	ation
Assumed zone of no recovery. Boulder CLAY with large granite boulders. (Driller's description)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.10 - 30.30 -	-29.92 -30.12	30.10	30.70	89	0	NA	NA			
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite and gneiss.		30.70 -	-30.52							•	SPT(C)50/15mm 30.70 30.72	
Assumed zone of no recovery. Boulder CLAY with large granite boulders. (Driller's description)		=		30.70	32.35	89	100	NA	NA NA			
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse grained igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite and gneiss. from 30.70m to 30.80m and 32.35m to 32.45m angular to subrounded cobbles of granite, schist and gneiss	0 0 0	32.35 _ 32.40 _	-32.17 -32.22	B002	32.50-33.50						-	
Rotary openhole drilling: Firm brown sandy boulder clay with some cobbles (drillers description)												
Rotary openhole drilling: Brown slightly gravelly coarse SAND. Gravel is angular to rounded fine to medium of mixed igneous and metamorphic lithologies including granite, gneiss and schist. (driller notes sand and gravel).		-		B003	33.50-34.00							
				B004	35.00-35.50							
Rotary openhole drilling: boulder clay (drillers description)		35.60	-35.42									
Exploratory hole complete at 36.00 m.		36.00	-35.82									

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:23:56

Form No. SIEXPHOLELOG

sue.Revision No. 1.05

Project	t Nam	е Вау	of Nigo	g Har	rbour Dev	elopm	nent (Groun	d Inv	estiga	tion			Evn	loro	ton, l	ا مام ا		Нс	ole ID.	
Project		TA7												Exh	lOra	itory r	Hole Lo	og	1	11	
Engine		Arch	n Hende	erson	ı LLP														,	,11	
Employ				Harbo	our Board								22/2						Н	eader	
Ground Date Sta			7m CD 9/2013						ordinat te Com		18/09		8047	98.70 N	Natio	onal Grid	Inclinat	ion Vert	ical		
Тор	Base	_	Date Sta	arted	Date Ende	d Cr	ew	Section		Core	Core		Equip	ment		Sho			Remarks		
0.00	0.70	СР	14/09/2		14/09/201		CL LC	ogged B. DT	3y E	Barrel	Bit		Dando			Su	oring / oport				-
0.70 6.20 6.50	6.20 6.50 32.80	RC RO RC	14/09/2 16/09/2 16/09/2	2013 2013	14/09/201 16/09/201 18/09/201	3 M 3 W	1M /W /W	DT DT DT		SWF F6116	Impreg 4 3/4 RF Impreg		Deltaba Deltaba	ise 520 ise 520 ise 520							
			<u> </u>			丄															
	- 1 -				OGRESS									-			ATER STRI				.1
Date	'	ime	Hole depth	Casi dep	ing Wate oth dept			Rema	arks			Dat	e	Tim	e	Strike at depth	Rise to depth	Time taken to rise	at strik	sing dep ke to f	oth o seal flow
14/09/20 15/09/20 16/09/20 16/09/20 17/09/20 17/09/20 18/09/20	013 (0 013 (0 013 1 013 (0 013 1 013 (0	2240 3600 3700 1900 1700 1900 1900 1900 1900	0.70 6.20 6.20 13.40 17.10 28.10 29.80 32.80	0.7(4.7(4.7(4.7(11.4 17.0 28.6 28.6	0 -3.20 0 -1.90 0 -2.80 45 -1.30 00 -1.10 52 -2.00	End of Start End of End of End of	of Shift t of Shift of Shift of Shift of Shift	ft t/Start of t/Start of t/Start of t/Start of	Shift Shift Shift									to rise			iow
			C.F	ABLE P	PERCUSSIO	N DETA	AILS										SPT DETAI	LS			
	Strata	•	Start t		elling Duration	Rema	rks					Depth	Туре			ntal blow ration in r		Hammer No.	Energy ratio	Casing depth	
from 0.60	1	0.70	hhm 204	nm	hhmm 0200	Chisell	lina					0.50	SPT			,21,50/15)		AR362	%	N/A	
				DOTAL	RY FLUSH D							0.70 2.00 3.50 5.00 6.50 8.20 9.60 11.10 12.70	SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C SPT(C	50/0i 50/30 50/8! 50/20	mm (2 [°] 5 0mm (2 5mm (7 0mm (2 5	5/0,50/0) 15/30,50/3 1,10,42,8/1 15/40,50/2 5/0,50/0) 10,11,11 8,8,10) 6,8,9) 7,7,9) (4,9,12,13,2		AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75 75 75 75 75 75 75 7	N/A 2.00 2.00 2.00 4.70 4.70 4.70 4.70 4.70	-3.20 -3.30 -3.50 -3.20 -3.10 -1.90 -2.90 -4.20 -3.70 -3.00 -3.10
Fron		To		RUTAR	Flush	ETAILS	Flu			Flush		14.10 15.60	ISPIR	711 DO/T	/ UIIIIII I	110.12.13.2	.5,10/20) 3,8/20)	AR362 AR362	75 75	5.70 14.10	-3.20
0.70	ın	depth 6.20	+		type Water	\dashv	retu % 0	6		colour -		17.10 18.60 19.60	SPT(C SPT(C	N=30 N=37 N=37	(4,6,7, (5,5,8,	7,7,9) 9,9,11) 5/0,50/0)		AR362 AR362 AR362	75 75 75	17.00 17.00 17.00	-1.30 -2.30 -2.80
6.20 11.10 17.10 27.40 29.80		11.10 17.10 27.40 29.80 32.80			Water Water Water Water Water Water		10 0 10 0 10	00 00 0		Brown Brown White		20.10 22.40	SPT(C SPT(C SPT(C SPT(C	C) N=33 C) N=41 C) N=33 C) N=32 C) N=34	3 (4,4,6, 1 (5,5,7, 3 (4,6,6, 2 (4,4,6, 4 (5.6.6.	8,9,10) 9,11,14) 7,9,11) 8,8,10)		AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75	17.00 17.00 17.00 17.00 17.00 17.00 17.00	-3.40 -4.40 -3.20 -2.00 -1.70 -1.40
HC	LE DIA	METER	/ CASING	à		DYN.	AMIC	SAMPLI	ING												
Hole diameter 200 155 125 116		20 1 15 2 12	neter ca 00 0 50 5	pth of asing 0.70 5.70 8.62	Тор	Base	Diar	meter I	Time hhmm		covery %										
	-		TION DE					PE CONS													
Distance from G.L		13	/pe	Respo	onse zone p Base	ID 1	Top Pi	ipe Base	Dia of pi		pe of pipe										
				DΛ	ACKFILL DET	TAILS									*	* Seating blo	ows only.)TES			
Top of	f E	Base of		Mater		AILS		Rema	narks							G	ENERAL INC	JIE2			
sectio 0.00 28.20	n s	ection 28.20 32.80		Arising Grout	gs																
NOTES:	Wate	r strike r		in mir	meters in m nutes, hard see key .og Print Da	l strata	time i			10:24:	:11							SOI	L eng	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A11

Sheet 1 of 4

Employer Ground Level

Engineer

Aberdeen Harbour Board

-0.17m CD Coordinates

396693.40 E, 804798.70 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level		Sampling				ount A Recov		In Situ Deta		Instal
	100		Level	[Details	Dia.	TCR	SCR	RQD	IF	Deta	IIIS	ation
Grey slightly silty slightly gravelly fine to coarse SAND. Gravel is fine.	× × ×	=		D001 B002 D003	0.00 0.00-0.50 0.50			•			SPT50/15m		
No recovery. Large boulder obstruction. (Driller's description)	0000	0.60 - 0.70 -	-0.77 -0.87								0.50 SPT(C)50/0r 0.70	0.60 mm 0.70	
Medium dense to dense grey and brown gravelly subangular to rounded COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Recovered as angular to rounded coarse gravel and cobble sized fragments. (Driller notes boulder clay). from 0.80m to 1.20m with clay pockets		1.20 -	-1.37	0.7	0 2.00	107	38	NA	NA				
Assumed zone of no recovery. Stiff boulder CLAY with cobbles and boulders. (Driller's description)	0000	2.00	-2.17								SPT(C)50/30 2.00	2.06 –	
Medium dense to dense grey and brown gravelly subangular to rounded COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Recovered as angular to rounded coarse gravel and cobble sized fragments. (Driller notes boulder clay).		2.35	-2.52	2.0	0 3.50	107	20	NA	NA				
Assumed zone of no recovery. Stiff boulder CLAY with cobbles and boulders. (Driller's description)	8 8 8 0	3.50	-3.67								SPT(C)50/85		
Medium dense to dense grey and brown gravelly subangular to rounded COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Recovered as angular to rounded coarse gravel and cobble sized fragments. (Driller notes boulder clay). Assumed zone of no recovery. Stiff boulder CLAY with cobbles and boulders. (Driller's description)		3.70 -	-3.87	3.5	0 5.00	107	13	NA	NA		3.50	3.74	
Medium dense to dense grey and pink gravelly subangular to		5.00 —	-5.17								SPT(C)50/20 5.00	0mm —	
rounded COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Recovered as angular to rounded coarse gravel, cobble and boulder sized fragments. (Driller noted boulder clay). from 5.00m to 5.20m and 5.45m to 5.60m with medium to coarse gravel sized pockets of clay. from 5.10m to 5.33m strong grey boulder of granite from 5.47m to 5.60m strong grey boulder of gneiss		5.60 -	-5.77 -6.37	5.0	0 6.20	107	50	NA	NA				
Assumed zone of no recovery. Stiff boulder CLAY with cobbles and boulders. (Driller's description)	000	6.50	-6.67								SPT(C)50/0r 6.50	mm 6.50	
Rotary openhole drilling: BOULDERS. (Driller's description)	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			6.5	0 7.10	107	100	NA	NA			1	
Dense grey, brown and pink clayey angular to rounded coarse GRAVEL with medium cobble content. Cobbles are subangular to rounded of granite and gneiss. Gravel is of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Stiff extremely high strength reddish brown slightly sandy		7.10 - - - - - - -	-7.27	7.1	0 8.20	89	95	NA	NA			1	
slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite,	0 0 0										SPT(C)41 8.20	8.65 -	
gneiss and schist. Cobbles are angular to subrounded of granite and gneiss. from 8.15m to 8.20m assumed zone of no recovery		-		8.2	0 9.60	89	100	NA	NA		5.EV	-	
	P										SPT(C)32 9.60	10.05	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:24:15

Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A11

Sheet 2 of 4

Ground Level -0.17m CD

Coordinates

396693.40 E, 804798.70 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampli	ng				t And overy	In Situ Test	Insta
·		·	Level	Details	Di	a. TO	R SC	R RC	D IF	Details	ation
Stiff extremely high strength reddish brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite and gneiss.		10.50	-10.67	9.60 1	1.10 8	9 10	10 N	A r	IA.		
Stiff extremely high strength greyish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist.		12.40	-12.57	11.10 1	2.70 8	9 10	00 N	A N	JA	SPT(C)28 11.10 11.55	
Stiff brown slightly gravelly CLAY. Gravel is angular to rounded fine to medium of granite and gneiss. from 13.10m to 13.20m cobble of quartz from 13.20m to 13.40m assumed zone of no recovery		-		12.70 1	3.40 8	9 7	1 N	1 A	JA	SPT(C)29 12.70 13.15	
from 13.60m to 13.70m cobble of granite Assumed zone of no recovery. Stiff to firm greyish brown boulder CLAY. (Driller's description)		13.70 -	-13.87 -14.27	13.40 1	i.10 8	9 5	7 N	A N	JA	SPT(C)50/245mm ·	
Firm brown slightly gravelly CLAY. Gravel is angular to rounded fine to coarse of granite and schist. from 14.40m to 14.60m recovered as angular coarse gravel sized fragments Assumed zone of no recovery. Dense clay bound GRAVEL with cobbles and boulders. (Driller's description)		14.60	-14.77	14.10 1	5.60 8	9 3	3 N	1 A	N/A	14.10 14.50	
Dense clayey angular to subrounded fine to coarse GRAVEL of mixed igneous and metamorphic lithologies including granite, gneiss and schist with low cobble content. Cobbles are subangular of granite and gneiss. Stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to rounded of granite and gneiss.		15.60 - - - 16.20 - 16.50 -	-15.77 -16.37 -16.67	15.60 1	7.10 8	9 6	0 N	1 A	JIA	SPT(C)50/170mm 15.60 15.92	
Assumed zone of no recovery. Clay bound GRAVEL with cobbles and boulders. (Driller's description) Stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite and gneiss. Assumed zone of no recovery. Firm greyish brown boulder CLAY		17.10 -	-17.27 -17.87	17.10 1	8.60 8	9 4	0 N	1 A	JA	SPT(C)30	
with sandy bands. (Driller's description) Stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist.		18.60	-18.77	18.60 1	9.60 8	9 8	0 N	1 A	JA	SPT(C)37 18.60 19.05	
from 19.40m to 19.60m assumed zone of no recovery	0000	-								SPT(C)50/0mm -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:24:20

SOIL ENGINEERING

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A11

Sheet 3 of 4

Ground Level -0.17m CD Coordinates 396693.40 E, 804798.70 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sam	npling				ount A			u Test	Ins
·			Level	Deta	ils	Dia.	TCR	SCR	RQD	İF	Det	ails	atio
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist. from 20.15m to 20.20m angular medium to coarse gravel of schist and granite		20.20 -	-20.37 -21.27	19.85	21.10	89	28	NA	NA		SPT(C)33 20.10	20.55	
Assumed zone of no recovery. Firm greyish brown boulder CLAY with sandy bands. (Driller's description) Stiff extremely high strength brown slightly sandy gravelly CLAY with medium cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are angular to subrounded of granite, gneiss and schist. from 22.40m to 22.60m assumed zone of no recovery		21.10	-21.21	21.10	22.60	89	87	NA	NA		SPT(C)41 22.40	22.85	
from 23.35m to 23.60m assumed zone of no recovery				22.60	23.60	89	75	NA NA	NA NA		SPT(C)33 23.60	24.05	
from 24.10m to 24.20m assumed zone of no recovery				24.20	25.60	89	96	NA	NA				
from 25.55m to 25.60m assumed zone of no recovery	0 0 0	-		25.60	26.00	89	88	NA	NA		SPT(C)32 25.60 SPT(C)34	26.05 - - - -	
Assumed zone of no recovery. Firm greyish brown boulder CLAY with sand bands and cobbles. (Driller's description)		26.40	-26.57	26.00	27.50	89	27	NA	NA		26.00	26.45	
Dense grey, pink and brown gravelly angular to subrounded COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Recovered as angular to subrounded coarse gravel and cobble	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.50 	-27.67	27.50	28.10	89	50	NA	NA		SPT(C)50/0 27.50	0mm 27.50 - - -	
sized fragments. from 27.50m to 27.70m strong grey boulder of granite from 27.70m to 27.80m with medium to coarse gravel sized pockets of slightly gravelly sandy clay. from 27.80m to 28.00m assumed zone of no recovery		28.20	-28.37	28.10	28.70	89	100	83	48	50 140 290			
Strong grey granitic GNEISS. Discontinuities: 1) 10-20 degrees closely and medium spaced planar rough stained brown on surfaces. 2) 40-50 degrees medium spaced planar rough stained brown on surfaces. from 28.95m to 29.05m recovered as non intact core (angular coarse gravel sized fragments)		- - - -		28.70	29.80	89	100	91	24			-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:24:24

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A11 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 4 of 4

Ground Level -0.17m CD Coordinates 396693.40 E, 804798.70 N National Grid

Hole Type CP+RC Inclination

Description of Strate	locand	Depth	Datum	Sampling		Blo	ow Co	ount A Recov	nd	In Situ Test	IIIsta
Description of Strata	Legend	Depth	Level	Details	Dia.			RQD	ery IF	Details	ation
Remaining Detail : 29.80m - 29.84m : from 29.80m to 29.84m, 30.36m to 30.46m, 30.70m to 30.74m and 31.29m to 31.33m recovered as non intact core			-32.97	29.80 32.80			93	66	NI 100 220		
Exploratory hole complete at 32.80 m.											

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:24:29

1		•	-	ј Har	bour Dev	elop	ment	Ground	Invest	tigatior	1			Fxnlo	orat	orv F	Hole Lo	00	Нс	ole ID.	
Project		TA7												LAPIC	Jia	.Ory i	TOTO LC	' 9	ļ	119	
Engine			n Hende																		
Employ Ground			raeen F 8m CD	larbo	our Board			Coor	rdinates	39	680	05.70 E,	<u> </u> 80491	.7.80 N I	Vation	nal Grid			Гп	eader	
Date Sta			8/2013							eted 02		,	-			-	Inclinat	ion Verti	cal		
Тор	Base	Туре	Date Sta	ırted	Date Ende	d C	Crew	Section Logged By	Core y Barr	re Co rel B	re it	I	Equipr	nent		Sho Sur	oring / oport	F	Remarks		
0.00 0.10	0.10 9.80	CP RC	31/08/2 31/08/2	013 013	31/08/201 02/09/201		KL MM	DT DT	SWI				Dando Deltabas								
0.23	•		01		52 ,	Ĭ					123		,0	JC 0							
				PR	OGRESS						\rfloor					V	/ATER STRI	KES			
Date	Т	ime	Hole depth	Casi dep	ing Wate	r h		Remar	ks			Date	е	Time	S	trike at depth	Rise to depth	Time taken	at strik	sing dep	o seal
31/08/20 31/08/20	113	1330 1345	0.10 0.10	0.10			d of CP art of Rot	tarv			\exists				+			to rise	time	+	flow
31/08/20 01/09/20	013 1	1900 0900	2.70 2.70	2.70 2.70	0 -3.10 0 -4.50	End Sta	d of Shif art of Shi	ft ´ ift									ı				
01/09/20 02/09/20 02/09/20)13 (1500 0800 1715	4.50 4.50 9.80	3.70 3.70 5.00	0 -4.50	Sta	d of Shif art of Shi d of Hole	ift									ı				
02/03/23	15	1/13	5.00	3.0	J1.55	Liis	101110	ž.									ı				
																	ı				
																	ı				
	\perp			DIE D	2500100101	DEI	-AUC				\dashv						SPT DETAII				
Hard	Strata	Depth	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		PERCUSSIOI elling		narks				\dashv	Depth	Туре	Incre	ement	tal blow		Hammer	Energy	Casing	Water
from		to	Start t	time nm	Duration hhmm							·		pe	enetra	tion in m		No.	ratio %	depth	depth
0.00		0.10	113	0	0200	Chise	elling					0.10 1.40 2.70	SPT(C	50/0mr 50/81n 50/4mr	nm (20	,5/0,32,18	3/6)	AR362 AR362 AR362	75 75 75 75 75	N/A 1.40 1.40	-6.10 -3.50 -3.00
												2.70 3.70 4.50	SPT(C SPT(C SPT(C	50/4mr 50/95n 50/10n	m (23/1 nm (12 nm (25	0,50/4) ,13,41,9/2 /15,50/10	20)))	AR362 AR362 AR362	75 75	3.70 3.70	-3.00 -4.10 -4.00
															•		,				
			F	POTAF	 Ry flush d	FTAIL	ς				\dashv										
Fron dept		To depth			Flush type	LIME	Flu	ush turn		ush lour	\dashv										
0.10	$\ddot{+}$	5.00	-+		Water	\dashv	9	0		-	\dashv										
5.00		9.80		,	Water		10	.00	Cle	lear											
							ĺ														
							1														
	\perp										4										
HO Hole	LE DIA Depti		/ CASING	i oth of	Тор	DYI		SAMPLIN meter -	NG Time	Recove	rv.										
diameter 200	hol 0.10	e diam	neter ca	sing	ТОР	Базе			hmmss	%	у 										
150 145	3.70 9.80) 15		.70																	
	- II	NSTALLA	TION DE	TAILS			PI	IPE CONST	FRUCTIO	ON.	٦										
Distance from G.L.		Ту	/ре	Respo	onse zone p Base	ID	Top	Pipe Base	Dia. of pipe	Type of pipe											
							<u>-</u> -				٦										
							1														
				RΛ	CKFILL DET	TAILS					4				* 5	Seating blo	ows only.)TES			
Top of		Base of	ı	Materi		AILS		Remai	rks		\dashv						- INLINAL INC	71123			
9.00 4.50	<u>1 s</u>	4.50 9.80		Arising Grout							\dashv										
4.50		3.80		Grout	L																
NOTES:	All de	nthe in	metres a	ll diar	meters in m	illima					_	<u> </u>									
NOTES.	Wate	r strike ı		in min	nutes, hard			in hhmm											4		
Unched					og Print Da	te An	d Time	: 23/12/7	2013 10	0:24:40								SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A19

Sheet 1 of 1

Ground Level -2.58m CD Coordinates 396805.70 E, 804917.80 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sam	pling				unt A Recov		In Situ Test	Install
			Level	Detai	ls	Dia.	TCR	SCR	RQD	IF	Details	ation
No recovery. Large BOULDER obstruction. (Driller's description)	0000	0.10	-2.68	0.10	0.40	113	83	NA	NA		SPT(C)50/0mm 0.10 0.10	
Strong grey BOULDERS of granite. from 0.35m to 0.40m assumed zone of no recovery	000	0.58	-3.16								-	
Very stiff reddish brown slightly sandy slightly gravelly CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite and gneiss. Cobbles are angular of granite and gneiss.		1.40	-3.98	0.40	1.40	113	100	NA	NA		SPT(C)50/81mm - 1.40 1.56 -	
from 0.87m to 1.10m strong grey boulder of gneiss Very dense pink, grey and dark grey COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite and gneiss.		1.80	-4.38	1.40	2.70	113	31	NA	NA		-	
Assumed zone of no recovery. Slightly claybound GRAVEL with frequent large granite boulders. (Driller's description)	0.000	2.70	-5.28							NA	007(0)50 (4	
Very dense pink, grey and dark grey COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite and gneiss.		3.00	-5.58	2.70	3.70	113	30	NA	NA		SPT(C)50/4mm = 2.70 = 2.70 = -	
Assumed zone of no recovery. Slightly claybound GRAVEL with frequent large granite boulders. (Driller's description)	0000	3.70	-6.28								SPT(C)50/95mm -	
Very dense pink, grey and dark grey COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite and gneiss.	50000	4.20	-6.78	3.70	4.50	113	63	NA	NA		3.70 3.95 - - -	
Assumed zone of no recovery. Slightly claybound GRAVEL with frequent large granite boulders. (Driller's description)	0.00	4.50	-7.08								SPT(C)50/10mm - 4.50 4.53 -	
Strong locally medium strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely locally very closely spaced planar and undulose rough with patchy brown staining on surface. 2) 50-60 degrees medium spaced				4.50	5.00	113	100	60	22		- - - -	
undulose rough with brown staining on surfaces. from 4.80m to 5.00m recovered as non intact core (angular coarse gravel sized fragments)				5.00	5.50	93	100	100	0	NI 60 140	- - - -	
from 5.75m to 6.09m weak stained reddish brown on surfaces and recovered as non intact core (angular coarse gravel sized fragments) from 6.09m to 6.14m assumed zone of no recovery	*****			5.50	6.50	93	95	61	14		-	
from 6.50m to 7.50m 10-20 degrees discontinuities medium locally closely spaced from 6.76m to 6.80m recovered as non intact core (angular coarse gravel sized fragments)	*****			6.50	7.50	93	100	96	62	NI 150 220	-	
from 7.90m to 8.00m recovered as non intact core (angular coarse gravel sized fragments of schist) from 7.90m to 8.10m 1 No thin band of medium strong thinly (<3mm) foliated grey schist from 8.10m to 9.40m 10-20 degrees discontinuities closely locally medium spaced	****			7.50	9.00	93	100	93	42	NI 120 500		
Medium strong closely (<3mm) foliated grey SCHIST. Discontinuities: 1) 40-50 degrees closely spaced planar rough	*****	9.40	-11.98	9.00	9.80	93	100	100	64		- - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:24:43

Form No. SIEXPHOLELOG

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A19 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 1+ of 1

Ground Level -2.58m CD Coordinates 396805.70 E, 804917.80 N National Grid

Hole Type CP+RC Inclination

	Description of Strata		Legend	Depth	Datum	Sampling		Bl	ow Co mple I	ount A	And	In Situ Test	Insta
	Description of Strata		Legend	Depth	Level	Details	Dia.		SCR	RQD	IF	Details	ation
lean.		i		-								-	
xploratory hole complete at	9.80 m.			-								- - -	
				-								-	
				_									
				-								- -	
				-								- - -	
				-								-	
				-									
				-								-	
				-								=	
				-								-	
				-								- -	
												- - -	
				-								- - -	
				_									
				-								-	
				-								-	
				-								=	
				-								- - -	
				-								- - -	
				-								-	
				-									
				-								- -	
				-								- -	
												=	
				-								- - -	
				-								- - -	
				-								-	
				-									
				-								-	
				-								- -	
				-								- -	
												- - -	
				-								-	
] =	1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:24:49

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

		e Bay	of Nigg) Harl	bour Dev	elopment Ground Investigation							Evnlo	ratory	Hole ID.								
Project		TA7												LXPIO	iatory	I IOIC L	J 9	9 A26					
Engine			n Hende																				
Employ Ground			rdeen F Im CD	larbo	ur Board			Coor	dinates		20690	06 20 E	90493	06 10 N N	ational Gric	1		Н	eader				
Date Sta			8/2013						Comple				00432	.0.10 14 14	ational Gric	Inclina	tion Verti	cal					
Тор	Base		Date Sta	rted	Date Ende	d C	rew	Section	Coi	re (Core		Equipr	ment	Sh	oring /	Remarks						
0.00	0.20	СР	30/08/20	013	30/08/201	3	KL	Logged By DT	y Barı	rel	Bit		Dando	3000	Sı	upport							
0.20 4.10	4.10 8.10	RC RC	30/08/20 30/08/20		30/08/201 30/08/201	3 I	MM MM	DT DT	SW T61		npreg npreg			se 520 se 520									
Date	Ti	me	Hole	Casii	OGRESS ng Wate	r		Remai	rks		-	Date	e	Time	Strike at	WATER STR	Time	Ca	sing dep	th			
			depth	dept	th dept	h		Kerria	i no			Dut		111110	depth	depth	taken to rise	at stril	κe i tα	seal low			
30/08/20 30/08/20	13 1	000 015	0.20 0.20	0.20 0.20	-6.50	Sta	of CP																
30/08/20	13 1	900	8.10	3.10	-6.10	End	d of Hol	e															
	Charte	D	CA		ERCUSSIO							D .1	T	I		SPT DETA		F		10/			
from	Strata	to	Start t		Duration hhmm	Ken	arks					Depth	Туре		nental blov etration in		Hammer No.	Energy ratio %	Casing depth	Water depth			
0.00		0.20	080		0200	Chise	elling					0.20 1.00	SPT(C	50/0mm 50/152m	(25/0,50/0) im (18,7/0,22	21 7/2)	AR362 AR362	75 75	N/A 1.00	-4.80 -6.45			
												2.00	SPT(C	50/83mn 50/55mn	n (25/10,37,1 n (8,17/35,50	13/8) 0/55)	AR362 AR362	75 75	2.00 3.00	-6.35 -6.20			
													,		,, ,	,							
Fron	2	То	F		Y FLUSH D Flush	ETAIL		ush	El	ush													
dept		depth			type		ret	urn %		lour													
0.20		8.10 Water			Nater	0 -																	
				. 1																			
Hole	Depth		/ CASING	th of	Тор	Base		SAMPLII	NG Time	Reco	verv												
diameter 200	hole 0.20	diam	neter cas	sing .20					hmmss														
150 146	3.10 4.10	15		.10																			
116	8.10																						
	IN	ISTALLA	TION DE	TAILS			PI	PE CONS	TRUCTIO	DN C													
Distance		Ту	/pe		nse zone	ID		ipe	Dia.	Туре													
from G.L.				Top	Base		Тор	Base	of pipe	pip	oe												
															* Seating b	lows only.							
	. 1				CKFILL DET	AILS									(GENERAL N	OTES						
Top of section	n se	ase of ection		Materi				Rema	rks														
0.00		8.10		Arising	S																		
NOTES:	All de	oths in	metres. a	II diam	neters in m	illime	tres.																
	Water	strike i		in min	utes, hard			in hhmm															
Unched					og Print Da	te An	d Time	: 23/12/	2013 1	0:24:55	5						SOI	L end	inee	RING			

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A26

Sheet 1 of 1

Engineer Employer Aberdeen Harbour Board

-4.11m CD

Coordinates 396896.20 E, 804926.10 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling				ow Co nple I			In Situ Test	Insta
·				Detail	s	Dia.	TCR	SCR	RQD	IF	Details	ation
No recovery. Large BOULDER obstruction. (Driller's description)	0,00	0.20	-4.31								SPT(C)50/0mm - 0.20 0.20 - 0.20	
Grey angular to subangular fine to coarse GRAVEL and angular to subrounded COBBLES of granite, schist and gneiss.	000	0.47	-4.58	0.20	1.00	113	34	NA	NA		5.25 5.25 -	
Assumed zone of no recovery. Granite and quartz BOULDERS with sand lenses. (Driller's description)	000	1.00	-5.11								SPT(C)50/152mm- 1.00 1.23	
Grey angular to rounded fine to coarse GRAVEL and subangular to rounded COBBLES of granite, gneiss and schist.	0000	1.20	-5.31	1.00	2.00	113	20	NA NA	NA		1.00	
Assumed zone of no recovery. Granite and quartz BOULDERS with sand lenses. (Driller's description)		-		1.00	2.00	110	20			NA.	:	
Grey subangular to rounded fine to coarse GRAVEL of subangular to rounded COBBLES of granite, gneiss and schist.	0000	2.00 —	-6.11 -6.16								SPT(C)50/83mm — 2.00 2.09 -	
Assumed zone of no recovery. Granite and quartz BOULDERS with sand lenses. (Driller's description)	0000	=		2.00	3.00	113	25	NA	NA			
Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including		2.80 - - - 3.20 -	-6.91 -7.31								SPT(C)50/55mm — 3.00 3.17 -	
granite, schist and gneiss. Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 60-70 degrees medium locally closely spaced planar rough with yellow staining on surfaces. from 3.20m to 3.35m very weak and stained brown and yellow				3.00	4.10	113	100	50	40	110 250 400	_	
with staining penetrating through whole diameter of core from 3.20m to 3.55m recovered as non intact core (angular coarse gravel sized fragments)	*****	4.10	-8.21	4.10	5.10	93	80	0	0			
Weak locally very weak pink and grey stained yellow coarse crystalline GRANITE. Recovered as non intact core (angular gravel sized fragments and angular cobble sized fragments).	*****		-10.45		0.10			, and the second				
				5.10 6.2	6.20	93	100	62	12	NI 90 - 360	: : :	
Medium strong to strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely spaced blanar rough with yellow and brown staining on fracture surfaces. 2) 60-70 degrees closely spaced planar rough with yellow and brown staining on surfaces. from 6.62m to 6.80m, 6.95m to 7.05m and 7.66m to 8.00m		6.34]		93	100				: : :	
recovered as non intact core (angular coarse gravel sized fragments) from 7.40m to 8.10m discontinuities 2) medium spaced	*****			7.30		93	100	58	45		-	
Exploratory hole complete at 8.10 m.		8.10 -	-12.21									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:24:58

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A29 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Header Coordinates 396899.04 E, 804841.79 N National Grid Ground Level -2.70m CD 22/07/2013 Date Started Date Completed 25/07/2013 Inclination Vertical Section Logged By Date Started Date Ended Crew Equipment Shoring / Support Remarks Top Base Tvpe 22/07/2013 22/07/2013 23/07/2013 22/07/2013 23/07/2013 23/07/2013 Dando 2000 Deltabase 520 Deltabase 520 0.00 2.30 DT DT DT MM MM 2.30 14.50 14.50 28.00 RC RC Impred T6116 **PROGRESS** WATER STRIKES Time taken to rise Casing depth at strike to seal time flow Date Hole depth Water depth Date Time Strike at depth Rise to depth Time Casing depth Remarks 22/07/2013 22/07/2013 23/07/2013 1130 2000 0700 2.30 8.50 8.50 End of CP/Start of Rotary End of Shift Start of Shift 5.50 5.50 -1.50 21.50 21.50 24.00 24.00 28.00 14.50 14.50 20.00 -4.10 -1.10 -5.00 -2.10 23/07/2013 1930 End of shift 24/07/2013 0700 Start of Shift 24/07/2013 1730 End of Shift 25/07/2013 0700 20.00 Start of Shift 25/07/2013 End of Hole CABLE PERCUSSION DETAILS SPT DETAILS Chiselling me | Duration Hard Strata Depth Remarks Depth Туре Incremental blow count / Hammer Energy ratio Casing depth Water Start time penetration in mm depth from hhmm hhmm N=13 (1,2,3,3,4) N=23 (2,3,4,4,5,10) 50/0mm (2,5/5,50/0) 50/5mm (7,18/10,50/5) 50/245mm (8,10,14,16,16,4/20) 50/270mm (7,810,13,15,12/35) 50/260mm (7,8,10,13,15,12/35) 50/250mm (8,12,15,21,14/50) 50/230mm (7,10,12,13,13,17/5) 50/200mm (7,10,12,13,13,17/5) 50/200mm (9,12,15,23,12/50) 50/5mm (20,5/5,50/5) 50/230mm (9,12,18,18,2/5) 0.50 1.50 2.30 3.00 4.00 -5.10 -5.20 -5.40 -4.10 -3.00 0200 Chiselling AR362 1.50 SPT(C) SPT SPT(C) 2.30 2.30 3.00 AR362 AR362 AR362 3.00 5.50 5.50 5.50 5.50 5.50 14.50 -4.00 -4.10 -1.00 -1.00 -1.20 -2.00 -5.00 5.50 7.00 AR362 AR362 AR362 8 50 10.00 11.50 13.00 14.50 SPT(C SPT(C SPT(C SPT(C **ROTARY FLUSH DETAILS** From Flush Flush Flush AR362 depth SPTIC | 50/5mm (20,5/5,50/5) SPTIC | 50/230mm (6,10,10,17,20,3/5) SPTIC | 50/230mm (6,10,10,17,20,3/5) SPTIC | 50/255mm (5,7,9,13,15,13/40) SPTIC | 50/265mm (5,7,9,13,15,13/40) SPTIC | 50/80mm (7,10,45,5/5) 14.50 14.50 14.50 14.50 14.50 -5.20 -6.00 -6.40 -6.80 -11.00 16.00 17.50 19.00 AR362 AR362 AR362 depth type return colour 2.30 6.50 6.50 7.00 Water Water 100 Brown 20.50 22.00 AR362 AR362 7.00 14.50 21.50 Water 100 100 28.00 Brown HOLE DIAMETER / CASING DYNAMIC SAMPLING Depth of Casing Depth of Top Base Diameter Time Recovery iametei hole diameter casing hhmmss 2.30 5.50 14.50 146 121 22.40 INSTALLATION DETAILS PIPE CONSTRUCTION Dia. Distance ID Type Response zone Pipe Type of Top | Base Base from G.L. Top of pipe pipe * Seating blows only BACKFILL DETAILS GENERAL NOTES Top of section Base of Material Remarks section Arisings Grout 0.00 22.30 28.00 NOTES: All depths in metres, all diameters in millimetres. Water strike rise time in minutes, hard strata time in hhmm For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:25:06

Issue Date 22/10/2012

Issue, Revision No. 1.05

Unchecked

orm No. SIEXPHOLEHDR

SOIL ENGINEERING

Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Exploratory Hole Log

Hole ID.

A29

Sheet 1 of 3

Employer Ground Level -2.70m CD Coordinates 396899.04 E, 804841.79 N National Grid

Hole Type CP+RC Inclination

Arch Henderson LLP

Aberdeen Harbour Board

Description of Strata	Legend	Depth	Datum Level	:		Blow Count And Sample Recovery				In Situ Test Details		Inst	
	100		Levei	D	etails	Dia.	TCR	SCR	RQD	IF	Det	atio	
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine of granite, schist and quartzite.					0.50-0.95 0.50-1.00			,			SPT13 0.50	0.95	
				B007	1.50-1.95 1.50-2.00 2.00 2.00						SPT23 1.50	1.95 -	
Strong grey BOULDER of schist and quartzite.	0000	2.30	-5.00	2.20	200	107					SPT(C)50/0 2.30	0mm - 2.31 - -	
Stiff brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		2.65 _ 2.70 _ 3.00 _	-5.35 -5.40 -5.70	2.30	3.00	107	57	NA	NA		SPT50/5m 3.00	- - nm 3.09	
Assumed zone of no recovery. Stiff to very stiff brown gravelly sandy CLAY. (Driller's description)				3.00	4.00	107	100	NA	NA				
Stiff extremely high strength brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.											SPT(C)50/2 4.00	245mm 4.40	
	2 E C			4.00	4.50	107	100	NA	NA			-	
from 5.10m to 5.15m assumed zone of no recovery from 5.30m to 5.45m angular coarse gravel of granite,				4.50	5.50	107	60	NA	NA		CDT/C/FO	370	
schist and quartzite Assumed zone of no recovery. Stiff to very stiff brown gravelly sandy CLAY. (Driller's description)		5.60 -	-8.30 -9.20	5.50) 6.50	107	35	NA	NA		SPT(C)50/3 5.50	5.92 - 	
Stiff extremely high strength brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		0.30	-5.20	6.50	7.00	107	80	NA	NA		SPT(C)50/2	260	
from 6.90m to 7.00m assumed zone of no recovery				7.00	8.50	107	90	NA	NA		7.00	7.41	
from 8.35m to 8.50m assumed zone of no recovery				8.5G) 10.00	107	100	NA	NA		SPT(C)50/: 8.50	25mm - 8.60	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:10

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A29

Sheet 2 of 3

Employer Aberdeen Harbour Board Ground Level -2.70m CD

Coordinates

396899.04 E, 804841.79 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling			Blow Count And Sample Recovery				In Situ Test	Insta			
			Level	Deta	ils	Dia.	TCR	SCR	RQD IF		Details	ation			
Stiff extremely high strength brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.				10.00	11.50	107	90	NA	NA		SPT(C)50/20001938 -				
from 12.85m to 13.00m assumed zone of no recovery				11.50	13.00	107	90	NA	NA	NA	SPT(C)50/230mm - 11.50 11.88				
Assumed zone of no recovery. Stiff to very stiff brown gravelly sandy CLAY. (Driller's description)		14.00	-16.70	13.00	14.50	107	67	NA	NA		SPT(c)50/200mm— 13.00 13.35				
Stiff brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. from 14.50m to 14.67m strong grey boulder of granite at 15.25m gravelly		14.50 - - - - - - - - - - -	14.5017.20		14.50	16.00	92	90	NA	NA		SPT(C)50/5mm			
						16.00	17.50	92	100	NA	NA		SPT(c)50/230mm— 16.00 16.38 -		
						-			17.50	19.00	92	100	NA	NA	
				19.00	20.50	92	83	NA	NA		SPT(C)50/100mm 19.00 19.25 -				

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:14 Issue Date 22/10/2012

Form No. SIEXPHOLELOG

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A29

Sheet 3 of 3

Ground Level -2.70m CD Coordinates 396899.04 E, 804841.79 N National Grid

Hole Type CP+RC Inclination

Blow Count And Sample Recovery		npling	Sam	Datum	Depth	Legend	Description of Strata
TCR SCR RQD IF	Dia.	ails Dia	Detai	Level			·
					-		Stiff brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. from 20.25m to 20.50m assumed zone of no recovery
53 NA NA	92	21.50 92	20.50	-23.73	21.03		Assumed zone of no recovery. Stiff to very stiff brown sandy
400 NA NA	02	22.00	24.50	-24.20	21.50 -	00.5	gravelly CLAY with occasional granite boulders. (Driller's description) Stiff high strength brown slightly gravelly slightly sandy
100 NA NA			21.50		=		ELAY. Sand is fine to coarse. Gravel is angular to subrounded ine to coarse of granite, schist and quartzite.
100 NA NA	92	22.50 92	22.00	-25.20	22.50 -	*****	Medium strong pink and grey coarse crystalline GRANITE. Recovered as non intact core (angular medium to coarse gravel
100 0 0	92	23.50 92	22.50			****	sized fragments stained yellow and brown).
80 0 0	92	24.00 92	23.50			* * * * * * * * * * * * * * * * * * *	
100 16 8	92	25.50 92	24.00			*****	from 24.00m to 24.25m intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown
NI NI 120						**** **** **** **** ****	from 25.30m to 25.50m intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown
100 8 0	92	27.00 92	25.50			++++ ++++ ++++ ++++ ++++ ++++ ++++	from 26.10m to 26.23m intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown
100 6 0	92	28.00 92	27.00			***** **** **** **** **** ****	from 27.10m to 27.15m intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown
				-30.70	28.00	****	Exploratory hole complete at 28.00 m.

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:18

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A31 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Header 396948.24 E, 804804.54 N National Grid Ground Level -4.11m CD Coordinates Date Started 19/07/2013 Date Completed 21/07/2013 Inclination Vertical Section Logged By Date Started Date Ended Crew Equipment Shoring / Support Remarks Top Base Tvpe 17/07/2013 18/07/2013 20/07/2013 18/07/2013 20/07/2013 21/07/2013 Dando 2000 Deltabase 520 Deltabase 520 0.00 1.80 DT DT DT MM MM 1.80 23.50 23.50 31.40 Impred RC RC T6116 **PROGRESS** WATER STRIKES Casing depth at strike to seal time flow Date Hole depth Water depth Date Strike at depth Rise to depth Time taken to rise Time Casing depth Remarks Time 18/07/2013 18/07/2013 18/07/2013 1.80 1.80 1.80 End of CP End of shift Start of Rotary 1 80 1015 1030 -7.50 -7.50 -7.00 1.80 8.50 8.50 22.00 22.00 28.50 28.50 18/07/2013 2030 7.30 -6.00 End of Shift 19/07/2013 0700 7.30 -6.20 Start of Shift End of Shift 19/07/2013 2030 7.30 7.30 -6.00 -1.20 -1.00 -8.00 20/07/2013 0700 Start of Shift 20/07/2013 21/07/2013 1900 0800 23.50 23.50 End of Shift Start of Shift 21/07/2013 23.50 End of Hole CABLE PERCUSSION DETAILS SPT DETAILS Chiselling me | Duration Hard Strata Depth Remarks Depth Туре Incremental blow count / Hammer Energy ratio Casing depth Water Start time penetration in mm depth from hhmm hhmm N=17 (2,3,3,3,5,6) S0/Smm (25/5,50/5) S0/200mm (10,15,14,18,18/50) S0/200mm (10,15,50/5) S0/210mm (9,12,13,15,22/60) S0/220mm (10,14,15,16,19/70) S0/20mm (7,18/50,50/20) S0/295mm (7,910,10,16,14/70) S2/245mm (9,12,12,14,16,10/20) S0/295mm (8,8,11,14,21,4) S0/5mm (25/10,50/5) S2/255mm (8,10,12,13,15,12/30) 0.50 1.50 3.30 4.80 6.30 1.55 1.80 1.80 1.80 -6.10 -7.00 1730 0815 Chiselling Chiselling 1.50 3.00 0100 AR362 -8.00 NR -6.00 AR362 AR362 AR362 AR362 AR362 NR 3.00 -4.00 -7.00 -7.30 7.30 8.50 3.00 7.30 7.30 7.30 7.30 7.30 7.30 10.00 13.00 14.50 16.00 17.50 AR362 AR362 AR362 AR362 -6.00 9.30 10.80 **ROTARY FLUSH DETAILS** From Flush Flush Flush AR362 8.00 50/5mm (25/10,50/5) 52/255mm (8,10,12,13,15,12/30) 50/85mm (10,15/30,40,10/10) 50/70mm (25/15,50/70) 50/220mm (9,12,15,16,19/70) 50/215mm (8,10,10,15,25/65) depth 7.30 7.30 7.30 7.30 23.50 23.50 23.50 depth 19.00 20.50 22.00 AR362 AR362 AR362 7.40 8.10 10.80 type return colour 3.30 8.50 Water Water Brown 100 3.30 23.50 24.50 SPT SPT AR362 AR362 -5.00 -4.00 8.50 16.00 22.00 26.00 100 100 100 Water Brown 16.00 22.00 Water Water Green Brown 50/40mm (13,12/40,50/40) AR362 -1.00 26.00 28.50 31.40 Water 100 White HOLE DIAMETER / CASING DYNAMIC SAMPLING Depth of Casing Depth of Top Base Diameter Time Recovery iametei hole diameter casing hhmmss 139 145 23.50 23.50 116 INSTALLATION DETAILS PIPE CONSTRUCTION Dia. Distance ID Type Response zone Pipe Type of Top | Base Base from G.L. Top of pipe pipe * Seating blows only BACKFILL DETAILS GENERAL NOTES Top of section Base of Material Remarks section Arisings Grout 0.00 26.00 NOTES: All depths in metres, all diameters in millimetres. Water strike rise time in minutes, hard strata time in hhmm For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:25:30

Issue Date 22/10/2012

Issue.Revision No. 1.05

Unchecked

orm No. SIEXPHOLEHDR

SOIL ENGINEERING

Part of the Bachy Soletanche Group

Project No. TA7148

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A31

Sheet 1 of 4

Engineer

Employer Aberdeen Harbour Board -4.11m CD

Coordinates 396948.24 E, 804804.54 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling			Blow Count And Sample Recovery				In Situ Test Details	Insta
			Levei	De	tails	Dia.	TCR	TCR SCR RQD IF			Details	ation
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse of granite and schist.				B002 0	0.50-0.95 0.50-1.00 0.00						SPT17 0.50 0.95	
Strong grey BOULDER of granite.	% * .* 0 0 0	1.55	-5.66								SPT(C)50/5mm 1.50 1.51	
Stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		1.80 -	-5.91	1.80	3.30	107	60	NA	NA			
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)		2.70 - - - - -	-6.81								_	
Stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		3.30 - - - - - - - - - - - - - - - - - - -	-7.41 -8.11								SPT50/200mm 3.30 3.65	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)		4.00 — — — — —	-6.11	3.30	4.80	107	46	NA	NA			
Stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		4.80 - - - 5.15 _	-8.91 -9.26								SPT50/5mm 4.80 4.96	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders.				4.80	6.30	107	23	NA	NA			
Stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. from 6.30m to 6.60m clayey subangular cobbles of schist and granite		6.30 - - - - 6.70 -	-10.41 -10.81	6.30	7.30	107	40	NA	NA		SPT50/210mm 6.30 6.66	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)	P 0 0	7.30	-11.41								SPT50/220mm 7.30 7.67	
Stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. from 7.30m to 7.40m clayey gravel	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.60 -	-11.71	7.30	8.50	107	25	NA	NA		_	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)	0 0 0	- - 8.50 -	-12.61								SPT50/10mm	
Stiff extremely high strength brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.				8.50	9.70	107	100	NA	NA		8.50 8.61	
		=		9.70	10.00	107	100	NA	NA			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:34 Issue Date 22/10/2012

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A31

Sheet 2 of 4

Ground Level -4.11m CD Coordinates 396948.24 E, 804804.54 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sam	npling				unt A Recov		In Situ Test Details	In at
			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	a
Stiff extremely high strength brown slightly gravelly sandy		<u> </u>									SPT50/20mm 10.15	33
CLAY. Sand is fine to coarse. Gravel is angular to subrounded		_									10.00	
ne to coarse of granite, schist and quartzite.	The same	-										8
		-										8
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 -		10.00	11.50	107	40	NA	NA			
	1000	_									_	ĕ
D. H. CLAY SI, LILL		11.10 -	-15.21								-	ĕ
Assumed zone of no recovery. Boulder CLAY with cobbles and poulders. (Driller's description)	2000	1 -										8
Journal & description)	10.70	11.50 -	-15.61									B
Zone of no recovery. Boulder CLAY with cobbles. (Driller's	0 0 0											ø
lescription)	P 9 70);										8
	0 0 0	[_									_	
	0 0 0 0	-										
	0 0 0	-		11.50	13.00	107	0	NA	NA		-	
	00000	=									-	
	0 0000											
	9. 0. 0	-										
number of the state of the stat	40.00	13.00	-17.11				-				SPT50/295mm —	
Stiff brown slightly gravelly sandy CLAY. Sand is fine to) <u> </u>									13.00 13.45	
coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.	100	13.40 -	-17.51									
	0 0 0 0	13.40 -	-17.51									3
Assumed zone of no recovery. Boulder CLAY with cobbles and	P 0 0 0			13.00	14.35	107	29	NA	NA			
poulders. (Driller's description)	0 000	_								NA		
	0 -0 -0	_								INA	_	
	2000	1 -										
	40.00	14.35	-18.46									
Stiff brown slightly gravelly sandy CLAY. Sand is fine to		-		14.35	14.50	107	100	NA	NA		SPT52/245mm -	
coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.	3 4 3 3	-									14.50 14.90	
granite, scriist and quartzite.		=										
	1	_									-	
) I		14.50	16.00	107	53	NA	NA			
Assumed zone of no recovery. Boulder CLAY with cobbles and		15.30 -	-19.41	14.30	10.00	107	33	INA	INA			
boulders. (Driller's description)	F.F.F.	_										
		-									-	
	===											
Stiff brown slightly gravelly sandy CLAY. Sand is fine to	The Care	16.00	-20.11								SPT50/225mm — 16.00 16.38	
coarse. Gravel is angular to subrounded fine to coarse of		9 -									10.00	
granite, schist and quartzite.		10 /7	20.50								-	
Assumed zone of no recovery. Boulder CLAY with cobbles and	7777	16.47	-20.58								1.	
boulders. (Driller's description)	5-3-5	-		16.00	17.50	107	31	NA	NA		1	
· · · · · · · · · · · · · · · · · · ·	2-2-3	-										
		-										
	===	-										
	-5-	47.50	24.54								CDTEO/E	
Stiff brown slightly gravelly sandy CLAY. Sand is fine to	- 1 m	17.50 -	-21.61								SPT50/5mm - 17.50 17.52 -	
coarse. Gravel is angular to subrounded fine to coarse of	100	j - <u>-</u>										
granite, schist and quartzite.	- 4	7 -										
		-										8
	2年(3		17.50	19.00	107	100	NA	NA]	
	[三五三]	-									-	
	125	— I									l li	1
	155										1	ı
		- 10.00	22.55								CDTE2/255	
Firm medium strength brown slightly sandy CLAY. Sand is fine.	4747	19.00	-23.11								SPT52/255mm — 19.00 19.41	
		-										
		-									-	
) [
				19.00	20.40	107	71	NA	NA			
		_				1	l	1				3

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:38 Issue Date 22/10/2012

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A31

Sheet 3 of 4

Ground Level -4.11m CD Coordinates 396948.24 E, 804804.54 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Samplii	ng			ount A Recov		In Situ Test Details	Inst
			Level	Details	Dia	TCR	SCR	RQD	IF	Details	atio
Assumed zone of no recovery. Boulder CLAY with cobbles and coulders. (Driller's description)	0 0 0 P	20.00 _	-24.11							1	
tiff brown slightly gravelly sandy CLAY. Sand is fine to oarse. Gravel is angular to subrounded fine to coarse of		20.40 -	-24.51	20.40 20	.50 107	100	NA	NA		SPT50/85mm - 20.50 20.69 -	
ranite, schist and quartzite.	20 A 0.21	20.90 -	-25.01								
Assumed zone of no recovery. Boulder CLAY with cobbles and poulders. (Driller's description)				20.50 22	.00 107	26	NA	NA		:	
oft to firm brown sandy CLAY.		22.00	-26.11							SPT50/70mm — 22.00 22.09 -	
from 22.45m to 22.60m strong grey dolerite boulder of granite	0 - 1 0 - 1	22.60 -	-26.71	22.00 23	.50 107	40	NA	NA		:	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)		=								-	
stiff greyish brown slightly gravelly sandy CLAY. Sand is fine o coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		23.50	-27.61 -28.01	23.50 24	.50 92	40	NA	NA.		SPT50/220mm 23.50 23.87 -	
Assumed zone of no recovery. Boulder CLAY with cobbles and boulders. (Driller's description)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.50 -	-28.61	23.30 24	.50 92	40	INA	INA		SPT50/215mm	
Stiff greyish brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		26.00	-30.11	24.50 26	.00 92	100	NA	NA		24.50 24.87 -	
Wedium strong greenish grey coarsely crystalline GRANITE. Recovered as non intact core (angular coarse gravel sized ragments and angular cobble sized fragments stained yellow and brown). from 26.40m to 26.47m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown. 2) 60-70 degrees closely to	*****		30.11	26.00 27	.00 92	100	20	0		26.00 26.16 ·	
medium spaced planar rough stained dark brown and grey from 26.72m to 26.85m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown. 2) 60-70 degrees closely to medium spaced planar rough stained dark brown and grey from 27.23m to 27.35m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown. 2) 60-70 degrees closely to medium spaced planar rough stained dark brown and grey from 27.53m to 27.70m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar	***** ***** ***** ***** ***** ***** *****			27.00 28	.50 92	100	19	0			
rough stained yellow and brown. 2) 60-70 degrees closely to medium spaced planar rough stained dark brown and grey	*****			28.50 29	.50 92	100	10	0	NI NI 165	- - - - :	
from 29.40m to 29.55m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar	*****			29.50 30	.00 92	100	10	0		-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:41 Issue Date 22/10/2012

Form No. SIEXPHOLELOG

Project No. TA7148

Ground Level

Exploratory Hole Log

Hole ID.

A31

Sheet 4 of 4

Engineer Arch Henderson LLP Employer Aberdeen Harbour Board

-4.11m CD

Coordinates 396948.24 E, 804804.54 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Samp	oling		Blo San	ow Co nple	ount A Recov	And erv	In Situ Test	IIIsta
2000, page 10. Catala	Logona	Jopan.	Level	Details	s	Dia.			RQD	IF	Details	ation
Remaining Detail: 29.40m - 29.55m: rough stained yellow and brown. 2) 60-70 degrees closely to medium spaced planar rough stained dark brown and grey from 30.50m to 31.00m recovered as intact core. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained yellow and brown. 2) 60-70 degrees closely to medium spaced planar rough stained dark brown and grey Exploratory hole complete at 31.40 m.	****	31.40	-35.51	30.00	31.40	92	100	35	0			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:25:46

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Part of the Bachy Soletanche Group

		•) Harl	bour Dev	elop	ment	Ground	Inves	tigat	ion			Fxnlo	orat	orv F	Hole Lo	00	Но	le ID.	
Project		TA7												LAPIC	Jiac	Ory i	TOIC L	9	ļ	34	
Engine			h Hende																		
Employ Ground			rdeen F 5m CD	larbo	ur Board			Coor	dinates		20600	0E 60 E	907.90	30.50 N N	Vation	al Grid			Н	eader	
Date Sta			8/2013						Comple				00400	50.50 IN I	vation	ai Gilu	Inclinat	ion Verti	cal		
Тор	Base		Date Sta	rted	Date Ende	d C	rew	Section	Coi	re	Core		Equip	ment		Sho	oring /		Remarks		
0.00	2.30	СР	28/08/2	013	28/08/201	3	KL	Logged By TE	Barı	rel	Bit		Dando	3000		Su	oport				
2.30 11.10	11.10 15.30	RC RC	28/08/2 29/08/2	013	29/08/201 29/08/201	3 1	MM MM	DT DT	SW T61		Impreg Impreg	D	eltaba)	se 520 se 520							
Date	Т:	me	Hole		ogress ng Wate			Remai	ılın			Date		Time			/ATER STRI	KES Time	Co.	sing dep	th.
Date	''	ille	depth	Casii	th dept	h		Remai	KS			Dati	e	Time	31	rike at lepth	Rise to depth	taken to rise	at strik	e i to	seal low
28/08/20 28/08/20)13 1	430 440	2.30 2.30	2.30	7.00	Sta	d of CP rt of Ro	tary				-									
28/08/20 29/08/20	013 1 013 0	900 700	11.10 11.10	2.30	9.00 -9.50	End Sta	l of Shi rt of Sh	ft ift													
29/08/20	013 1	330	15.30	2.30	9.50	Enc	d of Hol	e													
			CA		ERCUSSIO												SPT DETAI				
Hard from	Strata	Depth to	Start t		Duration	Rem	arks					Depth	Туре			al blow ion in n	count / nm	Hammer No.	Energy ratio	Casing depth	Water depth
2.20		2.30	hhm 123		0200	Chise	elling					0.50	SPT	N=13 (2 N=20 (1	2,2,3,3,4	4,3)		AR362	75 75	N/A	-5.00
												1.50 2.20 2.30	SPT SPT(C	N=20 (1 50/5mr 50/0mr	1,2,4,5,3 n (25/5 n (25/5	,50/5) ,50/0)		AR362 AR362 AR362	75 75 75 75	1.50 2.20 2.30	-7.80 -7.60 -7.00
												3.60 5.10	SPT(C SPT(C SPT(C SPT(C	50/15m 50/245	nm (25/ mm (6,	,50,50/1! 12,12,17	5) ,16,5/40) /20/60)	AR362 AR362	75 75 75 75	2.30 2.30 2.30	-7.10 -8.10
												6.60 8.10	SPT(C	() 45/210 () 50/85m () 50/160	mm (4, 1m (5,2	10,10,15 0,40,10/	/20/60) 10)	AR362 AR362	75 75 75	2.30 2.30	-8.30 -9.80
			F		Y FLUSH D	ETAIL						9.60	371(0	.) 50/160	mm (5,	8,10,12,2	.8/10)	AR362	15	2.30	-9.70
Fror dept		To depth			Flush type		ret	ush urn		ush Iour											
2.30 3.60		3.60 15.30			Water Water		-	% 70 0	Br	own											
3.00		13.30		,	vvater																
			/ CASING					SAMPLI		1-											
Hole diameter	Depth hole	dian	neter ca	oth of sing	Тор	Base	Dia		Time hmmss		overy 6										
200 146	2.30 11.10)	00 2	.30																	
116	15.30	'																			
Distance			ype DE		onse zone	ID		PE CONST	Dia.	Тур	e of										
from G.L			,,,	Top		10	Тор		of pipe		ipe										
															* C	eating blo	ows only				
				BA	CKFILL DET	AILS		1						1			ENERAL NO	OTES			
Top o sectio		ase of	1	Materi	ial			Rema	rks												
0.00 11.10		11.10 15.30		Arising Grout	js																
11.10		13.50		arout	•																
																			1		
NOTES	Water	strike	rise time	in min	neters in m nutes, hard			in hhmm											đ		
Unched		calls of	abbrevia		see key og Print Da	te An	d Time	· 22/12/	2012 1	0.25.5	6							SOII	L eng	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A34

Sheet 1 of 2

Ground Level -5.45m CD Coordinates 396995.60 E, 804880.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sa	mpling				ount A		In Situ	ı Test	Ins
Description of strata	Legena	Берин	Level	Det	tails	Dia.	TCR	_	RQD	IF	Deta	ails	atio
Medium dense brown slightly silty slightly gravelly fine to oarse SAND. Gravel is subangular to rounded fine to medium ocally coarse of mixed igneous and metamorphic lithologies. from 0.00m to 1.50m gravel absent		11111111		D001 0. D002 0. B003 0.	50 50				!		SPT13 0.50	0.95	
				D005 1. B006 1.	50 50						SPT20 1.50	1.95	
from 2.20m to 2.30m driller notes boulder		2.30	-7.75								SPT(C)50/5 2.20 SPT(C)50/0	2.21 -	
ery stiff brown slightly sandy gravelly CLAY with medium obble content. Sand is fine to coarse. Gravel is subangular of subrounded fine to coarse of mixed igneous and metamorphic thologies including granite and gneiss. Cobbles are ubangular to subrounded of granite and gneiss. from 2.30m to 2.40m strong pink and grey boulder of granite. (Recovered as angular cobble sized fragments) from 3.21m to 3.30m subangular cobble of schist		3.30	-8.75	2.30	3.60	107	77	NA	NA		2.30	1	
ssumed zone of no recovery. Stiff to very stiff brown ravelly sandy CLAY with granite boulders. (Driller's escription)	2000 2000 2000 2000	4.10	-9.55								SPT(C)50/1 3.60	3.67	
ery stiff extremely high strength brown slightly sandy cavelly CLAY with medium cobble content. Sand is fine to parse. Gravel is angular to subrounded fine to coarse of ixed igneous and metamorphic lithologies including granite, neiss, schist and quartz. Cobbles are angular to subrounded granite, schist and gneiss.				3.60	5.10	107	67	NA	NA		SPT(C)50/2	45mm =	
from 4.10m to 4.30m recovered as angular to subrounded fine to coarse gravel of mixed igneous and metamorphic lithologies				5.10	6.60	107	100	NA	NA		5.10	5.50	
from 6.20m to 6.30m subrounded cobble of granite	0 0 0									NA	SPT(C)45/2	 10mm	
from 6.75m to 6.85m subangular cobble of gneiss				6.60	8.10	107	93	NA	NA		6.60	6.96 -	
from 8.00m to 8.10m assumed zone no recovery		Immuniti		8.10	9.60	107	90	NA	NA		SPT(C)50/8 8.10	8.34 - 8.34 - - - - - -	
from 9.45m to 9.60m assumed zone of no recovery											SPT(C)50/1 9.60		

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:26:00 Issue Date 22/10/2012

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project No. TA7148

Engineer

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A34

Sheet 2 of 2

Employer Aberdeen Harbour Board

-5.45m CD

Hole Type CP+RC Coordinates Inclination

Description of Strata	Legend	Depth	Datum	Sampling	Blow Count And Sample Recovery

Very stiff extremely high strength brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite, schist and gneiss.

Medium strong locally weak pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely and very closely spaced planar to undulating rough with localised irregular orange staining on surfaces. 2) 70-80 degrees medium spaced planar rough stained orange on surfaces.

from 10.80m to 10.95m recovered as non intact core (angular coarse gravel sized fragments)

Assumed zone of no recovery. Medium strong GRANITE. (Driller's

from 11.00m to 11.10m assumed zone of no recovery from 11.35m to 11.50m, 11.70m to 11.85m, 12.00m to 12.10m, 12.20m to 12.25m, 13.10m to 13.20m and 14.10m to 14.30m recovered as non intact core (angular coarse gravel sized fragments)

396995.60 E, 804880.50 N National Grid

10.35

-15.80

In Situ Test Install Details ation Dia. TCR SCR RQD IF Details

> 40 16

11.10 107

9.60

12.60

11.10 12.60 93 90 70 0

> 14.10 93 100 93 16

14.80 -20.25

15.30 -20.75

Exploratory hole complete at 15.30 m.

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water.

For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:26:04 Issue Date 22/10/2012

orm No. SIEXPHOLELOG Issue, Revision No. 1.05

Project	: Nam	e Bay	of Nig	g Hai	rbour Dev	elop ^e	men	t Groun	d Inves	tiga	tion			Ev.	nlor	oton, l	ا ماما	20	F	lole	ID.	
Project		TA7	148											ĽΧĮ	piora	atory r	Hole Lo	og		A36	S	
Engine			n Hend																	730	,	
Employ				Harbo	our Board	I					2000	00.50.5	20105	- / 00						Head	er	
Ground Date Sta			2m CD 8/2013						ordinates e Comple				80495	54.90	N Natı	ional Grid	Inclinat	tion Ve	rtical			
Тор	Base	1	Date St	arted	Date Ende	d C	rew	Section	n Coi	re	Core Bit		Equipr	ment		Sho			Remark	s	—	
0.00	0.40	CP	20/08/2		20/08/201	.3	DS	Logged B TW	By Barı	rel	Bit		Dando			Sup	oring / pport					
0.40 1.00	1.00 2.10	RC RO	20/08/2	2013 2013	20/08/201 20/08/201	.3 I	MM MM	TW MM	T61 5 3/4 [DHM	Impreg		Deltaba: Deltaba:	se 520 se 520	.0 .0							
2.10 4.70	4.70 9.70	RC RC	20/08/2 22/08/2	2013 2013	22/08/201 22/08/201		MM MM	TW TW	SF T61	16	Impreg Impreg		Deltaba Deltaba									
Date	Т	me	Hole	Cas	ROGRESS sing Wate	er		Rema	arks			Dat	e l	Tir	me	Strike at	VATER STR	Time		asino	dept	th
			depth	dep	oth dept	h						L	.0			depth	depth	taker to rise	n at sti	rike j	i to	seal ow
20/08/20	13 1	530 845	0.40 3.00	0.4 3.0	0 -8.12	! Enc	d of Sh		otary												1	
21/08/20 21/08/20 22/08/20	13 1	700 930 700	3.00 3.50 3.50	3.0 3.5 3.5	-6.70) Enc	rt of SI d of Sh irt of SI	nift													1	
22/08/20		930	9.70	4.5			d of Ho														1	
																					1	
																					1	
																					1	
																					Щ.	
Hard	Strata	Donth	C		PERCUSSIO selling		narks					Donth	Typo	.1 1	nerome	ental blow	SPT DETAI	ILS Hamme	er Energy	, Co	sing	Water
from		to	Start hhr	time	Duration hhmm		ains					Depth	Туре	"		tration in n		No.	ratio			depth
0.00		0.40	130		0200	Chise	elling					3.00 3.50	SPT SPT(C	50/		2,3/0,50/5) 21,4/0,27,23	3/15)	AR362 AR362	75		00	-8.12 -7.40
																,,,	/					
Fron	<u> </u>	То		ROTAI	RY FLUSH [Flush	ETAIL		lush	<u></u>	lush												
dept		depth			type			eturn %		lour												
0.00 1.00		1.00 2.10		,	Water Air/Mist			0 100		reen]										
2.10 3.00 4.70		3.00 4.70 5.70			Water Water Water			30 0 100		reen reen												
5.70 6.70		6.70 9.70			Water Water			90		reen												
нс	I E DIAI	METED	/ CASING	<u> </u>			NAM	IC SAMPLI	ING													
Hole	Depth	of Cas	ing De	pth of	Тор	Base		iameter	Time		covery											
diameter 200	0.40		00 (asing 0.40			+		hhmmss	- 9	%											
150 145	3.00 4.70	15	50	3.00																		
116	9.70																					
	IN	ISTALLA	TION DE	ETAILS	;		F	PIPE CONS	STRUCTION	ON		1										
Distance from G.L		Ty	уре	Resp To	onse zone p Base	ID	Тор	Pipe I Base	Dia. of pipe		pe of pipe	1										
HOIH G.E				10	p Buse		100	Buse	or pipe		, pc											
									<u> </u>	$oxed{oxed}$						* Seating blo	ows only.	<u> </u>		\perp		
T	<u>د ا ہ</u>	ase of	I		ACKFILL DE	TAILS										G	ENERAL NO	OTES				
Top of section		ection 4.70		Mater		<u> </u>		Rem	arks													
4.70		9.70		Grou																		
NOTES:					meters in m																	
					nutes, hard , see key	l strata	a time	e in hhmn	n												/	
				L	Log Print Da	ite An	d Tim	e: 23/12/	/2013 1	0:26:	17							SO	IL en	GIN	eer	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A36

Sheet 1 of 1

Ground Level -5.22m CD Coordinates 396992.50 E, 804954.90 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sam	pling			ow Co nple I	ount A Recov		In Situ Test Details	Ir at
			Level	Detai	ls	Dia.	TCR	SCR	RQD	IF	Details	a
No recovery. Obstruction. (Driller's description)		-									-	
Very strong pink and grey BOULDER of granite.	0000	0.40 -	-5.62 -5.75								-	
Brown and grey slightly clayey subangular to subrounded fine to medium GRAVEL of schist and granite.	0000	0.56 _	-5.78	0.40	1.00	92	26	NA	NA		-	
Assumed zone of no recovery. Granite and quartz BOULDERS with sand lenses and cobbles. (Driller's description)	0000	1.00	-6.22								-	
Rotary openhole drilling. Granite and quartz BOULDERS with sand lenses and cobbles. (Driller's description)	0000										-	
Grey subangular to well rounded fine to coarse GRAVEL of granite, schist and quartz with low cobble content. Cobbles are subrounded of granite.	000	2.10 - 2.29 - 2.50 -	-7.32 -7.51 -7.72	2.10	2.50	107	48	NA	NA	NA	- - - -	
Assumed zone of no recovery. Granite and quartz BOULDERS with some lenses and cobbles. (Driller's description)	0000	=		2.50	3.00	107	0	NA	NA		-	
Zone of no recovery. Granite and quartz BOULDERS with sand enses and cobbles. (Driller's description)	0000			3.00	3.50	107	0	NA	NA		SPT50/5mm	
Grey angular to subrounded fine to coarse GRAVEL of granite, schist and quartz.	\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0	3.50 - 3.70 -	-8.72 -8.92	3.50	4.00	107	40	NA	NA		SPT(C)50/90mm - 3.50 3.67 - -	
Assumed zone of no recovery. Granite and quartz COBBLES and GOULDERS. (Driller's description)												
from 4.37m to 5.60m recovered as non intact core (angular fine to coarse gravel sized fragments)	5000	4.65	-9.87	4.00	4.70	107	7	7	0		- - - -	
Medium strong to strong grey GNEISS with closely to medium spaced intrusions of pink and grey granite. Discontinuities: 1) 10-20 degrees closely very closely spaced undulating rough clean. 2) 50-70 degrees medium spaced planar rough stained prown. 3) 80-90 degrees widely spaced planar rough stained prown. The form 4.86m to 4.97m 1. No discontinuity 50 degrees				4.70	5.70	92	90	67	40		-	
undulating rough clean from 5.00m to 5.10m 2 No incipient fractures 60-70 degrees very closely spaced planar from 5.60m to 5.70m assumed zone of no recovery from 5.70m to 5.73m recovered as non intact core (angular fine gravel sized fragments) from 5.87m to 6.08m 1 No incipient fracture 60-70 degrees				5.70	6.70	92	100	76	56		-	
planar at 6.20m 1 No discontinuity 0-10 degrees undulating smooth clean at 6.32m 1 No discontinuity 0-10 deg undulating rough clean from 6.50m to 6.80m recovered as non intact core (angular fine to medium gravel sized fragments) from 6.94m to 9.97m and 7.04m to 7.13m 1 No incipient				6.70	7.70	92	71	43	0	NI 100 230		
fracture 90 degrees planar from 7.20m to 7.43m recovered as non intact core (angular fine to coarse gravel sized fragments) from 7.43m to 7.70m assumed zone of no recovery from 7.70m to 7.85m recovered as non intact core (angular fine to medium gravel sized fragments)				7.70	8.70	92	90	67	30			015 015 015 015 015 015 015 015 015 015
from 7.97m to 8.00m 2 No discontinuities 0-10 degrees very closely spaced planar rough clean from 8.15m to 8.20m 1 No incipient fracture 60-70 degrees planar from 8.17m to 8.23m discontinuities: 2) very closely spaced from 8.60m to 8.70m assumed zone of no recovery from 9.15m to 9.23m recovered as non intact core (angular				8.70	9.70	92	100	88	42		- - - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:26:20

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A36 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 1+ of 1

Ground Level -5.22m CD Coordinates 396992.50 E, 804954.90 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling	ı	Blo San	ow Co nple F	unt A Recov	nd ery	In Situ Test	Inst
·			Level	Details	Dia.		SCR		IF	Details	atio
maining Detail : 9.34m - 9.43m : from 9.34m to 9.43m many cipient fractures 60-90 degrees extremely closely spaced		-								-	
cipient fractures 60-90 degrees extremely closely spaced		-								-	1
anar;;; 9.64m - 9.70m : from 9.64m to 9.70m 1 No incipient cture 60-70 degrees planar		-								-	1
cture 60-70 degrees planar ploratory hole complete at 9.70 m.		-								-	1
protatory note complete account in		-								-	1
		_								-	1
		-								-	
		-								- -	1
		-								-	1
		_								-	}
		_								_	1
		_								=	1
		-								-	1
		_								-	1
		-								-	1
		_								_	1
		_								-	1
		_								-	1
		-								-	
		-								-	
		-								-	1
		_								-	-
		-								-	1
		-								-	
		-								-	
		-								-	1
		_								-	
		-								-	
		-								-	1
		-								-	
		-								-	-
		_								_	}
		_								-	1
		-								-	
		-								-	
		-								-	1
											1
		-								-	1
		-								-	
		-								-	
		-								-	
		_								_	1
		_								-	1
		_								-	1
		-								-	-
		_								-	1
		_								-	1
		_									1
		-								-	1
		-								-	1
		_								-	-
	- 1	_	1		1	1				-	1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:26:26

Issue Date 22/10/2012

SOIL engineering Part of the Bachy Soletanche Group

Project	t Nam	e Bay	of Ni	gg Ha	rbour De	elop	men	t Groun	ıd Inve	stiga	tion			Evn	loro	ton, L	ا مام ا	20	Н	ole ID.	
Project	t No.		148											⊏xþ	iora	itory r	Hole Lo	og		439	
Engine				derso															,	733	
Employ					our Board						2070	22.00.5	20500			10:1			H	leader	
Ground Date Sta			9m CD)9/201						ordinate te Comp				80502	24.80 N	N Natio	onal Grid	Inclinat	ion Vert	ical		
Тор	Base			Started	Date Ende	d C	rew	Section Logged I		ore	Core Bit		Equipr	nent		Sho	oring /		Remarks		
0.00	0.80	СР		9/2013	13/09/201	3	IC	Logged I DT	By Ba	arrel	Bit		Dando			Sup	ppořt				
0.80 3.65	3.65 12.60	RC RC	13/09	9/2013 9/2013	13/09/201 14/09/201	3 GS	S/MM MM	DT DT		WF 5116	Impreg Impreg		Deltaba Deltaba								
Date	Ιπ	me	Uolo		ROGRESS sing Wate			Rema	orko			Dat		Tim		V Strike at	VATER STR			sina da	nth
Date	''	ine	Hole deptl	h de	pth dept	ĥ		Kem	arks			Dat	.e	11111	ie	depth	Rise to depth	Time taken to rise	at stri	sing de ke 1	to seal flow
13/09/20 13/09/20	013 1	.430 .900	0.80 3.35	0.7 1.5	-3.60	End	d of Sh	P/Start of R hift/Start of	otary Shift												
14/09/20		008	12.60				d of Ho														
				CABLE I	PERCUSSIO	N DET	AILS										SPT DETAI	LS			
Hard from	Strata	Depth to	Stai	Chis	selling Duration		arks					Depth	Туре			ntal blow ration in n		Hamme No.	Energy ratio	Casing	
0.20		0.80	hł	nmm .230	hhmm 0200	Chise	elling					0.50	SPT(C		•	/0,50/0) /0,50/0)		AR362	% 75 75	N/A	-4.10 -4.30
												0.80	SPT(C	50/0	mm (25	/0,50/0)		AR362	75	N/A	-4.30
	<u> </u>		<u> </u>	ROTA	RY FLUSH D	ETAIL	S														
Fron dept		To depth			Flush type			lush eturn		Flush											
0.80		1.50			Water			20		Brown											
1.50 3.35		3.35 3.65			Water Water			100 0	ı	Brown											
3.65		12.60			Water			100		Pink											
l																					
НС	LE DIAI	METER	/ CASII	NG		DYI	NAMI	IC SAMPL	ING												
Hole diameter		of Cas		epth of casing	Тор	Base	Di	iameter	Time hhmms		covery %										
150 145	2.50 3.65	1	50	2.50																	
116	12.60																				
		ISTALLA	ATION I	DETAILS				PIPE CON													
Distance from G.L		T	ype	Resp To	onse zone p Base	ID	Тор	Pipe Base	Dia. of pip		pe of pipe										
				Щ.											*	* Seating blo	-				
Top o	f R	ase of		Mate	ACKFILL DE	TAILS		Pen	narks							G	ENERAL NO	OTES			
sectio 0.00		ection 3.65		Arisin					iai Ko												
3.65		12.60		Grou																	
l																					
NOTES					meters in m																
	Water For de	strike tails of	rise tin abbrev	ne in mi viations,	nutes, hard , see key	strat	a time	in hhmr	n												
-					Log Print Da	ite An	d Tim	e: 23/12	/2013	10:26	:31							so	L end	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A39

Sheet 1 of 2

Ground Level -2.69m CD Coordinates 397003.80 E, 805024.80 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampl	ing			ow Co nple I			In Situ Test Details	Insta
	-		Level	Details		Dia.	TCR	SCR	RQD	IF	Details	ation
No recovery. BOULDERS and SAND. (Driller's description)											SPT(C)50/0mm - 0.50 0.50	
Rotary openhole drilling. BOULDERS of granite and schist. (Driller's description)		0.80 - - - - -	-3.49								SPT(C)50/0mm 0.80 0.80 	
Medium strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 30-40 degrees closely spaced undulating rough stained yellow on surfaces. 2) 70-80 degrees closely spaced planar rough stained yellow and brown on surfaces. from 1.80m to 2.10m 1 No medium band of very weak dark grey coarse crystalline granite. Recovered as non intact core (angular fine to coarse gravel sized fragments)	*****	1.50 -	-4.19	1.50	2.45	107	100	63	34	NI 60 170		
Weak locally very weak dark grey coarse crystalline GRANITE. Recovered as non intact core (angular fine to coarse gravel and angular cobble sized fragments).	*****	2.83	-5.52	2.45	3.35	107	100	42	0	NI	- - - -	
Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 30-40 degrees closely spaced planar rough	****	3.35	-6.04	3.35	3.65	107	100	66	0	NI 40	-	
stained yellow on surfaces. from 3.35m to 3.55m recovered as non intact core (angular coarse gravel and cobble sized fragments)		4.00	-6.69							60		
Medium strong and weak locally very weak pink and grey coarse crystalline GRANITE. Recovered as non intact core (angular fine to coarse gravel sized fragments).	*****			3.65	5.15	89	100	23	7	NI	- - - - - -	
Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 30-40 degrees closely spaced planar rough stained yellow on surfaces. from 5.50m to 5.65m recovered as non intact core (angular coarse gravel sized fragments)	*****	5.30	-7.99 -8.34	5.15	6.50	89	74	15	15	40 80 180	-	
Weak grey very thinly and thinly bedded GNEISS. Discontinuities: 1) 20-30 degrees closely spaced undulose rough clean. from 5.65m to 5.95m recovered as non intact core (angular										. NI 30] - -	
coarse gravel sized fragments) from 6.15m to 6.50m assumed zone of no recovery from 6.50m to 6.53m, 6.80m to 6.90m and 7.00m to 7.27m recovered as non intact core (angular coarse gravel sized fragments) from 7.27m to 7.60m assumed zone of no recovery			-10.29	6.50	7.60	89	73	36	18	160	-	
Weak to medium strong pink, grey and dark grey coarse crystalline GRANITE GNEISS. Discontinuities: 1) 20-30 degrees closely to medium spaced planar to undulating rough clean. 2) 70-80 degrees medium spaced undulose rough clean.	****		10.23	7.60	9.10	89	100	100	77		-	
	* * * * * * * * * * * * * * * * * * *			9.10	.0.60	89	100	95	69		- - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:26:34

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A39 Engineer Arch Henderson LLP

Ground Level -2.69m CD Coordinates 397003.80 E, 805024.80 N National Grid

Hole Type CP+RC Inclination

Aberdeen Harbour Board

Employer

Description of Strata	Legend	Depth	Datum	Sar	npling		Blo San	ow Co nple I	ount A Recov	nd erv	In Situ Test	Insta
	-374	· F '	Level	Deta	ails	Dia.			RQD	IF	Details	ation
Remaining Detail: 9.67m - 9.76m: from 9.67m to 9.76m and 12.20m to 12.20m recovered as non intact core (angular coarse gravel sized fragments)	* * * * * * * * * * * * * * * * * * *									NI 7 90	-	
		-		10.60	11.60	89	100	100	90		-	
	*****	-		11.60	12.60	89	100	80	80		- - - - - -	
ploratory hole complete at 12.60 m.		12.60 -	-15.29								- - - -	
		- - - - -									: : :	
		- - - - -									: : :	
		- - - - -									- - - - -	
		- - - - - -									-	
		- - - - -									- - - -	
		- - - - -									- - - - -	
		- - - - -									- - - - -	
		- - - - -									- - - - -	
		- - - - -									- - - -	

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:26:40

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 2 of 2

Project	t Nam	e Bay	of Nigg	Har	rbour Dev	elopn	nent	t Groun	ıd Inve	estiga	ition			Evr	olor.	aton, l	ا ماما	00		Но	le ID.	
Project			'148											드자	HOIG	atory F	1016 L	og		£	42	
Engine			h Hende																			
Employ Ground			erdeen H	arbo	our Board			Cor	ordinate	es	39709	91.30 E,	80503	37.20	N Nat	ional Grid				He	eader	
Date Sta			09/2013								13/09	•					Inclinat	tion Ve	ertica	al		
Тор	Base	Туре	Date Star	ted	Date Ende	d Cr	rew	Section Logged I	n C By B	Core Barrel	Core Bit		Equip	ment		Sho	oring / oport		Re	emarks		
0.00 0.50 2.60 5.00	0.50 2.60 5.00 12.50	CP RO RC RC	12/09/20 12/09/20 12/09/20 12/09/20	13 13 13 13	12/09/201 12/09/201 12/09/201 13/09/201	3 T	TT TT TT MM	DT DT DT DT	5 3	3/4 RR SWF 6116	Impreg Impreg		Dando Deltaba Deltaba Deltaba	se 520 se 520)							
					OCDESS.	Щ											MTED CTD	LLCEC				
Date	Ti	me	Hole	Casi	OGRESS ing Wate	r		Rem	arks			Dat	te	Tin	ne	Strike at	VATER STR Rise to	Tim		Cas	sing dep	oth .
12/09/20	013 1	300	depth 0.50	0.50			of CP	/Start of R	otary							depth	depth	take to ris	n se	at strik time	e to	o seal flow
12/09/20 12/09/20 12/09/20 13/09/20	013 1 013 1	530 900 700	5.00 5.00 12.50	2.5(2.5) 2.5(0 -3.75 0 -5.10	End Start	of Shi t of Sh of Ho	ift hift	Otaly													
																				1		
			CAI	RIFF	PERCUSSIO	N DETA	AII S										SPT DETA	II S				
	Strata			Chis	elling	Rema						Depth	Туре	e In		ental blow	count /	Hamm		Energy	Casing	
0.30	1	0.50	Start ti hhmr 1100	n	Duration hhmm 0200	Chisel	llina					0.50	SPT	50/0	•	tration in n	ım 	No.		ratio % 75 75	depth N/A	depth
												2.00	SPT	50/1	l0mm ((25/0,50/10)		AR36	2	75	2.00	-3.75 -3.75
		т.	R	OTAF	RY FLUSH D	ETAILS		lusk		Flush												
Fron dept		To depth			Flush type		re	lush eturn %		Flush colour												
0.50 5.00		5.00 12.50			Water Water			100 100		Brown Pink												
		AFTED	/ 6461116		<u> </u>																	
Hole	Depth	of Cas		h of	Тор	Base		C SAMPL iameter	Time		covery											
diameter 150 145 116	2.50 4.50 12.50	1	neter cas 50 2.5						hhmm	SS	%											
Distance	_		ATION DET					PIPE CON														
Distance from G.L			ype F	Top	onse zone p Base	ID .	Тор	Pipe Base	Dia of pip		pe of pipe											
																* Seating blo	ows only.					
					ACKFILL DET	AILS										GI	ENERAL N	OTES				
Top o sectio 0.00 2.50	n s	ase of ection 2.50 12.50	A	Arising Grou	gs			Rem	narks													
NOTES	Water	strike		n mir ions,	meters in m nutes, hard see key .og Print Da	strata	time			10:26	:46							S	OIL	eng	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A42

Sheet 1 of 2

Ground Level -3.29m CD Coordinates 397091.30 E, 805037.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling				ount A Recov		In Situ Test	Insta
	3		Level	Details	Dia.	+	SCR	RQD	IF	Details	ation
No recovery. BOULDERS of granite. (Driller's description) Rotary openhole drilling. Large BOULDERS of granite. (Driller's description)		0.50	-3.79							SPT50/0mm - 0.50 0.50 - -	
Rotary openhole drilling. Boulder CLAY. (Driller's description)		2.20 -	-5.49 -5.79							SPT50/10mm	
Medium strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely spaced planar rough clean and locally stained yellow on surfaces. from 2.50m to 2.70m weak and recovered as non intact core (angular coarse gravel and cobble sized fragments)	*****	2.97 —	-6.26	2.50 3.50	107	100	27	26	NI NI 270		# 1
Medium strong locally weak pink and grey coarse crystalline GRANITE. Recovered as non intact core (angular coarse gravel and cobble sized fragments). Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely locally very closely spaced planar and undulose rough clean and locally stained yellow on surfaces. 2) 70-80 degrees closely spaced planar ough stained yellow and dark brown on surfaces.	***** **** **** **** **** ****	3.85	-7.14 -7.79	3.50 5.00) 107	67	37	25	NI 150 200	-	
from 4.40m to 4.50m recovered as non intact core (angular coarse gravel sized fragments) Assumed zone of no recovery. Highly weathered GRANITE. Driller's description)		5.00	-8.29						NA	-	
Veak dark grey and pink coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely and very closely paced undulating rough stained yellow on surfaces. 2) 40-50 legrees closely spaced planar rough stained yellow and dark prown on surfaces. from 5.00m to 5.30m recovered as non intact core (angular	***** **** **** **** ****	6.20	-9.49	5.00 6.20	89	83	58	11	NI 60 130	-	
coarse gravel sized fragments) from 5.65m to 6.00m discontinuities 1) and 2) locally clay and sand infilled (<5mm) from 6.00m to 6.25m assumed zone of no recovery	*****			6.20 7.00	89	100	51	0		- - - -	
Medium strong locally weak dark grey coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely and very closely spaced planar and undulating rough stained yellow on surfaces. 2) 40-50 degrees closely spaced planar rough stained yellow on surfaces. from 6.36m to 6.49m, 6.64m to 6.80m, 6.90m to 7.00m, 7.20m to 7.50m and 7.65m to 7.90m recovered as non intact core (angular fine to coarse gravel sized fragments)	* * * * * * * * * * * * * * * * * * *	8.00	-11.29	7.00 8.00	89	90	35	0	NI 40 60	-	
from 7.90m to 8.00m assumed zone of no recovery Medium strong grey and pink coarse crystalline GRANITE. Recovered as non intact core (angular fine to coarse gravel sized fragments). Strong grey and pink coarse crystalline GRANITE.		8.60	-11.89	8.00 9.50	89	97	35	0	NI	- - - - -	
Discontinuities: 1) 10-20 degrees closely locally very closely spaced planar rough clean. 2) 70-80 degrees closely spaced planar rough stained yellow and brown on surfaces. from 8.68m to 8.89m, 9.06m to 9.26m, 9.50m to 9.60m and 10.46m to 10.60m recovered as non intact core (angular coarse gravel sized fragments)	***** ***** ***** **** ****								NI 680 170	-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:26:50

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A42

Sheet 2 of 2

Ground Level -3.29m CD Coordinates 397091.30 E, 805037.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	San	npling		Blo San	ow Co	ount A Recov	And very	In Situ Test	Insta
bescription of strata	Legena	Берин	Level	Deta	nils	Dia.		SCR		IF	Details	ation
Strong grey and pink coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely locally very closely spaced planar rough clean. 2) 70-80 degrees closely spaced planar rough stained yellow and brown on surfaces.		10.60	-13.89	9.50	11.00	89	93	57	20		:	
Medium strong locally weak dark grey coarse crystalline BRANITE. Recovered as non intact core (slightly sandy angular ne to coarse gravel sized fragments).				11.00	12.50	89	67	0	0	NI		
ssumed zone of no recovery. Highly fractures weathered RANITE. (Driller's description)		12.00	-15.29							NA	- - -	
Exploratory hole complete at 12.50 m.		12.50	-15.79									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:26:55

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project	t Nam	ne Bay	of Ni	gg Ha	rbour Dev	elop	ment	Groun	d Inves	stigat	tion			Evolo	ratanı l	ا مام ا	00	Н	ole ID.	
Project	t No.		7148											Exploi	ratory l	noie L	og	1	47	
Engine				derso														,	\ <i>¬ 1</i>	
Employ				Harb	our Board													Н	eader	
Ground Date Sta			6m CD 09/201	3					ordinate: e Comp				80502	28.50 N Na	itional Grid	Inclina	tion Verti	ical		
Тор	Base	Туре	Date 9	Started	Date Ende	d C	rew	Sectior Logged E	_	ore	Core		Equipr	ment	Sh	oring / pport	F	Remarks		
0.00	0.10	СР		/2013	03/09/201	3	TT	DT			Bit		Dando		Su	pport				
0.10 3.10	3.10 10.10	RC RC	03/09)/2013)/2013	03/09/201 04/09/201		MM MM	DT DT	T61	VF 116	Impreg Inpreg		Deltaba Deltaba							
				PE	ROGRESS											VATER STR	IKES			
Date	Т	ïme	Hole		sina Wate	er		Rema	arks			Dat	e	Time	Strike at	Rise to	Time	Ca	sing dep	oth
03/09/20	013	1830	0.10	n de _l			d of CP					<u> </u>			depth	depth	taken to rise	at strii time	ie to	o seal flow
04/09/20 04/09/20	013 (013 (0200 0700	0.10 7.20	0.1 0.1	-8.60	Sta	rt of Ro	tary ft												
05/09/20 05/09/20	013 (0100 0515	7.20 10.10	0.1	LO -9.20	Sta	rt of Sh d of Ho	ift												
				CABLE	PERCUSSIO	N DET	AILS									SPT DETA	ILS			
		Depth	Sta	Chis	selling Duration		narks					Depth	Туре		nental blow etration in i		Hammer No.	Energy ratio	Casing depth	Water depth
from 0.00		0.10	hl	1400	hhmm 0200	Chise	ellina		_			0.00	SPT	_	n (25/0,50/10		AR362	% 75	N/A	-8.20
							3								, ,	,				
				ROTA	RY FLUSH [ETAIL]								
Fror dept		To depth	1		Flush type			ush turn %		lush olour										
0.10		10.10			Water			0												
шс	DIE DIA	METER	/ CASII	NG.		DV	NIANAIA	C SAMPL	ING											
Hole	Depti	n of Ca	sing [epth of	Тор	Base		ameter	Time		overy									
diameter 150	0.10) 1	neter .50	0.10					hhmmss	S S	%									
145 116	3.10 10.1																			
	ll .	NSTALL	ATION	DETAILS	5		Р	IPE CONS	STRUCT	ION										
Distance from G.L		Т	уре	Resp To	onse zone p Base	ID	Top	Pipe Base	Dia. of pipe		e of oipe									
				B.	ACKFILL DE	LVII &									* Seating bl	ows only. iENERAL N	OTES			
Top o		Base of		Mate		T		Rem	arks								0120		-	-
sectio 0.00		ection 10.10		Grou	ut															
												ļ								
NOTES	Wate	r strike	rise tin	ne in mi	meters in n nutes, hard			in hhmn	n									1		
	⊦or d	etails of	abbre		, see key	to As	d Time	v. 22/12	/2012 1	I (1 · 2 · 7 · 1	n/ ₄						SOL	L eng	inee	BIDG

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A47

Sheet 1 of 2

Ground Level -5.56m CD Coordinates 397218.30 E, 805028.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	San	npling				ount A Recov		In Situ Test Details	Insta
			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	atioi
No recovery. Possible GRANITE. (Driller's description)	++++	0.10	-5.66							NI	SPT50/10mm _{0.01} = 0.00	
Strong pink and grey coarse crystalline GRANITE.	++++	0.30 -	-5.86							NI	=	V.4340
Discontinuities: 1) 10-20 degrees closely spaced planar rough		=									=	2100000
clean.		=									=	200000
from 0.10m to 0.22m recovered as non intact core (angular cobble sized fragments)				0.10	1.60	107	100	85	60		1	
Strong dayly avoy CNEICS with alongly appead your thin hands of		_									_	
Strong dark grey GNEISS with closely spaced very thin bands of light grey granitic inclusions. Discontinuities: 1) 20-30	222	_									_	
degrees closely and medium spaced planar and undulating rough		_									ĺ	
clean. 2) 80-90 degrees widely spaced planar rough clean.		_								NI	3	
from 1.00m to 1.10m recovered as non intact core (angular coarse gravel sized fragments)		-								280]	
coulou giutoi oizou muginemoj	****	_								400		
from 2.10m to 2.15m recovered as non intact core (angular		9 -									_	
coarse gravel sized fragments)		_		1.60	3.10	107	100	97	85		12	1120-113
		1 -										
		-									=	ATRA
		_										2007
		-									i -	
Strong light grey and pink coarse crystalline GRANITE.	****	3.28 -	-8.84								=	3037/2
Discontinuities: 1) 20-30 degrees closely and medium spaced	*****	_]	
planar and undulose rough. 2) 80-90 degrees medium spaced.	*****											200100
	****	_		3.10	4.70	89	100	76	43	NI	_	222
from 4.00m to 4.20m recovered as non intact core (angular	*****	-								180 500		
coarse gravel and cobble sized fragments)	*****									555	1	
, , , , , , , , , , , , , , , , , , ,	*****	j -										
from 4.50m to 4.68m recovered as non intact core (angular	*****	-]	
coarse gravel sized fragments)		4.70 -	-10.26								=	
Strong grey GNEISS with closely spaced very thin bands of		_										
light grey granitic inclusions. Discontinuities: 1) 20-30		-								400	_	
degrees medium spaced undulose rough clean.		-								100 250		
		_		4.70	6.20	89	100	100	71	540	-	
		-									_	
			11.50								-	2000
Medium strong to strong light grey coarse crystalline GRANITE.	*****	6.00 -	-11.56									
Discontinuities: 1) 30-40 degrees closely to medium spaced	*****	_									=	
planar rough clean. 2) 70-80 degrees medium spaced planar rough clean.	* * * * *	_									=	1,,,,,,,
from 6.00m to 6.30m weak	****	_		6.20	7.20	89	100	100	80		1	
	*****	-									_	
	*****	_										
from 7.20m to 7.44m recovered as non-intact care (angular	*****										1	
from 7.20m to 7.44m recovered as non intact core (angular coarse gravel sized fragments)	*****	=									=	
3		_]	
	*****	_									13	719771
	****	_		7.20	8.60	89	100	83	76	NI		3107
	****	_								200 520	1	
		-									<u>-</u>	
	* * * * *										-	
from 8.60m to 8.74m recovered as non intact core (angular	*****	_									-	******
coarse gravel sized fragments)	*****	_										
	* * * * *			8.60	9.60	89	100	86	50			
	* * * * *	-										
	*****	-									=	217714
	*****	-									=	
	*****	_	-	9.60	10.10	89	80	100	68]	
	++++	_		00								2001

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:08

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name	Bay of Nigg Harbour Development Ground Investigation		Hole ID.
Project No.	TA7148	Exploratory Hole Log	۸./7
Engineer	Arch Henderson LLP		A47
Employer	Aberdeen Harbour Board		Sheet 2 of 2

397218.30 E, 805028.50 N National Grid Ground Level -5.56m CD Coordinates

CP+RC Hole Type Inclination

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Issue,Revision No. 1.05

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:27:12

Issue Date 22/10/2012

Project	. Nam	e Bay	of Nig	g Ha	rbour De	/elop	men	t Groun	d Inve	stiga	tion			Evolo	rati	anı L	Hole L	20		Но	ole ID.	
Project			148											Expic	Jiau	лу г	TOIR L	Jy		L	\51	
Engine			h Hend																			
Employ Ground			rdeen 5m CD	Harb	our Board			Cor	ordinate		3972	1/ 99 F	80//0	52.60 N N	lations	d Grid				H	eader	
Date Sta			8/2013						te Comp				00430	J2.00 N N	vacioni	ai Gilu	Inclina	tion '	Vertio	cal		
Тор	Base	Туре	Date St	arted	Date Ende	d C	rew	Section	n Co	ore	Core		Equip	ment		Sho	oring /		R	emarks		
0.00 2.10 7.80	2.10 7.80 10.20	CP RC RC	12/08/ 12/08/ 13/08/	2013	12/08/201 13/08/201 13/08/201	3	DS MM MM	Logged DT DT DT DT	S	rrel SF 116	Bit Impreg Impreg	[Dando Deltaba Deltaba	se 520		Suj	oport					
				PF	ROGRESS											٧	VATER STR	IKES				
Date	Ti	me	Hole depth	Cas de _l	sing Wate pth dept	er h		Rem	arks			Dat	e	Time	Str d	rike at epth	Rise to depth	tak	me ken	Ca:	sing de _l ke t	pth to seal
12/08/20 12/08/20 13/08/20 13/08/20	013 1 013 0	330 900 700 200	2.10 5.40 5.40 10.20	2.1 5.4 5.4 5.4	60 -10.40 60 -9.90) En	d of CP d of Sh irt of SI d of Ho	hift	otary									101	rise_	time		flow
			С	ABLE I	PERCUSSIO	N DET	TAILS										SPT DETA	ILS				
Hard from	Strata	Depth to		time	selling Duration		narks					Depth	Туре			al blow ion in n	count / nm	Ham N		Energy ratio	Casing depth	Water depth
1.80		2.10	hhr 11		0200	Chis	elling		_			0.50 1.50	SPT SPT	N=13 (2 N=34 (2	,2,3,3,3	,4)		AR3		75 75	N/A 1.50	-8.10 -8.30
																,						
Fror		То		ROTA	RY FLUSH [Flush	EIAIL	F	lush		lush											1	
2.10	h	depth 5.20			type Water		re	eturn % 0	C	olour											1	
5.20 5.40		5.40 10.20			Water Water			50 0	(Clear												
НС	LE DIAI	ИETER	/ CASIN	G		DY	NAMI	C SAMPL	ING			1									Ī	
Hole diameter 200 150 145 116		2	neter c	pth of asing 2.10 5.40	Тор	Base	Di	ameter	Time hhmms		covery %											
																					1	
	IN	ISTALLA	ATION D	ETAILS	5		F	IPE CON	STRUCT	ION]									1	
Distance from G.L		Ty	ype	Resp To	onse zone p Base	ID	Тор	Pipe Base	Dia. of pipe		pe of pipe										1	
				R/	ACKFILL DE	LVII &									* Se		ows only.	OTES				
Торо	f B	ase of		Mate		IAILS		Rem	arks							u	EINEKAL IN	OTES				
sectio 0.00 5.20		ection 5.20 10.20		Arisin Grou																		
NOTES	Water	strike	rise time	in mi ations,	meters in m nutes, hard , see key Log Print Da	l strat	a time			10:27	:18	<u> </u>						S	SOIL	. eng	inec	ering

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Issue Date 22/10/2012

Arch Henderson LLP

Project No. TA7148

CP+RC

Engineer

Hole Type

Exploratory Hole Log

Vertical

Hole ID.

A51

Sheet 1 of 2

Employer Aberdeen Harbour Board Ground Level -6.95m CD Coordinates

Inclination

397214.99 E, 804952.60 N National Grid

Description of Strata	Legend	Depth	Datum	:	Sampling				unt A Recov			u Test	Instal
·		·	Level	D	etails	Dia.		SCR	RQD	IF	Det	ails	ation
Medium dense dark grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. from 1.80m to 2.10m driller notes large boulders				D002 B003 ES004 D005	0.00 0.50-0.95 0.50-1.00 1.00 1.20 1.50-1.95 1.50-2.00 1.80						SPT13 0.50 SPT34 1.50	0.95	
Strong dark grey and pink COBBLES and BOULDERS of granite and	\$ * \$ * \$ \$ * \$ * \$	2.10 - 2.25 -	-9.05 -9.20									-	
gneiss. Assumed zone of no recovery. Large BOULDERS. (Driller's description)				2.10	3.20	107	14	NA	NA			-	
Strong pink speckled grey BOULDER of granite.	000	3.20 - 3.35 _	-10.15 -10.30	3.20	3.50	107	50	NA	NA			-	
Assumed zone of no recovery. Large BOULDERS. (Driller's description)	0.000	3.50 - 3.70 -	-10.45 -10.65									-	
Strong light and dark grey COBBLES and BOULDERS of granite.	0000	=		3.50	4.20	107	28	NA	NA			_	
Assumed zone of no recovery. Large BOULDERS. (Driller's description)	0.00	4.20 -	-11.15									-	
No recovery. Large BOULDERS. (Driller's description)	0000			4.20	5.20	107	0	NA	NA			-	
Strong to very strong grey and pink coarse crystalline		5.20 -	-12.15	5.20	5.40	107	100	100	100			-	
GRANITE. Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. 2) 50-60 degrees medium spaced planar rough clean locally stained yellow on surface. from 5.60m to 6.25m 1 No discontinuity 80-90 degrees undulating rough with yellow staining on surface	*****			5.40) 6.30	107	100	100	74	NI 75 360		-	
from 6.47m to 6.55m, 6.70m to 6.75m, 7.03m to 7.13m and 7.40m to 7.47m recovered as non intact core (angular coarse gravel sized fragments)				6.30	7.80	92	100	80	53			-	
from 8.15m to 8.50m stained yellow. Recovered as non intact core (angular coarse gravel sized fragments) from 8.69m to 8.80m stained yellow. Recovered as non intact core (angular coarse gravel sized fragments) from 8.90m to 9.10m assumed zone of no recovery.	*****			7.80	9.10	92	83	46	19			-	
from 9.10m to 9.20m recovered as non intact core (angular coarse gravel sized fragments) with yellow staining from 9.20m to 9.45m 2 No discontinuities 80-90 degrees planar rough with yellow staining on surface	*****			9.10	0 10.20	92	100	91	59			-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:22

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name	Bay of Nigg Harbour Development Ground Investigation		Hole ID.
Project No.	TA7148	Exploratory Hole Log	۸ ت 1
Engineer	Arch Henderson LLP		A51
Employer	Aberdeen Harbour Board		Sheet 2 of 2

397214.99 E, 804952.60 N National Grid Ground Level -6.95m CD Coordinates

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling		Blo San	ow Co nple I	ount A Recov	nd erv	In Situ Test	Insta
Josephon of Strate	Logona	Dopt	Level	Details	Dia.			RQD	IF	Details	ation
Remaining Detail: 9.20m - 10.20m: from 9.20m to 10.20m Discontinuities: 1) and 2) stained yellow on fracture surfaces Detail 9.45m - 10.20m: from 9.45m to 10.20m 1 No discontinuity 80-90 degrees planar rough stained yellow on surface Exploratory hole complete at 10.20 m.	+ + + +	10.20	-17.15							-	

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:26

Part of the Bachy Soletanche Group

-		e Bay	of Nig	g Har	rbour De	velor	omeni	t Ground	l Inves	tigatic	on			Evnlo	ratory	Hole Lo	00	Hc	ole ID.	
Project			7148											Lybici	atory	IUIC L	Jy	1	454	
Engine			h Hende																	
Employ Ground I			erdeen F 64m CD	Harbo	our Board	<u>t</u>	—	Coo	rdinates		9721	12 14 F ;	20488	22 50 N Na	ational Grid			H	leader	
Date Sta			08/2013						e Comple				50 10.	J2.30 11	Itional C	Inclinat	ation Verti	cal		
Тор	Base	Туре	Date Sta	arted	Date Ende	ed	Crew	Section	Cor y Barr	re C	Core Bit	E	Equip	ment	Sh	oring / upport	F	Remarks		
0.00	4.50	СР	14/08/2	2013	14/08/203		DS	Logged By					Dando	3000	- 34	pport				
4.50 8.50	8.50 16.50	RC RC	14/08/2 16/08/2		16/08/201 16/08/201		MM MM	TW TW	SW T611		npreg npreg			ase 520 ase 520		ļ				
								I								ļ				
								I								ļ				
				PF	ROGRESS		—				\dashv					WATER STR	L ≀IKES			
Date	Ti	ime	Hole depth	Casi	sing Wat	er		Remar	rks		\dashv	Date	е	Time	Strike at depth		Time taken	Cas at strik	sing dep	oth o seal
14/08/20		.330	4.50	4.50	50 -7.60	0 En		Start of Rot	tary		\dashv	-	\rightarrow		иерин	uepin	to rise	time	ie i	flow
14/08/20 16/08/20	013 19	1900 1700	7.00 7.00	5.8 5.8	35 -9.00 35 -9.80	0 En	nd of Shi tart of Sh	ift hift	,											
16/08/20	13 2	2100	16.50	5.8!	35 -10.0	ı0 En	nd of Ho	le												
			l																	
			l																	
			l																	
			I																	
			C	ABLE F	PERCUSSIC	ON DE	TAILS				\neg					SPT DETA	dLS			
Hard from	Strata I	Depth to	Start 1		selling Duration		marks	-				Depth	Туре		nental blow etration in		Hammer No.	Energy ratio	Casing depth	
4.30	+	4.50	hhm 113	mm	hhmm 0200		iselling				\dashv	0.50	SPT				AR362	75 75	N/A	-9.30
				I								1.50 2.50	SPT SPT	N=17 (2,3 N=20 (3,3	2,2,3,3,3) 3,4,4,4,5) 3,4,5,5,6) 4,6,6,7,8) 9,10,12,13,16		AR362 AR362	75 75	1.50 2.50	-9.10 -8.60
				I								3.50 5.20 7.00	SPT SPT SPT	N=21 (3,4 N=51 (6,9 50/85mm	,6,6,7,8)),10,12,13,16 n (21,4/0,39,1	.) 11/10)	AR362 AR362 AR362	75 75 75 75 75	3.50 5.20 5.85	-8.10 -8.50 -8.90
				I								8.50 10.00	SPT SPT	50/220m 50/80mm	n (21,4/0,39,1 ım (9,14,15,1 n (17,8/5,37,1	7,18/70) 13/5)	AR362 AR362	75 75	5.85 8.40	-9.60 -9.00
				ROTAI	RY FLUSH I	DETAI														
From dept		To depth	_		Flush type		re	lush eturn %		lush olour										
4.50 8.00	\top	8.00 9.00			Water Water		1	% 100 50		rown	\exists									
9.00 11.00		11.00 13.50			Water Water		1	90 100	Bro Cl	rown Ilear										
13.50 15.00		15.00 16.50			Water Water			80 100		t brown Ilear										
ПС	T DIM	ACTED	/ CASING				VALABAI.	CCAMADIL	NC.		\dashv									
Hole	Depth			g pth of	Тор	Base		C SAMPLII	Time	Recov	ery									
diameter 150	hole 5.85	dian	neter ca	asing 8.40	<u> </u>		+		nhmmss		\dashv									
145 116	8.50 16.50								İ											
				l					İ											
				l					İ											
	IN	ISTALL/	ATION DE	ETAILS	;		P	PIPE CONS	TRUCTIO	ON										
Distance from G.L.		T	уре	Respo	onse zone	ID	Top	Pipe Base	Dia. of pipe	Type o										
	1			<u> </u>	-	<u> </u>				<u> </u>	Ì									
		l																		
<u> </u>	Ш				: 5::EU DI		<u></u>			<u></u>	_		<u> </u>		* Seating bl					
Top of	f B	ase of	T	BA Mater	ACKFILL DE	TAILS		Rema			\dashv					GENERAL N	OTES			
section 0.00	n se	ection 11.50		Arising	ıgs	+					\dashv									
11.50	1	16.50		Grou	.t															
<u> </u>	\perp					丄														
NOTES:	Water	r strike ı	rise time	in mir	meters in r	nillim d stra	etres. Ita time	e in hhmm	1									4		
<u> </u>	For de	tails of	f abbrevia	ations,	, see key					3 3 7 9 1							SOU	L eng	IDAA	יטוחפ
1				- 1	∟oa Print D	ate A	.∩d I im′	e: 23/12/2	2013 10	0:27:31							3011	_ CIIG	lilee	KIIIG

Log Print Date And Time: 23/12/2013 10:27:31

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A54

Sheet 1 of 2

Employer Aberdeen Harbour Board

-6.64m CD

Coordinates 397212.14 E, 804882.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level		Sampling				ount A Recov		In Situ Te Details	st Instal ation
			Level	[Details	Dia.	TCR	SCR	RQD	IF	Details	ation
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is subangular to rounded fine of mixed igneous and metamorphic lithologies.		-		D001 D002 B003	0.50-0.95 0.50-1.00						SPT11 0.50 0.	95 -
		-		D005 B006	1.50-1.95 1.50-2.00						SPT17 1.50 1.	95
				D007 D008 B009	2.20 2.50-2.95 2.50-3.00						SPT20 2.50 2.	95 -
				D011 B012	3.50-3.95 3.50-4.00						SPT27 3.50 3.	95 -
No recovery. OBSTRUCTION. (Driller's description)	2.00.000	4.30 -	-10.94									
Grey subangular to subrounded fine to medium GRAVEL of granite and schist.		4.50 - 4.65 _ 4.90 -	-11.14 -11.29 -11.54	4.5	0 5.20	107	57	NA	NA			
Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse of mixed igneous and metamorphic lithologies.	0 0 0	5.20 - 5.35 _	-11.84 -11.99								SPT51 5.20 5.	65 -
Assumed zone of no recovery. Boulder CLAY. (Driller's description)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.55 <u> </u>	-12.19	5.2	0 6.00	107	44	NA	NA			
Multicoloured subangular to rounded fine to medium GRAVEL of mixed igneous and metamorphic lithologies.		6.00 —	-12.64									
Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse of mixed igneous and metamorphic lithologies. Assumed zone of no recovery. Boulder CLAY. (Driller's				6.0	0 7.00	107	85	NA	NA			
description) Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse of mixed igneous and metamorphic lithologies. from 6.85m to 7.00m assumed zone of no recovery		7.40	-14.04	7.0	0 8.00	107	40	NA	NA	ļ	SPT50/85mm 7.00 7.	16 -
Assumed zone of no recovery. Boulder CLAY. (Driller's description)	P 0 0 0	8.00 —	-14.64							NA		
Stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies. from 8.50m to 8.55m angular medium gravel of granite				8.0		107 92	90	NA NA	NA NA		SPT50/220mm 8.50 8.	37 -
from 8.90m to 9.00m assumed zone of no recovery	130	j -										
from 9.18m to 9.34m 1 No very strong pink and grey boulder of granite		-		9.0	0 10.00	92	74	NA	NA			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:34

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Project No. TA7148 Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board **Exploratory Hole Log**

Hole ID. A54

Sheet 2 of 2

Ground Level -6.64m CD Coordinates 397212.14 E, 804882.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sar	mpling				ount A Recov		In Situ Test	Insta
			Level	Deta	ails	Dia.	TCR	SCR	RQD	IF	Details	ation
Remaining Detail : 9.74m - 10.00m : from 9.74m to 10.00m assumed zone of no recovery		-		10.00	11.00	92	66	NA	NA		SPT50/80mm _{10.16} -	
Assumed zone of no recovery. Boulder CLAY. (Driller's description)		10.66 - - 11.00 —	-17.30 -17.64									
Stiff brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of granite and schist. Cobbles are	0 0 0	11.00	-17.89								-	
subangular of schist. Brown and grey subangular to angular fine to medium GRAVEL of	****	11.65 _ -	-18.29	11.00	12.00	92	90	20	10			
schist and granite. from 11.55m to 11.65m assumed zone of no recovery		=										
Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 10-30 degrees very closely to closely spaced planar rough locally stained orangish brown. 2) 60-80 degrees closely to medium spaced planar rough stained orangish brown. from 11.65m to 11.75m recovered as non intact core (angular coarse gravel sized fragments) at 11.84m 1 No discontinuity 0 degrees planar rough stained brown		-		12.00	13.50	92	100	83	30		-	
at 11.88m 1 No incipient fracture 0 degrees planar from 11.92m to 12.00m recovered as non intact core (angular coarse gravel sized fragments) at 12.64m 1 No discontinuity 0 degrees planar rough clean at 12.68m 1 No discontinuity 0 degrees planar rough clean from 12.82m to 13.00m recovered as non intact core (angular coarse gravel sized fragments) at 13.16m 1 No discontinuity 0 degrees planar rough clean from 13.30m to 13.90m recovered as non intact core (angular coarse gravel sized fragments)	***** **** **** **** **** **** ****			13.50	15.00	92	100	65	23	NI 80 250	-	
at 14.05m 1 No incipient fracture 0 degrees planar from 14.30m to 14.33m 1 No incipient fracture 30 degrees planar from 14.36m to 14.46m recovered as non intact core (angular cobble sized fragments) from 14.49m to 14.53m 1 No discontinuity 10-70 degrees curved rough clean from 14.68m to 14.85m recovered as non intact core (angular medium to coarse gravel sized fragments and angular cobble sized fragments) from 14.90m to 15.25m recovered as non intact core (angular	***** **** **** **** **** **** **** ****		-23.14	15.00	16.50	92	100	80	62			
rrom 14.90m to 15.25m recovered as non intact core (angular medium to coarse gravel sized fragments) at 15.49m 1 No incipient fracture 0 degrees planar from 15.70m to 15.85m recovered as non intact core (angular cobble sized fragments) Exploratory hole complete at 16.50 m.		16.50	-23.14									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:39

Part of the Bachy Soletanche Group

Project	. Nam	іе Вау	of Nigo	g Har	rbour Dev	/elop	ment	: Ground	Inves	tigatio	on			Fynlo	raton	Hole L	00	Нс	ole ID.	
Project		TA7												LXPIO	ratory	TIOIC L	Jg	ļ	\ 57	
Engine			h Hende																	
Employ Ground			raeen F 8m CD	1агис	our Board	—	—	Coor	rdinates	3	9720	08.04 E,	80480	9.81 N N	ational Gr	id		Гп	eader	
Date Sta			8/2013						Comple								tion Verti	cal		
Тор	Base	Туре	Date Sta	arted	Date Ende	d C	Crew	Section Logged By	Cor y Barr	re C	Core Bit	F	Equipr	nent	:	Shoring / Support	F	Remarks		
0.00 8.20	8.20 17.30	CP RC	06/08/2 07/08/2		07/08/201 08/08/201	3	DS MM	TW TW	Geob	ore Im	npreg	D	Dando Deltabas			X-F1				
17.30	32.00	RC	08/08/2		11/08/201	3	MM	TW	T61:	16 Im	npreg	D	Deltabas							
ı <u> </u>										\perp		l								
				PR	ROGRESS											WATER STR	IKES			
Date	_ T	ime	Hole depth	Casi dep	sing Wate oth depti		_	Remar	ks	_	_	Date	е	Time	Strike depth	Rise to depth	Time taken	Cas at strik time	sing dep ke to	oth o seal flow
06/08/20 07/08/20		2130 0700	5.80 5.80	5.80 5.80			d of Shi art of Sh				\exists					+	to rise	Line	+	low
07/08/20 07/08/20	013 1	1300 1930	8.40 11.90	8.40 8.40	-8.90 -7.30	End End	d of CP/ d of Shi	/Start of Rot ift	ary											
08/08/20 08/08/20 10/08/20)13 2	0700 2000 0700	11.90 20.00 20.00	8.40 13.4 13.4	40 -6.90) End	art of Sh Id of Shi art of Sh	ift												
10/08/20 11/08/20	013 2	2000 0700	29.50 29.50	16.4 16.4	40 -7.10 40 -7.90) End Sta	id of Shi art of Sh	ift nift												
11/08/20	/13	1900	32.00	16.4	40 -7.70	End	id of Hol	ıe												
				ARIF F	PERCUSSIO	N DE.	TAILS				\dashv					SPT DETA	II Ç			-
	Strata	•		Chis	selling	Rem	narks				\dashv	Depth	Туре			ow count /	Hammer		Casing	
from 8.20		to 84.00	Start t hhm	nm	Duration hhmm 0200		selling					0.50	SPT	pen N=11 (2,3	etration i	ı mm	No. AR362	ratio %	depth N/A	depth -9.80
0.20		84.∪∪	100	10	0200	Cins	anny					1.50 2.50	SPT SPT	N=16 (3,1 N=17 (2,1	3,3,4,4,5) 2,4,4,4,5)		AR362 AR362	75 75 75	1.50 2.50	-9.50 -9.00
												3.50 4.50 6.00	SPT SPT SPT	N=21 (3,4	4,4,5,6,6) 4 4 6 6 7)	16172/5)	AR362 AR362 AR362	75 75	3.50 4.50 6.00	-8.10 -6.80 -6.30
												7.00 9.00	SPT	50/215m 50/295m	nm (9,15,16 nm (8,10,11	,16,17,3/5) ,19,15/65) ,13,13,13/70)	AR362 AR362	75 75	7.50 9.00	-6.80 -11.30
				ROTAF	RY FLUSH D	ETAII						10.50 11.90 14.20	SPT(C SPT(C SPT(C	50/225m 50/215m 50/135n	nm (7,12,13 nm (7,13,14 nm (11.14/	,13,13,13/70) ,13,13,13/70) ,16,18,3/0) ,20,16/65) 50,27,23/60)	AR362 AR362 AR362	75 75 75	10.50 11.90 13.40	-11.00 -6.80 -8.30
Fron dept		To depth	_		Flush type		ref	lush turn %		ush lour	_	15.80 17.30	SPT(C	50/1/0m 50/200m	ım (8,10,13 ım (6,8,15,2	,19,18/20) 21,14/50)	AR362 AR362	75 75 75 75 75 75 75 75 75 75 75	13.40 13.40	-10.20 -9.90
8.40 12.70		12.70 14.20	\top		Water Water		!	0 50	Br	rown	\neg	18.80 20.00 21.80	SPT(C SPT(C SPT(C	50/10011 50/5mm 50/75mr	im (17,8/10 (25/0,50/5 n (17,8/5,4 n (25/70,46),34,16/25)) 3,7/0)	AR362 AR362 AR362	75 75 75	13.40 13.40 16.40	-9.90 -8.70 -8.00
14.20 15.20 18.80		15.20 18.80 20.30			Water Water Water	l	!	0 50 0	Br	rown		23.30 24.50	SPT(C	:)I 50/80mr	n (14.11/3().38.12/5)	AR362 AR365 AR362	75 75 75	16.40 16.40 16.40	-8.90 -9.80 -10.10
20.30 21.80		21.80 23.20			Water Water	l	!	50 0		lear		27.50	SPT(C	50/55mr 50/160m	ım (7,10,13	,17,20/10)	AR362 AR362	75	16.40	-10.10
23.20 27.50		27.50 32.00			Water Water	ļ		50 0	CI	lear									1	
НО	LE DIA	METER	/ CASING	à		DY	NAMI	C SAMPLIN	NG		\neg								İ	
Hole diameter	Depth			pth of ising	Тор	Base	Dia		Time hmmss	Recov	<i>r</i> ery								İ	
200 150	8.40 16.40	0 15	00 8	3.40 6.40															İ	
145 116	17.30 32.00																		1	
																			1	
	11	VISTALLA	ATION DE	TAILS		—	<u></u>	IPE CONST	TRUCTI	ON	\dashv								1	
Distance	ID			Respo	onse zone	ID	F	Pipe	Dia.	Туре									İ	
from G.L				Top	p Base	H	Тор	Base	of pipe	pip	ie								İ	
									I										İ	
	<u></u>				NOVELLA DE		Щ	\bot			4		<u></u>		* Seating	blows only.				
Top of	f E	Base of		BA Mater	ACKFILL DET	AILS		Remai			\dashv					GENERAL N	OTES			
section 0.00	n s	ection 27.00		Arising		┼	—				\dashv									
27.00		32.00		Grou	í															
NOTES:	ΔII de	nthe in	metres a	all diar	meters in m		etres													
NOTES.	Wate	r strike r		in mir	nutes, hard			in hhmm										1		
					Log Print Da	ate Ar	ıd Tim	e: 23/12/2	2013 1	0:27:54	-						SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

A57

Sheet 1 of 4

Ground Level -6.28m CD Coordinates 397208.04 E, 804809.81 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum		Sampling		Blo Sam	w Co	unt Ai	nd erv		ı Test	Ins
_ 555p.i.5. 5. 5ata	Logona		Level		Details	Dia.	TCR	SCR		IF	Det	ails	ati
edium dense grey slightly gravelly silty fine to coarse SAND.		} =		D001	0.00								
avel is angular to rounded fine of granite and schist.		=										-	
		-			0.50-0.95 0.50-1.00						SPT11 0.50	0.95	
		() <u> </u>										3	
		_										-	
		-		D004	1.20							3	
] =		D005 B006	1.50-1.95 1.50-2.00						SPT16 1.50	1.95 -	
		-										1	
		-											
		1		D007	2.20							1	
		-		D008	2.50-2.95						SPT17	2.95 -	
		} =		B009	2.50-3.00						2.50	2.93	
		_										_	
		=		D010	3.20							1	
		=		D011	3.50-3.95						SPT21	1	
		-		B012	3.50-4.00						3.50	3.95 -	
		} =										3	
		_		D013	4.20							1	
		į -		D01/	4.50-4.95						CDT22	7	
] [B015	4.50-5.00						SPT23 4.50	4.95 -	
		=										1	
		=										1	
		_										1	
Thomas distant and the control of th	X X X 4	5.60	-11.88	D016	5.60							-	
ff brown slightly sandy gravelly CLAY with low cobble ntent. Cobbles are subangular to subrounded of granite and	2000	=										3	
nist. Sand is fine to coarse. Gravel is angular to rounded e to coarse of mixed igneous and metamorphic lithologies.	0 10.0	_		D017 B018	6.00 6.00-6.50						SPT50/230 6.00	0mm — 6.38 —	
	20.20.20	_										3	
	0 0	_										13	
	P 10 10	_										2	
	0 000	=		D019	7.00						SPT50/215 7.00	5mm — 7.37 =	
	2 2 2	=										_	
	0 0 0	-		D020								1	
		=		B021	7.50-8.00							12	
	0 - 0 - 0	_										-	
	P 10 10 10	=										3	
	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	=							Ţ			1	
	0.00	=		0.11	0 000	107	F0	NA	,,			1	
from 8.74m to 8.80m 1 No strong grey boulder of granite	0 10 0	8.87	-15.15	8.40	0 9.20	107	59	NA	NA		SPT(C)50/2		
sumed zone of no recovery. Sandy boulder CLAY. (Driller's scription)	P-0-0	9.20 -	-15.48								9.00	9.45 -	
ff extremely high strength brown slightly sandy gravelly		-										-	
AY. Gravel is angular to rounded fine to coarse of mixed		=										2	
neous and metamorphic lithologies.	1] -		9.20	0 10.50	107	83	NA	NA			1 1	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:27:59

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A57 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board Ground Level -6.28m CD Coordinates 397208.04 E, 804809.81 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sam	pling				ount A Recov		In Situ Test Details	Inst
			Level	Detai	ls	Dia.	TCR	SCR	RQD	IF	Details	atio
Stiff extremely high strength brown slightly sandy gravelly		-										
CLAY. Gravel is angular to rounded fine to coarse of mixed		i -									1	
gneous and metamorphic lithologies.		_									SPT(C)50/225mm -	
from 10.28m to 10.50m assumed zone of no recovery	1	-									10.50 10.88 -	
		ğ _									-	
		_									_	
		-									-	
	135	5 - 2		10.50	11.90	107	93	NA	NA		-	
		_									-	
		-									-	
from 11.70m to 11.90m assumed zone of no recovery	7.7	_									-	
· · · · · · · · · · · · · · · · · · ·	4-7-5	_									SPT(C)50/215mm - 11.90 12.27-	
		12.17	-18.45								11.90 12.27	
Assumed zone of no recovery. Boulder CLAY. (Driller's		12.17	-16.45	11.90	12.70	107	34	NA	NA		-	
description)	7-7-3										j	
	3-2-0-											
Grey subangular to subrounded fine to coarse GRAVEL of granite	30.00	12.70 -	-18.98								3	
and schist with low cobble content. Cobbles are subangular of	59-49-59	12.94_	-19.22								1	
granite. (Driller notes boulder clay).	0.00	\									l -	
Assumed zone of no recovery. Boulder CLAY. (Driller's	0 0), I									_	
description)	0.0.0	-		12.70	14.20	107	48	NA	NA		-	
accompany	9 2 2	_									-	
	0 0 0	_									3	
	0-0-0	-									-	
	0000	_									T.	
Stiff brown slightly sandy gravelly CLAY. Gravel is subangular	-	14.20 -	-20.48								SPT(C)50/135mm = 14.20 14.46 =	
to subrounded fine to coarse of mixed igneous and metamorphic		-									14.20 14.46	
ithologies.	DEC	_									3	
	TES	-		14.20	15.20	107	100	NA	NA		-	
	-	-									-	
		<u>-</u>									-	
Assumed zone of no recovery. Boulder CLAY. (Driller's	0-40-	15.35	-21.63								_	
description)	0 00	_		15.20	15.80	107	70	NA	NA		-	
from 15.37m to 15.43m 1 No strong red boulder of granite	20 10	15.00	22.00								CDT/C)E0 /170	
Califf house and in halo and do a more than CLAV with the and the more than a	0-10-5	15.80 -	-22.08								SPT(C)50/170mm - 15.80 16.12 -	
Stiff brown slightly sandy gravelly CLAY with medium cobble content. Gravel is subangular to subrounded fine to coarse of	0 0 0	7									-	
mixed igneous and metamorphic lithologies. Cobbles are	20-10-	16.20 -	-22.48								-	
subangular of schist.	20.00] [-	
•	20 10	_		15.80	17.30	107	78	NA	NA			
Assumed zone of no recovery. Boulder CLAY. (Driller's description)	0 0 0	-									17	
aescription)	p 0 0	1									3	
	9 5 5	_									_	
	0 0 0	F								816		
Stiff very high strength brown sandy gravelly CLAY with low	0 0	17.30 -	-23.58							NA	SPT(C)50/200mm = 17.30 17.65 =	
cobble content. Gravel is subangular to rounded fine to coarse	0 100	-										
of mixed igneous and metamorphic lithologies. Cobbles are	0 - 0 - 0) I									1	
ubangular of granite and schist.	00-00-	0]										
from 17.80m to 17.97m 1 No strong grey boulder of schist	2000	-		17.30	18.80	92	97	NA	NA		-	
	10 10 2	9 -										
	2000	.]										
	0 0 0	-									l la	
	0 0 0	š										
	0 0 0	=									SPT(C)50/100mm - 18.80 18.99 -	
	0 0 0										10.00 10.39	
		19.10 -	-25.38	l			l					
ssumed zone of no recovery. Boulder CLAY. (Driller's	9-6-16	-										
Assumed zone of no recovery. Boulder CLAY. (Driller's lescription)	0 0 0	=		10.00	20.00	107	2/	NIA.	, na		13	
	0 0 0			18.80	20.00	107	24	NA	NA		1	
	0 0 0			18.80	20.00	107	24	NA	NA		-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:01

Form No. SIEXPHOLELOG

Issue Date 22/10/2012

Sheet 2 of 4

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148 Engineer Arch Henderson LLP Hole ID. Exploratory Hole Log A57

Employer Aberdeen Harbour Board

Ground Level -6.28 m CD Coordinates 397208.04 E, 804809.81 N National Grid
Hole Type CP+RC Inclination Vertical

Description of Strata	Legend	Depth	Datum Level	Sam	pling				ount A Recov		In Situ Test Details	Inst
			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	atio
Stiff brown slightly sandy gravelly CLAY with low cobble content. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies. Cobbles are subangular of granite.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.00 _	-26.28	20.00	20.30	107	100	NA	NA		SPT(C)50/5m20.01 - 20.00	
from 20.00m to 20.14m angular to subangular fine to coarse gravel of schist and granite from 20.30m to 20.45m angular to subrounded fine to medium gravel of schist and granite	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20.90	-27.18	20.30	21.80	107	42	NA	NA		_	
Assumed zone of no recovery. Boulder CLAY. (Driller's (description)	0 0 0	21.30 -	-27.58									
Stiff brown slightly sandy gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of mixed igneous and metamorphic lithologies. Cobbles are subangular of granite.		- - - -	20.50								SPT(C)50/75mm - 21.80 21.96 -	
Assumed zone of no recovery. Boulder CLAY. (Driller's description)		22.30	-28.58	21.80	23.30	107	40	NA	NA			
Stiff brown slightly sandy gravelly CLAY. Gravel is subangular to rounded fine to coarse of mixed lithologies.		23.30	-29.58	23.30	24.50	107	48	NA	NA		SPT(C)50/75mm - 23.30 23.45	
Assumed zone of no recovery. Boulder CLAY. (Driller's description)	P 9 9	24.00	-30.28								[]:	
Stiff brown slightly sandy gravelly CLAY with low cobble content. Gravel is subangular to rounded fine to coarse of mixed igneous and metamorphic lithologies. Cobbles are subangular to subrounded of granite and schist.		24.50 -	-30.78	24.50	26.00	107	100	NA	NA		SPT(C)50/80mm - 24.50	
Assumed zone of no recovery. Boulder CLAY. (Driller's description)		26.16 _	-32.44 -33.28	26.00	27.50	107	20	7	0	NA	SPT(C)50/55mm — 26.00 26.12 ·	
Assumed zone of no recovery. Weathered GRANITE. (Driller's description) Extremely to very weak grey and reddish brown coarse	*****	27.34	-33.62							NI	SPT(C)50/160mm ·	
crystalline GRANITE. Discontinuities: 1) 20-30 degrees closely spaced planar rough stained dark brown. from 27.50m to 27.55m recovered as non intact core (subrounded coarse gravel sized fragments) from 27.64m to 27.75m recovered as non intact core (subrounded coarse gravel sized fragments)	*****	27.87 28.10 	-34.15 -34.38	27.50	28.50	107	60	30	0	45 80 80 80 NA	27.50 27.81 -	
Weak grey coarse crystalline GRANITE. Discontinuities: 1) 70-80 degrees very closely spaced planar rough stained brown.	*****	28.50 - - - -	-34.78							NI 40 60		
Assumed zone of no recovery. GRANITE. (Driller's description) Strong grey coarse crystalline GRANITE. Discontinuities: 1)		29.00	-35.28	28.50	29.50	107	100	40	0		<u> </u>	# 19 10 10 10 10 10 10 10 10 10 10 10 10 10
70-90 degrees closely spaced planar rough stained brown. from 28.58m to 28.64m recovered as non intact core (angular medium gravel sized fragments) from 28.64m to 28.78m recovered as non intact core (angular										NI		

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:05

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 3 of 4

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A57 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board

Ground Level -6.28m CD Coordinates 397208.04 E, 804809.81 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sar	npling		Blo San	ow Co nple I	ount A Recov	and ery	In Situ Test	Insta
			Level	Deta	ails	Dia.	TCR	SCR		IF	Details	ation
8.50m - 29.00m : Remaining Detail : 28.64m - 28.78m : medium ravel sized fragments)	*****	30.10 -	-36.38	29.50	30.50	107	70	0	0	NA	-	
9.00m - 30.10m : Strong grey coarse crystalline GRANITE. ecovered as non intact core (angular fine to coarse gravel ized fragments). Detail 29.57m - 29.76m : from 29.57m to 29.76m weak Detail 30.00m - 30.10m : from 30.00m to 30.10m weak from 30.00m to 30.10m weak		30.50	-36.78	30.50	32.00	107	70	30	0	NI NI 60	- - -	
ssumed zone of no recovery. GRANITE. (Driller's description) Medium strong to strong grey coarse crystalline GRANITE. ecovered as non intact core (sandy angular to subangular fine o coarse gravel sized fragments. Sand sized fragments are	*****	31.50	-37.78 -38.28							NA	- - -	
ne to coarse) from 30.02m to 30.10m intact with many incipient fractures 70-80 degrees very closely spaced stained brown from 30.23m to 30.40m intact. Discontinuities: 1) 10-20 degrees closely spaced planar rough clean. 2) 70-80 degrees closely spaced planar rough clean ssumed zone of no recovery. GRANITE. (Driller's description)		- - - - - - - - -									-	
xploratory hole complete at 32.00 m.		- - - - - -									-	
		- - - - -										
		- - - - -										
		- - - - -									- - - - -	
		- - - - -									- - - -	
		- - - - -									- - - -	
		-									- - -	
		- - - - -										
		-										
		-										1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:10

Issue Date 22/10/2012

SOIL ENGINEERING Part of the Bachy Soletanche Group

Sheet 4 of 4

Project	t Nam	ie Bay	of Ni	gg Ha	rbour Dev	elop	men	t Grour	nd Inve	stiga	tion			F۷	nlor	aton	Hole	ء ا د	00	Но	ole ID.	
Projec			148											_^	фіоп	atory	11010		9	,	459	
Engine Employ			h Hen		n LLP our Board															н	leader	
Ground			4m CD	Tiaib	our board			Co	ordinate	s	3971	72.37 E,	8047	66.2	6 N Nat	ional Gr	id				Cauci	
Date Sta	arted	29/0	07/2013	3				Da	te Comp	leted	05/08	3/2013					Inc	clinat	ion Verti	cal		
Тор	Base	Туре	Date S	tarted	Date Ende	d C	rew	Sectio Logged	n Co By Ba	ore rrel	Core Bit		Equip	men	nt	90	horing / Support		F	Remarks		
0.00 9.00 30.00	9.00 30.00 31.00	CP RC RC	29/07 30/07 05/08	/2013 /2013 /2013	30/07/201 05/08/201 05/08/201	3	KL MM MM	DT DT DT		oore S 116	Impreg Impreg		Dando Deltaba Deltaba	ase 52	20							
Date	Ιτ	ime	Hole		ROGRESS sing Wate	ır l		Rem	arke			Dat	to	Т	Time	Strike a	WATER at Rise		KES Time		sing de	nth
			depth	de	pth dept	h			aiks			Dat		'	iiiie	depth	dep	th	taken to rise	at stril time	e t	to seal flow
29/07/20 30/07/20 30/07/20 30/07/20 31/07/20 02/08/20 05/08/20 05/08/20	013 (013 (13 (14 (14 (14 (14 (14 (14 (14 (14 (14 (14	1900 0700 1400 2000 07700 1930 0700 1320 0700 1930	6.00 6.00 9.00 9.80 9.80 19.00 19.00 25.50 25.50 31.00	6.0 6.0 9.0 9.3 19.1 19.2 25.25.30.	00 -8.10 00 -5.10 80 -8.10 80 -9.00 00 -14.8 00 -15.3 50 -4.74	Sta End Sta O End O Sta O Sta O Sta	d of Sh rt of Sh d of CP d of Sh rt of Sh d of Sh rt of Sh d of Sh rt of Sh d of Ho	nift /Start of R ift nift ift nift ift nift	Rotary													
				CABLE	PERCUSSIO	N DET	AILS								L		SPT D	ETAI	LS			
Hard	l Strata	Depth to	Star	Chis t time	selling Duration	Rem	narks		_			Depth	Туре	е		ental blo	w count	/	Hammer No.	Energy ratio	Casing depth	
4.10		4.20	hh 1	<u>mm</u>	0200	Chis	elling		_			0.50	SPT	N:	•				AR362	% 75 75	N/A	-6.00 -7.20
4.20 7.10 8.10 9.00		4.60 7.30 8.30 9.00	0	345 900 015 200	0200 0045 0045 0200	Chise Chise	elling elling elling elling					1.50 2.50 3.50 4.50 5.50 7.50 9.00 10.00	SPT SPT SPT(0 SPT SPT SPT SPT	N: N: N: C) 50 50 50 50 50 50	=16 (2,3,4 =15 (2,3,4,5 =23 (3,4,5 0/5mm (2 0/220mm 0/245mm 0/10mm (6,8,7	3,2,3,3) 4,3,4,5) 2,3,4,6) 5,5,6,7) 5,50,50/5 1,7,9,13,1 1,7,10,12 (25/5,50/) 2,25/70) 15,15,8/2 10) 15) 3,15,12/5 4,15,11/3	!0)	AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75	1.50 2.50 3.50 4.50 5.50 7.50 9.00 10.00	-7.00 -6.90 -6.70 -7.50 -7.00
Fror		То		ROTA	RY FLUSH [Flush	ETAIL		ush		lush		11.50 13.00 14.50	SPT SPT SPT	50	0/275mm 0/260mm 0/0mm (2	1 (4,8,10,1 1 (5,4,10,1 :5/0.50/0	3,15,12/5 4,15,11/3)	15)	AR362 AR362 AR362	75 75 75 75	11.50 13.00 14.50	-14.80 -14.60 -14.60 -14.60
9.00 9.80 30.00		9.80 30.00 31.00			Water Water Water Water		1	turn % LOO 90 0	В	rown rown -		16.00 17.50 19.00 20.50 21.00 22.50 24.00 25.50 27.00 28.50	SPT(c) 50	0/0mm (1	(6,10,12 (7,18/25,! (25/25,50 (5,20/10,! (5,9,10,1 (4,3,11,1 (7,10,12 (8,11,14 (0,14,50/(4,15,11/3) 18,20/70 50/10) /25) 50/10) 3,20,7/15 2,14,16/7 18,20/10 16,15,5/5)) 8,12/85)	s) 'o))	AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75 75 75 75 75	16.00 17.50 19.00 20.50 21.00 22.50 24.00 25.50 27.00 28.50	-14.30 -14.50 -14.80 -15.80 -15.80 -15.80 -4.74 -4.98 -5.15
НС	LE DIA	METER	/ CASIN	IG	ĺ	DY	NAMI	C SAMPI	ING			-										
Hole diameter 200	Depth	n of Ca e dian	sing D	epth of casing	Тор	Base		ameter	Time hhmms		covery %	-										
146 139 116	30.0 30.1 31.0	0 1	46	30.00 30.10																		
		NSTALL	ATION [ETAILS	5		Р	IPE CON	STRUCT	ION												
Distance from G.L		Т	ype	Resp To	oonse zone op Base	ID	Тор	Pipe Base	Dia. of pipe		pe of											
				D	ACKFILL DE	LVII C										* Seating	GENERA		TEC			
Top o sectio 0.00	n s	Base of ection 31.00		Mate Arisin	rial	AILS		Ren	narks								GENERA	AL INC	DIES			
NOTES	Wate	r strike	rise tim	e in mi iations	meters in n nutes, hard , see key Log Print Da	l strat	a time			10:28:	21	<u> </u>							SOI	L eng	inec	ering

Log Print Date And Time: 23/12/2013 10:28:21

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Ground Level

Exploratory Hole Log

Hole ID.

A59

Sheet 1 of 4

Engineer Arch Henderson LLP Employer Aberdeen Harbour Board

-6.64m CD Coordinates

397172.37 E, 804766.26 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling				ount Reco		In Situ Test Details	Install- ation
	100		Level	Details	Dia.	TCR	SCR	RQD	IF	Details	ation
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium of granite and schist.				D001 0.00 D002 0.50-0.95 B003 0.50-1.00 D004 1.00				•	1	SPT11 0.50 0.95	
		-		D005 1.50-1.95 B006 1.50-2.00 D007 2.00						SPT16 1.50 1.95	
		-		D008 2.50-2.95 B009 2.50-3.00 D010 3.00						SPT15 2.50 2.95	
				D011 3.50-3.95 B012 3.50-4.00						SPT23 3.50 3.95	
No recovery. BOULDER. (Driller's description) Stiff brown slightly gravelly sandy CLAY with low cobble	000	4.10 - - 4.60	-10.74	B014 4.50-5.00						SPT(C)50/5mm 4.50 4.51	
content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of granite, dolerite, schist and quartzite.		-		D015 5.00 B016 5.50-6.00						SPT50/220mm 5.50 5.87	
from 6.00m to 9.00m driller notes small sand lenses		_		D017 6.00						5.50 5.67	
		-		D018 7.00 B019 7.00-7.50 D020 7.50-7.90 B021 7.50-8.00						SPT50/245mm 7.50 7.90	
		-		D022 8.00						_	
Strong pink and grey BOULDER of granite.	000	9.00	-15.64	D023 9.00						SPT50/10mm - 9.00 9.02	
Stiff extremely high strength brown slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is angular fine to coarse of granite, dolerite and schist. Cobbles are angular to subrounded of granite and dolerite.		9.20 - - - - - -	-15.84	9.00 9.80 9.80 10.00			NA NA	NA NA			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:26

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A59 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board Ground Level -6.64m CD Coordinates 397172.37 E, 804766.26 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	San	npling				ount A Recov		In Situ Test	Insta
2006. paos di Galaca	Logona	Dopt	Level	Deta	ils	Dia.	TCR	SCR		IF	Details	ation
Stiff extremely high strength brown slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is angular fine to coarse of granite, dolerite and schist. Cobbles are angular to subrounded of granite and dolerite. from 10.00m to 10.10m strong boulder of granite				10.00	11.50	102	100	NA	NA		SPT49 10.45	
from 11.91m to 12.00m strong boulder of dolerite		- - - - - - - - - - - - - - - - - - -		11.50	13.00	102	100	NA	NA		SPT50/275mm - 11.50 11.93	
from 14.30m to 14.50m assumed zone of no recovery				13.00	14.50	102	87	NA	NA		SPTS0/260mm	
from 14.50m to 14.70m strong grey boulder of dolerite				14.50	16.00	102	93	NA	NA		SPT50/0mm 14.50 14.50 - - - - - - - - - - - - - - - - - - -	
from 15.90m to 16.00m assumed zone of no recovery from 17.25m to 17.50m assumed zone of no recovery				16.00	17.50	102	83	NA	NA		SPT50/220mm —— 16.00 16.37 —— ——————————————————————————————————	
from 17.58m to 17.75m strong light grey granite boulder		-		17.50	19.00	102	100	NA	NA		SPT50/10mm	
Assumed zone of no recovery. Stiff boulder CLAY with cobbles and boulders. (Driller's description)		19.50	-26.14	19.00	20.50	102	34	NA	NA		SPT50/25mm 19.00 19.05 - - - - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:28

Form No. SIEXPHOLELOG

Issue Date 22/10/2012

Sheet 2 of 4

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A59 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board

Ground Level -6.64m CD Coordinates 397172.37 E, 804766.26 N National Grid Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	San	npling			ow Co nple F			In Situ Test Details	Ir at
			revei	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	a
ssumed zone of no recovery. Stiff boulder CLAY with cobbles nd boulders. (Driller's description)	0 0 0	-								NA		
	p	20.50 -	-27.14							.	SPT50/10mm -	
ff extremely high strength brown slightly gravelly sandy AY with low cobble content. Sand is fine to coarse. Gravel	20 20 20	, :				400					20.50 20.60	ı
angular to subrounded fine to coarse of granite, dolerite	0 0	9 -		20.50	21.00	102	70	NA	NA			
d schist.	200	-									SPT(C)50/240mm- 21.00 21.39	
from 20.85m to 21.00m assumed zone of no recovery	10 - 10	(-									21.00 21.39	
	000	, I									-	3
	2000	_										
	200	5 [21.00	22.50	102	87	NA	NA			
	0 00	J -										
	22.20.20	-									-	-
	0 0	=									-	
from 22.30m to 22.50m assumed zone of no recovery	2 - 6	S =								.	SPT(C)53/295mm	
	30 - 0 P	=									SPT(C)53/295mm - 22.50 22.95 -	
	P	-									1	
	0.00	-									_	
	00-00-0	6 -		22.50	24.00	102	100	NA	NA			
	0.00	5 -		22.00	2 1.00	102	100				-	
	1010										1	
	0 0	1									-	
	70.00	-									ODT(0)50 # 00	3
	20 - 0.	-									SPT(C)50/160mm- 24.00 24.31	
	0 0	1 -										1
	20.00	_									-	
	33 - 02	9 - 1										
	0 000	-		24.00	25.50	102	80	NA	NA		-	
	22 20 20) -									_	
	0.000	1 -									-	1
	- A) I										
from 25.40m to 25.50m assumed zone of no recovery	10 10 10	_									SPT(C)50/230mm - 25.50 25.88 -	
	- 0 - 0 - P	9 -										
	00000	h -									1	
	33.40	-									-	
	0 000	-		25.50	27.00	102	100	NA	NA		-	
	0 00	_									-	
	00000	2 -									-	
	9 0 0 0	-										
	0 10	-									SPT(C)50/0mm	
	0 0 0	7 -									27.00 27.15	
	P - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1) I									-	
	0 0 0	2 - 1									1	
	0 00	8 =		27.00	28.50	102	93	NA	NA			
	0 0 0	j										
	0 10 0	2									Ī	
	0 0 0	8 T										
from 28.40m to 28.50m assumed zone of no recovery	P - 0 - 6	-									SPT(C)50/235mm	
•	0 0 0 0	=									28.50 28.74	
	0 102) =										
	S - 0 - 2	<u> </u>									-	
	0 10'6	-		28.50	30.00	102	66	NA	NA			
from 29.30m to 29.50m strong light grey granite boulder	8 6 6	Y =		20.30	50.00	102	- 50	1471	. 4/1			
		29.50 -	-36.14									
ssumed zone of no recovery. SAND and GRAVEL. (Driller's	34.7.4.4.9	-					1					1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:32

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 3 of 4

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A59 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 4 of 4

Ground Level -6.64m CD Coordinates 397172.37 E, 804766.26 N National Grid

Hole Type CP+RC Inclination

			Datama	C	_	DI	ow Co	ount /	\nd	In Situ Test	
Description of Strata	Legend	Depth	Datum Level	Samplin Details	Dia.	Sar	nple l	Recov	ery	Details	Instal ation
escription)	A: 11:11:11	30.00 _	-36.64	Details	Dia.	ick	JCK	KQD		-	
ight grey angular to rounded medium to coarse GRAVEL of ranite and quartz.		- - 30.50 -	-37.14	30.00 31.0	0 102	50	0	0		- - -	
ssumed zone of no recovery. COBBLES and BOULDERS. (Driller's escription)		-								- - -	
xploratory hole complete at 31.00 m.	9.03	31.00	-37.64							 - -	
		- - -									
		-								- - -	
		-								-	
		- - -								- -	
		- - -								- - -	
		-								- - -	
		- - -								- -	
		- -								-	
		- - -								- - -	
		- - -								- - -	
		- - -								-	
		-								- -	
		-								- - -	
		- - -								- - -	
		- -									
		-								- -	
		-								- -	
		- -								- -	
		- - -								- -	
		- - -								- -	
		- -								- - -	
		- - -								- - -	
		-								- -]

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Issue.Revision No. 1.05

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:28:35

Part of the Bachy Soletanche Group Issue Date 22/10/2012

		e Bay	of Nigg	g Har	rbour Dev	elop	ment	Ground	l Inves	tigati	ion			Evn	lora	tory F	Hole Lo	20	Ho	ole ID.				
Project		TA7												Lyb	iora	tory i	IOIC LO	<i>y</i> 9	L	463				
Engineer Arch Henderson LLP Employer Aberdeen Harbour Board																								
Employ Ground			rdeen F 7m CD	larbo	our Board			Cool	rdinates		20721	11.49 E,	20467	70 E1 N	' Natio	and Grid			H	eader	\dashv			
Date Sta			7m CD 07/2013						rainates e Comple			•	80407	/ 3.31 IV	livano	Mai Giiu	Inclinat	tion Vertic	cal					
Тор	Base		Date Sta	arted	Date Ende	d C	Crew	Section	Cor		Core Bit		Equipr	ment		Sho	oring /							
0.00	9.30	СР	08/07/2	2013	09/07/2013 KL TW							Dando			Sup	ppořt								
9.30	25.50	RC	10/07/2	013	11/07/201	3 1	MM	TW	T611	16	PCD		Deltaba											
PROGRESS											<u> </u>													
Date	Ті	me	Hole	PR Cas		-		Remar	rke			Date		Time		W Strike at	/ATER STRI Rise to	<u> </u>						
			depth	dep	pth depth	h						Date	e	Hins		depth	depth	taken to rise	at strik time	κe i to	seal low			
08/07/20 09/07/20	013 0	900	5.00 5.00	5.0 5.0	-6.20	Sta	d of Shif art of Shi																	
09/07/20 10/07/20	013 0	900	9.30 9.30	9.30 9.30	30 -7.80 30 -7.20	Enc Sta	d of CP art of Ro	tary																
10/07/20 11/07/20 11/07/20	013 0	.900 .700 .515	20.30 20.30 25.50	10.5 10.5 10.5	50 -7.20	Sta	End of Shift Start of Shift End of Hole																	
11,0.,2	13	313	25.50	10			101110.	5				1												
												1												
												1												
						上						<u> </u>												
Usual	2	AL	CA		PERCUSSIO							- 1	I	1 100		· 11-1	SPT DETAI			- ·	101-6-4			
Hard from	Strata	Depth to	Start t	time	Belling Duration	Rem	narks					Depth	Туре			ntal blow ation in n		Hammer No.	Energy ratio	Casing depth	Water depth			
5.00 5.00	+	5.00 5.20	hhmm			Chis	Chiselling Chiselling					1.00 2.00	SPT SPT	N=12	(2,3,3,7	2,3,4)		AR362 AR362	75 75	1.00 2.00	-8.50 -9.00			
8.20 8.80	8.20 8.40 1330 0100		Chise	Chiselling Chiselling						SPT SPT	N=14 N=11	(2,2,3,2,	2,3,4) 4,5,4) 3,3,5) 2,4,4) 9,10,13)		AR362 AR362	75 75 75 75	3.00	-9.10						
		·					·					4.00 6.50 8.50	SPT SPT	1 30/03	(5,6,7,9 5mm (4	9,10,13) ,9,10,40/1(5/10,50/1(0)	AR362 AR362	75 75 75	4.00 6.50 8.50	-9.40 -10.00 -8.10			
												10.30 12.80 14.30	SPT(C SPT(C SPT(C	'N 50/5r	nm //. 0) EN/E1	0)	AR362 AR362 75	75	9.30 10.50 10.50	-7.50 7.90 8.10			
From			F	ROTA	RY FLUSH D	ETAIL		-1.		· - L		15.80 17.30	SPT(C	N=40 N=31	(3,5,8,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	8,10,14) 10,9,13) 6,8,10)		AR362 AR362	75 75 75	10.50 10.50	-8.50 -8.80			
Fron dept		To depth			Flush type	,	ret	ush turn %		ush Iour		18.80 20.30	SPT(C SPT(C SPT(C	.)I 50/5r	nm (25. . (7.6.7.)	710,5075) 9.8.10)		AR362 AR362	75 75 75	10.50 10.50	-9.00 -9.70			
9.30		25.50			Air/Mist			.00	G	rey		21.80 23.20 24.00	SPT	N=49	(3,7,9,	9,11,12) 12,14,14) 4,6,12,11,1	1 16/70)	AR362 AR362 AR362	75 75 75	10.50 10.50 10.50	-7.30 -7.50 -7.90			
						,	l						"	00,20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,0,12,11,1	.1,10,10,	7002		10.00	1.00			
						,	l													1				
						,	l													1				
																				1				
		-	/ CASING	a pth of	Тор	DYI		C SAMPLII ameter	NG Time	Door	very									1				
Hole diameter	Depth	diam	neter ca	sing	ТОР		Dia		hmmss											1				
200 139 116	9.30 10.20 25.50) 13		9.30 0.50																1				
110	23.30	'																		1				
																				1				
		ISTALL /	ATION DE	TAILS	<u>.</u>	—		IPE CONS	TDUCTION	ON.	_	İ								1				
Distance	_		ype		onse zone	ID	Р	Pipe	Dia.	Туре	e of									1				
from G.L.				To	p Base	H	Тор	Base	of pipe	pi	ipe									1				
		Ì					l													1				
		Ì					l								*	Seating blo	ows only.			1				
				BA	ACKFILL DET	AILS										G	ENERAL NO	OTES						
Top of section		ase of ection	1	Mater	rial			Rema	rks															
0.00		25.50		Grou	it																			
NOTES	Alldo	nthe in	matras s	ما الما	meters in m	illime	++00					<u> </u>												
NOTES.	Water	strike ı		in mir	nutes, hard			in hhmm	I										1					
	101 40		abbievia		Log Print Da	ite An	d Time	23/12/	2013 10	0:28:4	4							SOIL	L eng	inee	RING			

Log Print Date And Time: 23/12/2013 10:28:44

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

A63

Sheet 1 of 3

Employer Aberdeen Harbour Board Ground Level -6.57m CD

Coordinates 397211.49 E, 804673.51 N National Grid

Description of Strata	Legend	Depth	Datum		Sampling		Blo San	ow Co nple	ount A Recov	nd ery	In Situ Test Details		Insta
			Level		Details	Dia.	TCR	SCR	RQD	IF	Det	aiis	atio
dedium dense grey slightly silty slightly gravelly fine to nedium SAND. Gravel is fine to medium.	XXX			D001 B002								-	
	X			D003 ES004 D005 B006	1.00						SPT12 1.00	1.45 -	
	X X X			D007 ES008 D009 B010	2.00						SPT15 2.00	2.45 -	
	X			ES012 D013	3.00 3.00 3.00-3.45 3.00-3.50						SPT14 3.00	3.45 -	
		-		D015 ES016 D017 B018	4.00 4.00-4.45						SPT11 4.00	4.45 -	
from 5.00m to 6.00m driller notes boulder obstruction													
tiff brown slightly sandy slightly gravelly CLAY with medium obble content. Gravel is angular to rounded fine to coarse of ranite, schist and quartzite. Cobbles are subangular to	× × × × × × × × × × × × × × × × × × ×	6.00	-12.57	D019 ES020 B021	6.00								
rounded of granite and schist.	0 0	=		D022							SPT39 6.50	6.95 - - - -	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				7.50-8.00								
	0.00			D025	8.00							-	
				B026							SPT50/85		
from 8.80m to 9.30m driller notes boulder obstruction	P 0 10 P	-										-	
rong grey BOULDER of granite.	000	9.00 - 9.13 -	-15.57 -15.70									-	
rong grey and pink BOULDER of granite.	122	9.18	-15.75									-	
iff grey slightly sandy gravelly CLAY. Gravel is subangular	\$ 50.50 \$0.40	9.47 -	-16.04									-	*****

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:48

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 A63

Employer Aberdeen Harbour Board

Sheet 2 of 3

Ground Level -6.57m CD Coordinates 397211.49 E, 804673.51 N National Grid

Hole Type CP+RC Inclination

Arch Henderson LLP

Engineer

Description of Strata	Legend	Depth	Datum Level	Sar	npling				ount A Recov		In Situ Test Details	Inst
	7 196		Level	Deta	ails	Dia.	TCR	SCR	RQD	IF	Details	atio
Assumes zone of no recovery. Silty CLAY with granite and boulders. (Driller's description)	0.00 B	10.30	-16.87								SPT(C)50/10mm -	
Grey subangular coarse GRAVEL of granite.		10.57	-17.14								10.30 10.32 -	******
Stiff grey slightly sandy gravelly CLAY. Gravel is angular to rounded fine to coarse of granite and schist.		10.76 _ 10.86 _	-17.33 -17.43	10.30	11.60	92	43	NA	NA.		-	77777
Strong red BOULDER of granite.	2020 2020			10.50	11.00	32	13	147	IWA		-	
Assumed zone of no recovery. Silty CLAY with granite boulders. Driller's description)		=									-	
Grey and red angular to subrounded fine to medium GRAVEL of granite, schist and quartzite.	8 - 0 - 0 O	11.60 -	-18.17 -18.37								- -	eses Gess
Assumed zone of no recovery. Silty CLAY with granite boulders. (Driller's description)				11.60	12.80	92	16	NA	NA		-	
	000	12.80	-19.37								SPT(C)50/5mm -	2000
Grey, red and pink slightly clayey slightly sandy angular to subrounded fine to coarse GRAVEL of granite and schist.		13.15	-19.72								12.80 12.96 -	
Assumed zone of no recovery. Silty CLAY with granite boulders. (Driller's description)	\$1.50 \$1.50			12.80	14.30	92	23	NA	NA		-	
Grey, red and brown angular to subrounded fine GRAVEL of granite.	2028	14.30 -	-20.87 -21.07								SPT(C)38	
Grey and red slightly sandy clayey angular to rounded fine to coarse GRAVEL of granite and schist.	0.38 5 50.30 50	14.75	-21.32								- - -	
Assumed zone of no recovery. Silty CLAY with granite boulders. (Driller's description)				14.30	15.80	92	30	NA	NA		- - - -	
Grey and red slightly sandy clayey subangular to subrounded fine to medium GRAVEL of granite and schist.	8000	15.80 - 15.95_	-22.37 -22.52								SPT(C)40 15.80 16.25	
Assumed zone of no recovery. Silty CLAY with granite boulders. (Driller's description)	18 (19 19 19 19 19 19 19 19 19 19 19 19 19 1	17.30	-23.87	15.80	17.80	92	10	NA	NA			
Stiff grey slightly sandy gravelly CLAY. Gravel is angular to rounded fine to medium of granite and schist.	2000	17.48 -	-24.05								17.30 17.75 -	
Assumed zone of no recovery. SIlty CLAY with granite boulders (Driller's description)	# C			17.80	18.80	92	12	NA	NA	NA	- - - - - - - - - - - - - - - - - - -	
Red and grey subangular to subrounded medium to coarse GRAVEL of granite.	0.00 2	18.80 -	-25.37								SPT(C)50/5mm - 18.80 18.82 - - - - -	
				18.80	20.30	92	40	NA	NA		- -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:50

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation **Exploratory Hole Log** Project No. TA7148

Engineer Arch Henderson LLP

Employer

Hole ID.

A63 Sheet 3 of 3

Ground Level -6.57m CD Coordinates 397211.49 E, 804673.51 N National Grid

Hole Type CP+RC Inclination

Aberdeen Harbour Board

Description of Strata	Legend	Depth	Datum	San	npling				ount A Recov			u Test	Inst
		_	Level	Deta	ails	Dia.	TCR	SCR	RQD	İF	Det	ails	atio
Red and grey subangular to subrounded medium to coarse GRAVEL of granite. from 20.00m to 20.10m very clayey from 20.10m to 20.30m assumed zone of no recovery	=0.8.⇒ 8.⇒0.00	20.30 -	-26.87 -27.05								SPT(C)34 20.30	20.75	
Grey and red very angular to subangular fine to medium GRAVEL of granite and schist. from 20.44m to 20.48m very clayey	\$\frac{1}{2}\frac{1}{2	=		20.30	21.80	92	12	NA	NA			-	
Assumed zone of no recovery. Silty CLAY with cobbles. (Driller's description)			20.27								SPT(C)41		
No recovery. SAND and GRAVEL. (Driller's description)		21.80 -	-28.37	21.80	23.20	92	0	NA	NA		21.80	22.25 -	
No recovery. Sandy silty CLAY and cobbles. (Driller's description)	50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8	23.50 -	-30.07								SPT49 23.20	23.65	
	8-20-8-30 8-20-8-30 8-20-8-30 8-20-8-30 8-20-8-30 8-20-8-30 8-20-8-30 8-20-8-30			23.20	24.80	92	0	NA	NA		SPT50/299 24.00	5mm	
Multicoloured angular to rounded fine to medium GRAVEL of mixed igneous and metamorphic lithologies. Firm brown slightly gravelly sandy CLAY. Gravel is angular to	\$ 5 8 5 \$ 0 8 5 \$ 0 8 5	24.80 - 25.00 - 25.10 -	-31.37 -31.57 -31.67	24.80	25.50	92	42	NA	NA	ł		-	
subrounded fine to medium of granite and schist. Assumed zone of no recovery. Sandy silty CLAY and cobbles. Exploratory hole complete at 25.50 m.		25.50	-32.07										

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:28:53

,		,		,g Ha	rbou	r Deve	lopm	nent	t Groun	d Inve	estiga	ation			Fxnl	orat	ory I	Hole Lo	00	Ho	ole ID.	
Projec			7148												LAPIN	Jiac	Ory i	TOIC L	Jy	ŗ	B61	
Engine Employ			h Hend erdeen I																		Header	
Ground			88m CD	Пагы	Jui	Daiu		—	Cor	ordinate	es	3972	41.41 E,	80470	02.42 N ľ	Nation	nal Grid				eauci	
Date Sta	arted	11/0	07/2013					_	Dat	te Com	pleted	16/07	7/2013					Inclina	tion Vert	ical		
Тор	Base	Туре	Date Sta	arted	Date	e Ended	l Cre	ew	Section Logged B	n C By B	Core Barrel	Core Bit	ļ .	Equip	ment		Sho Su	oring / pport		Remarks		
0.00 5.00 26.50	5.00 26.50 36.80	CP RC RC	11/07/2 12/07/2 15/07/2	/2013	15/0	707/2013 707/2013 707/2013	M	KL 1M 1M	DT DT DT	S	SWF 6116	Impreg Impreg			3000 ase 520 ase 520							
					ı												ı					
				Pſ	ROGRE	ESS		_			_	' 					v	VATER STR	IKES			
Date	Ti	ime	Hole depth	Cas de	sing epth	Water depth		_	Rema	arks			Dat	:e	Time		trike at depth	Rise to depth	Time taken	at stri	asing dep ike to	pth o seal flow
11/07/20 12/07/20 12/07/20 12/07/20 13/07/20 13/07/20 15/07/20 15/07/20 16/07/20	17/2013 0700														to rise	time		low				
				 CABLE	PERC!	USSION	DET#	AILS		—	—	—						SPT DETA	ILS			
Hard from		Depth to		t time	Dui	iration	Rema	rks					Depth	Туре	pe	enetrat	tal blow tion in n		Hammer No.	r Energy ratio	Casing depth	
4.50 4.65 4.85 5.00	hhmm hhmm								0.50 1.50 2.50 3.50 4.50 6.00 7.50 9.00	SPT SPT SPT SPT(C SPT SPT SPT(C SPT(C	N=9 (1, N=14 (2 N=25 (2	,2,1,2,3, ,2,1,2,3, ,2,2,3,3, im (25/5 0mm (9, 0mm (8, mm (25, (4.6,7,8,	,2) ,3) 4,4) 7,12) 5,50/0) ,14,22,26 ,15,19,25 /50,50/10 10,12) ,9,10,40/3 /70,50/30 10,11) ,8,10,18,2 ,18,750,30	i,2/0) i,6/0) 0)	AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75 75 75 75 75 75	N/A 1.50 2.50 3.50 4.50 6.00 6.00 6.00 10.50	-9.40 -9.20 -9.30 -8.70 -8.30 -9.30 -9.40 -9.00 -8.30				
Fror	m	То		ROTA	RY FLU	LUSH DE	TAILS		lush		Flush		12.00 13.50 15.00	SPT(C SPT(C SPT(C	50/105 50/30r	mm (6, mm (25,	9,10,40/3 /70,50/3/ 10.11)	30) 0)	AR362 AR362 AR362	75 75 65	10.50 10.50 10.50 10.50	-8.30 -9.80 -10.30 -11.00
dept	th	depth			type	е	\perp	ret	turn %	c	colour	r	16.50 18.00	SPT(C SPT(C SPT(C	50/195 50/115	4,3,7,0,. 5mm (3, 5mm (7,	8,10,18,2 ,18/50,3(22/45) 0,20/40)	AR362 AR362	75 75	10.50 10.50	-1.00
5.00 13.50 16.50 30.00 31.50	0	13.50 16.50 30.00 31.50 36.80		,	Water Water Air/Mis Air/Mis Air/Mis	er list list		10 10 10	100 100 100 100 100	Brov E Bro	Brown own/Gre Brown own/Gre Grey	een I	19.50 21.00 22.50 24.00 25.50 28.00	SPT(C SPT(C SPT(C SPT(C SPT(C	C) 50/150 C) 50/10m C) 50/95m	0mm (25 mm (10, mm (7,1	,9,11,39/7 5/25,20,3 ,12,50/10 .0,19,31/2 5,50/0) /10,50/10	30/75) 0) (20)	AR362 AR362 AR362 AR362 AR362 AR362	75 75 75 75 75 75 75	10.50 10.50 10.50 10.50 10.50 28.00	-3.00 5.10 3.20 1.20 2.30 -8.10
Н	DI E DIAI	METER	/ CASING		\top		DYN	IAMI ^r	C SAMPLI	ING												
Hole	Depth	of Cas	sing De	epth of		op F	Base		ameter	Time		ecovery										
diameter 200 150 139 116	5.00 10.50 28.00 36.80) 1	200 5 150 1	5.00 10.50 28.00						hhmms	38	%										
	IN	JSTALL/	ATION D	ETAILS	.— з		—	— Р'	IPE CON	STRUC	TION		1									
Distance from G.L								/pe of pipe														
 	للل				ACKE!	ILL DETA	AII S		Щ.		Ш	!				* S	Seating blo	ows only. iENERAL N	IOTES		<u></u>	
Top o							.11.5	—	Rem	narks								ENLIVALIT	0113			
9.00	ection section																					
NOTES	Water	strike	metres, a rise time f abbrevia	e in mii iations,	inutes, s, see k	s, hard s key	strata 1	time	e in hhmn		10.20	2:02							50	IL end	ines	אחופי
				,	Log Pr	. IIIL Dat'	z ANO	HIME	e: 23/12/	./ ZUI3	10.29	1.UZ							301	110	,	

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

B61

Sheet 1 of 4

Employer Aberdeen Harbour Board Ground Level -7.88m CD

Coordinates

397241.41 E, 804702.42 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling				ount . Reco		In Situ Test Details	Install
			Level	Details	Dia.	TCR	SCR	RQD	IF	Details	ation
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, dolerite, schist and gneiss.				D001 0.00 D002 0.50-0.95 B003 0.50-1.00 D004 1.00 ES005 1.00				1	•	SPT8 0.50 0.95	
				D006 1.50-1.95 B007 1.50-2.00						SPT9 1.50 1.95	
				D010 2.50-2.95 B011 2.50-3.00						SPT14 2.50 2.95	
				D012 3.00 ES013 3.00 D014 3.50-3.95 B015 3.50-4.00						SPT25 3.50 3.95	
No recovery. BOULDER. (Driller's description)	0 0 0	4.50 –	-12.38	D016 4.00 ES017 4.00						SPT(C)50/0mm 4.50 4.51	
Stiff to very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite.		5.00	-12.88 -13.26	5.00 6.00	92	38	12	12		-	
from 5.00m to 5.13m 1 No very strong dolerite boulder Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description) No recovery. Sandy boulder CLAY. (Driller's description)		6.00 —	-13.88	-D018 6.00-6.30						SPT50/150mm - 6.00 6.30	
				6.00 7.50	92	0	0	0		-	
Stiff to very stiff brown slightly gravelly sandy CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite. Cobbles are angular to subrounded of granite, dolerite and schist.		7.50 - 7.72 - -	-15.38 -15.60	7.50 8.25	92	29	0	0		SPT50/150mm 7.50 7.80	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description) Stiff to very stiff brown slightly gravelly sandy CLAY with		8.25 _ 8.45 _ -	-16.13 -16.33	8.25 9.00	92	27	0	0			
high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite. Cobbles are angular to subrounded of granite, dolerite and schist. Assumed zone of no recovery. Sandy boulder CLAY. (Driller's		9.00 —	-16.88						1	SPT50/10mm - 9.00 9.06	
description)	0.00	=		9.00 10.50	92	33	0	0			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:06

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Hole ID.

Exploratory Hole Log

B61

Sheet 2 of 4

Ground Level -7.88m CD Coordinates 397241.41 E, 804702.42 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	San	npling				ount A Recov		In Situ Test Details	Insta
	77.74		Level	Deta	ails	Dia.	TCR	SCR	RQD	IF	Details	ation
9.00m - 9.50m : Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite. Detail 9.00m - 9.10m : from 9.00m to 9.10m recovered as angular coarse gravel		10.50 -	-18.38 -18.68								SPT(C)37 - 10.50 10.95 -	
9.50m - 10.50m : Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.50	-19.38	10.50	11.50	92	30	0	0			
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies schist, granite, quartzite and dolerite.	9 9 5 9 9 6	-	13.50	11.50	12.00	92	100	20	20			
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	0 0 0 0	12.50	-20.38								12.00 12.26 - -	
Very stiff brown slightly gravelly sandy CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite. Cobbles are angular to subrounded of granite, dolerite and schist.			20.30	12.00	13.50	92	33	6	0		<u>-</u>	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description) Very stiff brown slightly gravelly sandy CLAY with high cobble	P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.50	-21.38								SPT(C)50/30mm 13.50 13.60	
very still brown stignity gravely sainty CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including schist, granite, quartzite and dolerite. Cobbles are angular to subrounded of granite and schist.		14.05 _	-21.93	13.50	15.00	92	37	0	0		- - - - -	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.00	-22.88								 SPT(C)36	
Very stiff brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including granite, schist, dolerite and quartzite. Cobbles are angular to subrounded of granite and schist.		15.40 -	-23.28	15.00	16.50	92	27	8	8		15.00 15.45	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description) from 16.90m to 17.05m 1 No cobble of very strong grey speckled pink and white granite		- - - - - 16.50 -	-24.38									
Very stiff brown slightly gravelly sandy CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including granite, schist, dolerite and quartzite. Cobbles are angular to subrounded of granite and schist.		10.30 - - - - - 17.20 -	-25.08	16.50	18.00	92	47	20	10		16.50 16.85 - - -	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)				10.00	10.00	02		20	10		-	
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed lithologies including granite, schist and quartzite.		18.00— 18.20 —	-25.88 -26.08								SPT(C)50/115mm— 18.00 18.24 - -	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)				18.00	19.50	92	13	0	0		- - - -	
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of		19.50	-27.38								SPT(C)50/145mm - 19.50 19.80 -	**************************************
	0 - 0	19.90	-27.78								-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:10

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Employer

Exploratory Hole Log

Hole ID.

B61

Sheet 3 of 4

Ground Level -7.88m CD Coordinates 397241.41 E, 804702.42 N National Grid

Hole Type CP+RC Inclination

Arch Henderson LLP

Aberdeen Harbour Board

Description of Strata	Legend	Depth	Datum Level	Sam	pling				ount A Recov		In Situ Test Details	Insta
			Level	Detai	ils	Dia.	TCR	SCR	RQD	IF	Details	atioi
19.50m - 19.90m : mixed lithologies including granite, schist and quartzite.	0 0 0	=		19.50	21.00	92	27	0	0		1	
19.90m - 21.00m : Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	=								NA		
Very stiff brown slightly gravelly sandy CLAY with high cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. Cobbles are angular to subrounded of granite and schist. from 21.00m to 21.25m recovered as angular to subrounded		21.00	-28.88 -29.48	21.00	22.50	92	40	17	11		SPT(C)50/150mm— 21.00 21.18 -	
fine to coarse gravel and cobbles of granite and schist Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	P - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	_		21.00	22.50	92	40	17	11		<u> </u>	
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite and schist.		22.50	-30.38 -30.83								SPT(C)50/10mm - 22.50 22.66	500000
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)				22.50	24.00	92	30	0	0			
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite and schist.	P 0 0	24.00 —	-31.88 -32.18								SPT(C)50/95mm 24.00 24.25	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)				24.00	25.50	92	20	0	0			
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite and schist. from 25.50m to 25.65m 1 No very strong granite cobble or boulder		25.50 - - 25.80 - - -	-33.38 -33.68	25.50	26.50	92	30	15	15		SPT(C)50/0mm - 25.50 25.51 - - - -	
Assumed zone of no recovery. Sandy boulder CLAY. (Driller's description)	9 8 9 9	26.50	-34.38									
No recovery. Sandy boulder CLAY. (Driller's description)				26.50	28.00	92	0	0	0			
Very stiff brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite and schist.		28.00	-35.88	28.00	28.50	92	60	50	50		SPT(C)50/10mm 28.00 28.02 	
from 28.88m to 29.00m 1 No very strong granite cobble				28.50	30.00	92	63	63	48			
from 29.40m to 29.50m 1 No very strong granite cobble	P 0 0 0	29.50	-37.38									11414

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:13

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 B61 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 4 of 4

Ground Level -7.88m CD Coordinates 397241.41 E, 804702.42 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth					San	nple l	Recov	ery	In Situ Test	Instal
			Level	Deta	ails	Dia.	TCR	SCR		IF	Details	ation
escription)		30.00 _	-37.88									
ery stiff brown slightly gravelly sandy CLAY. Sand is fine to												
oarse. Gravel is angular to subrounded fine to coarse of		-										
ranite and schist.		-		30.00	31.50	92	100	85	85			7777777
		_										********
		-									(-	
Veak dark greyish grey SCHIST. Recovered as non intact core		31.30 -	-39.18									
angular fine to coarse gravel sized fragments).	****	31.50 -	-39.38									
Medium strong pinkish grey GRANITE. Recovered as non intact	* * * * *			31.50	32.00	92	60	0	0			
ore (angular medium to coarse gravel sized fragments). from 31.80m to 32.00m assumed zone of no recovery	*****										-	
,	* * * * *											
	*****	, :										50000000
	****			32.00	33.50	92	86	0	0			
	****) <u> </u>		32.00	33.30	52	00	U	"			
	* * * * *	_									-	
f 22 20m t- 22 50m	*****	-									I.	532377777
from 33.30m to 33.50m assumed zone of no recovery	*****	y .	-									217227
	*****	-										
	****	-									Ę	
	*****	-		22.50	25.00	02	02	0	0			
	*****	_		33.50	35.00	92	93	0	0			
	* * * * *	-										200000000000000000000000000000000000000
	*****	-									,	
from 34.90m to 35.00m assumed zone of no recovery	****	-										
	++++	=										
	*****	=		35.00	35.80	92	100	0	0			********
	* * * * *	=									1.	22211231
	****	, :	•									
	****	40									-	
	* * * * *	-		35.80	36.80	92	100	0	0			#1##1111
	*****	_										
	++++	36.80 -	-44.68									
xploratory hole complete at 36.80 m.		_									_	
		-										
		=										
		=										
		-										
		-									-	1
		-										1
		-]	1
		-]	1
		-]
		-										}
		-										}
		-										1
		_										1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Issue.Revision No. 1.05

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:29:17

Issue Date 22/10/2012

Part of the Bachy Soletanche Group

SOIL ENGINEERING

		е Вау	of Nigg	Harb	our Dev	elop	ment	Ground	Inves	tigation			Evnlo	ratory	Hole Lo	20	Нс	ole ID.	
Project		TA7											LAPIO	iatory	TOTE L	<i>,</i> 9	(79	
Engine			n Hender																
Employ Ground I			rdeen Ha Om CD	arbou	Ir Boaru			Coor	dinates	3970)82.70 E,	80492	20.10 N Na	ational Grid			יר	eader	
Date Sta			9/2013							eted 21/0						tion Verti	cal		
Тор	Base	Туре	Date Start	ted D	ate Ende	d C	Crew	Section Logged By	Cor Barr	re Core rel Bit		Equip	ment	Sh Su	oring / ipport	F	Remarks		
0.00 0.90	0.90 8.00	CP RC	20/09/20:		20/09/2013 21/09/2013		AOH RJ	TW TW	T611	16 Impre	g	Dando Deltaba			-				
				PRO	GRESS										NATER STRI	IKES			
Date	Ti	me	Hole depth	Casing depth	g Wate h depth	r 1		Remar	ks		Dat	te	Time	Strike at depth	Rise to depth	Time taken	at strik	sing dep	o seal
20/09/20 21/09/20	13 1	900	0.90 0.90	0.80	-7.10 -5.00		d of CP art of Shi				†					to rise	time	+	flow
21/09/20	13 1	.500	8.00	0.80	-8.60		d of Hol												
						\perp					<u> </u>								
⊔ard	Strata	Donth		BLE PER Chisell	RCUSSIO		TAILS narks				Depth	Туре	Increr	nental blow	SPT DETAI	ILS Hammer	Energy	Casing	Water
from		to	Start tir	me _I	Duration hhmm	Kem	idikə				Бери	Type		etration in		No.	ratio %	depth	depth
0.80	\top	0.90	1630		0200	Chise	elling				0.50	SPT(C	50/245m	ım (3,4,4,5,7,3	34/20)	AR360	75	N/A	-9.80
																		İ	
																		İ	
	\perp				=::::::::::::::::::::::::::::::::::::::	<u> </u>					4							İ	
From		To	K	F	FLUSH D	ETAIL	Flu	ush		ush	-							İ	
0.90	<u> </u>	depth 6.70			type /ater	_		turn % 0		lour	1							İ	
6.70		8.00			/ater		7	70	Bro	own								İ	
							i											İ	
							i											Ì	
							1											Ì	
НО			/ CASING			DY	NAMIC	C SAMPLIN	1G									Ì	
Hole diameter	Depth hole				Тор	Base	Dia		Time hmmss	Recovery %								Ì	
155 116	0.90 8.00	15	0.9	0							1							Ì	
																		Ì	
																		Ì	
	L	ICTALLA	TION DET			—	ㅗ	IDE CONCI			1							Ì	
Distance					nse zone	ID		IPE CONST Pipe	Dia.	Type of	1							Ì	
from G.L.	-			Top	Base		Тор	Base	of pipe	pipe	-							ī	
		Ì					i											Ì	
		Ì					i							* Seating b	lows only.			Ì	
					KFILL DET	AILS								G	SENERAL NO	OTES			
Top of section	n se	ase of ection		laterial				Remai	rks										
0.00 0.90		0.90 8.00		risings Grout															
NOTES:			metres, all																
	For de	tails of	rise time ir abbreviati	ons, se	ites, nard ee key	strata	a time	in nnmm											
				Loç	g Print Da	te An	d Time	e: 23/12/2	2013 10	ີ່ 0:29:32						SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

C79

Sheet 1 of 1

Ground Level -6.59m CD Coordinates 397082.70 E, 804920.10 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sa	ampling				unt A Recov		In Situ Test Details	Ins
			Level	De	tails	Dia.	TCR	SCR	RQD	IF	Details	alic
Medium dense brown slightly silty gravelly fine to medium AND. Gravel is angular to rounded fine to medium of mixed gneous and metamorphic lithologies.		-		D001 0	0.00						SPT(C)50/245mm - 0.50 0.90 -	
No recovery. Possible rockhead. (Driller's description)		0.80 - 0.90 -	-7.39 -7.49								-	
Medium strong to strong coarse crystalline pink and grey 3RANITE. Discontinuities: 1) 10-30 degrees very closely to closely spaced planar rough stained brown. 2) 60-80 degrees closely to medium spaced planar rough stained brown. from 0.90m to 1.01m recovered as non intact core (angular coarse gravel sized fragments) from 0.90m to 1.58m discontinuities: 2) very closely to closely spaced	*****			0.90	2.20	92	100	93	45			
from 1.14m to 1.22m 1 No discontinuity 50 degrees planar rough clean from 1.36m to 1.43m weak. Recovered as non intact core (angular fine to medium gravel sized fragments) from 1.45m to 1.58m discontinuities: 2) with clay smearing on surfaces	*****			2.20	3.20	92	100	97	63		: : : :	
from 1.62m to 1.74m 1 No incipient fracture 80 degrees planar from 1.97m to 2.00m weak. Recovered as non intact core (angular fine to medium gravel sized fragments) from 2.01m to 2.35m 2 No incipient fractures very closely spaced 8 degrees planar from 2.57m to 2.88m strong grey gneiss from 3.03m to 3.20m weak to medium strong with 3 No incipient fractures 30-60 degrees very closely spaced planar from 3.74m to 3.95m discontinuities: 2) perpendicular through core axis	****			3.20	4.80	92	100	93	70	NI 90 300	-	
from 3.91m to 3.98m 1 No discontinuity 50 degrees planar rough brown from 4.15m to 4.50m 5 No incipient fractures very closely spaced 80-90 degrees planar from 4.27m to 4.32m 1 No discontinuity 40 degrees planar rough stained brown from 4.86m to 5.00m 1 No incipient fracture 80-90 degrees planar from 5.00m to 5.78m 1 No discontinuity 80-90 degrees planar rough stained brown from 5.13m to 5.30m recovered as non intact core (angular to subangular fine to coarse gravel sized fragments) from 5.46m to 5.50m recovered as non intact core (angular	* * * * * * * * * * * * * * * * * * *	6.13	-12.72	4.80	6.70	92	100	63	38			
medium gravel sized fragments) from 5.80m to 5.88m 1 No discontinuity 50 degrees planar rough stained brown from 5.90m to 6.00m recovered as non intact core (angular fine to medium gravel sized fragments) from 6.00m to 6.13m 3 No discontinuities 50-60 degrees very closely spaced planar rough stained brown	* * * * * * * * * * * * * * * * * * *			6.70	7.60	92	100	18	0		- - - - -	
Weak locally very weak coarse crystalline pink and grey GRANITE stained dark brown. Recovered as non intact core slightly sandy very angular to subangular fine to coarse gravel sized fragments. Sand sized fragments are fine to coarse). from 6.33m to 6.39m clayey from 6.70m to 6.92m intact core. Weak to medium strong with 3 No discontinuities 10-30 degrees very closely to closely spaced planar rough stained brown and 1 No discontinuity 60-70 degrees planar rough stained brown from 7.67m to 7.89m 1 No discontinuity 80-90 degrees planar rough clean	****	8.00	-14.33 -14.59	7.60	8.00	92	100	60	50			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:35

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name	Bay of Nigg Harbour Development Ground Investigation		Hole ID.
Project No.	TA7148	Exploratory Hole Log	C79
Engineer	Arch Henderson LLP		C/9
Employer	Aberdeen Harbour Board		Sheet 1+ of 1

397082.70 E, 804920.10 N National Grid Ground Level -6.59m CD Coordinates

Hole Type CP+RC Inclination

	Description of Strata		Legend	Depth	Datum	Sampling		Blo San	ow Co nple F	ount A Recov	And ery	In Situ Test	Instal
	·				Level	Details	Dia.			RQD	İF	Details	ation
Remaining Detail	: 7.88m - 7.93m : from 7.88m to 7.93 80 degrees planar	m 1 No	/	-								-	
Exploratory hole co				-								-	
				-								-	
				_								-	
				-								-	
				-								- -	
				-								-	
				_								-	
				=								=	
				-								-	
				-								-	
				_									
				-								- -	
				-								-	-
				-								=	
				_								_	
				-								-	
				-								- -	
				-								- -	
				_									
				-								-	
				-								<u>-</u>	
				-								-	
				_								-	
				-								-	
				-								-	1
				=								=	
				_									
				-								-	
				-								-	
				-								-	
				-								-	
				-								=	
				-								-	
				-									
				-								- -	-
				-								-	
				=								-	
				-								_	1

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:38

Form No. SIEXPHOLELOG Issue Date 22/10/2012 Issue,Revision No. 1.05

_		e Bay	of Nigg	g Harl	bour Dev	elopi	ment	Ground	l Inves	tigatio	n			Fynlo	ratory	Hole Lo	00	Н	ole ID.	
Project		TA7												LAPIO	ratory	I IOIC L	og	(281	
Engine			n Hende																	
Employ Ground			rdeen F 7m CD	larbo	ur Board			Coor	dinates	20	707	76 10 E	907.91	17 00 NI NI	ational Grid	<u> </u>		Н	eader	
Date Sta			9/2013							eted 22			0040.	L7.50 N N	ational Gill	ı Inclina	tion Vert	ical		
Тор	Base		Date Sta	rted	Date Ende	d Cı	rew	Section	Coi		ore lit		Equip	ment	ŞI	noring / upport		Remarks		
0.00	2.80	СР	22/09/2	013	22/09/201	3 A	ЮН	Logged By TW	/ Barı	rel B	lit		Dando	3000	S	upport				
2.80 4.40	4.40 8.00	RO RC	22/09/2 22/09/2	013	22/09/201 22/09/201	3	RJ RJ	TW TW	T61		4 RF oreg	! C	Oeltaba Oeltaba	se 515 se 515						
Date	Ті	me	Hole	PRO	OGRESS ng Wate	r		Remai	rke		4	Dat		Time	Strike a	WATER STR	Time		sing dep	ıth
		ille	depth	dept	th dept	n						Dat	C	Tillie	depth	depth	taken to rise	at stril time	κe i to	seal low
22/09/20 22/09/20)13 1)13 1	200 530	2.80 8.00	2.50 4.40			of CP/ of Hol	Start of Ro	tary											
	2013 1530 8.00 4.40 -9.00 End of Hole																			
	CABLE PERCUSSION DETAILS																			
			CA	ABLE PI	ercussio	N DET	AILS									SPT DETA	ILS			
Hard from	Strata	Depth to	Start t	Chise	elling Duration	Rem	arks					Depth	Туре		mental blov etration in		Hammer No.	Energy ratio	Casing depth	Water depth
2.50		2.80	hhm 100		0200	Chise	lling				\dashv	0.50	SPT(C	C) N=23 (3,4	4,4,5,6,8)		AR362	75 75	N/A	-8.30 -7.30
												1.50 2.50	SPT(C	N=23 (4,4 5) 50/15mr	4,4,5,6,8) 4,5,5,6,7) n (75/10,50/ n (8,10,11,39 n (25/70,50/	15)	AR362 AR362	75 75 75 75	1.50 2.50	-6.00
												3.50 5.90	SPT(C	50/95mr 50/70mr	n (8,10,11,39 n (25/70,50/	720) 70)	AR362 AR362	75 75	3.50 4.40	-6.40 -7.10
			F	ROTAR	Y FLUSH D	ETAILS	S													
Fron dept		To depth			Flush type		ret	ush turn		ush Iour										
2.80		8.00			Water			.00		own										
НО	LE DIAN	ΛETER.	/ CASING	ì		DYI	NAMI	C SAMPLII	NG											
Hole diameter	Depth hole			oth of sing	Тор	Base	Dia		Time hmmss	Recove	ry									
150	4.40			.00																
			TION DE					IPE CONS												
Distance from G.L		ly	/pe	Respo Top	nse zone Base	ID	Тор	Pipe Base	Dia. of pipe	Type o pipe										
					CIVETT						4					olows only.	OTES			
Top o	f P	ase of		BA0 Materi	CKFILL DET	AILS		Rema	rks		\dashv				-	GENERAL N	UIES			
sectio 0.00	n se	ection 8.00		Arising				Nend			_									
0.00		0.00		,og																
NOTES:	All de	oths in	metres, a	ll dian	neters in m	illimet	tres.	. ,.												
	Water For de	strike i tails of	rise time abbrevia	ın min tions, s	utes, hard see key	strata	time	ın hhmm												
				Lo	og Print Da	te And	d Time	23/12/	2013 1	0:29:43							SOI	L end	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 C81 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board Ground Level -6.27m CD Coordinates

397076.10 E, 804817.90 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling		Blo San	ow Co nple F	ount A Recove	nd ery	In Situ Test	Ins
,			Level	Details	Dia.		_	RQD	IF	Details	ati
Medium dense brown slightly silty gravelly fine to coarse AND. Gravel is angular to subrounded fine to coarse of mixed gneous and metamorphic lithologies. from 0.50m to 1.00m very gravelly				D001 0.50 B002 0.50-1.00						SPT(C)23 0.50 0.95 	
				D003 1.50 B004 1.50-2.00						SPT(C)23	
otary openhole drilling. COBBLES and BOULDERS with sand.		2.50 	-8.77	D005 2.50 B006 2.50						SPT(C)50/15mm - 2.50 2.53 - - -	
	7 10 10 10 10 10 10 10 10 10 10 10 10 10	-								SPT(C)50/95mm - 3.50 3.75 -	
tiff very high strength brown slightly sandy slightly ravelly CLAY with low cobble content. Sand is fine to coarse. iravel is angular to rounded fine to coarse of granite, chist, gneiss and granite. Cobbles are subangular of granite. at 4.40m extremely high strength		4.40 -	-10.67	4.40 5.90	92	100	NA	NA			
				5.90 8.00	92	100	NA	NA	NA	SPT(c)50/70mm - 5.90 6.04	
xploratory hole complete at 8.00 m.		8.00	-14.27								

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:29:46

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 1 of 1

-		-		ı Harl	bour Dev	elopi	ment	Ground	Invest	tigation	l			Explo	raton	v Hc	ale I c)O	Нс	le ID.	
Project		TA7												LAPIO	ratory	<i>y</i> 110	ne Lo	'9	(283	
Engine			n Hende																		
Employ Ground			rdeen H 4m CD	larbo	our Board			Coor	dinates	396		26.20 E, 8	<u> </u> 80470	0.27 N N	ational G	rid			Гп	eader	
Date Sta			7/2013							eted 27/		•					Inclinati	ion Verti	cal		
Тор	Base	Туре	Date Sta	rted	Date Ended	d C	rew	Section Logged By	Cor Barr	re Cor rel Bi	e t	F	Equipn	ment		Shorin Suppo	ıg / ort	R	Remarks		
0.00 2.50	2.50 10.10	CP RC	27/07/20 27/07/20		27/07/2013 27/07/2013		TP WW	DT DT	T611				Dando eltabas								
							\perp		l _								\perp				
				PRO	OGRESS						\Box						ER STRII	KES			
Date	_ T	ime	Hole depth	Casii dept	ng Wate th depth	r n		Remar	ks		1	Date	9	Time	Strike dept	at R	Rise to depth	Time taken	at strik	sing dep	o seal
27/07/20 27/07/20		L500 L930	2.50 10.10	2.35 2.50			d of CP/	Start of Rot	ary		7	·	_			+		to rise	time	+	flow
21701723	13	.530	10.10	2.50	=0.00	Liis	101110.	e													
				İ																	
				İ																	
				II.																	
											4								<u></u>		
∐ard	Strata	Donth	CA		ERCUSSION	N DET					4	Depth	Туре	Increr	mental bl		T DETAIL	LS Hammer	Energy	Casing	Water
from		to	Start t	ime	Duration hhmm	Kem	ains					Бери	Type		netration			No.	ratio %	depth	
2.30		2.50	130		0200	Chise	lling				1	1.00 2.00	SPT(C	N=26 (4,! 50/75mr	5,7,5,7,7) n (9,16,50, n (6,11,50,	/75)		AR360 AR360		1.00 2.00	-2.60 -2.70
												4.00 5.55 7.15	SPT SPT(C) SPT	50/75mr 50/100m	n (6,11,50. nm (7,16,5 (25/0,50/	0/100)		AR360 AR360 AR360	75 75 75 75 75 75	2.50 2.50 2.50	-2.50 -4.50 -6.40
												8.65	SPT	50/80mr	n (11,16,5	0/80)		AR360	75 75	2.50	-8.10
					. =:						\dashv										
Fron		То			RY FLUSH D	ETAIL:	Flu	ush		ush	\dashv										
dept 2.50	h	depth 7.15	\dashv		type Water	_	(turn % .00		lour own	4										
7.15		10.10			Water			.00		rey											
НО			/ CASING	i		DYI	NAMIC	C SAMPLIN	1G												
Hole diameter	Depth hole	of Cas diam		oth of sing	Тор	Base	Dia		Time hmmss	Recover %	у										
200 116	2.50 10.10	20)0 2. 39 2	.35 .50																	
		ICTALLA	TION DE	TALLC				IPE CONST	FDLICTIC		\dashv										
Distance					onse zone	ID		Pipe	Dia.	Type of	┨										
from G.L.				Top) Base		Тор	Base	of pipe	pipe	\dashv										
				ı																	
				ı											* Seatin	g blows	only.				
					CKFILL DET	AILS					\Box					GEN	ERAL NO	TES			
Top of section	n s	Base of ection		Materi				Remar	rks		╛										
0.00		10.10	,	Arising	S																
NOTES:					neters in m			in the same											4		
			rise time i abbreviat		nutes, hard see key	strata	a time	ın nnmm													
Unched	ked			Lo	og Print Da	te And	d Time	: 23/12/2	2013 10	ີ່ 0:29:51		-						SOII	L eng	ınee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148 Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board **Exploratory Hole Log**

Hole ID. **C83**

Sheet 1 of 2

Ground Level -3.74m CD Coordinates 396926.20 E, 804700.27 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	S	Sampling		Blo	ow Co	unt A Recov	nd erv	In Situ Test	1113
	9		Level	D	etails	Dia.				IF	Details	ati
ledium dense grey slightly silty slightly gravelly fine to parse SAND. Gravel is angular to subrounded fine to coarse of ranite and schist.				ES001	1.00-1.45						SPT(C)26 — 1.00 1.45	
o recovery. HARD STRATA. (Driller's description)		2.30	-6.04	D005	2.00-2.30						SPT(C)50/75mm	
tiff high strength reddish brown slightly gravelly sandy LAY with medium cobble content. Sand is fine to coarse. ravel is angular to subrounded fine to coarse of granite, chist and quartzite. Cobbles are angular to subrounded of ranite and schist. at 3.60m extremely high strength		2.50 - - - - - - - - - - - - - - - - - - -	-6.24	2.50	4.00	92	90	NA	NA		-	
from 3.85m to 4.00m assumed zone of no recovery iff greyish brown slightly gravelly sandy CLAY with low abble content. Sand is fine to coarse. Gravel is angular to abrounded fine to coarse of granite and schist. Cobbles are agular to subrounded of granite and schist.		4.00	-7.74	4.00	5.55	92	100	NA	NA		SPT50/75mm	
				5.55	7.15	92	100	0	0	NA	5.55 5.80	
				7.15	8.65	92	93	0	0		SPTSO/0mm 7.15 7.15	
from 8.55m to 8.65m assumed zone of no recovery				8.65	10.10	92	100	0	0		SPT50/80mm 8.65 8.88 - - - - - - - -	

Issue Date 22/10/2012

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:29:54

Form No. SIEXPHOLELOG Issue,Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 C83 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board

Ground Level	-3.74m CD	Coordinates	396926.20 E, 804700.27 N National Grid
Hole Type	CP+RC	Inclination	Vertical

Description of Strata	Legend	Depth	Datum Level	Sampling		Sar	nple l	ount A Recov	nd ery	In Situ Test Details	Install ation
			Level	Details	Dia.	TCR	SCR	RQD	IF	Details	
Stiff greyish brown slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite and schist. Cobbles are angular to subrounded of granite and schist.	0	10.10 -	-13.84							- - -	
subrounded fine to coarse of granite and schist. Cobbles are angular to subrounded of granite and schist.		-								- - -	
Exploratory hole complete at 10.10 m.		- -								- - -	
		-									
		-								- - -	
		-								-	
		-								-	
		-								-	
		-								-	
		-									
		-								-	
		-								-	
		=								-	
		_									
		-								- -	
		-								-	
										=	
		-								- -	
		- - -								- - -	
		-								- - -	
		-								 - -	
		- -								- - -	
		-								-	
		-								-	
		-								- - -	
		-								- - -	
		-								-	
		-								-	
		-								-	1
		- -								=	
		=								-	1
		- -								- -	1
		- - -								- -	
		-								-	

Issue Date 22/10/2012

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:29:56

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Sheet 2 of 2

•		-		Har	bour Dev	elop	men	t Grour	nd Inves	stigatio	n			Explo	ratory l	Hole L	OΠ		Но	le ID.	
Projec			148											LAPIO	idtory	TOIC E	og		(284	
Engine Employ			h Hende erdeen H		our Board														Н	eader	
Ground			1m CD	11 50	our Bourd			Co	ordinates	s 39	970!	59.53 E,	80470	03.63 N Na	ational Grid					-	
Date Sta	arted	20/0	07/2013					Da	te Compl			7/2013				Inclina	tion	Verti	cal		
Тор	Base	Туре	Date Star	ted	Date Ende	d C	Crew	Sectio Logged	n Co By Bar	ore Correl E	ore Bit		Equip	ment	Sh Su	oring / pport		R	Remarks		
0.00 1.00	1.00 7.40	CP RC	20/07/20 20/07/20	13 13	20/07/201 21/07/201	3	TP WW	DT DT	T61	l16 Im	preg		Dando Deltaba	3000 se 515							
		. 1			OGRESS							ļ <u>.</u>				WATER STR	_				
Date		ime	Hole depth	Casi dep	ing Wate oth dept	r h		Rem	arks			Dat	te	Time	Strike at depth	Rise to depth	tal	me ken rise	at strik time	sing der te t	oth o seal flow
20/07/20 20/07/20	013 :	1330 1345	1.00 1.00	1.00	0 -9.90	Sta	d of CP art of R	otary										1100			
20/07/20	013 1	1900 1000	3.30 3.30	2.00	0 -13.00) Sta	d of Sh art of Sl	nift													
21/07/20	013 .	1900	7.40	2.00	0 -12.40	En	d of Ho	ле													
																CDT DETA					
Hard	l Strata	Depth			PERCUSSIO elling		narks					Depth	Туре	Incren	nental blow	SPT DETA		nmer	Energy	Casing	Water
from	1	to	Start ti hhmr	ne 1	Duration hhmm									pen	etration in	mm	N	lo.	ratio %	depth	depth
1.00		1.00	1130		0200	Chis	elling					1.00 1.40 3.30	SPT(C SPT SPT	50/0mm 50/0mm	(25/0,50/0) (13,12/70,50 (11,14,50/0) (25/0,50/0) 9,7,11,10,11)	/0)	AR3	360 360 360	75 75 75	1.00 1.00 2.00	-10.30 -9.20 -13.00
												4.80 5.80	SPT SPT	50/0mm N=39 (7,9	(11,14,50/0) (25/0,50/0) 9,7,11,10,11)		AR3	360 360 360	75 75 75	2.00 2.00 2.00	-12.80 -12.60
			R	ΤΔΕ	 RY FLUSH D	FΤΔΙΙ	s														
Fror dept		To depth		יואוי	Flush type	LIAIL	F	lush turn		lush											
1.00		3.30	<u> </u>		Water		:	% 100	Ві	rown											
3.30		7.40			Water			80	Ві	rown											
					•																
			/ CASING		- 1			C SAMPI		15											
Hole diameter		e dian	sing Dept neter cas	ng	Тор	Base	Di	ameter	Time hhmmss	Recove	ery										
200 116	1.00 7.40		00 1.0	0																	
	<u> </u>	NSTALLA	ATION DET	AILS				IPE CON	STRUCTI	ION											
Distance		Т	уре Г		onse zone	ID	T	Pipe	Dia.	Туре		1									
from G.L	-			Top	p Base		Тор	Base	of pipe	e pipe	<u> </u>										
															* Seating b	ows only.					
T	<u> </u>)f		BA later	CKFILL DE	AILS		Daw	narks						G	ENERAL N	OTES				
Top o sectio 0.00	n s	Base of ection 7.40		Grou				кеп	агкѕ												
0.00					•																
NOTES					neters in m nutes, hard			e in hhmi	m										4		
			abbreviati	ons,	see key													50"	000	IDOO	חוחר
1				L	og Print Da	te An	d Tim	e: 23/12	2/2013 1	10:30:02							1 5	JUIL	L eng	11166	KIIIG

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 C84 Engineer Arch Henderson LLP

Ground Level -5.21m CD Coordinates 397059.53 E, 804703.63 N National Grid

Hole Type CP+RC Inclination

Aberdeen Harbour Board

Employer

Description of Strata	Legend	Depth	Datum	!	Sampling				ount A Recov		In Situ Te	11151
2000, priori di diata	Logona	Zopui	Level	D	etails	Dia.		<u> </u>	RQD	IF	Details	atio
irey slightly silty very gravelly fine to coarse SAND. Gravel a angular to subrounded fine to coarse of granite, schist and uartzite.				ES001 B002	0.30 0.30-1.00							
trong grey BOULDER of granite.	000	1.00	-6.21	1.00	1.40	92	100	NA	NA			00
tiff brown slightly sandy slightly gravelly CLAY with low to nedium cobble content. Gravel is angular to subrounded fine to oarse of granite, schist and quartzite. Cobbles are angular os subrounded of granite, schist and gneiss. from 1.95m to 2.10m angular coarse gravel of schist and		1.40 -	-6.61	1.40	2.10	92	100	NA	NA		SPT50/0mm 1.40 1	55
granite				2.10	3.30	92	91	NA	NA			
from 3.20m to 3.30m assumed zone of no recovery				3.30	4.80	92	97	NA	NA	NA	SPT50/0mm 3.30 3	4.45
from 4.75m to 4.80m assumed zone of no recovery				4.80	5.80	92	85	NA	NA		SPT50/0mm 4.80 4	i.80
from 5.65m to 5.80m assumed zone of no recovery											SPT39 5.80 6	5.25
at 7.10m gravelly				5.80	7.40	92	100	NA	NA			
xploratory hole complete at 7.40 m.		7.40 -	-12.61									
		-										
		- - - - -										

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:30:05

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Sheet 1 of 1

-		-		Har	bour Dev	elopmen	nt Ground	Invest	igation			Fxnlor	atory l	Hole I (20	Ho	ole ID.	
Project		TA7										LAPIOI	atory i	TOIC E	J	(287	
Engine			h Hende															
Employ Ground			rdeen F 5m CD	larbo	ur Board		Coor	dinates	3068	50 5/ F	80/60	06.18 N Na	tional Grid			H-	eader	
Date Sta			7/2013						3900 ted 02/0		80400	70.10 IV IVA	tional Grid	Inclinat	tion Vertic	cal		
Тор	Base		Date Sta	rted	Date Ende	d Crew	Section	Core	Core		Equip	ment	Sho	oring / pport	R	emarks		
0.00	1.10	СР	31/07/20	013	31/07/2013	3 TP	Logged By	Barre			Dando	3000	Su	pport				
1.10 1.20	1.20 8.50	RO RC	31/07/20 31/07/20	013 013	31/07/2013 02/08/2013	3 WW 3 WW	WW DT	T611	Tricone 6 Impreg			se 515 se 515						
Date	Ti	me	Hole	Casi	ng Wate	r	Remar	ks		Dat	e	Time	Strike at	VATER STR Rise to	Time	Ca	sing dep	th
			depth	dep	th depth	ו							depth	depth	taken to rise	at strik time	ke ī to	seal low
31/07/20 31/07/20 02/08/20	013 1	515 930	1.10 5.20	1.10	-9.00	End of Sh		ary										
02/08/20		700 450	5.20 8.50	1.20 1.20		Start of S End of H												
Hard	Strata	Denth	CA	BLE P Chise	ERCUSSIO	N DETAILS Remarks				Depth	Туре	Increm	ental blow	SPT DETA	ILS Hammer	Energy	Casing	Water
from		to	Start t	ime _I	Duration hhmm	Kemarks				Бери	Турс		etration in r		No.	ratio %	depth	depth
1.00		1.10	131		0200	Chiselling				1.00 1.10	SPT(C	50/0mm (50/0mm (25/0,50/0) 25/0,50/0)		AR360 AR360		1.00 1.10	-4.30 -4.70
										2.20 3.70	SPT SPT	N=56 (9,1) N=73 (6,8)	1,12,12,16,16,16,14,17,18,24) 50/5)	5)	AR360 AR360	75 75 75 75 75 75	1.20 1.20	-6.00 -7.40 -4.60
										5.20 6.75 8.50	SPT SPT SPT(C	30/5mm (30/75mm	50/5) (8,14,30/75) (14,34/20)		AR360 AR360 AR360	75 75 75	1.20 1.20 1.20	-4.60 -7.50 -7.15
										0.50	31 1(0	30/33/1111	(11,51,20)		741300	, 3	1.20	7.13
Fron	n I	То	F		Y FLUSH D		lush	Flu	ch									
dept		depth			type		eturn %	colo										
1.20		8.50		'	Water		100	Bro	wn	1								
HOle			/ CASING		Тор		IC SAMPLIN		Recovery	-								
diameter	hole	dian	neter cas	sing	ТОР	Dasc D		nmmss	% %									
200 139 116	1.10 1.20 8.50		00 1. 39 1.	.10 .20														
110	0.50																	
	IN	ISTALLA	ATION DE	TAILS			PIPE CONST	DUCTIO	N	1								
Distance	ID				onse zone	ID	Pipe	Dia.	Type of	1								
from G.L				Top	Base	Тор	Base	of pipe	pipe	-								
													* Seating bl	ows only.				
				BA	CKFILL DET	AILS								ENERAL N	OTES			
Top of section		ase of	, I	Materi	ial		Remar	ks										
0.00		8.50		Arising	JS .													
NOTEC	, All -1	a+b = !	mature	: ام اا		illing-to-												
INOTES:	Water	strike		in min			e in hhmm									4		

Log Print Date And Time: 23/12/2013 10:30:11

Issue Date 22/10/2012

Issue.Revision No. 1.05

Unchecked

Form No. SIEXPHOLEHDR

soil engineering

Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 C87

Employer Aberdeen Harbour Board Ground Level -2.85m CD Coordinates

396858.54 E, 804606.18 N National Grid

Hole Type CP+RC Inclination

Arch Henderson LLP

Engineer

Description of Strata	Legend	Depth	Datum	5	Sampling		Blo San	ow Co nple F	ount A	nd ery	In Situ Test	1115
			Level	D	etails	Dia.		SCR		IF	Details	atio
ledium dense grey slightly silty slightly gravelly fine to parse SAND. Gravel is angular to subrounded fine to medium of anite and schist.				B002 ES001	0.00-1.00							
		1.10 -	-3.95	D003	1.00-1.10						SPT(C)50/0mm - 1.00 1.00	
otary openhole drilling. HARD STRATA. (Driller's description) tiff very high strength greyish brown slightly gravelly sandy LAY with low cobble content. Sand is fine to coarse. Gravel angular to subrounded fine to coarse of granite, dolerite, chist and quartzite. Cobbles are angular to subrounded fine to coarse of granite and schist. from 1.20m to 1.30m strong grey boulder of dolerite.		1.20	-4.05	1.20	2.20	92	100	NA	NA		SPT(C)50/0mr b .10 1.10 — SPT56	
Recovered as angular coarse gravel sized fragments				2.20	3.70	92	100	NA	NA		2.20 2.65	
				3.70	5.20	92	100	NA	NA	NA	SPT73 3.70 4.15	
				5.20	6.75	92	100	NA	NA		SPT50/5mm 5.20 5.21	
				6.75	7.15	92	87	NA	NA		SPT30/75mm 6.75 6.98	
from 7.01m to 7.15m assumed zone of no recovery	0 0 0	=		0.13	. 1.13	32	01	IVA	INA		Ī	
				7.15	s 8.50	92	100	NA	NA		-	
at 8.45m extremely high strength xploratory hole complete at 8.50 m.		8.50 - - -	-11.35								SPT(C)50/95mm 8.50 8.60	_
inguistics of the control of the con		- - - - - - - -									-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:30:14

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 1 of 1

Part of the Bachy Soletanche Group

-		-		g Harl	bour Dev	elop	ment	Ground	Inves	tigatio	n			Fxplor	atory H	Hole Lo	oa	Ho	le ID.	
Project		TA7												-xpioi	acory i	1010 20	79	C	288	
Engine			n Hende																	
Employ Ground I			raeen F 5m CD	arbo	ur Board			Cool	rdinates	39	698	86 52 F 3	80461	4.01 N Na	tional Grid			Н	eader	
Date Sta			7/2013							eted 24						Inclinat	ion Verti	cal		
Тор	Base	Туре	Date Sta	rted	Date Ende	d C	rew	Section Logged B	Cor y Barr	re Co	re	E	Equip	ment	Sho	oring / pport	F	Remarks		
0.00	1.00	СР	22/07/2	013	22/07/201	3	TP	DT					Dando	3000 se 515	Ju	рроге				
1.00	8.25	RC	22/07/2	013	24/07/201	3	ww	DT	T611	16 lmp	reg	D	eltaba	se 515						
				PRO	OGRESS										v	VATER STRI	KES			
Date	Ti	me	Hole	Casii	ng Wate	r		Rema	rks			Date	e	Time	Strike at	Rise to	Time	Cas	sing dep	th
22/07/20	12 1	630	depth 1.00	1.00			d of CD	Start of Ro	tary		4				depth	depth	taken to rise	at strik time	e to	seal low
23/07/20 23/07/20	13 0 13 1	700 900	1.00 5.40	1.00	-3.50 -8.00	Sta En	rt of Sh d of Shi	ift	cury											
24/07/20 24/07/20		700 330	5.40 8.25	1.00 2.50			rt of Sh d of Hol													
				ABLE PI	<u> </u>	N DE	TAILS				\dashv		J			spt detai	LS			
	Strata			Chise			narks				7	Depth	Туре		nental blow		Hammer	Energy	Casing	Water
from 1.00		1.00	Start t hhm 123	ım	hhmm 0200	Chic	elling				_	1.00	CDT/C		etration in r	nm	No.	ratio %	depth 1.00	depth -7.90
1.00		1.00	123		0200	CIIIS	ening					2.70 4.20	SPT(C SPT SPT	I N=34 (7.7	25/0,50/0) 25/0,50/0) ,7,7,9,11)		AR360 AR360	75 75 75 75 75 75	1.00 1.00 1.00	-11.00 -10.40
												5.40 6.60	SPT SPT	50/150mr 50/0mm (n (6,7,11,25,1 25/0,50/0)	14/0)	AR360 AR360	75 75	1.00 2.50	-7.00 -7.50
												8.10	SPT	50/0mm (11,25,50/0)		AR360	/5	2.50	-9.00
			F	ROTAR	Y FLUSH D	ETAII	.S													
From dept		To depth			Flush type		FI	ush :urn		ush lour										
1.00	"	8.25			Water			0		- Ioui	\dashv									
НО	LE DIA	METER	/ CASING					SAMPLI	NG											
Hole diameter	Depth hole	of Cas dian		oth of sing	Тор	Base	Dia		Time hmmss	Recove %	ry									
200 116	1.00 8.25		00 2	.50																
											4									
Distance			TION DE		nse zone	ID		PE CONS	TRUCTION Dia.	ON Type of	f									
from G.L.			7,60	Тор		טו	Тор	Base	of pipe	pipe										
															* Seating blo	ows only				
				BAG	CKFILL DET	AILS		1	<u> </u>	<u> </u>			<u> </u>	1		ENERAL NO	OTES			
Top of section		ase of	ı	Materi	al			Rema	ırks											
0.00		8.25		Arising	S															
NOTEC	Δ111 -	a+h - !		- ⊶الم اا		:11:	++													
NOTES:	Water	strike		in min	neters in m lutes, hard			in hhmm										đ		
Unchec		cails Ul	appleAlg		og Print Da	te An	d Time	e: 23/12/	2013 10	0:30:20							SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

C88

Sheet 1 of 1

Ground Level -4.75m CD Coordinates 396986.52 E, 804614.01 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum		Sampling				ount A Recov		In Situ	Test	Inst
becomplied of older	Logena	Берин	Level		etails	Dia.	TCR	SCR	RQD	IF	Deta	ils	atio
Grey slightly silty very gravelly fine to coarse SAND with low obble content. Gravel is angular to subrounded fine to nedium of granite, schist and quartzite. Cobbles are angular o subrounded of granite schist and gneiss.				B002 ES001	0.00-1.00			ı				Let defeated defeat	
Strong pink and grey BOULDER of granite.	0,00	1.00 —	-5.75	1.00) 1.20	92	100	NA	NA		SPT(C)50/0r 1.00	nm —	
Stiff very high strength brown slightly sandy slightly gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. Cobbles are angular to subrounded of granite and schist.		1.20 = = = = = = = = = = = = = = = = = = =	-5.95	1.20	2.70	92	96	NA	NA				
Assumed zone of no recovery. Stiff greyish brown slightly andy boulder CLAY with occasional cobbles. (Driller's lescription)		2.65 _ 2.70 _ - -	-7.40 -7.45								SPT50/0mm 2.70	2.70 -	
Stiff brown slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite. Cobbles are angular to subrounded of granite and schist.				2.70) 4.20	92	100	NA	NA			1. Characters	
from 5.20m to 5.40m, 6.40m to 6.60m and 6.90m to 7.00m				4.20	5.40	92	83	NA	NA	NA	SPT34 4.20	4.65	
assumed zone of no recovery				5.40) 6.60	92	83	NA	NA		SPT50/150r 5.40	nm - 5.70 - - - - - - -	
from 6.40m to 6.60m assumed zone of no recovery	0 0 0 0 5 0 0			6.60	7.00	92	75	NA	NA NA		SPT50/0mm 6.60	6.60	
from 6.90m to 7.00m assumed zone of no recovery												activity in	
Assumed zone of no recovery. Stiff greyish brown slightly andy boulder CLAY with occasional cobbles. (Driller's lescription)		7.52 - - - - - -	-12.27	7.00) 8.25	92	47	NA	NA		SPT50/0mm 8.10		
exploratory hole complete at 8.25 m.		8.25	-13.00										

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:30:22

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

-		-		g Har	rbour Dev	/elop	ment	: Ground	l Invest	tigati	on			Fynlo	rator	Hole L	00	Н	ole ID.	
Project		TA7			_									Lybio	latory	11010 -	.og	(C96	
Engine			h Hende																	
Employ Ground			erdeen F 2m CD	Тагыс	our Board	1		Coor	rdinates		39702	28.28 E,	80441		lational Gr	id			leader	\longrightarrow
Date Sta			08/2013						e Comple			•				Inclina	ation Vert	ical		
Тор	Base	Туре	Date Sta	arted	Date Ende	d (Crew	Section Logged By	Cor y Barr	re	Core Bit	E	Equipr	ment		Shoring / Support		Remarks		
0.00 4.50	4.50 7.30	CP RC	19/08/2 19/08/2	1013	19/08/201 19/08/201	13	TP WW	DT DT	T611				Dando Deltaba	3000		мрроге				
4.50	1.50	RC	13/00/2	013	13/00/201	3	VVVV	וט	1013	10	mpreg)ellava	26 212						
			<u> </u>	PR	ROGRESS	—	—				\neg					WATER STR	L RIKES			$\overline{}$
Date	Ti	ime	Hole depth	Casi dep	sing Wate	er th		Remar	rks			Date	e	Time	Strike a	Rise to depth	Time taken	Ca at stril	sing dep	oth o seal
19/08/20		700	4.50	4.30	30 -8.40) En		/Start of Rot	tary		-	-			- чора		to rise	time	f	flow
19/08/20	013 0	1930 1810	5.70 5.70	4.50 4.50	50 -5.50) Sta	nd of Shi	nift	-											
20/08/20	13 1	.045	7.30	4.50	-8.50	En	nd of Hol	.e												
			C.F	ABLE F	PERCUSSIO	N DE	TAILS									SPT DETA	\ILS	_1		
Hard from	Strata I	Start t		selling Duration		marks					Depth	Туре		mental blo		Hammer No.	Energy ratio	Casing depth	Water depth	
4.30	-	to 4.50	hhm 150	nm	hhmm 0200		selling				\dashv	0.50	SPT(C	· ·			AR362	75 75	N/A	
				·								1.50 2.50	SPT(C	N=28 (4, N=37 (5,	,5,5,7,6,5) ,6,6,7,7,8) ,7,8,9,9,11) ,9,9,11,11,1: n (25/0,50/0	-1	AR362 AR362	75 75	1.50 2.50	-7.80 -7.90 -8.10
				ŀ								3.50 4.50	SPI(C	.) N=44 (b, 50/0mm	9,9,11,11,1 1 (25/0,50/0	3)	AR362 AR362	75 75 75	3.50 4.30	-8.20 -8.40
				ROTAF	RY FLUSH D	DETAL						1								
Fron dept		To depth	,		Flush type		ret	lush turn		lush olour										
4.50	+	7.30			Water			% 100	Ora	ange	-									
							<u> </u>					ļ								
HO Hole	Depth		/ CASING	G pth of	Тор	DY Base		C SAMPLII ameter	NG Time	Reco	vorv									
diameter 200	hole	diam	neter ca	asing 4.50	Тор				nhmmss											
116	4.50 7.30		JU 4	.50																
	IN	JSTALL/	ATION DE	TAILS	, ;	—	P	IPE CONS	TRUCTIO	ON		İ								
Distance from G.L.		T ₁	уре		onse zone	ID		Pipe	Dia.	Туре		İ								
ITOTTI G.L.	+++			Top	p Base	<u> </u>	Тор	Base	of pipe	pi	pe									
		I																		
						L	$oxed{oxed}$								* Seating	blows only.			<u> </u>	
T					ACKFILL DET	TAILS										GENERAL N	IOTES			
Top of section 0.00	n se	ection		Mater		ــــــ		Rema	rks											
4.50		4.50 7.30		Arising Grout	js it															
NOTES:					meters in m			· · le le mann												
			rise time abbrevia		nutes, hard , see key	l Strai	:a time	in hnmm												
Unched	ked			l	Log Print Da	ate Ar	nd Time	e: 23/12/	2013 10	0:30:2	9						SOI	L eng	inee	RING

Log Print Date And Time: 23/12/2013 10:30:29

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Inclination

Project No. TA7148

Engineer

Ground Level

Exploratory Hole Log Arch Henderson LLP

Hole ID.

C96

Sheet 1 of 1

Employer

Aberdeen Harbour Board

Coordinates 397028.28 E, 804417.35 N National Grid

Hole Type CP+RC

-4.22m CD

Description of Strata	Legend Depth Level Sampling Details B001 0.00-0.50						w Co ple F	Recov	ery	In Situ Test Details	Inst
			20001	Details	Dia.	TCR	SCR	RQD	IF	Details	30.0
Medium dense grey and greyish brown slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, schist, gneiss and quartz.		-		ES002 0.50 B003 0.50-0.95 ES004 1.00						SPT(C)23 0.50 0.95	
				D005 1.50 B006 1.50-1.95 ES007 2.00 D008 2.00						SPT(C)28 1.50 1.95	-
				B009 2.50-2.95 ES010 3.00						SPT(C)37 2.50 2.95	-
				D011 3.00 B012 3.50-3.95						SPT(C)44 3.50 3.95	
Weak locally medium strong grey coarse crystalline GRANITE with localised patches of orange staining penetrating full	*****	4.50 -	-8.72	ES013 4.00 D014 4.00						SPT(C)50/0mm 4.50 4.50	
core diameter. Discontinuities: 1) 30-40 degrees closely spaced planar rough with orange staining on surfaces. 2) 70-80 degrees medium spaced planar rough with brown staining on fracture surfaces. from 4.50m to 4.70m and 4.85m to 5.00m extremely weak. Recovered as non intact core (angular coarse gravel sized	*****			4.50 5.70	90	100	63	0			
fragments) from 5.10m to 5.25m medium strong from 5.40m to 5.50m and 6.35m to 6.60m very weak. Recovered as non intact core (angular coarse gravel sized fragments) from 6.50m to 6.80m medium strong	*****			5.70 7.30	90	100	90	24	NI 80 200		
from 7.10m to 7.20m very weak. Recovered as non intact core (angular coarse gravel sized fragments)	*****	7.30	-11.52								
Exploratory hole complete at 7.30 m.											

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:30:32

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

		•		Harb	our Dev	elopr	nent	Ground	Invest	tigati	on			Fxnlo	ratory	Hole Lo	oa	Но	ole ID.	
Project		TA7												LAPIO	racory	TIOIC E	9	[098	
Engine			n Hende																eader	
Employ Ground			7m CD	arbou	ur Board			Coor	dinates		39719	95.66 E,	80442	5.09 N Na	ational Gri	d			sauei	
Date Sta			8/2013						Comple			•				Inclina	tion Verti	cal		
Тор	Base	Туре	Date Star	rted D	Date Endec	d Cr	rew	Section Logged By	Cor Barr	re rel	Core Bit	E	Equipr	nent	S	horing / upport	F	Remarks		
0.00 2.10	2.10 4.10	CP RC	18/08/20 18/08/20)13 :	18/08/2013 18/08/2013	3 .	TP /IM	DT DT	T611		mpreg	l D	Dando Deltabas	3000		ирре. :				
2.10	4.10	inc.	10/00/20	'13	10/00/2010	,	/livi	DI	101.		libica	_	Jenasa.	PE 313						
				PRO	GRESS											WATER STR	IKES			
Date	Ti	me	Hole depth	Casin	ng Water h depth	r		Remar	rks			Date	е	Time	Strike a depth	t Rise to depth	Time taken	Ca:	sing dep	oth o seal
18/08/20		500	2.10	2.00	-8.60	End		Start of Rot	tary								to rise	time	f	low
18/08/20)13 1	930	4.10	2.10	-7.10	End	of Hole	е												
	CABLE PERCUSSION DETAILS														SPT DETA	ILS	•			
Hard from		rata Depth Chiselling Remarks										Depth	Туре		nental blo etration in		Hammer No.	Energy ratio	Casing depth	Water depth
2.00	+	2.10	1300	m	Duration hhmm 0200 Chiselling							0.50	SPT(C				AR362	% 75 75	N/A	-8.20 -8.30
					ŀ							1.50 2.10	SPT(C SPT(C	N=50 (7,8 50/0mm	5,6,6,5,8) 8,11,11,13,1 (25/0,50/0)	5)	AR362 AR362	75 75	1.50 2.00	-8.30 -8.50
					ŀ														 	
					ļ														 	
			R		/ FLUSH DI	ETAILS													 	
Fron dept		To depth			Flush type		ret	ush turn		ush Iour									 	
2.10		4.10		W	Vater		9	% 90	G	rey									 	
HOle	LE DIAN Depth		/ CASING sing Dep	th of	Тор	DYN Base		SAMPLIN meter	NG Time	Reco	verv									
diameter 200	hole 2.10	dian	neter cas	sing 00			ļ		hmmss											
116	4.10		2.																	
	IN	ISTALLA	TION DET	ΓAILS			PI	PE CONST	TRUCTIO	ON										
Distance from G.L.		Ty	уре	Respor Top	nse zone Base	ID		Pipe Base	Dia. of pipe	Туре	of pe									
Hom G.L.	•			ТОР	Busc		тор	Dasc	or pipe	Pi	pc									
					ot											blows only.				
Top of	: Гр	ase of		BAC Materia	KFILL DET	AILS		Rema								GENERAL N	OTES			
section 0.00	n se	ection 2.10		Arisings				Кеша												
2.10		4.10	'	Grout																
NOTES:	All de	oths in	metres, al	l diame	eters in mi utes, hard	illimet	res.	in hhmm										4		
	For de	tails of	abbreviat	ions, se	ee key	Strata	time													
Unched	ked			Log	g Print Dat	te And	Time	: 23/12/	2013 10	0:30:3	8	-					SOI	L eng	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 D98 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Sheet 1 of 1

Ground Level -7.57m CD Coordinates 397195.66 E, 804425.09 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level		Sampling	1	San	nple l	ount A Recov	ery	In Situ Deta		Insta
Medium dense grey slightly silty fine to coarse SAND.	X	-	2010.		0.00-0.50	Dia.	TCR	SCR	RQD	IF			
from 1.50m to 2.00m dense		-		B003 D004							SPT(C)25 0.50 SPT(C)50 1.50	0.95 -	
		2.00 —	-9.57	8006	1.50-1.95							-	
No recovery. SCHIST. (Driller's description) Medium strong grey GNEISS with medium spaced thin bands of weak thinly foliated (<1mm) grey inclusions schist. Discontinuities: 1) 20-30 degrees very closely locally closely spaced planar rough with slight yellow and brown staining on surfaces. 2) 80-90 degrees medium spaced planar rough with dark brown staining on surfaces.		2.10	-9.67	2.10	3.10	90	90	65	11	NI	SPT(C)50/0i 2.10	mm - 2.10 - - - - - - -	
from 2.10m to 2.25m weak grey schist. Recovered as non intact core (angular coarse gravel sized fragments) from 2.32m to 2.40m thin band of weak thinly foliated (<1mm) grey schist from 2.60m to 2.70m weak grey schist. Recovered as non intact core (angular coarse gravel sized fragments) from 3.00m to 3.10m assumed zone of no recovery from 3.10m to 3.35m weak grey schist. Recovered as non intact core (angular coarse gravel sized fragments) from 3.80m to 4.00m recovered as non intact core (angular coarse gravel sized fragments)		4.10	-11.67	3.10	4.10	90	100	55	0	45 110			
Exploratory hole complete at 4.10 m.													

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:30:40

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

,		•		ا Hark	bour Dev	elopm	ent (Ground	Invest	igati	on			Fxplo	ratory	Hole Lo	oa	Нс	ole ID.	
Project			7148 h.Uanda													10.0 =	79	Г	099	
Engine Employ			h Hende erdeen H		LLP our Board													н	eader	
Ground			9m CD	albo	UI DUaiu			Coord	dinates		39714	46.90 E,	 80455	8.10 N Na	ational Grid				sauei	
Date Sta	rted	20/0	08/2013					Date	Complet							Inclinat	tion Verti	cal		
Тор	Base	Туре	Date Star	rted	Date Ended	d Cre	w L	Section ogged By	Core Barre	e (Core Bit	F	Equipn	nent	Sh	oring / ipport	F	Remarks		
0.00 4.10	4.10 7.10	CP RC	20/08/20	013	20/08/2013 21/08/2013	3 TP	Р	DT DT					Dando Deltabas			FI .				
	1.20		20,02		21/00/		.	٠.					rona.	36 020						
<u>_</u>				PRO	OGRESS						\neg				1	NATER STRI	IKES			
Date	Tir	ime	Hole depth	Casir dept	ng Wate	r		Remark	ks			Date	е	Time	Strike at depth	Rise to depth	Time taken	at strik	sing dep ke to	o seal
20/08/20		1830	4.10	4.10) -9.80	End of	of CP					-	$\overline{}$		 '	<u> </u>	to rise	time	1	flow
20/08/20 21/08/20 21/08/20	013 0	1930 1730 1930	4.10 4.10 7.10	4.10 4.10 5.40) NR	Start o	of Shift of Shift of Hole	ft												
21,00,2	13	330	, ,,,,,	J	55	Line c	1116.0													•
				ı																
				ı																
			CA											SPT DETAI						
Hard from	l Strata I า	Depth to	Start time Duration per									nental blow etration in I		Hammer No.	ratio	Casing depth	Water depth			
3.70	+	4.10	1630		0200				\dashv	0.50 1.50	SPT(C	N=13 (3,3	3,4,3,3,3)		AR360 AR360	% 75 75	N/A 1.50	-10.70 -10.50		
					I	1						3.50 4.10	SPT(C	N=20 (4,-) 50/0mm 50/0mm	3,4,3,3,3) 4,5,4,5,6) (11,14,50/0) (25/0,50/0) (25/0,50/0)		AR360 AR360 AR360	75 75 75 75	3.50 4.10	-10.20 -9.80
												5.60	SPT(C	50/0mm	(25/0,50/0)		AR360	75	4.10	-10.00
			\perp																 	
Fror			R		Y FLUSH D	ETAILS	- Slu	- h	Eli	·sh									 	
Fron dept		To depth	1		Flush type		Flus retu %	urn	Flu colo										 	
4.10 5.60		5.60 7.10			Water Water		10 70	00	Brov Orar										 	
										-									 	
НС	LE DIAI	METER	/ CASING	<u>. T</u>		DVN/		SAMPLIN	JG	—	-								 	
Hole	Depth	of Cas	sing Dep	oth of	Тор	Base	_	meter 1	Time	Recov									 	
diameter 116	7.10			sing .40			+	hh	hmmss	%									 	
				\Box															 	
			ATION DET					PE CONST											 	
Distance from G.L		Ty 	уре	Respo Top	onse zone D Base	ID T		ipe Base c	Dia. of pipe	Type pip									 	
		l		ı															 	
		—		RΔ	CKFILL DET	.VII C				—	\dashv	 	<u> </u>		* Seating bl	lows only. SENERAL NO	OTES			
Top o		Base of	1	Materia		AILS		Remar	rks		\dashv					IEINEIMAL IN	J1E3			
sectio 0.00		ection 7.10	-	Arisings	S						_									
					ļ	1														
						1														
						1														
	Ш					Ш														
NOTES:	Water	r strike ı	rise time i	in min	neters in mi nutes, hard			in hhmm										4		
Unched		tails of	fabbreviat		see key og Print Da	to And	Time	. 22/12/2	2012 10	13.05.							SOI	L eng	IDEE	BIUG
unched	.keu			LC	og Pillit Da	le Anu	i iiiie.	. 23/12/2	-012 IO	∕.3U.4₹)						301	- 0110		

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

D99

Sheet 1 of 1

Ground Level -6.29m CD

Coordinates

397146.90 E, 804558.10 N National Grid

Hole Type CP+RC Inclination

Legend	Depth	Datum	Sampling	_					In Situ Test	Inst
		Levei	Details	Dia.	TCR	SCR	RQD	IF	Details	atio
			B001 0.00-0.50 ES002 0.50 B003 0.50-0.95						SPT(C)13 0.50 0.95	
			ES005 1.50 B006 1.50-1.95 D007 2.00 ES008 2.00						SPT(C)20 1.50 1.95	
			D009 3.00 ES010 3.50 B011 3.50-3.70						SPT(C)50/0mm 3.50 3.65	
	4.10	-10.39							SPT(C)50/0mm 4.10 4.10	
	5.00 —	-11.29	4.10 5.60	90	66	NA	NA		<u>.</u>	
000	5.60	-11.89						NA	SPT(C)50/0mm 5.60 5.60	
	6.00	-12.29	5.60 7.10	90	100	NA	NA			
70. 12	7.10 	-13.39								
									- - -	
	 - - - - -								: -	
		4.10	Legend Depth Level 4.1010.39 5.0011.29 6.0012.29	Legend Depth Level Details	Level Details Dia.	Legend Depth Level Details Dia. TCR	Leyel Details Dia. TCR SCR	Level Details Dia. TCR SCR RQD	Level Details Dia TCR SCR RQD IF	Legend Depth Level Details Dia. TCR SCR RQD IF Details

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:30:47

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

		-		Harl و	bour Dev	elop	ment	: Ground	l Invest	tigatio	on			Fynlor	ratory ł	Hole Lo	20	Нс	ole ID.	
Project			7148		_									Lybici	atory	IOIC L	<i>J</i> 9	D	100	
Engine			h Hende																	
Employ Ground I			erdeen F .06m CD	larbo	our Board	—	—	Coor	rdinates	3	39730	 03.23 E, {	<u> </u> 80448	33.34 N Na	tional Grid			r-1	eader	
Date Sta			08/2013						e Comple							Inclinat	tion Vertic	cal		
Тор	Base	Туре	Date Sta	irted	Date Ende	d C	Crew	Section Logged By	Cor y Barr	e C	Core Bit	E	Equipr	ment	Sho Su	oring / pport	R	Remarks		
0.00 3.10	3.10 4.00	CP RC	10/08/20	.013	10/08/201		TT TT	TW TW	T611		npreg		Dand0 Deltabas	3000		pp=::				
3.10	4.00	, ne	10,00,1	013	10/00/202	,	"	100	1012		lhica	-	tilas.	26.313						
				PRO	OGRESS										V	VATER STRI	IKES			
Date	Ti	me	Hole depth	Casir dept	ing Wate	r h		Remar	rks			Date	е	Time	Strike at depth	Rise to depth	Time taken	at strik	sing dep	o seal
10/08/20		800	3.10 4.00	3.10 3.10	0 -15.70	0 End	nd of CP/	/Start of Rot	tary		\dashv				-	-	to rise	time	+	flow
10/08/20	13 4	.000	4.00 3.10 -15.00 End of Hole																	
I																				
_ 												SPT DETAI			-					
Hard from	Start time Duration									Depth	Туре		nental blow etration in r		Hammer No.	Energy ratio	Casing depth	Water depth		
3.00	+	3.10	hhmm hhmm								\dashv	0.50 1.50	SPT SPT	N=20 (3,3 N=25 (4,5 N=23 (3,6	,5,5,4,6)		AR362 AR362	% 75 75	N/A 1.50	-15.30 -15.70
				1600 0200 Chiselling								2.50 3.10	SPT SPT	N=23 (3,6 50/0mm (,5,5,7,8) ,4,6,6,7) 25/5,50/0)		AR362 AR362 AR362	75 75 75	2.50 3.10	-15.40 -15.20
	\perp					L_														
From	<u> </u>	То	F		RY FLUSH D Flush	ETAIL		lush	Flu	ush	_									
deptl		depth			type	!	ret	turn %	col	lour										
3.10		4.00		\	Water		1	100	Bro	own										
						!														
						l														
						l														
НО	LE DIAI	METER	/ CASING	à		DY	/NAMI	C SAMPLII	MG		\dashv									
Hole diameter	Depth hole			pth of sing	Тор	Base	Dia		Time	Recov	ery/									
150 116	3.10 4.00	1:		3.10			+		1111111155	70										
116	4.00																			
Distance.			ATION DE			_		IPE CONS												
Distance from G.L.			уре	Top	onse zone p Base	ID	Тор	Pipe Base	Dia. of pipe	Type pip										
		ı																		
		ı													* C - * 1-1					
				BA	CKFILL DET	LLL FAILS	<u> </u>				\dashv				* Seating bl	iENERAL NO	 OTES			
Top of section		ase of ection	ı	Materia	ial			Rema	ırks											
0.00 3.10		3.10 4.00		Arising: Grout	is t															
NOTES:	All do	nthe in	motros a	all dian	neters in m	illim	otros					<u> </u>								
NOTES.	Water	strike :	rise time i f abbreviat	in min	nutes, hard	strat	ia time	in hhmm	I									4		
					og Print Da	ate Ar	nd Time	e: 23/12/	2013 10):30:52	<u> </u>						SOII	L eng	inee	RING

Log Print Date And Time: 23/12/2013 10:30:52

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 D100 Engineer Arch Henderson LLP

Ground Level -11.06m CD Coordinates 397303.23 E, 804483.34 N National Grid

Hole Type CP+RC Inclination

Aberdeen Harbour Board

Employer

Description of Strata	Legend	Depth	Datum Level	Sampling		Blo San	ow Co nple F	Recov	nd ery		u Test tails	Insta
			Levei	Details	Dia.	TCR	SCR	RQD	IF	De	Lalis	atioi
Medium dense grey slightly silty slightly gravelly fine to nedium SAND. gravel is fine. (Driller notes occasional oulders).				D001 0.00-0.10 D002 0.50-0.95 B003 0.50-1.00 D004 1.00-1.20 D005 1.50-1.95						SPT20 0.50 SPT25	0.95	
	× × × × × × × × × × × × × × × × × × ×	-		D007 2.00-2.20 D008 2.50-2.95 B009 2.50-3.00						1.50 SPT23 2.50	1.95 - - - - - - - - - - - - - - - - - - -	
Strong pink and grey medium crystalline GRANITE. Discontinuities: 1) 50-60 degrees medium spaced undulating oough clean. from 3.50m to 3.72m 1 No discontinuity 80 degrees planar rough clean at 3.85m 1 No discontinuity 0-10 degrees planar rough clean from 3.87m to 4.00m assumed zone of no recovery. Exploratory hole complete at 4.00 m.		4.00	-14.16 -15.06	3.10 4.0	0 92	86	86	67	200 1200 2600	SPT50/On 3.10	3.11 -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:30:55

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 1 of 1

_		-		Hark	oour Dev	elopn	nent	Ground	Inves	tigat	ion			Explo	raton	, н	ole I d	00	Но	ole ID.	
Project		TA7												LXPIO	ratory	y 1 1	OIC LC	9	D	101	
Engine			n Hende																		
Employ Ground			rdeen H Om CD	arbo	ur Board			Coor	dinates		20721	50 00 E	90/57	74.50 N N	ational G	rid			Н	eader	
Date Sta			9/2013						Comple				00437	4.30 N N	ational G	Πü	Inclinat	ion Vert	cal		
Тор	Base	Туре	Date Star	ted [Date Ende	d Cre	ew .	Section	Cor	re.	Core Bit	I	Equipr	ment		Shori Supp	ng _. /	F	Remarks		
0.00	4.80	СР	24/09/20	13	24/09/201	3 AC)'H	Logged By DT			Bit		Dando	3000		Supp	ort				
4.80	8.80	RC	24/09/20	13	26/09/201	3 RJ	/TT	DT	T61:	16	mpreg	D	eltaba	se 515							
Date	Ti	me	Hole	Casir	OGRESS ng Wate	r		Remar	ks			Date	e	Time	Strike		TER STRI Rise to	Time	Ca	sing dep	ıth
			depth	dept	th depti	ו						Dut		111110	dept	h	depth	taken to rise	at stril time	κe i to	seal low
24/09/20 24/09/20	13 1	300 800	4.80 6.80	4.50 4.50	-8.90	End	of Shif		ary												
26/09/20 26/09/20		700 800	6.80 8.80	4.50 8.80			of Shi of Hol														
Hard	Strata I	CABLE PERCUSSION DETAILS Depth Chicalling Pemarks Depth									Depth	Туре	Increi	mental bl		PT DETAI	LS Hammer	Energy	Casing	Water	
from		to										Берин	lype	per	netration	in mr	n	No.	ratio %	depth	depth
4.50		4.80	1100		hhmm 0200 Chiselling							0.50 1.50	SPT(C	N=19 (3, N=27 (3,	3,4,4,5,6) 4,6,7,7,7) 4,5,7,8,8) 6,6,7,7,8) nm (10,12,7			AR360 AR360	75 75	N/A 1.50	-9.60 -9.10
					0200 Cniselling							2.50 3.50 4.50	SPT(C SPT(C SPT(C	N=28 (4, N=28 (6,	4,5,7,8,8) 6,6,7,7,8)	45.05	(7.0)	AR360 AR360	75 75 75	2.50 3.50 4.50	-8.30 -7.80 -7.20
												4.50 5.80	SPT(C	50/145n 50/85mr	nm (10,12, n (25/65,4	0,10/1	10)	AR360 AR360	75 75	4.50 4.50	-7.20 -7.20
Fron	n I	То	R		Y FLUSH D Flush	ETAILS		ush	Fli	ush											
dept		depth			type		ret	urn %		lour											
4.80		8.80		V	Nater		1	00	Br	own											
НО	I F DIAN	/FTFR	/ CASING			DYN	AMIC	SAMPLIN	JG												
Hole	Depth	of Cas	sing Dept		Тор	Base		meter	Time		very										
diameter 150	hole 8.80		neter cas					h	hmmss	%)										
	IN	STALLA	TION DET	AILS	•		PI	PE CONST	RUCTIO	ON											
Distance from G.L		Ту	/pe	Respo Top	nse zone I Base	ID .	F Top	Pipe Base	Dia. of pipe	Туре	e of ipe										
				·			•			·											
					01/51::										* Seatin						
Top o	f p	ase of	N.	BAC lateria	CKFILL DET	AILS		Rema	rks							GEN	NERAL NO	JIES			
sectio 0.00	n se	ection 8.80		risings				Nema	110												
3.00				9	-																
NOTES:					neters in m			in bb													
			rise time ii abbreviat		utes, hard see key	sırata	ume	ın nnmm													
				Lo	og Print Da	te And	Time	: 23/12/2	2013 10	0:30:5	9							SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

D101

Sheet 1 of 1

Employer Aberdeen Harbour Board Ground Level

-9.00m CD

Coordinates

397259.00 E, 804574.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling				ount A Recov		In Situ Test Details	lr a
			Lovei	Details	Dia.	TCR	SCR	RQD	IF	Dotails	ľ
Medium dense brown slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse of nixed igneous and metamorphic lithologies including granite, chist, gneiss and quartz.		-		D001 0.50 B002 0.50-1.00						SPT(C)19 0.50 0.95	
		-		D003 1.50 B004 1.50-2.00						SPT(C)27 1.50 1.95	de la constant de la
				B006 2.50-3.00						SPT(C)28 2.50 2.95	and and and administration
				D007 3.50 B008 3.50-4.00						SPT(C)28 3.50 3.95	Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Sa
New York Clay (Dilled de victor)			-13.80	D009 4.50 B010 4.50						SPT(C)50/145mm 4.50 4.80	Salar Salar Salar Salar Salar
No recovery. Boulder CLAY. (Driller's description)				4.80 5.80	89	0	NA	NA			Salara de la constanta de la c
Stiff brown slightly sandy slightly gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are angular to subrounded of granite and gneiss.		5.80 	-14.80	5.80 6.80	89	90	NA	NA		SPT(C)50/85mm 5.80 5.95 —	dent of the second of the second
from 6.70m to 6.80m assumed zone of no recovery Assumed zone of no recovery. Stiff boulder CLAY with large granite boulders. (Driller's description).		7.35	-16.35	6.80 7.80	89	55	NA	NA	NA NA	-	Salara de la constante de la c
Stiff brown slightly sandy slightly gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz.		7.80 - - - - - 8.30 -	-16.80 -17.30	7.80 8.80	89	50	NA NA	NA NA		<u>-</u>	
Cobbles are angular to subrounded of granite and gneiss. Assumed zone of no recovery. Stiff boulder CLAY with large granite boulders. (Driller's description). Exploratory hole complete at 8.80 m.		8.80	-17.80								

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:31:02

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project	Nam	e Bay	of Nig	g Har	rbour Dev	elop	ment	Groun	d Inve	stiga	tion			Cypla		اماما		Н	le ID.	
Project	t No.	TA7	148											Explo	ratory l	iole L	og	Ь	102	
Engine		Arc	h Hend	ersor	ı LLP													D	102	
Employ				Harbo	our Board								22.15					Н	eader	
Ground Date Sta			12m CD 08/2013						ordinate e Comp				80453	34.08 N Na	ational Grid	Inclina	tion Verti	ical		
Тор	Base	Туре	Date Sta	arted	Date Ende	d C	Crew	Sectior Logged E	_	ore	Core Bit		Equipr	ment	Sho	oring / pport	ſ	Remarks		
0.00	3.00	СР	08/08/2	2013	08/08/201	3	TP	Logged E TW	Ву Ва	rrel	Bit	 	Dando	3000	Su	pport				-
				DD	OCDECC											VATED CTD	IIVEC			
Date	Ti	me	Hole	Cas dep	OGRESS ing Wate	er		Rema	arks			Dat	:e	Time	Strike at	VATER STR Rise to	Time	Ca	sing der	
00 (00 (20	12 1	000	depth				1 .611.1								depth	depth	taken to rise	at stril time	ce t	o seal flow
08/08/20)13 1	900	3.00	3.0	0 -13.30	En	d of Hol	le												
												-								
Hard	Strata I	Depth	- C		PERCUSSIO selling		narks					Depth	Туре	Increr	nental blow	SPT DETA	Hammer	Energy	Casing	Water
from		to	Start hhn	time	Duration hhmm							J Sopan			etration in r		No.	ratio %	depth	
									_			0.50 1.50	SPT SPT	N=18 (4,3 N=29 (5,6	3,5,4,4,5) 6,7,6,8,8)		AR360 AR360	75 75	N/A 1.50	-13.20 -13.30
												2.50	SPT	N=42 (6,8	3,9,9,11,13)		AR360	75	2.50	-13.30
Fron	n	То		ROTAI	RY FLUSH D	ETAIL	FI	ush	F	lush										
dept	h	depth			type		ret	turn %	С	olour										
НО	LE DIAN	/IETER	/ CASINO	<u> </u>		DY	NAMIO	C SAMPL	ING			1								
Hole		of Cas		pth of	Тор	Base	Dia	ameter	Time		overy	1								
diameter 150	3.00			sing 3.00					hhmms	S S	%	-								
	IN	STALL	ATION DE				P	IPE CONS	STRUCT	ION										
Distance from G.L		T	ype	Resp To	onse zone p Base	ID	Top	Pipe Base	Dia. of pipe		e of oipe									
					VCIVEUU DE	TAIL C						-			* Seating bl		OTEC			
Top of	f B	ase of		Mater	ACKFILL DE	IAILS		Rem	arks							ENERAL N	OTES			
section 0.00	n se	ection 3.00		Arising	gs							-								
NOTES:					meters in m nutes, hard			in hhmn	n									4		
			abbrevia	itions,													501	L eng	IDOC	יחיים

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Arch Henderson LLP Aberdeen Harbour Board **Exploratory Hole Log**

Hole ID.

D102

Sheet 1 of 1

Ground Level -10.12m CD Coordinates

397409.67 E, 804534.08 N National Grid

Hole Type

Engineer

Employer

Inclination

Description of Strata	Legend	Depth	Datum		Sampling		Blo San	ow Co	ount Reco	And very		u Test	Insta
			Level	[Details	Dia.	TCR		RQD		- De	tails	ation
Medium dense grey slightly gravelly silty fine to medium SAND. Gravel is subangular to rounded fine to medium of granite, schist and gneiss.	X	-			0.00-0.50					1		į	
	× × × × × × × × × × × × × × × × × × ×			D002 B003 D004	0.50-0.95						SPT18 0.50	0.95	
	×××	-									SPT29		
from 1.50m to 3.00m dense	× × × ×			B006	1.50 1.50-1.95 2.00						1.50	1.95 ·	
	× × × × × × × × × × × × × × × × × × ×			D008	2.50 2.50-2.95						SPT42 2.50	2.95 ·	
exploratory hole complete at 3.00 m.	XXX	3.00	-13.12	B009	2.50-2.95						2.50	2.93	
,,		- - - -											
		- - -										- - -	
		-										-	
		- - -										- - - -	
		- - - -											
		-										-	
		-										- - -	
		- - - -										- - - -	
		-										- - - -	
		- - - -										- - -	
		- - - -											
		- - - - -										- - -	
		- - -										-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:22:16

SOIL ENGINEERING Part of the Bachy Soletanche Group

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Project	. Nam	-		Harb	bour Dev	elop	ment	Ground	Inves	tigatio	n			Fynlo	ratory	Hole Lo	20	Нс	ole ID.	
Project		TA7												LAPIO	ratory	TIOIC LO	<i>J</i> 9	D	104	
Engine			n Hende																	
Employ Ground I			rdeen H Om CD	arpot	ur Board			Coor	dinates	36	746	62.40 E,	<u> </u>	35.20 N N	ational Gri	d		Гп	eader	
Date Sta			9/2013							eted 23							tion Verti	cal		
Тор	Base	Туре	Date Sta	rted [Date Ende	d C	rew	Section Logged By	Cor Barr	re Co	ore Bit	F	Equipr	ment	S	horing / Support	P	Remarks		
0.00 8.25	8.25 11.60	CP RC	22/09/20 23/09/20		23/09/2013		IC /W/RJ	DT DT	T611		oreg		Dando Deltaba			Tri -				
			20. 2	-	20, 02.	Ĭ		Ξ.			,,,,,			JC 0						
				PRC	OGRESS											WATER STR	IKES			
Date	T	me	Hole depth	Casin dept	ng Wate th depth	r h		Remar	ks			Date	е	Time	Strike a depth	Rise to depth	Time taken	at strik	sing dep	o seal
22/09/20 23/09/20		1400 1700	8.25 10.60	7.95 8.00			of CP/	Start of Rot	ary		\neg					+	to rise	time	+	low
23/09/20	13 1	300	11.60	10.00			d of Hole		Ilit											
<u> </u>																				
∐ard	Ctrata	D-n+h	CA												SPT DETAI		F-250V	Carino	Motor	
Hard from	Strata	Depth to	Start time Duration										Туре		nental blo etration ir		Hammer No.	Energy ratio %	Casing depth	Water depth
7.95		8.25		hhmm hhmm 0200 Chiselling								0.50 1.50	SPT(C	N=32 (4,0 N=41 (10	6,4,9,7,12) 0,12,12,10,9	.10)	AR360 AR360	75 75 75	N/A 1.50	-12.80 -13.00
					0 0200 Chiselling								SPT(C SPT(C SPT(C) 50/150m	ım (15,10,18 2,12,12,14,1	3,32) 4,12)	AR360 AR360	75 75	2.50 3.50	-14.00 -14.20
												4.50 5.50 7.00	SPT(C	(9,5 (1) N=48 (9,5 (2) 50/250m	n (9,16,50/5 8,9,9,16,14) nm (10,10,1	60) 2,17,11,10/25)	AR360 AR360 AR360	75 75 75 75 75 75	4.50 5.50 7.00	-14.00 -13.45 -13.45
												8.25 10.30	SPT(C	50/0mm	(25/0,50/0) nm (7,9,14,1		AR360 AR360	75 75	7.95 NR	-13.30 NR
From		То	R		Y FLUSH D Flush	ETAIL		ush		ush	-									
dept	h	depth			type		Q	urn %		lour										
8.25 10.60		10.60 11.60			Nater Nater			00		lilky own										
НО	LE DIA	METER .	/ CASING			DY	NAMIC	SAMPLIN	IG											
Hole diameter	Depth			th of sing	Тор	Base	Dia		Time hmmss	Recove	ry									
200 121	8.25 10.00) 12	00 8.	.00																
116	11.60)																		
	<u> </u>						Щ.				\dashv									
Distance			TION DET		nse zone	ID		PE CONST	Dia.	ON Type o	f									
from G.L.		,		Тор			Тор		of pipe	pipe										
															* Seating	blows only.				
				BAC	CKFILL DET	AILS								'		GENERAL N	OTES			
Top of section	n s	ase of ection		Materia				Remai	rks											
0.00		11.60	,	Arisings	S															
NOTES:					neters in m													4		
			rise time i abbreviat		utes, hard see key	strata	a time	in hhmm												
				Lo	og Print Da	te An	d Time	: 23/12/2	2013 10	0:31:07							SOII	L eng	inee	RING

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Hole Type

Exploratory Hole Log Arch Henderson LLP

Hole ID.

D104

Sheet 1 of 2

Employer Aberdeen Harbour Board Ground Level -9.80m CD Coordinates

> CP+RC Inclination

397462.40 E, 804685.20 N National Grid

Description of Strata	Legend	Depth	Datum Level	Sampling				ow Co nple I			In Situ Test	IIISta
				-	Details	Dia.	TCR	· -	RQD	IF	Details	ation
Loose to dense grey fine to coarse SAND.		- - -						•	•	•		
Dense grey slightly silty very gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz.		0.50 - - - - - - -	-10.30		0.50 0.50-1.00						SPT(C)32 0.50 0.95	
				D003 B004	1.50 1.50-2.00						SPT(C)41 1.50 1.95	
					2.50 2.50-3.00						SPT(C)50/150mm 2.50 2.80	
				D007 D008	3.50 3.50-4.00						SPT(C)52 3.50 3.95	
					4.50 4.50-5.00						SPT(C)50/50mm 4.50 4.70	
				D011 B012	5.50 5.50-6.00						SPT(C)48 5.50 5.95	
				D013	6.50 7.00-7.50						SPT(C)50/250mm-	
				D015	7.50						7.00 7.40	
No recovery. GRANITE boulder. (Driller's description)	* * * * * * * * * * * * * * * * * * *	7.95 8.25	-17.75 -18.05					1			- SPT(C)50/0mm	
Firm brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite and gneiss. Cobbles are angular to subrounded of granite and gneiss. from 8.25m to 8.40m strong grey boulder of granite				8.2	5 8.60	89	100	NA	NA		8.25 8.25	
			-19.60	8.6	0 10.30	89	71	NA	NA			

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:31:10

Form No. SIEXPHOLELOG

TA7148

Project No.

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

D104

Sheet 2 of 2

Ground Level -9.80m CD Coordinates 397462.40 E, 804685.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	d Depth	Datum Level	Sampling			Blow Count And Sample Recovery				In Situ Test	Inst
				Deta	ils	Dia.			RQD	IF	Details	atio
Assumed zone of no recovery. Stiff greyish brown slightly	0-0-0	_									-	
andy boulder clay with granite cobbles. (Driller's description)	p 0 0 0										SPT(C)50/156mm · 10.30 10.61 ·	
	0 0 0 0	10.60 -	-20.40								10.30 10.61	
irm brown slightly gravelly sandy CLAY with medium cobble	p 0 0 0	-	-20.40	10.60	10.90	89	100	NA	NA		:	
ontent. Sand is fine to coarse. Gravel is angular to rounded ne to coarse of mixed igneous and metamorphic lithologies	0 0 0	_								1		
ncluding granite and gneiss. Cobbles are angular to ubrounded of granite and gneiss.	0 0 0	=		10.90	11.60	89	100	NA	NA			
from 11.00m to 11.10m strong grey boulder of granite		=										
xploratory hole complete at 11.60 m.	0 - 10 - 1	11.60	-21.40									200
plotatoly note complete at 11.00 m.		-										
		-									-	1
		-									;	1
		-									:	1
		=										
		-										
		-										
		_										1
		-										1
		-										
		_										}
		-										1
		-										1
		-										1
		-										1
		=									-	-
		-										1
		-										1
		_										1
		_										1
		_										-
		-										}
		-										1
		_										
		-									-	1
		-										1
		=										}
		-										1
		_									_	
		-]	1
		-										1
		-										}
		-]	
		_									-	1
		_] :	1
		_									:	1
		-]	1
		_]	1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:31:13

Part of the Bachy Soletanche Group

SOIL ENGINEERING

_		-) Har	bour Dev	elop	ment	Ground	l Inves	tigati	on			Fynlo	rato	orv F	Hole Lo	00	Но	le ID.	
Project		TA7												LAPIC	nacc	Луі	TOIC LC	9	F	65	
Engine			h Hende																		
Employ Ground			rdeen F 8m CD	larbo	ur Board			Coor	dinates		20720	12 E0 E	90/63	27.40 N N	lations	d Grid			Н	eader	
Date Sta			8/2013						Comple			,	00402	27.40 IN IN	Nationa	ii Giiu	Inclinat	ion Verti	cal		
Тор	Base	Туре	Date Sta	rted	Date Ende	d C	Crew	Section	Coi	re (Core Bit	I	Equipr	ment		Sho	oring /	R	emarks		
0.00	7.50	СР	28/08/2		28/08/201	3	TP	Logged By TE			Bit		Dando	3000		Sup	oport				
7.50	10.60	RC	29/08/2	013	29/08/201	3	ww	TE	T61	16 In	npreg	D	eltaba	se 515							
				DD	OCDECC											10	MTED CTDI	I/FC			
Date	Ti	me	Hole	Casi	OGRESS ng Wate	er		Remar	rks	_		Date	e	Time	Str	ike at	ATER STRI	Time	Ca	sing dep	th
20 /20 /20	10 1		depth	dep	th dept	h	1 (60								d	epth	depth	taken to rise	at strik time	ce i to	seal low
28/08/20 29/08/20 29/08/20	13 0	900 730 900	7.50 7.50 10.60	7.40 7.40 7.50) NR	Sta	d of CP irt of Ro d of Hol														
29/08/20	13 1	900	10.60	7.50	-9.70	End	u 01 H0	e													
		CABLE PERCUSSION DETAILS rata Depth Chiselling Remarks																			
	CABLE PERCUSSION DETAILS																				
Hard	rd Strata Depth Chiselling Remarks											Depth	Туре	Incre	menta		SPT DETAI	LS Hammer	Energy	Casing	Water
from		to	Start t	ime ı	Duration hhmm	Iten	iarito					Берип	lype	pe	netrati	on in n		No.	ratio %	depth	depth
7.40												0.50 1.50	SPT SPT	N=17 (3 N=31 (5 N=34 (5 N=37 (6 N=41 (7 N=42 (7 5) 50/0mm	,4,4,4,5 ,6,7,7,8	,4) ,9)		AR360 AR360	75 75	N/A 1.50	-9.30 -9.10
		7.50 1615 0200 Chiselling										2.60 3.50 4.50	SPT SPT	N=34 (5 N=37 (6	,7,8,8,9 ,7,8,9,9	,9) ,11)		AR360 AR360	75 75 75	2.50 3.50 4.50	-8.90 -8.60 -8.40
												4.50 5.50 7.40	SPT SPT SPT(C	N=41 (/ N=42 (7	,7,9,11, ,9,11,9, o (25/0	10,11) 12,10)		AR360 AR360 AR360	75 75 75	4.50 5.50 7.40	-8.40 -8.00 -7.70
												7.50 8.60	ISPT(C	50/0mm 50/0mm N=43 (7 N=56 (6	n (25/0, ,7,8,9,1	50/0) 2,14)		AR360 AR360	75 75 75	7.40 7.50	-6.60 -10.00 -10.30
Fron	1	То	F		Y FLUSH D	ETAIL		ush	FI	ush		9.50	SPT(C	N=56 (6	,9,11,11	1,14,20)		AR360	75	7.50	-10.30
dept		depth			type		ret	turn %		lour											
7.50		10.60		,	Water		1	.00	Br	own											
ПО	I E DIAN	4ETED	/ CASING			DV	NIANAIA	SAMPLII	NC.												
Hole	Depth			th of	Тор	Base			Time	Recov	/ery										
diameter 200	hole 7.40			sing .50				h	hmmss	%	_										
121 116	7.50 10.60			.80																	
	IN	ISTALLA	ATION DE	TAILS			P	IPE CONS	TRUCTIO	ON											
Distance from G.L		Ty	уре	Respo	onse zone	ID	Top	Pipe Base	Dia. of pipe	Type pip											
HOIH G.E				101	Buse		ТОР	Busc	or pipe	P'1	,.										
															* Se		ows only.				
To	: -	200 Cf		BA Materi	CKFILL DE	TAILS		De	rke							G	ENERAL NO	OTES			
Top of section 0.00	n se	ase of ection 10.60			Rema	IKS															
0.00		10.60		Arising	5																
NOTES:					neters in m																
			rise time abbrevia		iutes, hard see key	l strat	a time	ın hhmm													
Unched	ked			Lo	og Print Da	ite An	d Time	e: 23/12/2	2013 1	0:31:19)							SOII	_ eng	ınee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Ground Level

Exploratory Hole Log Arch Henderson LLP

Hole ID.

E65

Sheet 1 of 2

Employer

Aberdeen Harbour Board -7.68m CD

Coordinates 397302.50 E, 804627.40 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Samp				nple l	ount A Recov	ery		u Test tails	Instal ation
			Level	Detail	s C	Dia.	TCR	SCR	RQD	IF	_ De	talis	ation
Dense brown slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium of granite, schist and gneiss. from 0.00m to 1.50m medium dense	* * * * * * * * * * * * * * * * * * *	-		D002 0.50 B003 0.50-0).95				,		SPT17 0.50	0.95	
	X	-		D005 1.50 B006 1.50-1	1.95						SPT31 1.50	1.95	
	× × × × × × × × × × × × × × × × × × ×	-		D008 2.50 B009 2.50-2	2.95						SPT34 2.60	3.05	
	X	-		D011 3.50 B012 3.50-3	3.95						SPT37 3.50	3.95 -	
Dense brown slightly silty gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mixed igneous and metamorphic lithologies.		4.50 - - - - - -	-12.18	D014 4.50 B015 4.50-4	i.95						SPT41 4.50	4.95 -	
		-		D017 5.50 B018 5.50-1 D019 6.00	5.95						SPT42 5.50	5.95 -	
Very stiff high strength brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is		7.50	-15.18								SPT(C)50/ 7.40 SPT(C)50/ 7.50	7.40 -	
angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies. Cobbles are subangular to subrounded of granite, schist and gneiss. from 7.50m to 7.60m subangular to subrounded coarse gravel of granite and schist and subangular to subrounded cobbles of granite		-		7.50	8.60	92	95	NA	NA		SPT(C)43 8.60	9.20	
		-		8.60	9.50	92	83	NA	NA	NA	SPT(C)56		
											SPT(C)56 9.50	10.10 -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:22

Form No. SIEXPHOLELOG Issue,Revision No. 1.05

TA7148

Project No.

Engineer

Hole Type

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

E65

Sheet 2 of 2

Employer Aberdeen Harbour Board Ground Level -7.68m CD Coordinates 397302.50 E, 804627.40 N National Grid

> CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling		Blo	ow Co	ount A Recov	and ery	In Situ Test	Install
·		'	Level	Details	Dia.		SCR	RQD	IF	Details	ation
Very stiff high strength brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies. Cobbles are subangular to subrounded of granite, schist and gneiss.		10.60	-18.28	9.50 10.60	92	100	NA	NA			
Exploratory hole complete at 10.60 m.	1	-									1
		-								-	1
		-								-	1
		-								-	-
		-								-	1
		_								-	1
		-								-	
		-								-	-
		-								-	}
		-									1
		-								-	1
		-								-	1
		-								-	}
		_								-	}
		_								-	1
		-									1
		-								-	1
		-								- -]
		-								-	1
		_								-	1
		-									1
		-								-	}
		-									1
		_									1
		-								-	1
		_								-	}
		-								-	
		-									
		-								-	
		_									}
		-									1
		-									1
		_								-	1
		-								- -	}
		-								-	1
		-								-	1
		-								-	1
		-								-	}
		-								-	1
		-								-	1
		-								- -	1
											1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:24

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

-		e Bay	of Nig	g Har	rbour Dev	elop	ment	Ground	Inves	tigatio	n			Fynlo	nrat <i>i</i>	arv F	Hole Lo	20	Но	ole ID.	
Project		TA7												LXPIC	Jian	Луі	TOIC L	9	F	66	
Engine			n Hende																		
Employ Ground			rdeen F 9m CD	Harbo	our Board			Coo	rdinates	20	722	22 60 5	8046.	72.90 N N	lation	l Crid			Н	eader	
Date Sta			9/2013							eted 02		,	8040	7 2.30 N I	vationi	ii Giiu	Inclinat	ion Verti	cal		
Тор	Base	_	Date Sta	arted	Date Ende	d C	rew .	Section	Cor		re it		Equip	ment		Sho	oring /		emarks		
0.00	10.40	СР	01/09/2	2013	02/09/201	3	TP	Logged B	y Barı				Dando	3000		Su	oport				
10.40 10.70	10.70 14.25	RO RC	02/09/2 02/09/2		02/09/201 02/09/201	3	ww ww	TE TE	T61:		4 RF oreg			ise 515 ise 515							
Date	Т	me	Hole	Cas	OGRESS ing Wate	r		Rema	rks			Date	P	Time	Sti	ike at	VATER STRI Rise to	Time	Ca	sing dep	th
Date			depth	dep	oth dept	h			ins			Date		Time	d	epth	depth	taken to rise	at stril	κe i to	seal low
01/09/20 02/09/20	13 0	.900 700	10.10 10.10	10.1 10.1	LO -9.60	Sta	d of Shif irt of Sh	ift													
02/09/20 02/09/20		.000 .900	10.40 14.25	10.2 11.0			d of CP/ d of Hol	Start of Ro e	tary												
		CABLE PERCUSSION DETAILS																			
													1_				SPT DETAI	_	_		
Hard from		ata Depth Chiselling Remarks to Start time Duration hhmm hhmm										Depth	Туре			ll blow on in n	count / nm	Hammer No.	Energy ratio	Casing depth	Water depth
10.10		10.40	hhmm hhmm									0.50	SPT(C	C) N=17 (3	3,3,4,4,5	,4)		AR360	75 75	N/A	-9.20 -9.30
							1.50 2.50 3.50	ISPT(0	C) N=20 (4 C) N=30 (5 C) N=38 (6	+,5,4,5,5 5,6,7,7,7 \$ 8 8 9 1	,6) ,9) 1 10)		AR360 AR360 AR360	75 75 75 75	1.50 2.50 3.50	-9.40					
												3.50 4.50 5.50	SPT(C SPT(C SPT(C	C) N=43 (7 C) N=43 (8	7,8,9,11, 8,9,11,1	11,12) 0,10,12)		AR360 AR360	75 75 75 75	3.50 4.50 5.50	-9.40 -9.60 -9.70
												6.50 8.00 9.50	SPT(0 SPT(0 SPT(0	~\ NI / 2 /c	7,11,12,: 9,10,11,:	13,13,11 10,10,12	2)	AR360 AR360 AR360	75	6.50 8.00 9.50	-9.80 -9.90 -9.90
				ROTAI	RY FLUSH C	ETAIL						10.20 11.00	SPT(C	50/0mr	n (25/5) 4,4,6,8,9	12,14,12 0,50/0) ,9)	*)	AR360 AR360 AR360	75 75 75	10.20 11.00	-9.90 -9.90 -10.20
Fron dept		To depth			Flush type		ret	ush :urn %		ush Iour		12.80	SPT	N=31 (7	7,4,5,6,9	,11)		AR360	75	11.00	-9.80
10.40		14.25			Water			00	Br	own											
			/ CASING		T			SAMPLI		I B											
Hole diameter	Depth hole	dian	neter ca	pth of ising	Тор	Base	Dia	meter h	Time hmmss	Recove %	ry										
200 121 116	10.20 11.00 14.25) 1		0.20 1.00																	
116	14.23)																			
		ICTALL A	TION DE	TAU 6				DE CONO	TDUICTI		_										
Distance			TION DE		onse zone	ID		PE CONS	Dia.	Type o	f										
from G.L.				To		-0	Тор	Base	of pipe	pipe											
															* \$^	atino bl	ows only.				
	1			B.A	ACKFILL DET	AILS		1	<u> </u>	<u> </u>	_		1		Je		ENERAL NO	OTES			
Top of section		ase of ection		Mater	rial			Rema	ırks												
0.00		14.25		Arising	gs																
																		<u> </u>			
NOTES:	Water	strike :	rise time	in mir	meters in m nutes, hard			in hhmm	ı										4		
I los alter		tails of	abbrevia			+o ^-	d Time	. 22/42/	2012 4	0.22.25								SOII	. eng		Bluc
Unched	кеа			L	.og Print Da	ιιe An	u rime	. ∠3/12/	∠∪⊥3 1(บ:ฮฮ:ฮ5								2011	110		VIII G

Log Print Date And Time: 23/12/2013 10:33:35

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

TA7148

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

E66

Sheet 1 of 3

Employer Aberdeen Harbour Board Ground Level -8.19m CD

Project No.

Engineer

Coordinates

397333.60 E, 804672.90 N National Grid

Hole Type RO+RC Inclination

Description of Strata	Legend	Depth	Datum		Sampling		Blo San	w Cou	unt A	nd ery	In Situ		Inst
2000 paos o cada	2090114	Dop	Level	[Details	Dia.		SCR		IF	Deta	ls	atio
ledium dense grey slightly gravelly silty fine to coarse SAND. ravel is subangular to rounded fine of granite, schist and neiss.		-			0.00-0.50			•	1		SPT(C)17 0.50	0.95 -	
		- - - -		D003	1.00							land the state of	
		-		B004	1.50-1.95						SPT(C)20 1.50	1.95 -	
		-		B006	2.50-2.95						SPT(C)30 2.50	2.95 -	
nse grey slightly gravelly silty fine to coarse SAND. Gravel angular to rounded fine of mixed igneous and metamorphic tologies.		3.20 -	-11.39	D007	3.50-3.95						SPT(C)38 3.50	3.95 -	
		-		D009	4.00 4.50-4.95						SPT(C)43 4.50	4.95 -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:38

Form No. SIEXPHOLELOG Issue,Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 E66 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board

Ground Level -8.19m CD Coordinates 397333.60 E, 804672.90 N National Grid

Hole Type RO+RC Inclination

Description of Strata		Legend	Depth	Datum Level		Sampling		Blov Sam	v Co ple R	unt An Recove	nd ry	In Situ Deta		Inst
				Levei		Details	Dia.	TCR	SCR		IF	Deta	alis	atic
		× × ×			D011	5.00								
			-											
		*V.***	-										-	
			· -											
			-		B012	5.50-5.95						SPT(C)43 5.50		
													5.95 -	
			-											
			-		D013	6.00							-	
	7-		-											
	V		-											
	9		} [
			-		B014	6.50-6.95						SPT(C)49 6.50	1	
			-									6.50	6.95 -	
			-											
			-										-	
			-		D015	7.00								
					D012	7.00								
			-											
			-										-	
			-										- 1	
	W 1		1]											
			-											
	1		-											
			-		B016	8.00-8.45						SPT(C)43 8.00	-	
	1		-									0.00	8.45 -	
		X X X	-										-	
			_											
													-	
			-										-	
			-										-	
			-		D017	9.00							1	
		V. x . x			DOTA	3.00								
			-											
		X X X	-										-	
	1		-										-	
		XXXXX	-		B018	9.50-9.95						SPT(C)52 9.50	-	
			-										9.95 -	
	9.	XX. 4												
	1	\$ 5 A S					1							

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:40

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 2 of 3

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 E66 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board

Ground Level -8.19m CD Coordinates 397333.60 E, 804672.90 N National Grid

Hole Type RO+RC Inclination

Description of Strata	Legend	Depth	Datum Level	San	npling		Ble Sar	ow Co nple I	ount A Recov	nd ery		tu Test etails	In at
			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	De	talis	al
ard strata. (Driller's description)	A Code	10.10 -	-18.29	D019 10.0	00			•			CDT/C\FO		
		-	40.50								SPT(C)50 10.20	10.25 ·	
otary openhole drilling. BOULDERS. (Driller's description)	0000	10.40 -	-18.59										
o recovery. Stiff brown slightly sandy boulder CLAY. riller's description)	0 0	10.70 -	-18.89	10.70	11.00								
ry stiff high strength brown slightly sandy gravelly CLAY	F	11.00	-19.19	10.70	11.00	92	0	NA	NA		SPT32 11.00	-	
ith low cobble content. Sand is fine. Gravel is subangular to unded of mixed igneous and metamorphic lithologies. Cobbles e subangular to subrounded of granite and schist.	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	} - -		11.00	11.60	92	53	NA	NA		11.00	11.45	
from 11.32m to 11.60m assumed zone of no recovery		- -										Ì	
		- - -		44.00									
		- - -		11.60	12.80	92	100	NA	NA	NA			
		-									SPT31 12.80	13.25	
		- - - -		12.80	14.25	92	100	NA	NA				
cploratory hole complete at 14.25 m.	0 0	14.25 _ -	-22.44										
		- -										•	-
		-											1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:41

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 3 of 3

Project	Nam	•		Hark	our Dev	elop	ment	Ground	Inves	tigation				Fynlo	rator	∿ F	Hole Lo	20	Но	le ID.	
Project		TA7												LXPIO	iatoi	уі	TOIC LC	<i>'</i> 9	E	69	
Engine			n Hende																		
Employ Ground I			rdeen H Om CD	larboi	ur Board			Coor	dinates	397	'30	6.30 E,	80477	73.60 N N	ational (Grid			Гіч	eader	
Date Sta			9/2013							eted 04/			-				Inclinat	tion Verti	cal		
Тор	Base	Туре	Date Sta	rted [Date Ende	d C	rew	Section ogged By	Cor Barr	re Cor rel Bit	e	E	Equip	ment		Sho Sup	oring / oport	Ą	Remarks		
0.00 7.30	7.30 10.60	CP RC	03/09/20		03/09/201 04/09/201		TF MM	DT DT	T61:		T		Dando Oeltaba	3000 se 515							
	=,										٦										
				PRC	OGRESS					<u> </u>	1					V	VATER STRI	KES			
Date	Ti	me	Hole depth	Casir dept	ng Wate	r h		Remar	ks		T	Date	е	Time	Strik dep	e at oth	Rise to depth	Time taken	at strik	sing dep	seal
03/09/20 03/09/20		700 900	7.30 7.30	7.00 7.00			d of CP rt of Ro	tany			†							to rise	time	+	low
04/09/20	13 0	200	10.60	7.60			d of Hol	e			1										
											1										
											1										
											1										
											1										
										1											
	ā		CA		RCUSSIO						4		-				SPT DETAI				
Hard from	Strata	Depth to	Start ti		Duration	Rem	arks				1	Depth	Туре		mental b etration			Hammer No.	ratio	Casing depth	Water depth
6.90		7.50	1500		0200	Chise	elling				1	0.50 1.50	SPT(C	N=17 (3, N=19 (3)	3,4,5,4,4) 4 4 4 5 6)			AR360 AR360	75 75 75	N/A 1.50	-6.60 -6.50
											1	2.50 3.50	SPT(C SPT(C SPT(C	:) N=29 (4.	6,7,7,8,7) 8,9,10,9,1	11)		AR360 AR360	75 75	2.50 3.50	-6.40 -6.20
											1	4.50 6.00 8.60	SPT(C SPT(C SPT	.JI IV=49 (8.	IU.II.IZ	.12.14	+)	AR360 AR360 AR360	75 75 75 75 75	4.50 6.00 7.20	-6.10 -5.70 -9.60
											╛	9.60	SPT	50/235m 50/230m	ım (6,10,	12,14	,18,6/5)	AR360 AR360	75	7.60	-9.70
From	1	То	R		Y FLUSH D Flush	ETAIL		ush	Fli	ush	4										
dept		depth			type		ret	urn %		lour											
7.30		10.60		V	Vater		1	00	Bro	own											
											1										
											1										
											1										
НО	LE DIAI	METER	/ CASING			DY	NAMIO	SAMPLIN	NG		┨										
Hole	Depth	of Cas		th of	Тор	Base	Dia		Time hmmss	Recover	у										
diameter 200	7.30	20		sing 20				n n	nmmss	%	┪										
116	10.60	'																			
											╛										
D: .			TION DET					PE CONST			4										
Distance from G.L.		13	/pe	Respo Top	nse zone Base	ID	Тор	ipe Base	Dia. of pipe	Type of pipe	╛										
											1										
											1				* C						
				BAC	CKFILL DET	AILS				<u> </u>	+			1	seati		ows only. ENERAL NO	 DTES			L
Top of section		ase of	N	√ateria	al			Rema	rks		†										
0.00		10.60	,	Arisings	S						1										
											1										
NOTES:	All do	athe in a	motros al	II diam	eters in m	illimo	troc				_										
NOTES.	Water	strike r		n mini	utes, hard			in hhmm											4		
	. J. ut	cuito UI	Societ		g Print Da	te An	d Time	: 23/12/2	2013 10	0:31:30								SOI	L eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

TA7148

Project No.

Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board **Exploratory Hole Log**

Hole ID.

E69

Sheet 1 of 2

Ground Level -7.10m CD Coordinates 397306.30 E, 804773.60 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum		Sampling		Blo	w Co	unt A Recove	nd	In Situ T	
Description of Strata	Legend	Бериі	Level		etails	Dia.		SCR		IF	Detail	s a
Medium dense grey slightly gravelly silty fine to coarse SAND. iravel is angular to subrounded fine to medium of mixed gneous and metamorphic lithologies including granite, schist, neiss and quartz.					0.00-0.50				L		SPT(C)17 0.50	0.95
				D003								odrebed abada baraka
				B004	1.50-1.95 2.00						SPT(C)19 1.50	1.95
					2.50-2.95						SPT(C)29 2.50	2.95
					3.50-3.95						SPT(C)39 3.50	3.95 -
				D009	4.00							adaption of the state of the st
				B010 D011	4.50-4.95 5.00						SPT(C)40 4.50	4.95
												anderdradendredande
				B012	6.00-6.45 6.50						SPT(C)49 6.00	6.45
o recovery. Large granite and gneiss BOULDERS. (Driller's escription)	000	6.90 -	-14.00									returned returned
ery stiff very high strength brown slightly gravelly sandy LAY with medium cobble content. Sand is fine to coarse, ravel is angular to subrounded fine to coarse of mixed jneous and metamorphic lithologies including granite, schist, neiss and quartz. Cobbles are angular to subangular of ranite, gneiss and schist.		7.30 -	-14.40	7.30) 8.60	93	100	NA	NA			. et el est est est est est est est est est est
											SPT50/235mr 8.60	n -8.99 -
		-		8.60	9.60	93	100	NA	NA	NA	SPT50/230mr	u chedichedenie
	0 00	=									9.60	9.98

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:31:32

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 E69 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board

Ground Level -7.10m CD Coordinates 397306.30 E, 804773.60 N National Grid Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level		npling		Blo San		ount A Recov		In Situ Test Details	Install- ation
	, -		Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	ation
Very stiff very high strength brown slightly gravelly sandy CLAY with medium cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, schist, gneiss and quartz. Cobbles are angular to subangular of granite, gneiss and schist.	0 0 0	10.60	-17.70	9.60	10.60	93	85	NA	NA		- - - - -	
from 10.26m to 10.45m 1 No very strong pink and grey boulder of granite from 10.45m to 10.60m assumed zone of no recovery Exploratory hole complete at 10.60 m.		- - - - - -									- - - - - - -	
		-									-	
		-										
											-	
		-									- - - - -	
											- - - - - -	-
		-									- - - - -	
											- - - - - - -	-
		- - - - - - -									- - - - - -	
											- - - - 	
		- - - - -									- - - - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:31:35

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 2 of 2

1		•) Harl	bour Dev	elopi	ment	Ground	l Inves	tigati	on			Fxnlo	ratory	Hole Lo	20	Но	ole ID.	
Project		TA7												LXPIO	ratory	I TOIC L	J 9	E	71	
Engine			n Hende																	
Employ Ground			raeen F 8m CD	iarbo	ur Board			Coor	dinates		39732	26.90 E.	80482	25.20 N N	ational Grid	<u> </u>		Н	eader	
Date Sta			9/2013						Comple							Inclinat	tion Verti	cal		
Тор	Base	Туре	Date Sta	rted	Date Ende	d C	rew	Section ogged By	Coi Bari	re (Core Bit	I	Equip	ment	ŞI	noring / upport	F	Remarks		
0.00	10.30	CP	13/09/2	013	13/09/201		TP	DT					Dando			арроге				
10.30	13.30	RC	13/09/2	013	13/09/201	3 1	ww	DT	T61	16 In	npreg	L	ректара	se 515						
				DD	OGRESS											WATER STR	IKEC			
Date	Ti	me	Hole	Casii	ng Wate	r		Remai	rks			Date	e	Time	Strike a	Rise to	Time	Ca	sing dep	th .
12/00/20	12 1	730	depth 10.30	dep			Lof CD/	Ctart of Da	toni			-			depth	depth	taken to rise	at stril time	ce to	seal low
13/09/20 13/09/20		940	13.30	10.00 10.00			of CP/	Start of Ro	tary											
		to Start time Duration hhmm hhmm																		
		CABLE PERCUSSION DETAILS																		
Hard	Strata Depth Chiselling Remarks											Depth	Туре	Incre	mental blov	SPT DETA	ILS Hammer	Energy	Casing	Water
from				ime ı	Duration	Item	unto					Берип	lype	per	etration in	mm	No.	ratio %	depth	depth
9.50		10.30										0.50 1.50	SPT(C	N=19 (3, N=20 (4,	4,4,5,5,5) 5,4,5,5,6) 7,6,7,6,6) 8,8,9,9,9) 9,10,9,10,11		AR360 AR360	75 75	N/A 1.50	-10.90 -10.70
									2.50 3.50	SPT(C SPT(C SPT(C	N=25 (5, N=35 (7,	7,6,7,6,6) 8,8,9,9,9)		AR360 AR360	75 75 75	2.50 3.50 4.50	-10.60 -10.30 -10.40			
												4.50 6.00 7.50	ISPT(C	.)I N=40 (10	1.9.11.10.9.1	.))	AR360 AR360 AR360	75 75 75	4.50 6.00 7.50	-10.40 -9.80 -9.60
												9.00 9.50	SPT/C	\l NI_50 (1)	11,10,11,11,),12,11,13,12 (25/0,50/0)	1,14)	AR360 AR360	75	9.00 9.50	-9.10 -9.10
Fron	n I	То	F		Y FLUSH D	ETAIL:		ush	FI	ush		10.30 11.80	SPT(C	50/0mm N=35 (6,	(25/0,50/0) (25/0,50/0) (25/0,50/0) 6,8,7,9,11)		AR360 AR360	75 75 75	10.00 10.00	-8.40 -7.70
dept		depth			type		ret	urn %		lour										
10.30		13.30		١	Water		1	00	Br	own										
	I E DIAM	AFTED	/ CACINIC	. 1		D)/I		CANADILI	NC.											
Hole	Depth		/ CASING	th of	Тор	Base		SAMPLII	Time	Recov	/erv									
diameter 200	hole	dian	neter ca	sing 0.00					hmmss											
116	13.30			,.00																
	II.	ISTALL <i>A</i>	TION DE	TAILS			PI	PE CONS	TRUCTION	DN.										
Distance	ID		уре	Respo	nse zone	ID		ipe	Dia.	Туре										
from G.L	-			Top	Base		Тор	Base	of pipe	piţ	oe									
															* Seating I	olows only.				
				BA	CKFILL DE	AILS										GENERAL N	OTES			
Top of section		ase of ection	ı	Materi	ial			Rema	rks											
0.00		13.30		Arising	S															
NOTES:	۸۱۱ ط	othe in	metres -	II diam	neters in m	illima	troc													
INOTES:	Water	strike		in min	utes, hard			in hhmm												
Unched		cuito UI	abbi cvid		og Print Da	te And	d Time	: 23/12/:	2013 1	0:31:41							SOI	L eng	inee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E71

Sheet 1 of 2

Ground Level -7.18m CD Coordinates 397326.90 E, 804825.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sampling		Blo	w Count A	And	In Situ	Test	Insta
Description of Strata	Legend	Бериі	Level	Details	Dia.	_	SCR RQD	IF	Deta	ils	ation
Medium dense grey slightly gravelly silty fine to coarse SAND. Gravel is subangular to rounded fine to medium of mixed igneous and metamorphic lithologies.		-		B001 0.00-0.50 B002 0.50-0.95 D003 1.06					SPT(C)19 0.50	0.95	
				B004 1.50-1.95 D005 2.00					SPT(C)20 1.50	1.95	
				B006 2.50-2.95 D007 3.00					SPT(C)25 2.50	2.95	
Medium dense grey slightly gravelly silty fine to coarse SAND. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and quartz.		3.40	-10.58	B008 3.50-3.95 D009 4.00					SPT(C)35 3.50	3.95 -	
				B010 4.50-4.95 D011 5.00					SPT(C)40 4.50	4.95	
				B012 6.00-6.45 D013 6.50					SPT(C)40 6.00	6.45	
				B014 7.50-7.95 D015 8.00					SPT(C)44 7.50	7.95	
		9.50	-16.68	B016 9.00-9.45					SPT(C)50 9.00 SPT(C)50/0	9.45 —	
No recovery. Boulder CLAY with boulders. (Driller's description)	-0,0 0,0 0,0	- - -							9.50	9.50 -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:44

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project No. TA7148

Ground Level

Exploratory Hole Log

Hole ID.

E71

Sheet 2 of 2

Engineer Employer Aberdeen Harbour Board

-7.18m CD

Arch Henderson LLP

Coordinates 397326.90 E, 804825.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sam	npling		Blo San	ow Co nple I	ount A Recov	And ery	In Situ		Insta
•			Level	Deta	ils	Dia.	TCR	SCR	_	İF	Deta	IIS	ation
No recovery. Boulder CLAY with boulders. (Driller's description)	-00 -0 -00 -0	10.30	-17.48								SBT/C\EO/Or	-	
Stiff very high to extremely high strength brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite and gneiss. Cobbles are angular to subrounded of granite and gneiss. from 11.50m to 11.60m 1 No subangular cobble of pink and grey granite			21.10	10.30	11.80	89	87	NA	NA	NA		10.30	
from 11.60m to 11.80m assumed zone of no recovery from 11.85m to 11.94m 1 No subangular cobble of dark grey gneiss				11.80	13.30	89	100	NA	NA	NA	SPT(C)35 11.80	12.25	
from 13.27m to 13.30m assumed zone of no recovery		13.30 -	-20.48									=	
Exploratory hole complete at 13.30 m.		- -											
		_										-	
		-										=	
		-										=	
		-										-	
		-										=	
		-										-	
		-										-	
		-										=	
		-										-	
		-										-	
		-										=	
		-										=	
		-										=	
		-										=	
		-										-	
		_										=	
		-										=	
		=										=	
		-										_	
		-										-	
		-											
		-										=	
		_										7	

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:46

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

		-		Hark	our Dev	elop	ment	Ground	Inves	tigatior	1			Explo	ratory	Hole I d	20	Но	ole ID.	
,														LAPIO	atory	I TOIC L	<i>-</i> 9	E	72	
_																				
				iarboi	ur Board			Coor	dinates	39	729	95.90 E,	80491	19.80 N Na	ntional Grid	 ქ		Н	eader	
																	tion Verti	cal		
From 10 Start time Duration Start time Duration Start time Start ti																				
	March Arch Henderson LLP March Arch Henderson LLP																			
		Arch Henderson LLP				,	3													
			A7148 Arch Henderson LLP Aberdeen Harbour Board S.59m CD																	
				PRC	OGRESS											WATER STR	IKES			
Project No. TA71468		o seal																		
		No. TA7148												<u>'</u>		to rise	time	1	low	
14/09/20)13 1	TA7148																		
		TA7148																		
	•	•	CA	BLE PE	ERCUSSIO	N DET	AILS						•		•	SPT DETAI	ILS	•	•	
		•		ime _I	Duration	Rem	arks					Depth	Туре						Casing depth	Water depth
Project 1		-9.60																		
Project No. TA7148				AR360	75 75	2.50	-9.30													
												4.50	SPT(C	N=42 (6,7 5) 50/0mm	,9,11,10,12		AR360	75 75 75	4.50	-9.10
													,							
			R			ETAIL														
Project No. TA7148																				
6.50	CABLE PERCUSSION DETAILS Chiselling Start time hhmm hhmm hhmm Chiselling Chiselling Start time hhmm								Br	own										
		Strata Depth to Start time hhmm hhmm hhmm hhmm Duration hhmm Chiselling Remarks Duration hhmm Chiselling Chise																		
		Time																		
Project No. TA7148																				
Project No. TA71468 Target																				
Hard Strata Depth from to Start time hhmm Duration hhmm Start time hhmm Duration hhmm Duration hhmm Start time hhmm Duration hhmm Duration hhmm Start time hhmm Duration hhmm Start time hhmm Duration hhmm Start time hhmm Start time hhmm Duration hhmm Start time hhmm Start time hhmm Start time hhmm Start time hhmm Start time hhmm Start time hhmmmm Start time hhmmm Start time hhmmm Start time hhmmm Sta																				
diameter	hol	e diam	neter cas	sing	- 1			h	hmmss		_									
121	6.50) 12	21 6.	50																
	II	NSTALLA	TION DE	ΓAILS	ļ		PI	PE CONST	ruction	ON										
		Ty	/pe			ID														
ITOTTI G.L.				ТОР	Busc		тор	Buse	or pipe	pipe										
											_						<u> </u>			
Ton of	f c	Rase of	N.			AILS		Rama	rks		4					GENERAL NO	OTES			
Project No. TA7148																				
Project No. TA7148 Exploratory Hole Log																				
Project No.																				
	For d			ions, s	see key															015-
Unchec	ked			Lo	g Print Da	te An	d Time	: 23/12/2	2013 10	0:31:52						-	SOII	L eng	inee	RING

Issue Date 22/10/2012

Part of the Bachy Soletanche Group

Issue.Revision No. 1.05

Form No. SIEXPHOLEHDR

Coordinates

Project No. TA7148

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

E72

Sheet 1 of 1

Engineer Employer

-5.59m CD

Aberdeen Harbour Board

397295.90 E, 804919.80 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling				unt And Recover		In Situ Test Details	Ins
			Level	Details	Dia.	TCR	SCR	RQD	IF	Details	atic
Medium dense brown silty gravelly fine to coarse SAND. Gravel s angular to rounded fine to coarse of mixed igneous and netamorphic lithologies including granite, gneiss, schist and juartz.				B001 0.00-0.50 B002 0.50-0.95						SPT(C)15	
from 1.50m to 1.95m slightly gravelly				D003 1.00 B004 1.50-1.95 D005 2.00						SPT(C)26 1.50 1.95	
				B006 2.50-2.95 D007 3.00						- - -	
				B008 3.50-3.95 D009 4.00						SPT(C)40 - 3.50 3.95	
				D010 5.00						SPT(C)42 - 4.50 4.95	
No recovery. Hard strata, BOULDERS and possible boulder clay. (Driller's description)	000	6.15	-11.74							SPT(C)50/0mm	
Very strong light grey BOULDER of gneiss.	000	6.50 -	-12.09 -12.25						NA	-	
Stiff brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Extremely weak reddish brown speckled grey GNEISS. Recovered		6.90 - - - - - - -	-12.49	6.50 8.00	92	73	27	9	NI	-	
as non intact core (angular fine to coarse gravel sized fragments) and with dark brown staining penetrating full core diameter.	****	7.85 _ 8.00 —	-13.44 -13.59						NA	- -	
Assumed zone of no recovery. Decomposed GRANITE. (Driller's description) Weak locally medium strong light grey GNEISS. Discontinuities:				8.00 8.90	92	100	55	11		- - - -	200
1) 40-50 degrees closely spaced planar rough stained brown on surfaces. from 8.20m to 8.50m, 8.90m to 9.15m and 9.30m to 9.40m extremely weak dark reddish brown stained and recovered as non intact core (angular fine to coarse gravel sized fragments)				8.90 9.60	92	71	7	0	NA NA 100	-	STATE STATE
from 9.10m to 9.20m reddish brown, recovered as non intact core (sandy clay. Sand is fine to coarse)		9.60	-15.19						_	-	1.023

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:54

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 E72 Engineer Arch Henderson LLP

Employer Ground Level -5.59m CD Coordinates 397295.90 E, 804919.80 N National Grid

Hole Type CP+RC Inclination

Aberdeen Harbour Board

Description of Strata	Legend	Depth	Datum	Sampling		Blo	งพ Cou nple Re	int A	nd	In Situ Test	Insta
Description of Strata	Legend	Бериі	Level	Details	Dia.		SCR	RQD	IF	Details	ation
emaining Detail : 9.40m - 9.60m : from 9.40m to 9.60m assumed		-								-	
ne of no recovery		_								-	
ploratory hole complete at 9.60 m.		-								-	
		-								-	1
		_								_	
		-								-	
		-								-	
		-								_	
		-								-	
		-								-	
		-								-	1
		-								-	1
		-								=	
		_								-	
		-								-	1
		-								-	1
		-								-	1
		-								-	
		_								_	}
		-								-	1
		-								-	1
		-								-	1
		-								-	1
		-								-	}
		_								-	}
		-								.	
		-								-	1
		_								_	1
		-								-	1
		-								=	
		=								-	
		-								-	1
		-								-	
		-								-	1
		-								-	1
		_								-	}
		_								-	1
		-								-	1
		-								-	1
		-								-	}
		=								-]
		_									1
		-								-	1
		-								=	1
		-								-	1
		_			1					-	1

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:31:57 Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Sheet 1+ of 1

Fingle F	Э.	
Englower Aberdeen Harbour Board Fine Aberdeen Harbour Board Aberdeen Harbour Board Tropy of the property of the pr		
Coordinates Coordinates		
Date Start Date Start	r	
100		
PROGRESS PROGRESS		
Date Time Hole depth depth depth depth depth Remarks Date Time Strike at Rise to depth d		
Date Time Hole depth depth depth depth depth Remarks Date Time Strike at Rise to depth d		
Date Time Hole depth depth depth depth depth Remarks Date Time Strike at Rise to depth d		
Remarks Calibratian Cali		
18/09/2013 0930	to seal	
19/09/2013 0700 6.10 3.10 -7.10 End of Hole CABLE PERCUSSION DETAILS Hard Strata Depth from to Start time Duration hhmm hhmm hhmm hhmm hhmm hhmm hhmm hh	flow	
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
Hard Strata Depth from to Start time Duration hhmm hhmm Duration hhmm hhmm		
from to Start time Duration hhmm hhmm No. ratio dep		
Ergit E		
Project No.		
Project No. TA7148		
Project No. TA7468		
Hole Depth of Casing Depth of Top Base Diameter Time Recovery		
155 3.10 150 3.10		
116 6.10		
Top of Base of Material Remarks		
Exploratory Hole Log		
3.10 6.10 Grout		
EXPLORATION TAT148		
Water strike rise time in minutes, hard strata time in hhmm		

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E74

Sheet 1 of 1

Ground Level -7.99m CD Coordinates 397299.50 E, 805021.10 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sam	pling				ount A Recov		In Situ Test	Ins
•	7		Level	Detai	ls	Dia.	TCR	SCR	RQD	IF	Details	atio
COBBLES and BOULDERS with sand lenses. (Driller's description)	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.										SPT(C)50/0mm - 0.40	
COBBLES and BOULDERS of mixed igneous and metamorphic lithologies including granite and gneiss. Recovered as angular cobble and boulder sized fragments.	0000	0.90 - 1.00 - -	-8.89 -8.99	0.90	1.30	92	100	NA	NA		SPT(C)50/10mm -	
Strong pink and grey BOULDER of granite.	000			1.30	1.70	92	100	NA	NA		1.30 1.32	
COBBLES and BOULDERS of mixed igneous and metamorphic ithologies including granite and gneiss. Recovered as angular cobble sized fragments.	10.0.0.0 0.0.0.0.0	1.70 - - - - -	-9.69	1.70	2.40	92	76	NA NA	NA NA	NA		
from 2.21m to 2.40m assumed zone of no recovery No recovery. BOULDERS with sand lenses. (Driller's description)	00000	2.40	-10.39	2.40	3.10	92	0	0	0			
Assumed zone of no recovery. BOULDERS with sand lenses (drillers descrption)	000	3.10 -	-11.09							·	SPT(C)50/0mm - 3.10 - 3.10 - 3.10	
Strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 20-40 degrees closely locally very closely spaced planar rough locally clay smeared. 2) 70-90 degrees very closely to closely spaced planar rough stained brown. from 3.50m to 3.65m 1 No incipient fracture 80 degrees planar from 3.77m to 3.88m many randomly orientated incipient		3.50 	-11.49	3.10	4.60	92	70	65	45		-	10000 10000
fractures from 3.97m to 4.09m 1 No discontinuity 10 degrees planar stained dark brown from 4.15m to 4.22m recovered as non intact core (very angular medium gravel sized fragments) from 4.32m to 4.47m recovered as non intact core (very angular medium to coarse gravel sized fragments) from 4.60m to 6.10m discontinuities: 1) closely to medium spaced at 4.70m 1 No discontinuity 10-20 degrees undulating smooth clean	*****		-14 09	4.60	6.10	92	90	78	61	NI 170 320	-	
from 4.92m to 5.02m 1 No discontinuity 70 degrees undulating smooth clean from 5.14m to 5.28m discontinuities: 2) perpendicular through core axis from 5.50m to 5.68m recovered as non intact core (very angular medium to coarse gravel sized fragments) from 5.95m to 6.10m assumed zone of no recovery Exploratory hole complete at 6.10 m.		6.10	-14.09									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:32:05

SOIL ENGINEERING Part of the Bachy Soletanche Group

Project	Nar		-		Hark	oour De	elop	ment	Ground	d Inves	tigatio	n			Fynla	Jra.	ton, L	م ا ماما	00	Нс	le ID.	
-															Lxpic	Лa	tory i	IOIE LO	Jg	F	75	
_																						
					arbo	ur Board			C		20	72.	/2 /0 F	20505	- O - F O - N - N					Н	eader	
													•	80505	9.50 N I	vatio	nai Grid	Inclinat	ion Vert	cal		
Тор	Base	Тур	e Da	te Sta	rted I	Date Ende	d C	rew	Section	Co	re Co	re		Equipr	ment		Sho	oring_/		Remarks		
0.00		СР	19	9/09/20	013			TT	DT								Sul	oport				
4.00	6.90	RC	20	0/09/20	013	20/09/201	3	RJ	DT	T61	16 Imp	reg		eltaba	se 515							
					DDC	OGDESS											1	ATED STDI	KEC			
Date		Time	T	lole	Casir	ng Wate	er		Rema	ırks			Dat	e	Time	5	Strike at	Rise to	Time	Ca	sing dep	th .
Project No. TA7148			at strik time	(e to	seal low																	
20/09/20)13	Arch Henderson LLP																				
		Arch Henderson LLP																				
	Spineer																					
	ļ		<u> </u>	CA	BLE PE	ERCUSSIO	N DE	ΓAILS										SPT DETAI	LS			
				Start ti				narks			,		Depth	Туре							Casing	Water
				hhmi	m	hhmm		ellina					0.50	SPT(C						%	•	-
0.90 1.25		1.00 1.50		1145 1235	5	0030 0100	Chis Chis	elling elling					1.50	SPT(C	50/50m 50/50m	nm (25 nm (25	5/65,50/50 5/45,50/50	o) o)	AR360	75 75	1.50	-11.60 -11.70
3.80		4.00		1430	9	0100	Chis	elling														
				R			ETAIL															
								ret	urn													
4.00	Special Spec																					
		No. TA7148																				
	Arch Henderson LLP																					
Project No. TA7148																						
Project No.																						
	,					Top					Recove	rv										
diameter	ho	ole dia	mete	er cas	sing			-				.,										
			130	"																		
		INSTAL	LATIC	ON DET	ΓAILS			PI	PE CONS	TRUCTION	ON											
			Туре				ID															
					D 4 1	OKEN SE									1	*) DTFC			
Top of	f	Base of	f	N			AILS		Rema	arks							G	ENEKAL NO	NIF2			
section 0.00		section 4.00		,	Arisings	s																
4.00		6.90			Grout																	
	TA7148																					
NOTES:	Wate	er strik	e rise	time i	n min	utes, hard			in hhmm	1										1		
					ions, s	see key					0.22.62								501	- ADC	IDAG	DIDG
					Lo	og Print Da	ite An	d Time	: 23/12/	2013 1	υ:32:12								201	L CIIG	וווככ	KIIIG

Log Print Date And Time: 23/12/2013 10:32:12

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

E75

Sheet 1 of 1

Employer Aberdeen Harbour Board Ground Level -8.36m CD

Coordinates

397342.40 E, 805059.50 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Samplir	_	San	nple l	ount A Recov	ery	In Situ Test Details	Insta
	7.7			Details	Dia.	TCR	SCR	RQD	IF	2 Stallo	22.01
Very dense slightly silty sandy angular to rounded fine to coarse GRAVEL of mixed igneous and metamorphic lithologies. Sand is fine to coarse. from 0.25m to 0.50m driller notes boulder		- - - - 0.60 -	-8.96	D001 0.00-0.20 B002 0.50-0.60						SPT(C)50/50mm - 0.50 0.62 -	
Very dense brown slightly silty gravelly fine to coarse SAND. Gravel is very angular to rounded fine to coarse of mixed igneous of metamorphic lithologies. from 0.90m to 1.00m driller notes boulder from 1.25m to 1.50m driller notes boulder				D003 1.00-1.20 B004 1.00-1.50						SPT(C)50/50mm - 1.50 1.62 -	
				D005 2.00-2.20 B006 2.50-3.00						-	
										SPT(C)50/50mm 3.00 3.10	
No recovery. Pink and grey GRANITE. (Driller's description)	*****	3.60	-11.96	D007 3.50-3.60							
Very weak to weak pink and grey coarse crystalline GRANITE (locally with quartz mineralisation). Recovered as non intact core (slightly sandy angular to subrounded fine to coarse gravel sized fragments. Sand sized fragments are fine to medium).	* * * * * * * * * * * * * * * * * * *	4.00	-12.36	4.00 5.	30 92	100	0	0			
from 5.40m to 5.46m intact with 1 No discontinuity 90 degrees planar smooth clean and quartz mineralisation from 5.89m to 6.02m intact with 1 No discontinuity 80 degrees planar smooth with quartz mineralisation from 5.99m to 6.02m 1 No 80-90 degrees thin vein of quartz	* * * * * * * * * * * * * * * * * * *			5.30 6.	90 92	100	12	8	NI NI 130	-	
Exploratory hole complete at 6.90 m.	****	6.90 -	-15.26								

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:32:15

SOIL ENGINEERING Part of the Bachy Soletanche Group

,		•		Harb	our Dev	elopi	ment	Ground	Invest	tigati	on			Evnlo	ratory l	ا ماما	20	Но	le ID.	
														LXPIO	atory	TOIC L	9	Е	105	
Engine																				
Employ				arbou	r Board			Coor	dinatos		20754	22 00 E 9	90455	O DE NI NIA	tional Grid			Н	eader	
Date Sta													60433	10.33 IN INA	itional Grid	Inclinat	ion Verti	cal		
Тор	Base	Туре	Date Star	ted D	ate Ende	d Cı	rew	Section	Core	e. (Core	E	Equipr	ment	Sho	oring _. /	F	emarks		
0.00	6.00	СР	18/07/20	13 1	8/07/201	3		Logged By DT	Barr	el	Bit	ı	Dando	3000	Su	pport				
Date	Ιτί	me	Hole			r		Remar	ks			Date	e l	Time				Ca	sina den	th
			depth	depth	dept	n						Dutt		11110	depth	depth	taken to rise	at strik	ce i to	seal
18/07/20	013 2	000	6.00	6.00	-15.20) End	of Hol	le												
			TAT148																	
		TA7148																		
11	Charte	D tl.										D	Ŧ	I				F		10/
from		-	Start tir	me _l	Duration	Kem	arks					Depth	Туре				No.	ratio	depth	depth
			11111111	"	1111111111							1.00	SPT	N=16 (3,3 N=25 (3.5	,4,3,4,5) 6.5.6.8)		AR360 AR360		1.00	-15.70 -15.60
												3.00	SPT SPT	N=30 (4,6 N=29 (4,5	,7,6,8,9) ,6,7,7,9)		AR360	75 75	3.00 4.00	-15.20
												5.00	SPT	N=40 (7,8	,9,9,11,11)		AR360	75	5.00	-14.70
Fron	<u>~ 1</u>	To	RO			ETAILS		uob	FI.	ıoh										
dept							ret	turn												
Hole				h of	Top					Reco	verv									
diameter 200	hole	dian	neter casi	ing							,									
200	0.00		0.0	,,																
	IN	ISTALL#	ATION DET	AILS	ļ		PI	IPE CONST	RUCTIO	DN O										
Distance		T	уре Б			ID	F													
from G.L	-			тор	Base		тор	Base	or pipe	bit	је									
															* Seating bl	ows only.				
	_		1			AILS									G	ENERAL NO	OTES			
Top o sectio	n se	ection						Rema	rks											
0.00	Arch Henderson LLP																			
NOTES	Aberdam																			
	Water	strike	rise time ir	n minu	tes, hard	strata	time	in hhmm												
						te And	d Time	e: 23/12/2	2013 10	0:22:22	2						SOII	eng	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

TA7148

Project No.

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E105

Sheet 1 of 1

Ground Level -13.88m CD Coordinates 397563.99 E, 804558.35 N National Grid

Hole Type Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling		Blo San	ow Cou	ecove	nd ery		u Test ails	Inst
			Level	Details	Dia.	TCR	SCR	RQD		Det	.all5	atio
Grey slightly silty gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		-	1470	B002 0.00-1.00 ES001 0.50			<u>'</u>				-	
Medium dense grey slightly silty gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse of granite, schist and quartzite.		0.90 -	-14.78	D003 1.00-1.45 B004 1.00-1.45 ES005 1.50 B006 1.50-2.00						SPT16 1.00	1.45	
		-		D007 2.00-2.45 B008 2.00-2.45						SPT25 2.00	2.45	
				ES009 2.50 B010 2.50-3.00							-	
		-		D011 3.00-3.45 B012 3.00-3.45						SPT30 3.00	3.45	
		=		ES013 3.50 B014 3.50-4.00							-	
		-		D015 4.00-4.45 B016 4.00-4.45						SPT29 4.00	4.45 - - -	
				ES017 4.50 B018 4.50-5.00 D019 5.00-5.45						SPT40		
from 5.00m to 6.00m dense, very gravelly		-		B020 5.00-5.45 ES021 5.50						5.00	5.45 - - - -	
		6.00 —	-19.88	B022 5.50-6.00								
exploratory hole complete at 6.00 m.												

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:22:25

SOIL ENGINEERING Part of the Bachy Soletanche Group

Projec	t Nam	ie Bay	of Nigg	Harbo	our Dev	elop	men	t Groun	d Inves	stiga	tion			Evnlo	ratory l	ا مام ا	00		Но	le ID.	
Projec			148											LXPIO	iatory i	IOIE L	og		E:	106	
Engine			h Hender																	eader	
Emplo Ground	_		rdeen Ha	rbour	Боаги			Cod	ordinates	s	3975	99.89 E,	80454	43.38 N Na	ational Grid					eauei	
Date Sta	arted	19/0	07/2013					Dat	te Compl	leted	19/07	7/2013				Inclina	tion V	ertica	al		
Тор	Base	Туре	Date Start	ed Da	ate Ende	d C	rew	Section Logged I	n Co By Bar	re rrel	Core Bit		Equip	ment	Sh Su	oring / pport		Re	marks		
0.00	6.00	СР	19/07/201	3 1	9/07/2013	3	TP	DT					Dando	3000							
					GRESS											VATER STR					
Date		ime	Hole depth	Casing depth	Wate depti	r h		Rem	arks			Dat	te	Time	Strike at depth	Rise to depth	Tim take to ri:	en	at strik time	sing der e t	oth o seal flow
19/07/2	013 :	1400	6.00	6.00	-16.30) End	d of Ho	ole									10 11				
Haro	l Strata	Denth		LE PER Chiselli	RCUSSIO		AILS					Depth	Туре	Incren	nental blow	SPT DETA	ILS Hamn	ner F	nergy	Casing	Water
fron		to	Start tir	ne _I [Duration hhmm	Item	iains					Бери	Турс		etration in		No		ratio %	depth	depth
												1.00 2.00	SPT SPT	N=13 (2,3 N=25 (3,4	3,3,4,3,3) 4,5,7,7,6)		AR36 AR36	0		1.00 2.00	-16.70 -16.80
												3.00 4.00 5.00	SPT SPT SPT	N=32 (4,5 N=46 (6,7	5,7,8,7,10) 7,9,11,12,14) 3,11,12,12,15	١	AR36 AR36 AR36	0	75 75 75 75 75	3.00 4.00 5.00	-13.00 -17.70 -16.30
												3.00	311	14-50 (7,0	3,11,12,12,13	,	AKSO		75	3.00	-10.50
				TARK	F111611 B	FT 4 11															
From		То		Fl	FLUSH D ush	EIAIL	F	lush		lush		-									
dept	tn	depth		ty	уре		re	turn %	cc	olour											
НС			/ CASING					C SAMPL	ING												
Hole diamete		n of Ca e diar	sing Dept neter casi		Тор	Base	Di	ameter	Time hhmmss		overy %										
200	6.00) 2	00 6.0)																	
	11	UCTALL	ATION DETA					PIPE CON	STRUCTI	ION		ł									
Distance	e ID			espons	se zone	ID		Pipe	Dia.	Тур	e of	ł									
from G.L	-			Тор	Base		Тор	Base	of pipe	e t	oipe	-									
															* Seating bl	ows only.					
					KFILL DET	AILS									G	ENERAL N	OTES				
Top o	n s	Base of ection		aterial				Rem	narks												
0.00		6.00	(irout																	
NOTES	: All de	pths in	metres, all	diamet	ters in m	illime	tres.	to bloom											4		
	vvate For de	i strike etails of	rise time in abbreviati	minut ons, se	es, nard e key	strat	a time	: III nnmr	11												
1				Log	Print Da	te An	d Tim	e: 23/12	/2013 1	10:22:	30						S	OIL	eng	ınee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Exploratory Hole Log TA7148

Hole ID. E106

Sheet 1 of 1

Ground Level -14.70m CD Coordinates 397599.89 E, 804543.38 N National Grid

Hole Type СР Inclination

Arch Henderson LLP

Aberdeen Harbour Board

Engineer

Employer

Description of Strata	Legend	Depth	Datum	Sampling		Ble Sar	ow Co nple I	ount Ar Recove	nd erv		u Test	Instal
2000	Logona	20ptil	Level	Details	Dia.			RQD	,	Det	ails	ation
Medium dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to medium of granite, schist and quartzite.	X			B002 0.00-1.00 ES001 0.50							-	
Medium dense grey slightly silty slightly gravelly fine to	× × × × × × × × × × × × × × × × × × ×	1.30 -	-16.00	D003 1.00-1.45 B004 1.00-1.45 ES005 1.50						SPT13 1.00	1.45 -	
coarse SAND. Gravel is angular to subrounded fine to medium of granite, schist and quartzite.		=		B006 1.50-2.00 D007 2.00-2.45						SPT25	-	
				B008 2.00-2.45 ES009 2.50 B010 2.50-3.00						2.00	2.45 -	
from 3.00m to 3.80m dense		=		D011 3.00-3.45 B012 3.00-3.45						SPT32 3.00	- - - 3.45 -	
				ES013 3.50 B014 3.50-4.00								
Dense grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium of granite, schist and quartzite.		3.80 -	-18.50	D015 4.00-4.45 B016 4.00-4.45						SPT46 4.00	4.45	
				ES017 4.50 B018 4.50-5.00								
				D019 5.00-5.45 B020 5.00-5.45						SPT50 5.00	5.45	
				ES021 5.50 B022 5.50-6.00							-	
Exploratory hole complete at 6.00 m.	765590	6.00	-20.70								-	
		-									-	
		-									-	
		- - -									-	
		-									-	
		=									-	
		-									-	
		- - -									-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:22:33

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

Projec	t Nam	e Bay	of Nigg	Harbo	our Dev	elopm	nent	Ground	d Inves	tigat	ion			Evolo	ratory	ا مام ا	00		Ho	le ID.	
Projec			'148											Expio	ratory	JOIE L	by		E.	107	
Engine			h Hender																		
Employ Ground	_		erdeen Ha 15m CD	rboui	r Board		—	Coo	rdinates		39760	00.63 E,	80450	04.87 N N	ational Grid				Н	eader	
Date Sta			08/2013						e Comple							Inclina	tion \	Verti	cal		
Тор	Base	Туре	Date Start	ed Da	ate Ended	d Cre	ew	Section Logged By	n Cor By Bari	re rel	Core Bit	F	Equip	ment	Sh Su	oring / ipport		R	emarks		
0.00 3.00	3.00 4.50	CP RO	07/08/201 07/08/201	.3 0	07/08/2013 07/08/2013	3 TF	Ъ	TW TW	5 3/4				Dando Deltaba			FI					
4.50	6.00	CP	07/08/201	.3 0	07/08/2013			TW	T61:		Impreg		Dando								
		_																_			
	_				GRESS											WATER STR					
Date	Ti	me	Hole depth	Casing depth	g Water depth	1	_	Rema	rks	_		Date	e	Time	Strike at depth	Rise to depth	tak	me ken	at strik	sing dep	oth o seal flow
07/08/20	013 1	.900	6.00	6.00	-14.60	End c	of Hole	e									LO 1	rise	time	+'	low
					RCUSSION							<u> </u>				SPT DETA					ı
Hard from	d Strata n	Depth to	Start tir		Duration	Remar	rks					Depth	Туре		nental blow etration in		Hami No		Energy ratio	Casing depth	Water depth
2.95		3.00	1100	+	hhmm 0200	Chiselli	ing					0.50 1.50	SPT	N=19 (3,4	4,5,5,6,3) 7 7 8 9 8)		AR3 AR3	60	75 75	N/A 1.50	-13.20 -13.10
						1						2.50 3.50 4.50	SPT SPT(C	N=47 (2,9 50/0mm	4,5,5,6,3) 7,7,8,9,8) 9,8,11,12,16) (25/0,50/0) 11,11,10,9,12 10,10,11,10,1		AR3 AR3	360	75 75 75 75 75 75	2.50 3.50 4.50	-13.10 -13.60 -13.90 -14.50 -14.60
						l						4.50 5.50	SPT(C	N=42 (8,: N=43 (7,:	1`1,11,10,9,12 10,10,11,10,1) 2)	AR3 AR3	360	75 75	4.50 5.50	-14.50 -14.60
						<u> </u>															
Fror	m T	То	RC		FLUSH DE	ETAILS		ush	Fi	lush											
dept		depth			уре		ret	turn %		olour											
3.00		4.50		Air/	/Mist		10	100	Brown	n & gre	у										
нс	DI F DIA	MFTFR	/ CASING			DYN	AMIC	C SAMPLII	ING		-										
Hole	Depth	of Cas	sing Deptl		Тор	Base		ameter	Time		overy										
diametei 200	6.00		neter casi 00 6.0		\rightarrow		+	n	hhmmss	9	ò										
			ATION DET					IPE CONS		_											
Distance from G.L		T	ype R	espons Top	ise zone Base	ID T	P Top	Pipe Base	Dia. of pipe		e of ipe										
				BACI	KFILL DET	'ΔII S			<u></u>		_	 			* Seating b	lows only. SENERAL N	OTES				
Тор о		ase of	M	aterial		AILS	—	Rema	arks							- ILIVERAL IV					
sectio 0.00		ection 6.00	A	risings							_										
						1															
						1															
						1															
						Щ.															
NOTES	Water	strike	metres, all rise time in	minut	tes, hard			in hhmm	า										4		
	For de	tails of	abbreviation				<u></u>	22.42	(2012.1	0.00.0								:OII	. eng		חוחה
				Loa	a Print Da ^r	te And	Lime	e: 23/12/	2013 1	.0:33:2	28						3	OIL	- CIIG	lilee	KIIIG

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

TA7148

Project No.

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E107

Sheet 1 of 1

Ground Level -13.15m CD Coordinates 397600.63 E, 804504.87 N National Grid

Hole Type CP+RO Inclination

Description of Strata	Legend	Depth	Datum Level	!	Sampling		Sample I	ount And Recovery	In Situ Det		Ins
			Level	D	etails	Dia.	TCR SCR	RQD	Det	alis	atit
Medium dense slightly silty slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to medium of mixed igneous and metamorphic lithologies.		-		D002	0.00-0.50 0.50 0.50-0.95		,		SPT19 0.50	0.95	
from 1.50m to 2.95m dense					1.50 1.50-1.95				SPT32 1.50	1.95	
		2.95	-16.10		2.50 2.50 2.50-2.95				SPT47 2.50	2.95	
Rotary openhole drilling. COBBLES and BOULDERS. (Driller's description)	7, C, C, C, C, C, C, C, C, C, C, C, C, C,								SPT(C)50/0 3.50	3.50	
Dense grey slightly gravelly silty fine to coarse SAND. Gravel is subangular to subrounded fine of mixed igneous and metamorphic lithologies.	0.000000000000000000000000000000000000	4.50 	-17.65	D010 B011 D012	4.50 4.50-4.95 5.00				SPT(C)42 4.50	4.95 -	
		6.00	-19.15	D013	5.50				SPT(C)43 5.50	5.95 - - - -	
Exploratory hole complete at 6.00 m.		- - - - - - - - - - - - - - - - - - -								-	1 - - - - - - - - - - - - - - - - - - -
		-								- - - - - - - - - - - - - - - - - - -	-
		-								- - - - - - - - -	-

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:33:31

SOIL ENGINEERING Part of the Bachy Soletanche Group

			•	ј На	rbour Dev	elop	men	t Groun	d Inves	stigation	l			Fxnlo	ratory	Hole L	വ		Ho	ole ID.	
Project			148											LAPIO	idtory	TIOIC L	og .		E	108	
Engine Employ			h Hende		n LLP our Board															eader	
Ground			64m CD	Iaib	oui boaiu			Coo	rdinates	397	748	7.08 E,	80446	60.80 N Na	ational Gri	<u></u>				Eauei	
Date Sta	arted	11/0	7/2013					Dat	e Compl	eted 13/	′07 <i>i</i>	/2013				Inclina	tion	Verti	cal		
Тор	Base	Туре	Date Sta	ırted	Date Ende	d C	rew	Section Logged E	Cor By Bar	re Cor rel Bi	re t		Equipr	ment	SI S	noring / upport		R	Remarks		
0.00 3.65	3.65 6.65	CP RC	11/07/2 12/07/2	013 013	11/07/201 13/07/201	3 \	TP WW	DT DT	T61	.16 Impr	eg		Dando Deltaba	3000 se 515							
											4										
Date	Ті	me	Hole		ROGRESS sing Wate	ır İ		Rema	arke		4	Dat	· a	Time	Strike a	WATER STR	_	me	Car	sing dep	nth.
			depth	de	pth dept	h						Dat	·C	Time	depth	depth	tal	ken rise	at strik time	e to	o seal flow
11/07/20 11/07/20 11/07/20	013 1	700 710 900	3.65 3.65 3.85	3.6 3.6 3.6	55 -13.40) Sta	l of CF rt of R l of Sh	otary													
12/07/20 12/07/20	013 0 013 1	700 900	3.85 4.85	3.6 3.6	S5 NR S5 NR	Star Enc	rt of S I of Sh	hift ift													
13/07/20 13/07/20		700 400	4.85 6.65	3.6 3.6	55 -14.60 55 -14.10		rt of S I of Ho														
			CA	BLE	PERCUSSIO	N DET	AILS				1					SPT DETA	ILS				
Hard from	l Strata	Depth to	Start t	ime	selling Duration	Rem	arks					Depth	Туре		nental blov etration in			nmer Io.	Energy ratio	Casing depth	Water depth
3.60		3.65	143	0	0100	Chise					+	1.00	SPT	N=4 (1,1,7 N=7 (1,2,7	1,1,1,1)		ARS	360	% 75	1.00	-13.70 -13.80
3.65		3.65	153	U	0100	Chise	eiling					2.00 3.00 3.65	SPT SPT(C SPT(C	N=7 (1,2,3 N=34 (4,6) 50/0mm	1,2,2,2) 5,8,8,9,9) (25/0,50/0)		AR3	360 360 360	75 75 75 75	2.00 3.00 3.65	-13.80 -13.80 -15.60
													,							Ì	
											4									Ì	
Fror	n	То		ROTA	RY FLUSH D	ETAIL		lush	FI	lush	4									Ì	
dept 3.65		depth 6.65			type Air/Mist			eturn % 100		olour	╝									Ì	
3.05		0.00			AIT/IVIISL			100	۲	ink										Ì	
																				Ì	
																				Ì	
											╛									Ì	
	,		/ CASING					C SAMPL		1_										Ì	
Hole diameter	hole	dian		sing	Тор	Base	Di	iameter	Time hhmmss	Recover %	У									Ì	
200 116	3.65 6.65	2	00 3	.65																Ì	
																				Ì	
																				Ì	
	IN	ISTALLA	ATION DE	TAILS	5		F	PIPE CONS	STRUCTION	ON	┪									Ì	
Distance from G.L		T	ype	Resp	onse zone	ID	Тор	Pipe Base	Dia. of pipe	Type of pipe										Ì	
											┪									Ì	
																				Ì	
				R	ACKFILL DE	TAILS					+					olows only. GENERAL N	IOTES				
Top o		ase of		Mate		AILS		Rem	arks		\dagger					GLIVEINALIV	OTLS				
sectio 0.00		ection 6.65		Grou	ut						┨										
NOTES	: All dei	oths in	metres a	ll dia	meters in m	illime	tres				_										
	Water	strike		in mi	nutes, hard			e in hhmn	n										4		
\vdash					Log Print Da	ite And	d Tim	e: 23/12	/2013 1	0:32:19							9	SOII	L eng	inee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID. E108

Sheet 1 of 1

Ground Level -12.64m CD Coordinates 397487.08 E, 804460.80 N National Grid

Hole Type CP+RC Inclination

Dense dark grey very gravelly fine to coarse SAND. Grave is subangular for subcounded fine to mixed igneous and metamorphic lithologies. Medium dense dark grey slightly silty gravelly fine to coarse SAND. Grave is subangular to subcounded fine to medium of mixed ingeous and metamorphic lithologies. 190 1003 100 1004 100 145 100 1004 100 145 100 1004 100 145 100 1004 100 145 100 1004 100 145 100 100 100 100 100 100 100 100 100 10	Description of Strata	Legend	Depth	Datum	Sampling	l			ount A Recov		In Situ		Inst
1,90				Level	Details	Dia.	TCR	SCR	RQD	IF	Deta	alls	atio
Medium dense dark grey slightly sitly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to medium of mixed ingeous and metamorphic lithologies. from 1.90m to 3.60m driller notes clay bands Dense dark grey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of granite and schist. Strong to very strong grey speckled pink GRANITE. Discontinuties: 1) 2.00 degrees closely spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees undulating (8-22mm) from 4.65m to 4.70m recovered as non intact core (angular coarse gravel sized fragments) The coarse gravel sized fragments are coarse gravel sized fragments) 1.14.54 DO07 2.00-2.45 B008 2.00-2.45 B009 2.00-	Gravel is angular to subrounded fine of mixed igneous and	X						l.					
Medium dense dark grey slightly sitly gravelly fine to coarse SAND. Gravel is subangular from to subrounded fine to medium of mixed ingeous and metamorphic lithologies. from 1.90m to 3.60m driller notes clay bands Dense dark grey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of granite and schist. Strong to very strong grey speckled pink GRANITE. Discontinuities: 1) 20-30 degrees medium spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees medium spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees undulating (8-22mm) from 4.55m to 4.70m recovered as non intact core (angular coarse gravel sized fragments) from 6.55m to 5.89m recovered as non intact core (angular coarse gravel sized fragments) 5.95 6.65 92 100 93 17					D004 1.00-1.45 B005 1.00-1.45							1.45	
Dense dark grey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of granite and schist. Strong to very strong grey speckled pink GRANITE. Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean. 10-80 degrees undulating (8-22mm) from 4.55m to 4.70m recovered as non intact core (angular coarse gravel sized fragments) from 5.68m to 5.89m recovered as non intact core (angular coarse gravel sized fragments) 5.95 6.65 92 100 93 17	SAND. Gravel is subangular to subrounded fine to medium of mixed ingeous and metamorphic lithologies.	*	1.90 -	-14.54	B008 2.00-2.45							2.45 - - - - -	
Dense dark grey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of granite and schist. Strong to very strong grey speckled pink GRANITE. Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees undulating (8-22mm) from 4.65m to 4.70m recovered as non intact core (angular coarse gravel sized fragments) From 5.68m to 5.89m recovered as non intact core (angular coarse gravel sized fragments) SPTIC/SO/Omm 3.65 3.65 3.65 3.65 3.65 3.65 3.65 3.65	,	×										-	
Dense dark grey very gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of granite and schist. Strong to very strong grey speckled pink GRANITE. Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean. 10-80 degrees undulating (8-22mm) 10-90 degrees undulating (8-22mm) 10-80 degrees undul											SPT(C)34 3.00	3.45	
Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees undulating (8-22mm) from 4.65m to 4.70m recovered as non intact core (angular coarse gravel sized fragments) In the following spaced planar rough clean. Sign of the following spaced planar r		++++											
from 5.68m to 5.89m recovered as non intact core (angular coarse gravel sized fragments) 4.85 5.95 92 100 81 31 4.85 5.95 92 100 81 31 5.95 6.65 92 100 93 17	Discontinuities: 1) 20-30 degrees closely spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean. from 4.20m to 4.52m 1 No pink and white quartzite vein 10-80 degrees undulating (8-22mm) from 4.65m to 4.70m recovered as non intact core (angular	*****			3.65 4.8!	92	100	96	22				
from 6.35m to 6.40m recovered as non intact core (angular		*****			4.85 5.99	92	100	81	31	NI 75 200			
6.65 -19.29		*****	6.65	-19.29	5.95 6.69	92	100	93	17			-	
			- - - - - - -									- - - - - -	
			- - - - -									- - - -	
			- - - -									- - - -	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:32:22

SOIL ENGINEERING Part of the Bachy Soletanche Group

Projec	t Nam	ne Bay	of Nigg	Har	rbour Dev	elop	men	t Groun	d Inves	tigati	on			Evolo	ratory I	ا مام ا	00		Ho	le ID.	
Projec			148											Explo	iatory i	TOIR L	og		F	109	
Engine			h Hende																		
Emplo Ground			erdeen H 23m CD	arbo	our Board			Cor	ordinates		3974	91 45 F	80450	00 34 N Na	ational Grid				H	eader	
Date Sta			07/2013						te Compl				00 150	30.3 1 14 140	ational and	Inclina	tion \	/ertic	cal		
Тор	Base	Туре	Date Star	ted	Date Ende	d C	rew	Section Logged	n Co By Bar	re rel	Core Bit		Equip	ment	She Su	oring / pport		R	temarks		
0.00	5.90	СР	17/07/20	13	17/07/201	3	TP	DT	, <u> </u>		5.0	 	Dando	3000		pport					
				PR	ROGRESS											VATER STR	RIKES				
Date	Т	ime	Hole depth	Cas dep	ing Wate	er h		Rem	arks			Dat	te	Time	Strike at depth	Rise to depth	Tin tak	ne en	Cas at strik	sing der	oth o seal
17/07/2	013	2000	5.90	5.8			d of Ho	ole				<u> </u>			чери	черин	tor	ise	time		o seal flow
			CA	RIFF	PERCUSSIO	N DET	ΓΔΙΙς									SPT DETA	II S				
Haro	l Strata	Depth		Chis	elling		narks					Depth	Туре		nental blow	count /	Hamr		Energy	Casing	
fron		to	Start ti hhmi	n	Duration hhmm										etration in I	mm	No		ratio %	depth	
5.80		5.90	1730)	0200	Chis	elling					1.00 2.00 3.00	SPT SPT SPT	N=24 (2,2 N=32 (4,6	2,3,5,7,9) 5,7,8,8,9) 5,8,8,9,9)		AR3 AR3 AR3	60	75 75 75 75 75	1.00 2.00 3.00	-13.95 -13.15
												4.00 5.00	SPT SPT	N=34 (4,6 N=34 (5,7 N=37 (6,8	7,7,9,9,9) 8,9,8,9,11)		AR3	60	75 75	4.00 5.00	-13.20 -12.20 -12.35
															,						
				OT A I	DV ELLICIT E	T A II	<u> </u>					-									
From		То		OTAL	RY FLUSH D	EIAIL	F	lush		ush		1									
dept	in	depth	!		type		re	eturn %	CO	lour											
НС	DLE DIA	METER	/ CASING			DY	NAMI	C SAMPL	ING			1									
Hole diameter		n of Ca		th of ing	Тор	Base	Di	ameter	Time hhmmss	Reco											
200	5.90		00 5.8						11111111133	70		1									
			ATION DET					PIPE CON													
Distance from G.L		1	ype	Resp To	onse zone p Base	ID	Тор	Pipe Base	Dia. of pipe	Type pi	of pe										
				D/	ACKFILL DET	LVII C									* Seating bl	ows only. iENERAL N	IOTES				
Тор о	of E	Base of	l N	later		IAILS		Rem	arks							IENERAL IV	OTES				
section 0.00	n s	ection 5.90		Grou	ıt																
NOTES	: All de Wate	pths in	metres, al	l diar	meters in m nutes, hard	illime I strat	tres. a time	e in hhmr	n										4		
	For d	etails of	abbreviat	ions,	, see key													~			0:55
1				L	Log Print Da	ite An	d Tim	e: 23/12	/2013 1	0:22:3	9						S	UIL	_ eng	mee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

TA7148

Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board **Exploratory Hole Log**

Hole ID.

E109 Sheet 1 of 1

Ground Level -12.23m CD Coordinates 397491.45 E, 804500.34 N National Grid

Hole Type Inclination

Description of Strata	Legend	Depth	Datum Level	Sampling		Blo Sam	w Cou ple Re	ınt An ecover	d ry	In Situ Deta		Insta
			Level	Details	Dia.	TCR	SCR F	RQD		Deta	IIS	atio
Grey slightly silty fine to coarse SAND.	X	1 1 1 1 1		B002 0.00-1.00 ES001 0.50			·	•			11.11.11.1	
Dense grey slightly silty very gravelly fine to coarse SAND. Gravel is angular to subrounded fine to medium of granite, schist and quartzite.	×××	1.00	-13.23	D003 1.00-1.45 B004 1.00-1.45						PT24 00	1.45 -	
				ES005 1.50 B006 1.50-2.00								
				D007 2.00-2.45 B008 2.00-2.45					2.	PT32 00	2.45 -	
				ES009 2.50 B010 2.50-3.00							11111	
		1111		D011 3.00-3.45 B012 3.00-3.45					SF 3.	PT34 00	3.45 -	
				ES013 3.50 B014 3.50-4.00								
				D015 4.00-4.45 B016 4.00-4.45						PT34 00	4.45 -	
				ES017 4.50							11111	
		1		D018 5.00-5.45 B019 5.00-5.45					SF 5.	PT37 00	5.45	
		5.80	-18.03	ES020 5.50							111111	
No recovery. Possible rockhead. (Driller's description)		5.90	-18.13								_	
Exploratory hole complete at 5.90 m.		2.30	-18.13									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Form No. SIEXPHOLELOG

Log Print Date And Time: 23/12/2013 10:22:41

SOIL ENGINEERING Part of the Bachy Soletanche Group

		-	•	g Hai	rbour Dev	/elop	ment	: Ground	d Inves	tigatio	n			Evnlo	ratory l	Hole Lo	20	Нс	ole ID.	1
Project			7148											Lybici	atory	IOIC L	Jy	Е	110	ļ
Engine			h Hend			-														
Employ Ground I			erdeen I .73m CD		our Board				rdinates	- 30	7740	07 52 E (20445	2 72 NI NIa	tional Grid			н	leader	
Date Sta			.73m CD 07/2013						rdinates e Comple			,	80443	14./3 IV IVa	tionai Griu	Inclinat	tion Verti	cal		
Тор	Base		Date Sta		Date Ende	ed (Crew	Section	Cor		ore Bit		Equipr	ment	Sho	oring /		Remarks		-
0.00	2.15	СР	15/07/2	2013	15/07/201	3	TP	Logged By DT			iit	[Dando	3000	Su	pport				
2.15	5.85	RC	15/07/2	2013	16/07/201	3	ww	DT	T611	16 Imp	oreg		Peltabas	se 515						ļ
.																				•
																				ļ
		<u> </u>									_	<u> </u>								
Date		ime	Hole	PR	ROGRESS sing Wate			Rema			\dashv	Date	2	Time	V Strike at	NATER STRI Rise to	IKES Time	T Ca	sing dep	\+h
			depth	dep	pth dept	th						Date			depth	depth	taken to rise	at strik time	ke i to	o seal flow
15/07/20 15/07/20	013 2	1200 2000	2.15 2.30	2.1 2.3	30 NR	En	nd of CP nd of Shif	ift												
16/07/20 16/07/20	013 0	0730 2000	2.30 5.85	2.3	30 -18.15	5 Sta	art of Sh Id of Hol					1								
I			I																	
I			I																	
			I																	•
I			I																	
L			I			\perp														
			C	ABLE F	PERCUSSIO	N DE	TAILS									SPT DETAI				
Hard from	Strata	Depth to	Start	time	selling Duration		narks				_	Depth	Туре		nental blow etration in r		Hammer No.	Energy ratio	Casing depth	Water depth
2.10	-	2.15	hhm 093	mm	hhmm 0200		selling				\dashv	1.50	SPT	N=31 (3,4	,8,7,8,8)		AR360	% 75	1.50 2.15	-13.80 -13.80
I												2.15	SPT	50/0mm ((25/0,50/0)		AR360	75	2.15	-13.80
												1								
				ROTA	I RY FLUSH D	DETAI	L.S				\dashv	1								
From dept		To depth			Flush type		Flu	lush turn		lush olour	\neg	1								
2.15		2.30	+		Air/Mist	!	1	% 100	Gı	arey	\dashv	1								
2.30		5.85			Air/Mist	I		100		k/Grey		1								
						I						1								
НО	LE DIAI	METER	/ CASINO	G		DY	NAMI	C SAMPLII	NG		\neg	İ								
Hole diameter	Depth			pth of asing	Тор	Base	Dia		Time hhmmss	Recove	ry									
200 139	2.15 2.30	5 20	200 2	2.15 2.30							\dashv									
116	5.85	1		50					ļ											
l									ļ											
												ĺ								
<u> </u>			ATION DE					IPE CONS												
Distance from G.L.		, T	ype	Respo	onse zone p Base	ID	Top	Pipe Base	Dia. of pipe	Type o										
		1																	1	
		1																	1	
		Щ_		Щ		<u> </u>	<u> </u>	<u> </u>		<u> </u>	_	<u> </u>			* Seating bl				<u></u>	
Top of	- -	Base of		BA Mater	ACKFILL DET	TAILS		Rema			\dashv				G	ENERAL NO	OTES			
section 0.00	n se	ection 5.85	ــــــ	Grou		₩					_									
0.00		5.05		Grou																
NOTES:	All de	pths in	metres.	all dia	meters in m	nillim _'	etres.			-	_									
	Water	r strike ı		in mir	nutes, hard			in hhmm	1									1		
					Log Print Da	ate Ar	nd Time	e: 23/12/	/2013 1	0:32:27							SOII	L eng	inee	RING

Log Print Date And Time: 23/12/2013 10:32:27

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 E110 Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board

Ground Level -14.73m CD Coordinates 397497.53 E, 804434.73 N National Grid

Hole Type	CP+RC	Inclination	Vertical	
-----------	-------	-------------	----------	--

Description of Strata	Legend	Depth	Datum	Si	ampling				ount A Recov		In Situ Test	Insta
Description of Strata	Legend	Берин	Level	De	tails	Dia.	TCR	SCR		IF.	Details	ation
Medium dense dark grey slightly silty slightly gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of schist and granite. from 0.00m to 1.50m driller notes loose				ES002 1 D003 1 D004 1 B005 1	0.00-1.35 0.00-1.35 0.40 0.45 0.50-1.95 0.50-1.95						SPT31 1.50 1.95	
No recovery. GRANITE. (Driller's description)	++++	2.15 <u> </u>	-16.88 -17.03	B007 2	2.00-2.10						SPT50/0mm 2.15 2.15	
Strong to very strong grey and pink coarse crystalline GRANITE. Discontinuities: 1) 10-20 degrees closely to medium spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean.	*****	2.30	-17.05	2.30	3.15	92	100	100	86		-	
	* * * * * * * * * * * * * * * * * * *			3.15	4.75	92	100	100	87	50 160 200	-	
from 5.22m to 5.30m recovered as non intact core (angular coarse gravel sized fragments) from 5.52m to 5.77m recovered as non intact core (angular medium to coarse gravel sized fragments) Exploratory hole complete at 5.85 m.	*****	5.85	-20.58	4.75	5.85	92	100	72	58	NI 140 200		
Exporatory note complete at 5.05 m.											-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:32:29

Form No. SIEXPHOLELOG

Issue Date 22/10/2012

Sheet 1 of 1

-		_		g Harl	bour Dev	elop	men	Ground	Inves	tigatio	n			Fxnlor	ratory H	Hole Lo	00	Но	ole ID.	
Project		TA7												-xpioi	acory i	1010 20	79	Ε	111	
Engine			n Hende																	
Employ Ground L			rdeen F 72m CD	larbo	ur Board			Coor	rdinates	31	9738	R6 91 F 3	80439	1 24 N Na	tional Grid			Н	eader	
Date Star			8/2013						Comple				00433	71.24 IV IVG	tional and	Inclinat	ion Verti	cal		
Тор	Base	Туре	Date Sta	rted	Date Ende	d C	Crew	Section Logged By	Cor y Barr	e C	ore Bit	E	Equip	ment	Sho	oring /	F	Remarks		
0.00	3.50	СР	12/08/2	013	12/08/201	3	TT	TW					Dando	3000	Su	эрогс				
3.50 4.40	4.40 6.00	RC RC	12/08/2 13/08/2		12/08/201 13/08/201		TT WW	TW TW	T61:		preg preg			se 515 se 515						
				PRO	OGRESS											VATER STRI	KES			
Date	Ti	me	Hole	Casii	no Wate	r		Rema	rks			Date	e	Time	Strike at	Rise to	Time	Ca	sing dep	th
12/08/20:	13 1	710	depth 3.30	3.30) -14.90) En	d of CP	/Start of Ro	tarv						depth	depth	taken to rise	at stril time	de lu	seal low
12/08/20: 13/08/20:	13 1 13 0	900 700	4.40 4.40	4.00 4.40	-20.10 -15.20	En Sta	d of Sh art of Sh	ft ift	cury											
13/08/20	13 1	200	6.00	4.00	-20.10) En	d of Ho	le												
			C.A	ABLE P	ERCUSSIO	N DE1	ΓAILS								ı	SPT DETAI	LS	1	<u> </u>	
Hard :	Strata	Depth to	Start t	Chise	elling Duration	Ren	narks					Depth	Туре		nental blow etration in r		Hammer No.	Energy ratio	Casing depth	Water depth
110111		10	hhm	ım	hhmm							0.50	SPT				AR360	%	N/A	-13.40
												1.50 2.50	SPT SPT	N=28 (2,4 N=28 (3,4 N=36 (5,6	,5,6,6,11) ,6,8,9,13)		AR360 AR360	75 75 75	1.50 2.50	-13.80 -14.60
			,		Y FLUSH D	ETAIL														
From depth		To depth			Flush type			ush turn		ush Iour										
3.30		6.00		١	Water		:	% L00	Bro	own										
				. 1																
Hole		of Cas	/ CASING	th of	Тор	Base		C SAMPLII ameter	NG Time	Recove	erv									
diameter 150	hole 4.00	dian	neter ca	sing .00	.,				hmmss	%	_									
116	6.00			.00																
	IN	ISTALLA	TION DE	TAILS			Р	IPE CONS	TRUCTIO	ON										
Distance from G.L.	ID	Ty	/pe	Respo	onse zone D Base	ID	Тор	Pipe Base	Dia. of pipe	Type o										
					CI(E = :						_				* Seating blo					
Top of	R	ase of	ı	BA Materi	CKFILL DET	AILS		Rema	ırks		\dashv				G	ENERAL NO	JIES			
section 0.00	S	ection 3.30		Arising				Remo												
3.30		6.00		Grout																
																	1			
					neters in m lutes, hard			in hhmm										A		
	For de		abbrevia	tions,	see key															010-
Unchecl	ked			Lo	og Print Da	te An	d Tim	e: 23/12/	2013 10	0:32:34		-					501	L eng	ınee	RING

Form No. SIEXPHOLEHDR

Issue.Revision No. 1.05

Project No. TA7148

Engineer

Employer

Arch Henderson LLP Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E111

Sheet 1 of 1

Ground Level -12.72m CD Coordinates 397386.91 E, 804391.24 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sa	ampling				ount A Recov			u Test	Ins
			Level	De	tails	Dia.	TCR	SCR	RQD	IF	Det	tails	ati
Medium dense grey silty fine to coarse SAND. (Driller notes boulders).					.50-0.95 .50-1.00						SPT28 0.50	0.95	
					.50-1.95 .50-2.00						SPT28 1.50	1.95 -	
from 2.50m to 3.30m dense					.50-2.95 .50-3.00						SPT36 2.50	2.95 -	
Weak pink and grey coarse crystalline GRANITE. Discontinuities: 1) 0-10 degrees closely spaced planar rough stained reddish brown. from 3.30m to 3.60m stained reddish brown. Recovered as non intact core (angular to subangular fine to coarse gravel		3.30	-16.02 -16.72	3.30	4.00	92	93	41	14	NI 60 100		-	
sized fragments) from 3.72m to 3.80m 1 No discontinuity 60 degrees planar	*****	=		4.00	4.40	92	88	0	0	NI		-	
rough stained brown from 3.89m 1 No quartz vein stained reddish brown. Recovered as non intact core (angular coarse gravel sized fragments) from 3.95m to 4.00m assumed zone of no recovery		4.40 - - - - - -	-17.12	4.40	5.15	92	60	40	13	NI 90 100			
Medium strong pink and grey coarse crystalline GRANITE stained reddish brown. Recovered as non intact core (angular medium to coarse gravel sized fragments). from 4.35m to 4.40m assumed zone of no recovery		5.25 _ - - -	-17.97	5.15	6.00	92	100	12	12	NI		-	
Medium strong to strong pink and grey coarse crystalline GRANITE. Discontinuities: 1) 50-70 degrees closely spaced planar rough stained reddish brown. from 4.50m to 4.71m recovered as non intact core (angular medium gravel sized fragments) from 4.77m to 4.90m 1 No discontinuity 90 degrees planar rough stained reddish brown from 5.00m to 5.15m assumed zone of no recovery Medium strong to strong pink and grey coarse crystalline GRANITE stained reddish brown. Recovered as non intact core (angular to subangular fine to coarse gravel sized fragments). Exploratory hole complete at 6.00 m.		6.00	-18.72										

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:32:37

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

-		-		ј На	rbour Dev	elop	men	t Groun	d Inves	tigation			Fynlo	ratory	Hole L	00		Hol	le ID.	
Project			148										LXPIO	ratory	I TOIC L	og		E1	l12	
Engine Employ			h Hende		n LLP our Board														ader	
Ground			67m CD	Iaib	oui boaiu			Coc	ordinates	397	398.02 E	, 8044	37.20 N N	ational Grid					auei	
Date Sta	ırted	09/0	7/2013					Dat	e Compl	eted 10/0	7/2013				Inclina	tion -				
Тор	Base	Туре	Date Sta	ırted	Date Ende	d C	rew	Section Logged E	n Cor By Bar	re Core rel Bit	•	Equip	ment	Sh Su	oring / ipport		Rema	arks		
0.00 2.75	2.75 6.05	CP RC	09/07/2 10/07/2	013 013	09/07/201 10/07/201	3 \	TP WW	DT DT	T61	16 Impre	g	Dando Deltaba	3000 ase 515							
Date	Ті	me	Hole		ROGRESS sing Wate	ır İ		Rema	arke		Da	ıta	Time	Strike at	NATER STR Rise to	RIKES Tim		Cas	ing dep	th
			depth	de	pth dept	h			ai K3				Time	depth	depth	take to ris	en at	t strike time	e to	seal low
09/07/20 09/07/20 09/07/20	013 1	603 630 900	2.75 2.75 3.00	2.7 2.7 3.0	75 -16.20 70 -16.20 00 -15.30) Sta	d of CF rt of R d of Sh	otary												
10/07/20	013 0	700 735	3.00 6.05	2.7	70 -13.50) Sta	rt of Si	hift												
	ı		CA	BLE	PERCUSSIO	N DET	AILS								SPT DETA	ILS				
Hard from	Strata	Depth to	Start t	ime	selling Duration	Rem	arks				Depth	Туре		mental blow etration in		Hamm No.	. ra	atio	Casing depth	Water depth
2.70		2.75	hhm 133		0200	Chise	elling				1.00	SPT	N=2 (0,0, N=6 (1,1,	0,0,1,1)		AR36	0 7	% 75	1.00	-14.20 -12.60
											1.50 2.50 2.75	SPT SPT SPT(0	50/50mr	n (5,20,50) (25/0,50/0)		AR36 AR36 AR36	0 7	75 75 75 75	1.50 2.50 2.75	-12.60 -15.35 -16.20
												'								
											4									
Fror	n	То		ROTA	RY FLUSH D	ETAIL		lush	FI	ush	4									
dept 2.75	h	depth 6.05			type Air/Mist			eturn % 100		lour										
2.15		6.05			AIT/IVIISL			100	۲	Ink										
	,		/ CASING					C SAMPL												
Hole diameter	hole	dian		sing	Тор	Base	Di	ameter	Time hhmmss	Recovery %										
200 116	2.75 6.05	2	00 2	.75																
	IN	ISTALLA	ATION DE	TAILS	5		F	PIPE CONS	STRUCTION	ON	1									
Distance from G.L		T	уре	Resp	onse zone	ID	Тор	Pipe Base	Dia. of pipe	Type of pipe										
				R	ACKFILL DE	TAILS					+			* Seating b	lows only. SENERAL N	IOTES				
Top o		ase of		Mate		AILS		Rem	arks		1				ALIVEIVAL IV	0123				
sectio 0.00		ection 6.05		Grou	ut						_									
NOTES	: All de	oths in	metres a	ll dia	meters in m	illime	tres											10		
	Water	strike		in mi	nutes, hard			e in hhmn	n											
Unched					Log Print Da	ite And	d Tim	e: 23/12	/2013 1	0:32:43						S	JIL E	engi	nee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Ground Level

Arch Henderson LLP

Exploratory Hole Log

Hole ID.

E112

Sheet 1 of 1

Employer

-12.67m CD

Aberdeen Harbour Board

Coordinates 397398.02 E, 804437.20 N National Grid

Hole Type CP+RC Inclination

Description of Strata Very loose dark grey slightly silty slightly gravelly fine to medium SAND. Gravel is subangular to rouned fine to medium of mixed igneous and metamorpic litholgies, including granite, schist and gneiss.	Legend	Depth	Datum Level	Sampling			Blow Count And Sample Recovery				In Situ Test Details		Install ation
				[Details	Dia.	TCR	SCR	RQD	IF	D	acion	
	X			ES002	0.00-1.00 0.50			•			SPT2		
Medium dense dark grey slightly silty gravelly fine to coarse SAND. Gravel is angular to subangular fine to medium of mixed lithologies including granite, schist and quartzite.		1.50 -		D004 ES005	1.50-1.95						1.00 SPT6 1.50	1.45 -	
Strong grey GRANITE. (Recovered as angular coarse gravel sized	****	2.70 -		D007 ES008	2.50-2.70 2.50						SPT50/50mm 2.50 2.70 SPT(C)50/0mm 2.75 2.75		
fragments). Strong to very strong grey speckled pink GRANITE. Discontinuities: 1) 50-60 degrees closely spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean. from 2.94m to 3.25m recovered as non intact core (angular coarse gravel sized fragments and angular cobble sized fragments) from 4.00m to 4.08m recovered as non intact core (angular coarse gravel sized fragments and cobble sized fragments) from 4.17m to 4.35m recovered as non intact core (angular coarse gravel sized fragments and angular cobble sized fragments)				2.7	5 3.25	92	100	58	38		2.75	2.75	
				3.2	5 3.80	92	100	100	82	,		-	
	*****			3.8	0 5.10	92	100	80	54	NI 125 300			
		6.05		5.1	0 6.05	92	100	100	66			-	
Exploratory hole complete at 6.06 m.													

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:32:45

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

-		-		g Har	rbour Dev	/elop	ment	ւ Ground	l Invest	tigatio	on			Evnlo	ratory l	ا مام	00	Но	ole ID.	
Project			7148		_									LAPIO	atory	IOIC L	Jy	Е	115	•
Engine			h Hende																	ļ
Employ Ground I			erdeen F .67m CD	larbo	our Board		—	Coor	rdinates		2973(00 79 F	20436	1 01 N N;	ational Grid			н	leader	
Date Sta			08/2013						e Comple				00 102	1.01 1	Ittoriai C	Inclinat	tion Verti	cal		•
Тор	Base	Туре	Date Sta	arted	Date Ende	d (Crew	Section Logged By	Core	re (Core Bit	E	Equipn	nent	She	oring /	R	Remarks		
0.00	1.70	СР	13/08/2	2013	13/08/201	.3	TP	TW					Dando :	3000	Ju	ррогс				
1.70	5.70	RC	14/08/2	.013	14/08/201	3	ww	TW	T611	i6 in	mpreg	U	Deltabas	e 515						•
								i												•
								i												•
					202500						\dashv					ED CTD				
Date	Ti	ime	Hole	Casi	ROGRESS sing Wate	er	—	Remar	rks	—	\dashv	Date	e.	Time	Strike at	NATER STRI Rise to	Time	Ca	sing dep	oth
			depth	dep	oth dept	:h							\perp		depth	depth	taken to rise	at stril	ke i to	o seal flow
13/08/20 14/08/20	013 0	1815 0700	1.70 1.50	1.50 1.50	0 NR	Sta	nd of CP art of Ro	otary												•
14/08/20	13 1	1930	5.70	1.70	0 -14.10) En	nd of Hol	le												,
			,																	,
			,																	ļ
I			,																	ļ
I			,																	ļ
I			,																	,
			C.F	ABLE F	PERCUSSIO	N DE	TAILS									SPT DETAI	ILS	-		
	Strata I	-	Start t		elling Duration		marks					Depth	Туре		nental blow etration in r		Hammer No.	Energy	Casing	Water depth
from		to	hhm	nm	hhmm							250	COT	· ·		nm		ratio %	depth	
1.50		1.70	160	10	0200	Chis	selling					0.50 1.70	SPT SPT(C)	N=22 (4,6 50/0mm	5,5,4,6,7) (25/0,50/0)		AR360 AR360	75 75	N/A 1.50	-12.90 -14.30
I																				
						<u> </u>														
From	n	То	F	ROTAF	RY FLUSH D Flush	ETAIL		lush	Fli	ush										
deptl		depth	ı <u> </u>		type		ret	turn %	col	lour										
1.70		5.70			Water			100	WI	hite										
						[
						[
						[
	\perp																			
			/ CASING		<u> </u>			C SAMPLI												
Hole diameter	Depth hole			pth of asing	Тор	Base) Dia		Time nhmmss	Recov %										
150 116	1.70 5.70	1:		1.70																
_ '																				
							\perp													
		JSTALL/	ATION DE	TAILS			P	IPE CONS	TRUCTIO	ON.										
Distance from G.L.			уре	Respo	onse zone p Base	ID	Top	Pipe Base	Dia. of pipe	Type pip										
	+ +	 I				М	,		C. p.,	<u> </u>										
		ı				'														
															* Seating bl	ows only.				
					ACKFILL DET	TAILS									G	SENERAL NO	OTES			
Top of section	n se	Base of ection		Mater				Rema	ırks											
0.00 1.70		1.70 5.70		Arising Grout	js it															
I																				
I																				
NOTES:	Water	r strike ı	rise time	in mir	meters in m nutes, hard	ıillime 1 strat	etres. ta time	in hhmm	1									4		
	For de	tails of	fabbrevia	ations,	, see key													226		-:06
Unchec	:ked			L	Log Print Da	ate Ar	nd Time	e: 23/12/	2013 10	J:32:50)						SOIL	L eng	inee	RING

Log Print Date And Time: 23/12/2013 10:32:50

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Ground Level

Exploratory Hole Log

Hole ID.

E115

Sheet 1 of 1

Engineer Arch Henderson LLP

Employer Aberdeen Harbour Board -12.67m CD

Coordinates 397300.79 E, 804361.01 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum		Sampling				ount A Recov		In Situ Tes	IIISI
·		·	Level	D	etails	Dia.	TCR	SCR	RQD	IF	Details	atio
Medium dense grey slightly gravelly silty fine to coarse SAND. Gravel is subangular to subrounded fine to of schist and gneiss.	X X			D002	0.00-0.50 0.50-0.95 0.50-0.95						SPT22 0.50 0.9	5 -
No recovery. HARD strata. (Driller's description)		1.50 - 1.70 -	-14.17								CDT/C\E0/0	
Medium strong grey GNEISS. Recovered as non intact core (angular fine to coarse gravel sized fragments).			-14.37	1.70	2.60	92	100	5	0		SPT(C)50/0mm 1.70 1.7	
from 2.50m to 2.55m recovered as intact core. Discontinuities: 1) 10-20 degrees very closely spaced planar rough clean from 2.60m to 2.70m recovered as intact core. Discontinuities: 1) 10-20 degrees closely spaced planar rough clean		-		2.60	3.40	92	83	43	0	NI NI 100		
from 2.96m to 3.15m recovered as intact core. Discontinuities: 1) 10-20 degrees very closely spaced planar rough clean. 2) 20-30 degrees closely spaced planar				3.40	3.75	92	100	11	0			
rough clean from 3.25m to 3.40m assumed zone of no recovery from 3.71m to 3.75m recovered as intact core. Discontinuities: 1) 20-30 degrees very closely spaced planar rough stained brown on surface from 3.90m to 4.10m with schistose foliation (<1mm)		4.35	-17.02	3.75	5 4.70	92	86	36	0			
from 4.11m to 4.25m recovered as intact core. Discontinuities: 1) 30-40 degrees closely spaced planar rough clean. 2) 70-80 degrees closely spaced planar rough clean Strong grey GNEISS. Discontinuities: 1) 30-40 degrees closely		-		4.70	5.70	92	100	80	29	NI 65 150		
spaced planar rough clean. 2) 70-80 degrees medium spaced planar rough clean locally stained yellow on surfaces. from 4.55m to 4.70m assumed zone of no recovery from 5.10m to 5.40m dark grey with schistose foliation (<1mm) and yellow staining on surfaces from 5.25m to 5.45m recovered as non intact core (angular coarse gravel sized fragments) Exploratory hole complete at 5.70 m.		5.70	-18.37									

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:32:53

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Issue Date 22/10/2012

-		-) Harl	bour Dev	elopr	ment	Ground	Inves	tigat	ion			Fynlo	ratory	Hole L	00	Н	ole ID.	
Project		TA7												LXPIO	iatory	I TOIC L	og	F	116	
Engine			n Hende																	
Employ Ground			rdeen F 81m CD	larbo	ur Board			Coor	dinates		20720	DE 02 E 0	90/20	0 20 N N	ational Gri			н	eader	
Date Sta			7/2013						Comple				00423	3.30 IN IN	ational Gir	u Inclina	tion Vert	ical		
Тор	Base		Date Sta	rted	Date Ende	d Cı	rew	Section	Cor	·e	Core Bit		Equipn	nent	S	horing / upport		Remarks		
0.00	1.10	СР	06/07/2	013	06/07/201	3	TP	Logged By DT	Barr	el	Bit	ı	Dando	3000	S	upport				
1.10	4.50	RC	08/07/2	013	08/07/201	3 V	vw	DT	T613	16	PCD	D	eltabas	se 515						
Date	Т:	me	Hole		OGRESS ng Wate	_		Remar	ilio			Date		Time	C+rileo o	WATER STR	Time	T C0	sing dep	+h
Date	''	me	depth	Casir dept	th dept	'n		Remai	KS			Date	e	Time	Strike a depth	t Rise to depth	taken to rise	at stril	ke i to	seal flow
06/07/20 08/07/20	13 0	630 930	1.10 1.10	1.10 1.10	-12.20) Star	of CP t of Ro	tary												
08/07/20	13 1	600	4.50	1.10) End	of Ho	le ´												
			CA		ERCUSSIO											SPT DETA	ILS			
Hard from	Strata	Depth to	Start t		Duration	Rema	arks					Depth	Туре		nental blo etration ir		Hammer No.	ratio	Casing depth	Water depth
0.40		0.70	hhm	ım	0100	Chise	lling					1.00	SPT	50/0mm	(25/50,50/0))	AR360	75	1.00	-13.10
0.80 1.05 1.10		1.00 1.10 1.10			0100 0100 0100	Chise Chise	lling lling													
1.10		1.10			0100	Chise	iling													
			F		Y FLUSH D	ETAILS														
Fron dept		To depth			Flush type		ret	ush turn		ush lour										
1.00		4.50		Ai	ir/Mist			.00	Grey	//Pink										
			/ CASING		ı			C SAMPLIN												
Hole diameter	Depth hole		neter ca	oth of sing	Тор	Base	Dia		Time hmmss	Reco	overy									
200 116	1.10 4.50	20	00 1	.10																
Distance			TION DE		nse zone	ID		IPE CONST	TRUCTION Dia.	ON Type	a of									
from G.L		('	урс	Тор		טו	Тор		of pipe		ipe									
															* C - +!					
				BAG	CKFILL DET	AILS		1		<u> </u>			<u> </u>	<u> </u>		blows only. GENERAL N	OTES		<u> </u>	
Top of		ase of	ı	Materia				Rema	rks											
section 0.00		<u>4.50</u>		Grout																
NOTES:	All de Water	oths in i	metres, a rise time	II diam in min	neters in m utes, hard	illimet strata	res. i time	in hhmm										4		
	For de	tails of	abbrevia	tions, s	see key															DID -
				Lo	og Print Da	te And	d Time	e: 23/12/2	2013 10	0:32:5	8	-				-	SOI	r end	inee	RING

Issue Date 22/10/2012

Issue.Revision No. 1.05

Part of the Bachy Soletanche Group

Form No. SIEXPHOLEHDR

Project No. TA7148

Engineer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

E116

Sheet 1 of 1

Employer Ground Level -10.81m CD

Coordinates

397296.83 E, 804299.30 N National Grid

Hole Type CP+RC Inclination

	Level	۱ -							Details	
		"	etails	Dia.	TCR	SCR	RQD	IF	20145	ation
-	11.01	B002 D003	0.50 0.50						COTTO (Amora	
1.00	-11.81 -11.91			02	00	F.	2/	NI 65	1.00 1.05 -	
1.50 - - - - -	-12.31	1.10	1.60	92	80	54	24	100 NA	- - -	
2.30	-13.11	1.60	2.90	92	46	15	0 .		-	
=		2.90	3.40	92	100	30	0		-	
=								NI 40 85	-	
	-15.31	3.40	4.50	92	100	78	0		-	
-										
- - - - - - - - - - - - - - - - - - -									-	- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -									-	
	2.30	1.10	1.0011.81 D004 1.1012.31 1.5012.31 2.3013.11 2.90	1.0011.81 1.1011.91 1.5012.31 2.3013.11 2.90 3.40	1.0011.81	1.0011.81 1.1012.31 1.5012.31 2.3013.11 1.60 2.90 92 46 2.90 3.40 92 100	1.0011.81	1.0011.81 1.1012.31	1.0011.81	1.0011.81 1.1012.31

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:33:01

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 **GS11** Engineer Arch Henderson LLP **Employer** Aberdeen Harbour Board Header Coordinates 396714.16 E, 804575.84 N National Grid Ground Level -1.42m CD 06/10/2013 Date Started Date Completed 08/10/2013 Inclination Vertical Section Logged By Date Started Date Ended Crew Equipment Shoring / Support Remarks Top Base Tvpe 2.00 3.30 19.00 06/10/2013 07/10/2013 08/10/2013 Dando 3000 Deltabase 520 Deltabase 520 0.00 06/10/2013 TP TT TT DT DT DT 2.00 3.30 RO RC 06/10/2013 07/10/2013 SWF Impre **PROGRESS** WATER STRIKES Time taken to rise Casing depth at strike to seal time flow Date Hole depth Water depth Date Time Strike at depth Rise to depth Time Casing depth Remarks 2300 0450 0700 End of CP/Start of RO End of RO/Start of RC End of Shift/Start of Shift 2.00 3.30 06/10/2013 2 00 _4 RN 07/10/2013 07/10/2013 07/10/2013 3.00 3.70 -4.25 -4.30 4.10 9.20 16.00 07/10/2013 1900 4.20 -9.00 End of Shift/Start of Shift -8.00 -5.30 4.20 End of Shift/Start of Shift 08/10/2013 1330 19.00 4.20 End of Hole CABLE PERCUSSION DETAILS SPT DETAILS Chiselling me | Duration Hard Strata Depth Remarks Depth Туре Incremental blow count / Hammer Energy ratio Casing depth Water Start time penetration in mm No. depth from hhmm hhmm SPT(C) 50/0mm (25/0,50/0) SPT(C) 50/0mm (25/0,50/0) SPT(C) 50/85mm (25/77,50/85) SPT(C) 50/85mm (25/77,50/100) SPT(C) 50/100mm (25/76,50/95) SPT(C) 50/95mm (25/76,50/95) SPT(C) 50/10mm (25/10,50/10) SPT(C) 50/10mm (25/10,50/10) SPT(C) 50/200mm (7,12,15,18,17/50) SPT(C) 50/200mm (7,12,15,18,17/50) SPT(C) 50/200mm (7,18/20,50/20) SPT(C) 50/90mm (25/70,42,8/15) SPT(C) 50/10mm (25/10,50/10) SPT(C) 50/20mm (25/10,50/10) SPT(C) 50/20mm (6,10,12,12,16,10/70) -2.70 -2.80 -4.25 -9.00 -9.00 2100 0200 Chiselling 0.50 1.50 3.00 4.10 5.60 7.10 8.60 75 75 75 75 75 75 75 75 75 75 75 75 AR362 AR362 AR362 AR362 AR362 AR362 -9.00 -9.00 10.20 11.70 12.70 14.20 15.70 -8.00 -8.00 -8.00 -8.00 -8.00 AR362 AR362 AR362 AR362 AR362 AR362 **ROTARY FLUSH DETAILS** From Flush Flush Flush depth depth type return colour 3.30 4.10 4.10 16.00 50 100 Water Brown 16.00 19.00 Water Brown HOLE DIAMETER / CASING DYNAMIC SAMPLING Hole Depth of Casing Depth of Top Base Diameter Time Recovery diameter casing iametei hole hhmmss 200 4.20 INSTALLATION DETAILS PIPE CONSTRUCTION Dia. Distance ID Type Response zone Pipe Type of Base Top | Base from G.L. Top of pipe pipe * Seating blows only BACKFILL DETAILS **GENERAL NOTES** Top of section Base of Material Remarks section 0.00 Arisings NOTES: All depths in metres, all diameters in millimetres. Water strike rise time in minutes, hard strata time in hhmm For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:22:48

Issue Date 22/10/2012

Issue, Revision No. 1.05

Unchecked

orm No. SIEXPHOLEHDR

SOIL ENGINEERING

Part of the Bachy Soletanche Group

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

GS11

Sheet 1 of 2

Ground Level -1.42m CD

Coordinates

396714.16 E, 804575.84 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Sampli	ng			ount A Recov		In Situ Test Details	Inst
	-		Level	Details	Dia	. TCR	SCR	RQD	IF	Details	atio
No recovery. Granite BOULDERS sand and gravel. (Driller's description)										SPT(C)50/0mm - 0.50 0.50 -	
										SPT(C)50/0mm - 1.50 1.50 -	
otary openhole drilling: Firm to stiff brown CLAY with ranite boulders. (Driller's description)		2.40 -	-3.82							SPT(C)50/85mm — 3.00 3.16 -	
tiff very high to extremely high strength brown slightly andy gravelly CLAY with low cobble content. Sand is fine to oarse. Gravel is subangular to subrounded fine to coarse of nixed igneous and metamorphic lithologies including granite, neiss, schist and quartz. Cobbles are subangular of granite nd gneiss.		3.30 -	-4.72	3.30 4	.10 10	7 100	NA	NA		SPT(C)50/100mm -	
iu gileiss.				4.10 5	.60 107	7 100	NA	NA		4.10 4.28	
				5.60 7	.10 103	7 100	NA	NA		SPT(c)50/95mm 5.60 5.77 -	
				7.10 8	.60 103	7 100	NA	NA		SPT(C)50/85mm 7.10 7.26 -	
from 9.00m to 9.20m assumed zone of no recovery				8.60 5	.20 10	7 66	NA	NA		SPT(C)50/10mm - 8.60 8.62 - -	
				9.20 10	.20 10	7 100	NA	NA		-	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:22:52

Form No. SIEXPHOLELOG

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

GS11

Sheet 2 of 2

Ground Level -1.42m CD Coordinates 396714.16 E, 804575.84 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sam	npling				ount A Recov		In Situ Test	Ins
			Level	Deta	ils	Dia.	TCR	SCR	RQD	IF	Details	ati
Stiff very high to extremely high strength brown slightly sandy gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are subangular of granite and gneiss.		10.20 -	-11.62								SPT(C)50/15mm - 10.20 10.23 - -	
Assumed zone of no recovery. Firm to stiff brown CLAY with granite boulders. (Driller's description)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>-</u>		10.20	11.70	107	66	NA	NA	NA		
Stiff extremely high strength brown slightly sandy gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss, schist and quartz. Cobbles are subangular of granite and gneiss.				11.70	12.70	107	100	NA	NA	•	SPT(C)50/200mm - 11.70 12.05 - 	
				12.70	14.20	107	100	NA	NA	•	SPT(C)50/260mm - 12.70 13.11 - - - -	
from 14.70m to 14.78m gneiss cobble				14.20	15.70	107	87	NA	NA		SPT(C)50/20mm - 14.32	
from 15.50m to 15.70m assumed zone of no recovery				15.70	16.00	107	73	NA	NA		SPT(C)50/90mm - 15.70 15.86 -	
from 15.92m to 16.00m assumed zone of no recovery	0 E	_	-	16.00	16.10	107	100	NA	NA		_	
Stiff brown slightly gravelly sandy CLAY with few cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. Cobbles are		16.85	-18.27	16.10	17.60		78	NA	NA			
subangular to subrounded of granite and gneiss. from 17.27m to 17.60m assumed zone of no recovery				17.60	18.10	107	53	NA	NA		SPT(C)50/10mm - 17.60 17.62 - -	
Assumed zone of no recovery. Firm to stiff brown CLAY with granite boulders. (Driller's description)		18.34 _ - - - - -	-19.76	18.10	19.00	107	50	NA	NA		-	
		_					1		1	ı	SPT(C)50/295mm	199

Issue Date 22/10/2012

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:22:56

Form No. SIEXPHOLELOG Issue.Revision No. 1.05

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 L01 Engineer Arch Henderson LLP Employer Aberdeen Harbour Board Header Coordinates 396570.35 E, 804915.78 N National Grid Ground Level 6.97m CD Date Started 28/10/2013 Date Completed 02/11/2013 Inclination Vertical Section Logged By Date Started Date Ended Crew Remarks Top Base Tvpe Equipment Shoring / Support 28/10/2013 28/10/2013 28/10/2013 28/10/2013 28/10/2013 30/10/2013 0.00 3.90 4.00 12.00 Dando 3000 RO RC 3.90 4.00 Deltabase 520 Deltabase 520 DT SWF WW/TT 12.00 14.00 16.60 20.30 14.00 16.60 20.30 RO RC RO 30/10/2013 30/10/2013 30/10/2013 30/10/2013 01/11/2013 WW/TT WW/TT DT DT DT Deltabase 520 Deltabase 520 Deltabase 520 SWF Impreg ODEX 30/10/2013 WW/TT 01/11/2013 02/11/2013 WW/TT DT T6116 Deltabase 520 Impre **PROGRESS** WATER STRIKES Casing depth at strike to seal time flow Date Hole depth Water depth Date Strike at depth Rise to depth Time Casing depth Remarks Time taken 3.90 3.90 10.70 End of CP End of Shift/Start of Shift End of Shift 1430 1900 0700 28/10/2013 3 90 28/10/2013 28/10/2013 29/10/2013 3.90 9.80 DRY 5.00 10.70 9.80 13.00 17.00 18.00 20.00 6.20 5.30 12.70 9.80 9.80 Start of Shift End of Shift/Start of Shift 29/10/2013 1900 30/10/2013 30/10/2013 0700 13.00 13.00 18.00 20.00 1900 0700 End of Shift/Start of Shift 4.15 DRY DRY 31/10/2013 End of Shift/Start of Shift 31/10/2013 01/11/2013 1900 0700 End of Shift/Start of Shift End of Shift 01/11/2013 1900 20.00 25.55 20.00 DRY Start of Shift 02/11/2013 CABLE PERCUSSION DETAILS SPT DETAILS Chiselling me | Duration Hard Strata Depth Remarks Depth Туре Incremental blow count / Hammer Energy ratio Casing depth Water Start time penetration in mm depth from hhmm hhmm N=18 (4,5,4,4,5,5) N=39 (5,7,9,9,11,10) 50/0mm (11,14,50/0) 50/5mm (25/0,50/0) 50/5mm (25/0,50/5) 50/0mm (25/0,50/0) 0200 Chiselling 1.50 2.50 3.50 3.90 4.00 DRY DRY 1200 75 75 75 75 75 75 75 75 75 75 75 2.50 AR362 3.50 3.90 3.90 AR362 DRY AR362 AR362 AR362 AR362 5.00 6.50 3.90 5.00 DRY DRY 8.00 9.50 13.00 15.00 17.00 50/01fm (25/10,50/0) N=58 (3,4,9,13,15,21) 50/170mm (6,10,18,21,11/20) 50/225mm (9,14,14,17,18,1/0) 50/5mm (25/5,50/5) 50/0mm (9,11,50/0) 8.00 9.50 13.00 17.00 AR362 DRY DRY 10.60 **ROTARY FLUSH DETAILS** 4.20 DRY From Flush Flush Flush AR362 depth depth type return colour 50/230mm (8,10,13,16,16,5/5) 18.50 10.70 12.00 3 00 Water Water 30 20 10.70 Brown 12.00 13.00 17.00 13.00 17.00 20.00 100 100 100 Brown Brown Air Water Air Brown 20.00 20.55 Water 100 Brown HOLE DIAMETER / CASING DYNAMIC SAMPLING Depth of Casing Depth of Top Base Diameter Time Recovery iametei hole diameter casing hhmmss 3.90 9.80 200 150 125 128 12.00 20.00 20.00 25.55 INSTALLATION DETAILS PIPE CONSTRUCTION Dia. Distance ID Type Response zone Pipe Type of Top | Base from G.L. Top of pipe pipe * Seating blows only BACKFILL DETAILS GENERAL NOTES Top of section Base of Material Remarks section Arisings Grout 0.00 20.00 NOTES: All depths in metres, all diameters in millimetres. Water strike rise time in minutes, hard strata time in hhmm For details of abbreviations, see key

Log Print Date And Time: 23/12/2013 10:33:07

Issue Date 22/10/2012

Issue, Revision No. 1.05

Unchecked

orm No. SIEXPHOLEHDR

SOIL ENGINEERING

Part of the Bachy Soletanche Group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Exploratory Hole Log** Project No. TA7148 L01 Engineer Arch Henderson LLP

Aberdeen Harbour Board Employer

Ground Level 6.97m CD Coordinates 396570.35 E, 804915.78 N National Grid

Hole Type	CP+RC	Inclination	Vertical
поте туре	CP+RC	IIICIIIIatioii	vertical

Description of Strata	Legend	Depth	Datum Level		Sampling				ount A Recov	ery	In Situ Deta		Ins
			LOVOI	D	etails	Dia.	TCR	SCR	RQD	IF	Deta		uti
rown medium to coarse SAND.		=										1	
		-		B001	0.50-1.00							1	
		=											
		1.00 -	5.97	D002	1.00							-	
ledium dense brown medium to coarse SAND.		=										1	
		=		B003	1.50-2.00						SPT(C)18	= =	
		=									1.50	1.95 -	
		_		D004	2.00							ŝ	
	1	2.30	4.67									3	
ense greyish brown very gravelly fine to coarse SAND with nedium cobble content. Gravel is angular to rounded fine to		=		B005	2.50-3.00						SPT(C)39 2.50	2.95	
parse of mixed igneous and metamorphic lithologies including ranite, gneiss, schist and quartz. Cobbles are angular to		-									2.50		
ounded of granite and gneiss.	1.0	_		D006	3.00								
		=										-	
o recovery. COBBLES and BOULDERS. (Driller's description)	5,000	3.50 -	3.47		3.50 3.50						SPT(C)50/0r 3.50	nm - 3.65 -	
	5000	3.90 -	3.07								SPT(C)50/0r	nm -	
otary openhole drilling. Large BOULDERS. (Driller's escription)	0000	4.00	2.97								3.90 SPT(C)50/5r	3.90	
o recovery. Large BOULDERS. (Driller's description)	0000	=									4.00	12	
	0000	} =		4.00	5.00	107	0	NA	NA			1	
	0000	<u> </u>									(-)	Í	
	0000) <u> </u>									SPT(C)50/0r 5.00	5.00 -	
	0 %) =		5.00	5.70	107	0	NA	NA			1	
	0000	} [- 1	
	0 00) <u> </u>										1	
	0000			5.70	6.50	107	0	NA	NA			1	
	0.0	` -									SPT(C)50/0r	nm -	
	0,00	6.80	0.17	6.50	6.80	107	0	NA	NA		6.50	6.51 -	
o recovery. Coarse SAND and GRAVEL with boulders. (Driller's escription)		-	0.17									- 1	
		3										1	
		-		6.80	8.00	107	0	NA	NA			1	
		=										3	
		=								NA	SPT(C)58 8.00	8.45	
		-		8.00	8.70	107	0	NA	NA		0.00		
] =		3.50	50							1	
		9 =										2 2 3	
		-		8.70	9.50	107	0	NA	NA			1	
		=		50	5.50							1	
rey subangular to rounded coarse GRAVEL and subangular to		9.50	-2.53								SPT(C)50/17 9.50	70mm - 9.82 -	
ounded cobbles of granite and schist.	314	9.90 -	-2.93									1 2	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:10

Form No. SIEXPHOLELOG Issue Date 22/10/2012

Sheet 1 of 3

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

L01

Sheet 2 of 3

Ground Level 6.97m CD Coordinates 396570.35 E, 804915.78 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum Level	Samp	ling				ount A Recov		In Situ Test Details	Insta
			Level	Details	;	Dia.	TCR	SCR	RQD	IF	Details	atioi
9.50m - 9.90m : Remaining Detail : 9.80m - 9.90m : from 9.80m to 9.90m strong grey boulder of granite				9.50	10.70	107	25	NA	NA		:	
9.90m - 10.70m : Assumed zone of no recovery. Coarse SAND and GRAVEL with boulders. (Driller's description)	000	10.70	-3.73	10.70	11.00	107	0	NA	NA	<u> </u>		
No recovery. Large BOULDERS with sand and gravel. (Driller's description)				11.00	11.50	107	0	NA	NA	_		
	0000	12.00	F 02	11.50	12.00	107	0	NA	NA		-	
Rotary openhole drilling. BOULDERS with sand and gravel. (Driller's description)	0000	12.00	-5.03									
Rotary openhole drilling. Boulder CLAY. (Driller's description)	0,00	12.60 -	-5.63									
Rotary openhole drilling. Very sandy CLAY with gravel and large boulders. (Driller's description)		13.00	-6.03								SPT(C)50/225mm- 13.00 13.38 - - - -	
Soft brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, schist and quartz.	0.00	14.00	-7.03 -7.48	14.00	15.00	90	45	NA	NA			
Assumed zone of no recovery. Very sandy CLAY with gravel and large boulders. (Driller's description)	\$ 100 P	-										
Stiff brown very sandy CLAY. Sand is fine to coarse. from 15.30m to 15.60m assumed zone of no recovery	0 0 0	15.00	-8.03	15.00	15.60	90	50	NA	NA	NA	SPT(C)50/5mm — 15.00 15.01 ·	
Soft brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of mixed igneous and metamorphic lithologies including granite, gneiss and schist. from 15.60m to 15.80m gneiss boulder from 15.80m to 15.85m coarse gravel of schist, gneiss and granite		15.60 - - 15.85 - - - -	-8.63 -8.88	15.60	16.60	90	25	NA	NA	.	- - -	
Assumed zone of no recovery. Very sandy CLAY with gravel and large boulders. (Driller's description)	P 8 6	16.60	-9.63									
Rotary openhole drilling. Firm greyish brown sandy boulder CLAY with cobbles and boulders. (Driller's description)											SPT(C)50/0mm — 17.00 17.15	
											18.50 18.88	

NOTES: All depths in metres, all diameters in millimetres.

See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:13

Form No. SIEXPHOLELOG

Issue.Revision No. 1.05

Issue Date 22/10/2012

Project No. TA7148

Engineer

Employer

Arch Henderson LLP

Aberdeen Harbour Board

Exploratory Hole Log

Hole ID.

L01

Sheet 3 of 3

Ground Level 6.97m CD Coordinates 396570.35 E, 804915.78 N National Grid

Hole Type CP+RC Inclination

Description of Strata	Legend	Depth	Datum	Sar	npling				ount A Recov		In Situ Test Details	Insta
			Level	Deta	ails	Dia.	TCR	SCR	RQD	IF	Derails	ation
Rotary openhole drilling. Firm greyish brown sandy boulder CLAY with cobbles and boulders. (Driller's description)	0 0 0	20.30 -	-13.33									
Strong dark grey GNEISS. Discontinuities: 1) 40-50 degrees very closely and closely spaced planar rough clean.		20.30	13.33	20.30	20.70	89	100	100	0		·	
from 20.70m to 20.79m recovered as non intact core (angular coarse gravel sized fragments)											: -	
from 21.20m to 21.40m recovered as non intact core (angular coarse gravel sized fragments)		-		20.70	21.75	89	100	72	0			
from 21.55m to 21.95m discontinuities: 1) 50-60 degrees										NI 50 130		
from 21.95m to 22.10m recovered as non intact core (angular coarse gravel sized fragments)				21.75	22.95	89	100	79	29		- :	
from 22.60m to 22.70m recovered as non intact core (angular coarse gravel sized fragments)											- -	
from 22.70m to 22.95m 1 No discontinuity 80-90 degrees smooth planar Medium strong locally weak pinkish grey stained orange coarse	-	23.17	-16.20								(.	
(angular coarse gravel sized fragments).		-		22.95	24.00	90	95	9	0	NI NI NI	: : :-	
from 23.95m to 24.00m assumed zone of no recovery	**************************************	24.00	-17.03									
Very strong pinkish grey coarse crystalline GRANITIC GNEISS. Discontinuities: 1) 10-20 degrees closely spaced planar rough clean. from 24.00m to 24.23m 1 No discontinuity 80-90 degrees planar rough stained orange on surface				24.00	25.55	90	100	100	100	140 200 300	: : :	
Exploratory hole complete at 25.55 m.		25.55 _ -	-18.58									#1940 115

NOTES: All depths in metres, all diameters in millimetres. See header sheet for details of boring, progress and water. For details of abbreviations, see key

Unchecked Log Print Date And Time: 23/12/2013 10:33:17

Form No. SIEXPHOLELOG Issue.Revision No. 1.05 Issue Date 22/10/2012

SUPPORTING FACTUAL DATA

SECTION A

Exploratory Hole Records and Field Data

EXCAVATION RECORDS

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Excavation Log** Project No. TA7148 **TP01** Engineer Arch Henderson LLP **Employer** Aberdeen Harbour Board Sheet 1 of 1 Ground Level 2.53m CD Coordinates 396830.40 E, 805054.60 N National Grid Hole Type Method and equipment 20T Tracked Excavator 26/09/2013 26/09/2013 Date Started **Date Completed** Logged by GD Datum Sample In Situ Test Install-Description of Strata Legend Depth Details Level Details ation Multicoloured subangular to rounded COBBLES of mixed igneous and metamorphic B 001 0.10 - 0.40 0.15 2.38 D 002 0.20 Greyish brown sandy subangular to subrounded fine to coarse GRAVEL of mixed B 003 0.50 - 0.80 0.55 1.98 igneous and metamorphic lithologies with high cobble content. Sand is fine to D 004 0.60 coarse. Cobbles are subangular to subrounded of mixed igneous and metamorphic 0.85 1.68 lithologies predominantly schist. B 005 1.00 Soft to firm reddish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is D 006 1.20 subangular to subrounded fine to coarse of schist. Medium strong dark grey granitic SCHIST. 1.70 0.83 Excavation complete at 1.70 m. Excavation dimensions and orientation Stability All faces stable Length (sides A and C) 3.80m Shoring None used Width (sides B and D) 2.20m Depth 1.70m 1. Trial pit terminated at 1.70m due to bedrock. Remarks Bearing of side A WATER STRIKES Time taken Date Strike at Rise depth 0.95 to depth 0.50 to rise 26/09/2013 All depths in metres, all soil strengths are average in kPa All bearings given relate to magnetic North See legend sheet for key to symbols and abbreviations For in situ test results, see accompanying records SOIL ENGINEERING Log Print Date And Time: 23/12/2013 10:33:49 Form No. SI EXC LOG Issue.Revision No. 1.04 Issue Date 22/10/2012 Part of the Bachy Soletanche group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Excavation Log** Project No. TA7148 TP02 Engineer Arch Henderson LLP **Employer** Aberdeen Harbour Board Sheet 1 of 1 Ground Level 2.99m CD Coordinates 396752.70 E, 805060.10 N National Grid Hole Type Method and equipment 20T Tracked Excavator Date Started 26/09/2013 26/09/2013 **Date Completed** Logged by GD Datum Sample In Situ Test Install-Description of Strata Legend Depth Details Level Details ation B 001 0.00 - 0.40 Greyish brown sandy subangular to subrounded fine to coarse GRAVEL of mixed D 002 0.20 igneous and metamorphic lithologies with medium cobble content. Sand is fine to coarse. Cobbles are subangular to subrounded of mixed igneous and metamorphic 0.40 2.59 B 003 0.50 - 1.00 D 004 0.60 Firm reddish brown sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of schist. B 005 1.00 - 2.00 1.00-1.99 ${\color{red}\textbf{Cobbles are}} \, \underline{\textbf{subangular to subrounded of schist}}.$ D 006 1.20 Medium strong dark grey granitic SCHIST. 2.10 -0.89 Excavation complete at 2.10 m. Excavation dimensions and orientation Stability All faces stable Length (sides A and C) 3.80m Shoring None used Width (sides B and D) 1.70m Depth 2.10m Remarks 1. Trial pit terminated at 2.10m due to bedrock. Bearing of side A WATER STRIKES Time taken Date Strike at Rise depth 1.00 to depth 0.90 to rise 26/09/2013 All depths in metres, all soil strengths are average in kPa All bearings given relate to magnetic North See legend sheet for key to symbols and abbreviations For in situ test results, see accompanying records SOIL ENGINEERING Log Print Date And Time: 23/12/2013 10:33:52 Form No. SI EXC LOG Issue.Revision No. 1.04 Issue Date 22/10/2012 Part of the Bachy Soletanche group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Excavation Log** Project No. TA7148 **TP03** Engineer Arch Henderson LLP **Employer** Aberdeen Harbour Board Sheet 1 of 1 Ground Level 396723.00 E, 805002.10 N National Grid 1.71m CD Coordinates Hole Type Method and equipment 20T Tracked Excavator 26/09/2013 26/09/2013 Date Started **Date Completed** Logged by GD Datum Sample In Situ Test Install-**Description of Strata** Legend Depth Details Details ation Level B 001 0.00 - 0.40 Grey slightly gravelly fine to coarse SAND with high cobble content. Sand is fine D 002 0.20 to coarse. Gravel is subrounded of mixed igneous and metamorphic lithologies predominantly schist. Cobbles are subrounded of mixed igneous and metamorphic lithologies predominantly schist. 0.55 B 003 0.60 - 1.00 from 0.30m to 0.55m cobbles absent Firm reddish brown slightly gravelly sandy CLAY with low cobble content. Sand is D 004 1.00 fine to coarse. Gravel is subangular to subrounded fine to coarse of mixed lithologies predominantly schist. Cobbles are subrounded of mixed igneous and metamorphic lithologies predominantly schist. B 005 1.50 - 2.00 from 1.50m to 2.40m very sandy clay with high cobble content D 006 2.00 2.40 -0.69 Medium strong dark grey granitic SCHIST. D 007 2.60 2.70 -0.99 Excavation complete at 2.70 m. Excavation dimensions and orientation Stability Trial pit spalling from 0.00m to 0.55m on all faces Length (sides A and C) 1.80m Shoring None used Width (sides B and D) 3.60m Depth 2.70m 1. Trial pit terminated at 2.70m due to b bedrock. Remarks Bearing of side A 45° WATER STRIKES Date Strike at Rise Time taken depth 1.00 to depth 0.35 to rise 26/09/2013 All depths in metres, all soil strengths are average in kPa All bearings given relate to magnetic North See legend sheet for key to symbols and abbreviations For in situ test results, see accompanying records SOIL ENGINEERING Log Print Date And Time: 23/12/2013 10:33:55 Form No. SI EXC LOG Issue.Revision No. 1.04 Issue Date 22/10/2012 Part of the Bachy Soletanche group

Project Name	Bay of Nigg Harbou	r Development Ground Investig	ation						Hole	ID.
Project No.	TA7148				Exc	avatio	on Log		TP0	4
Engineer	Arch Henderson LLF								110	' -
Employer	Aberdeen Harbour E								Sheet 1	of 1
Ground Level	1.75m CD	Coordinates	396656.00 E, 8049		N Nation	nal Grid				
Hole Type	TP	Method and equipment		ator						
Date Started	27/09/2013	Date Completed	27/09/2013			Logg	ged by GD			
	Description of	Strata	Leg	end	Depth	Datum Level	Sample Details	lı	n Situ Test Details	Install- ation
subrounded of mi		h high cobble content. Gravel is hic lithologies. Cobbles are subrounded	▼				B 001 0.00 - 0.7	0 -		
Firm reddish brow	n slightly gravelly sandy CL	AY with low cobble content. Sand is nded fine to coarse of mixed	p - p		0.60	1.15	D 002 0.50	-		
igneous and meta		s are subrounded of mixed igneous and	P 0 P 0		; ;		B 003 1.00 - 1.5	· E		
			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				D 004 1.50	- - -		
from 1.80m	to 3.30m with high cobble o	content	P - 0				B 005 2.00 - 2.5			
			P - 2 P - 2	6	=			-		
			P - 0	90,90				E		
Excavation complet	e at 3 30 m		4.0	0-	3.30	-1.55	D 006 3.20			
					-			-		
								-		
					=					
]			-		
					-			-		
					=					
					-					
					-			-		
					-			-		
						Fuerus	*: di		.:	
Stability	Trial pit spalling from 0.	00m to 0.60m on all faces					tion dimensions		3.90m	
Shoring	None used					_	(sides A and C) (sides B and D)		1.90m	
						Depth	(Sides B and B)		3.30m	
Remarks	surface water ingres	at 3.30m due to constant collapse and ss.				-	g of side A		285°	
							WATER ST			
					Dat		d	rike at epth	Rise to depth	Time taken to rise
					27/09	/2013		0.00	0.00	0
All bear See lege	hs in metres, all soil strer ings given relate to magne end sheet for key to symb tu test results, see accom	etic North ols and abbreviations		ı						
1 01 111 31		Print Date And Time: 23/12/2013 10:	:33:57					SOIL	engin	eering
Form No. SI EXC LOG	Issue	Revision No. 1.04 Issue Date 22/10/2	012					Part of	the Bachy Solet	tanche group

								,		
	Bay of Nigg Harbour Devel	opment Ground Investig	jation			_	_		Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TDO	_
Engineer	Arch Henderson LLP								TP0	5
Employer	Aberdeen Harbour Board								Sheet 1	of 1
Ground Level	2.77m CD	Coordinates	396595.70 E, 80	4882.30	N Nation	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked Exc	avator						
Date Started	26/09/2013	Date Completed	26/09/2013			Logo	ged by GD			
Duto 4	20, 00, 2010	2000 C	20,00							
	Description of Strata		L	egend.	Depth	Datum Level	Sample Details	I	n Situ Test Details	Install- ation
Multicoloured slig	ghtly sandy subangular to subrounded	d fine to coarse GRAVEL of	.*.	:	_		B 001 0.00 - 0.5	0		
mixed igneous and	d metamorphic lithologies with high	cobble content and high			=			þ		
	Sand is fine to coarse. Cobbles are sul ded of mixed igneous and metamorpl		(5)		1		D 002 0.50	F		
to 1.00m x 0.60m	x 0.60m) are of mixed igneous and n		, 🗹				B 003 0.50 - 1.0	° E		
predominantly gra	anite.		_ ▼		-		D 004 1.00	L		
			, ,		-		D 00	þ		
	y slightly gravelly sandy CLAY with lo		p. 4	o	1.30 -	1.47	4 50 20	. F		
	avel is subrounded fine to coarse of gree subrounded of granite and predomi		0-	0-0-	3		B 005 1.50 - 2.0	°E		
Someti Connection	s subjourned of granice and piece.	manny dank groy some	p.	0 0	-			F		
			p	, p	-		D 006 2.00	_		
			p.4	P 6	=			F		
			9.5 4.	0 0	3			F		
			0.	\$ = = = ·				E		
			0.	0 p	_			E		
			13°	à	3.20 -	-0.43		F		
Excavation complete	e at 3.20 m.				=======================================			þ		100 100 10
					-			F		
]			F		
					-			E		
					=			E		
					-					
					=			F		
								þ		
					-			-		
					=			F		
]			E		
					_			F		
					=			L		
					-			F		
					3			E		
]			E		
					-			F		
					-			<u> </u>		
					-			þ		
						Excava	tion dimensions	s and or	rientation	
Stability	Collapse from 0.00m to 1.30m or	ı all faces				Lenath	(sides A and C)		3.80m	
Shoring	None used					_	(sides R and D)		3.80m	
_							(Sides Dana D,			
Remarks	1. Trial pit terminated at 3.20m	due to constant collapse.				Depth			3.20m	
						Bearing	g of side A		330°	
							WATER ST	RIKES		
					Dat	te		rike at	1	Γime taken
					26/09	/2013		lepth 1.00	to depth 0.80	to rise
Notes: All depti	hs in metres, all soil strengths are ings given relate to magnetic North	average in kPa							IA	
See leae	end sheet for key to symbols and a	bbreviations								
For in si	itu test results, see accompanying I	records te And Time: 23/12/2013 10)·3 ₹· UU					SOIL	engine	eering
Form No. SI EXC LOG	Issue.Revision No.					•		100	the Bachy Soleta	

				$\overline{}$						$\overline{}$
	Bay of Nigg Harbour Develop	oment Ground Investig	ation			••			Hole I	D.
Project No.	TA7148				EXC	avatic	on Log		TP0	6
Engineer	Arch Henderson LLP Aberdeen Harbour Board									
Employer Ground Level	7.06m CD	Coordinates	396523.30 E, 80)4863.20	N Natior	nal Grid			Sheet 1	of 1
	TP	Method and equipment			/ 14 14	idi C				
	25/09/2013	Date Completed	25/09/2013	4.4		Logo	ged by GD			
Date 5tm	23/ 03/ 2010					55				
	Description of Strata		L	Legend	Depth	Datum Level	Sample Details		n Situ Test Details	Install- ation
metamorphic litho is coarse. Cobbles metamorphic litho	angular to subrounded fine to coarse GR blogies with high cobble content and hi are subangular to rounded fine to coar blogies. Boulders are (up to 500mm x 40 morphic lithologies.	igh boulder content. Sand rse of mixed igneous and			3.00	4.06	D 001 0.50 D 002 0.50 - D 003 1.50 B 004 1.50 - D 005 2.50 B 006 2.50 -	- 2.00		
Or 1.784	5 "					Excavat	tion dimensi	ons and or	rientation	
Stability Shoring	Collapse from 0.00m to 3.00m on a	il faces				_	(sides A and	-	4.20m 3.30m	
Remarks	Trial pit terminated at 3.00m du	ue to constant collapse.				Depth		:	3.00m	
	** ***********************************	10 10 101111111111111111111111111111111				Bearing	g of side A	:	300°	
				t			WATER	STRIKES		
				}	Dat	te	Time	Strike at		Time taken
				_				depth	to depth	to rise
See lege	hs in metres, all soil strengths are avings given relate to magnetic North end sheet for key to symbols and abbut tu test results, see accompanying rec	breviations						SOIL	engine	eering

	Bay of Nigg Harbour Develop	oment Ground Investig	ation						Hole	ID.
Project No.	TA7148				Exc	avatio	on Log		TP0	7
Engineer	Arch Henderson LLP								170	1
Employer	Aberdeen Harbour Board								Sheet 1	of 1
Ground Level	3.89m CD	Coordinates	396566.10 E, 8	804828	3.70 N Nation	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked E	xcavato	or					
Date Started	25/09/2013	Date Completed	25/09/2013			Log	ged by GD			
	Description of Strata			Legen	nd Depth	Datum Level	Sample Details	lı	n Situ Test Details	Install- ation
metamorphic litho is fine to coarse. O metamorphic litho	angular to subrounded fine to coarse GR ologies with high cobble content and his Cobbles are subangular to rounded of m ologies. Boulders are (up to 350mm x 35 morphic lithologies.	gh boulder content. Sand ixed igneous and			2.00	1.89	D 001 1.00 B 002 1.00			
						Excava	tion dimensi	ons and or	ientation	
Stability	Collapse from 0.00m to 2.00m on a	II faces				Length	ı (sides A and	I C) 2	2.20m	
Shoring	None used					Width	(sides B and	D) 2	2.20m	
Remarks	Trial pit terminated at 2.00m du	ie to constant collanse				Depth		2	2.00m	
Acmains	2. That pic terminated at 2.00111 dt	ac to constant collapse.					g of side A	1	160°	
								STRIKES		
					Dat	te	Time	Strike at	Rise	Time taken
								depth	to depth	to rise
					25/09	/ 2013		0.40	0.40	1
No.	the transfer of the state of	and the LP								
All bear	hs in metres, all soil strengths are avings given relate to magnetic North								4	
See lege For in si	end sheet for key to symbols and abb itu test results, see accompanying rec	cords								
	•	And Time: 23/12/2013 10						100000000000000000000000000000000000000		eering
Form No. SI EXC LOG	Issue.Revision No. 1.0	94 Issue Date 22/10/2	2012					Part of	the Bachy Solet	anche group

-	Bay of Nigg Harbour Devel	opment Ground Investig	jation		_		_		Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP08	R
Engineer	Arch Henderson LLP								1. 0.	ı l
Employer	Aberdeen Harbour Board								Sheet 1 c	of 1
Ground Level	6.65m CD	Coordinates	396506.00 E, 8			nal Grid				
Hole Type	TP	Method and equipment		xcavator						
Date Started	25/09/2013	Date Completed	25/09/2013			Log	ged by GD			
	Description of Strata			Legend	Depth	Datum Level	Sample Details		In Situ Test Details	Install- ation
MADE GROUND: 1	 Горsoil.			XXXX	=					
and subangular to mixed igneous and fragments, occasion occasional ceramion sized fragments and metamorphic litho	Brown subangular to rounded fine to be rounded boulder sized fragments (up the model of the mode	up to 500mm x 400mm x 400m) th sandy gravel sized tic packaging fragments and ure fine to coarse. Gravel rse of mixed igneous and			0.30	6.35	B 001 0.50 - D 002 0.50 B 003 1.50 - D 004 1.50	-		
Sand is fine to coa igneous and meta	andy GRAVEL with high cobble conte arse. Gravel is subangular to rounded amorphic lithologies. Cobbles are sub amorphic lithologies. Boulders (up to !	I fine to coarse of mixed pangular to rounded of mixed	re [\frac{\frac{\frac{1}{2}}{2}}{2}		2.50	4.15	B 005 2.50 - D 006 2.50	3.00		
of mixed igneous	and metamorphic lithologies. `	500mm x 500mm x 4001111111 an	e L¥		3.80	2.85	B 007 3.50 - D 008 3.50	4.00		
Excavation complete						Excava	tion dimensi	ons and c	prientation	
Stability	Collapse from 0.30m to 3.80m or	n all faces					(sides A and		1.90m	
Shoring	None used					_	(sides B and	•	4.00m	
5t	T 1 1 12 12 12 12 12 12 12 12 12 12 12 12	· · · · · · · · · · · · · · · · · · ·				Depth	(0.002 =	-	3.80m	
Remarks	Trial pit terminated at 3.80m	due to constant collapse.					g of side A		320°	
						Doc	_			
					Det	-		STRIKES	h	
					Dat		Time	Strike at depth	to depth	Time taken to rise
					25/09.	/2013		3.10	3.00	5
All beari See lege	ths in metres, all soil strengths are rings given relate to magnetic Nortl end sheet for key to symbols and a itu test results, see accompanying i Log Print Dat	h abbreviations	0:34:08					SOIL	engine	eering
Form No. SLEXC LOG	Issue Revision No.					 		Part of	f the Bachy Soleta	anche group

				-				1		
		Development Ground Investig	ation		_	. •	-		Hole I	D.
Project No.	TA7148				Exc	avatı	on Log		TP0	q
Engineer	Arch Henderson LLP								11 🐱	_
Employer	Aberdeen Harbour Bo								Sheet 1	of 1
Ground Level	3.32m CD	Coordinates	396563.70 E, 804) N Natior	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked Exca	avator						
Date Started	25/09/2013	Date Completed	25/09/2013			Log	ged by GD			
	Description of S	Strata	Le	egend	Depth	Datum Level	Sample Details	lı	n Situ Test Details	Install- ation
subrounded BOUL metamorphic litho	LDERS (up to 500mm x 500m ologies with much slightly sa	to coarse COBBLES and subangular to mm x 400mm) of mixed igneous and andy gravel. Sand is fine to coarse.	9	00000			B 001 0.40 - 0.60			
metamorphic litho	ılar to subrounded fine to coa ologies.	rse or mixed igneous and	- 🔻 🖔	0000			D 002 0.40 B 003 0.60 - 1.00	b -		
			0	0000	3 -		D 004 1.00	-		
			þ	0000	=		B 005 1.20 - 2.00	P		
			Ş	0000	=		D 006 1.50	E		
			8	0300	<u> </u>			-		
			8	0300	6 -					
			8	0000	-			-		
is fine to coarse. G	Gravel is subangular to subrou	with medium cobble content. Sand unded fine to coarse of mixed are subangular to subrounded	Ø. –		2.40	0.92	B 007 2.50 - 3.00 D 008 2.50			
	ded of mixed igneous and me		0-	0 0			B 009 3.00 - 3.50			
			0	<u> </u>	_			-		
			0 -	0 0	3			Ė		
Excavation complet	te at 3.80 m.			0	3.80 -	-0.48		-		
					=			-		
					-			E		
					-			-		
					=			Ė		
					-			-		
					-			F		
								Ė		
					-			-		
					_			F		
					=			E		
					-			-		
					-			Ė		
					_			F		
					=			Ė		
					-			-		
Stability	Collapse from 0.80m to 2	.80m on all faces					tion dimensions			
Charina	None used					_	(sides A and C)		1.80m	
Shoring	None useu						(sides B and D)		4.00m	
Remarks	1. Trial pit terminated a	t 3.80m due to constant collapse.				Depth			3.80m	
						Bearin	g of side A		250°	
							WATER STI	RIKES		
					Dat	te		rike at	1	Time taken
					25/09	/2013		epth 0.80	to depth 0.80	to rise
										ı
										ı
										ı
Notes: All dept	ths in metres, all soil streng	oths are average in kPa								
All bear See lege	rings given relate to magnet end sheet for key to symbol itu test results, see accomp	tic North Is and abbreviations								
10111101		Print Date And Time: 23/12/2013 10:	:34:11					SOIL	engine	eering
Form No. SI EXC LOG	Issue.F	Revision No. 1.04 Issue Date 22/10/2	2012			•		Part of	the Bachy Soleta	anche group

Project Name	Bay of Nigg Harbo	our Development Ground Investig	ation						Hole	ID.
Project No.	TA7148				Exc	avatio	on Log		TP1	0
Engineer	Arch Henderson L	LP							117	.0
Employer	Aberdeen Harbou	r Board							Sheet 1	of 1
Ground Level	6.49m CD	Coordinates	396524.50 E, 8046	51.50 N	l Nation	al Grid				
Hole Type	TP	Method and equipment	20T Tracked Excava	ator						
Date Started	25/09/2013	Date Completed	25/09/2013			Logg	ged by GD			
						_				1
	Description	of Strata	Leg	end I	Depth	Datum Level	Sample Details		n Situ Test Details	Install- ation
MADE GROUND: 1	Topsoil.		\otimes	XX	0.20 -	6.29				
content and high l sized fragments al metamorphic litho subangular to sub and tarmacadam.	boulder content. Sand siz re angular to subrounded ologies, brick and tarmaca rounded of mixed igneou	gravel sized fragments with high cobble ed fragments are fine to coarse. Gravel fine to coarse of mixed igneous and adam. Cobble sized fragments are s and metamorphic lithologies, red brick are of reinforced concrete and granite. some electrical cable			0.20 	0.23	B 001 0.50 - 1.0 D 002 0.50 B 003 1.50 - 2.0 D 004 1.50			
							B 005 2.00 - 3.0	00		
to rounded fine to		w cobble content. Gravel is subangular and metamorphic lithologies. Cobbles t and gneiss.	9 - 0 - 0 - 0 - 0 - 0 - 0 - 0		2.40 -	4.09	D 006 2.50			
from 3.00m t	to 3.20m dark brown/blad	ck staining		0	-					
Firm to stiff orangi content. Sand is fi	ish brown slightly sandy one to coarse. Gravel is su	gravelly CLAY with low cobble bangular to rounded medium to coarse	ρ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο		3.20 -	3.29	B 007 3.50 - 4.0	00		
and predominantly		gies. Cobbles are subrounded of granite	0 - 6		-		D 008 3.50	-		
			P : 0		-		B 009 4.00 - 4.4	40 -		
Excavation complete	e at 4.40 m.		<u>ρ</u>		4.40	2.09	D 010 4.40			
Stability	All faces stable						tion dimension			
Shoring	None used					•	(sides A and C	•	1.80m 3.90m	
_							(sides B and D)		3.90m 4.40m	
Remarks						Depth	a of side ^		4.40m 350°	
						Bearing	g of side A		330	
							WATER ST		T 5:	hrim to t
					Dat			trike at depth	Rise to depth	Time taken to rise
					25/09/	/2013		3.10	3.00	5
All beari See lege	ings given relate to mag	bols and abbreviations						2,17		
		og Print Date And Time: 23/12/2013 10						23.3	Ser server	eering
Form No. SI EXC LOG	Is	sue.Revision No. 1.04 Issue Date 22/10/2	012					Part of	the Bachy Sole	tanche group

Project Name Bay of Nigg Harbour Development Ground Investigation Hole ID. **Excavation Log** Project No. TA7148 **TP11** Engineer Arch Henderson LLP **Employer** Aberdeen Harbour Board Sheet 1 of 1 Ground Level 396574.90 E, 804657.90 N National Grid 2.64m CD Coordinates Hole Type Method and equipment 20T Tracked Excavator 24/09/2013 Date Started **Date Completed** 24/09/2013 Logged by GD Datum Sample In Situ Test Install-Description of Strata Legend Depth Details Details ation Level MADE GROUND: Multicoloured subangular to subrounded cobbles and boulder sized fragments (up to 400mm x 400mm x 400mm) of mixed igneous and metamorphic lithologies and occasional concrete with much slightly sandy gravel. Sand sized B 001 0.50 - 1.00 fragments are fine to coarse. Gravel sized fragments are subangular to subrounded D 002 0.50 fine to coarse of mixed igneous and metamorphic lithologies. B 003 1.50 - 2.00 D 004 1.50 2.30 0.34 Firm to stiff brown slightly sandy gravelly CLAY with low cobble content. Sand is B 005 2.50 - 2.80 D 006 2.50 fine to coarse. Gravel is subangular to rounded medium to coarse of mixed igneous and metamorphic lithologies. Cobbles are subrounded of granite and B 007 2.80 - 3.10 D 008 2.80 predominantly schist. -0.46 Excavation complete at 3.10 m. Excavation dimensions and orientation Stability Collapse from 1.40m to 2.30m on all faces Length (sides A and C) 1.80m Shoring None used Width (sides B and D) 3.60m Depth 3.10m 1. Trial pit terminated at 3.10m due to groundwater inflow and Remarks constant collapse. Bearing of side A WATER STRIKES Date Strike at Rise Time taken depth 1.40 to depth 1.00 to rise 24/09/2013 All depths in metres, all soil strengths are average in kPa All bearings given relate to magnetic North See legend sheet for key to symbols and abbreviations For in situ test results, see accompanying records SOIL ENGINEERING Log Print Date And Time: 23/12/2013 10:34:17 Form No. SI EXC LOG Issue.Revision No. 1.04 Issue Date 22/10/2012 Part of the Bachy Soletanche group

· ·	Bay of Nigg Harbour Dev	elopment Ground Investig	ation		_	. •	-		Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP1	2
Engineer	Arch Henderson LLP									
Employer	Aberdeen Harbour Board	C 45	222227 00 F 00	:500 //	- NI NI-4:	10			Sheet 1	of 1
Ground Level	8.62m CD	Coordinates Mathed and aguinment	396537.00 E, 80) N Natior	nal Grid				
Hole Type	TP	Method and equipment		avator			CD			
Date Started	24/09/2013	Date Completed	24/09/2013			Logo	ged by GD			
	Description of Strata		L	egend	Depth	Datum Level	Sample Details	ı	n Situ Test Details	Install- ation
MADE GROUND: 1	Горsoil.		X	****	1					
content, high boul occasional polysty occasional coal fra fragments are sub metamorphic litho mixed igneous an fragments are of g	Dark greyish brown gravelly sand sider content, occasional plastic borene fragments, occasional plastic borene fragments, occasional cast in gments. Sand sized fragments are langular to subrounded fine to coalogies. Cobble sized fragments and metamorphic lithologies, tarmacyranite (up to 1000mm x 300mm x up to 2000mm x 600mm x 400mm	ttles and plastic packaging, on pipe fragments and ifine to coarse. Gravel sized rse of mixed igneous and e subangular to subrounded of adam and brick. Boulder sized 200mm) and reinforced concrete			0.30 -	8.32	D 001 0.50 B 002 0.50 - 1 D 003 1.20 B 004 1.50 - 2 D 005 2.20 B 006 2.50 - 3	.00		
			8				D 007 3.20	-		
Excavation complet	e at 3.70 m.			****	3.70	4.92				
Stability	Collapse from 0.30m to 3.70m	on all faces				Excava	tion dimensio	ns and or	rientation	
- C. C. C. C. C. C. C. C. C. C. C. C. C.		S. S. S. S. S. S. S. S. S. S. S. S. S. S				Length	(sides A and 0	C) 4	4.40m	
Shoring	None used					Width	(sides B and D)) :	1.40m	
Remarks	1. Trial pit terminated at 3.70	m due to constant collapse.				Depth		:	3.70m	
						Bearing	g of side A		170°	
							WATER S	TRIKES		
					Da	te	Time S	Strike at	Rise	Time taken
				·				depth	to depth	to rise
Notes: All dept	hs in metres, all soil strengths a	re average in kPa								
All bear See lege	ings given relate to magnetic No end sheet for key to symbols and tu test results, see accompanyir	orth Labbreviations	:34:19					SOIL	engine	eering
Form No. SLEVC LOG	I Desiries	N- 10/								

	Bay of Nigg Harbour Develo	pment Ground Investig	ation		_				Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP13	3
Engineer	Arch Henderson LLP									
Employer	Aberdeen Harbour Board	Casudinatas	20050250500	F0C 90	O NI NIation	ما د انا			Sheet 1 o	of 1
Ground Level	3.26m CD	Coordinates	396583.50 E, 804		J IN INATIOR	iai Grid				
Hole Type	TP	Method and equipment		vator						
Date Started	24/09/2013	Date Completed	24/09/2013			Logo	ged by GD			
	Description of Strata		Le	gend	Depth	Datum Level	Sample Details	ı	n Situ Test Details	Install- ation
occasional plastic Gravel sized fragn igneous and meta are subangular to and concrete. Bou reinforced concre	ish grey sandy gravelly CLAY with me Gravel is fine to medium occasionally o lithologies. Cobbles are subangular to	d occasional metal strip. ne to coarse of mixed ick. Cobble sized fragments etamorphic lithologies, brick x 300mm x 300mm) are of	- V		2.50	0.76	B 001 0.50 - 1.0 D 002 0.50 D 004 1.20 B 003 1.50 - 2.0 D 006 2.00 - 2.5 D 006 2.00 B 007 2.50 - 3.0	0 -		
						Excava	tion dimension	s and o	rientation	
Stability	Collapse from 0.00m to 2.50m on	all Taces				Length	(sides A and C) :	1.90m	
Shoring	None used					Width	(sides B and D)		4.00m	
Remarks	Trial pit terminated at 3.50m	due to constant collanse				Depth		:	3.50m	
Kemarks	1. That pit terminated at 3.30m	ade to constant conapse.				Bearing	g of side A	:	200°	
							WATER ST	DIKES		
					Dat	e e		rike at	Rise	ime taken
					24/09/			depth 1.40	to depth	to rise
					Z4/U9.	. 2013		1. 4 U	1.40	3
All bear See leg	ths in metres, all soil strengths are ings given relate to magnetic North end sheet for key to symbols and a litu test results, see accompanying r	breviations	134:22					SOIL	engine	eering
Form No. SLEXC LOG	Log Print Dat	7:3 4 :22						the Bachy Soleta		

				-				-		
		our Development Ground Investig	ation		_				Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP1	4
Engineer	Arch Henderson I									
Employer	Aberdeen Harbou		396585.00 E, 80	1//2 2/	^ NI NIntion	1 0 4			Sheet 1	of 1
Ground Level	9.66m CD TP	Coordinates Method and equipment			O IN Mation	nai Griu				
Hole Type		Method and equipment	201 Tracked Exc 24/09/2013	Cavatoi		1000	ged by GD			
Date Started	24/09/2013	Date Completed	24/09/2013			Logo	ged by GD			
	Description	of Strata		Legend	Depth	Datum Level	Sample Details	ı	n Situ Test Details	Install- ation
MADE GROUND: 1	Горsoil.		×	***	0.20	0.46		E		
cobble content, hi glass fragments, o paving slabs. Sand are subangular to lithologies. Cobble	gh boulder content, occoccasional plastic packag I sized fragments are fin- subrounded fine to coal e sized fragments are an	gravelly sand sized fragments with high casional ceramic fragments, occasional ping fragments and occasional concrete e to coarse. Gravel sized fragments rise of mixed igneous and metamorphic gular to subrounded of concrete, mixed I brick and tarmacadam. Boulders are (up			0.20 -	9.46	D 001 0.50 B 002 0.50 - 1 D 003 1.20	.00		
		e and reinforced concrete.	8		1			F		
			8		=		B 004 1.50 - 2	.00		
from 1.80m t gravelly clay	to 3.00m with some cob	ble sized fragments of orange brown sandy								
	to 2.60m 1 No large bou	lder of reinforced concrete (2.80m x 0.60m	8	****			D 005 2.20	_		
x 0.40m)			8	***	-		B 006 2.50 - 3	.00		
			8							
from 3.00m t	to 3.50m greyish brown	with sand and gravel sized fragments of	Š	****	-		B 008 3.00 - 3	.50 —		
cement		-	8				D 007 3.20	Ė		
Excavation complete	e at 3.50 m.			XXXX	3.50 -	6.16		-		
					-					
					- - - -			-		
					-			- - - -		
					-			-		
					-			F		
					-					
					-			-		
					-			F		
					-					
Stability	Collapse from 1.00m	to 3.50m of faces C and D					tion dimension			
Shoring	None used					_	(sides A and 0 (sides B and D	-	1.80m 5.10m	
_						Depth	(sides b and b	-	3.50m	
Remarks	Trial pit terminate	ed at 3.50m due to constant collapse.				-	g of side A		3.50111 340°	
						Dearing				
					Dat	to.	WATER S	Strike at	Rise	Time taken
							Time	depth	to depth	to rise
Notes: All dept	hs in metres, all soil st	trengths are average in kPa			I					7
All beari See lege	ings given relate to ma end sheet for key to syr tu test results, see acc	gnetic North mbols and abbreviations ompanying records	27.25					SOII	engine.	eering
Form No. SLEVC LOG	<u>l</u>	Log Print Date And Time: 23/12/2013 10:						JUIL	CHIGHIE	CKIIIG

				-				ı		
	Bay of Nigg Harbour Develop	oment Ground Investig	ation		_	. •	-		Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP1	5
Engineer	Arch Henderson LLP									, I
Employer	Aberdeen Harbour Board								Sheet 1	of 1
Ground Level	2.47 m CD	Coordinates	396667.20 E, 8		0 N Natior	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked Ex	cavator						
Date Started	24/09/2013	Date Completed	24/09/2013			Logg	ged by GD	1		
	Description of Strata			Legend	Depth	Datum Level	Sample Details		n Situ Test Details	Install- ation
boulder content an Gravel sized fragm and metamorphic igneous and meta x 400mm) are sub	Brown sandy gravel sized fragments wit nd plastic packaging. Sand sized fragm nents are subangular to rounded fine to lithologies. Cobble sized fragments are morphic lithologies. Boulder sized fragi rounded of granite and schist. to 0.60m plastic packaging absent	ents are medium to coarse. coarse of mixed igneous subrounded of mixed	n		0.60	1.87	B 001 0.50 D 002 0.50	- 1.00		
metamorphic litho is coarse. Cobbles	ingular to rounded fine to coarse GRAVI ologies with high cobble content and hi are subrounded of mixed igneous and i0mm x 400mm x 400mm) are of granit	gh boulder content. Sand metamorphic lithologies.					B 003 1.80 D 004 1.80 B 005 2.80	- - - - - - -		
Excavation complete	e at 2.90 m.			a desired a	2.90 -	-0.43	D 006 2.80			
							ü			
Stability	Collapse from 0.60m to 2.90m on a	II faces				Excava	tion dimens	ions and o	rientation	
Shoring	None used					Width	(sides A and	I D)	1.90m 3.80m	
Remarks	1. Trial pit terminated at 2.90m du	ue to constant collapse.				Depth Bearing	g of side A		2.90m 330°	
							WATER	STRIKES		
					Dat	te	Time	Strike at	Rise	Time taken
								depth	to depth	to rise
Notes: All dept	hs in metres, all soil strengths are av	verage in kPa			<u> </u>					
All beari See lege	ings given relate to magnetic North end sheet for key to symbols and abb tu test results, see accompanying red	previations	34.27					SOII	engine	eering
Form No. SI EXC LOG	Log Print Date Issue.Revision No. 1.0								the Bachy Soleta	

				,				1		
Project Name	Bay of Nigg Harbo	our Development Ground Investig	ation						Hole I	D.
Project No.	TA7148				Exc	avatio	on Log		TP1	c
Engineer	Arch Henderson L	LP							11 1	6
Employer	Aberdeen Harbou	r Board							Sheet 1	of 1
Ground Level	2.11m CD	Coordinates	396704.70 E, 8050	25.70	N Nation	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked Excav	ator						
Date Started	27/09/2013	Date Completed	27/09/2013			Logg	ged by GD			
					1					
	Description	of Strata	Leg	gend	Depth	Datum Level	Sample Details	1	n Situ Test Details	Install- ation
		o coarse GRAVEL and subangular to d metamorphic lithologies.	0 - 9	100	0.10 -	2.01	B 001 0.00 - D 002 0.20	0.50	•	
fine to coarse. Gra igneous and meta	ivel is subangular to subro imorphic lithologies predo	CLAY with low cobble content. Sand is ounded fine to coarse of mixed ominantly schist. Cobbles are subangular morphic lithologies predominantly schist.	2		0.60	1.51	B 003 1.00 -	150		
boulder content. O igneous and meta to subrounded of	Gravel is subangular to su morphic lithologies predo	th high cobble content and high brounded fine to coarse of mixed ominantly schist. Cobbles are subangular morphic lithologies predominantly schist. e of granite and schist.					B 005 2.00 - D 006 2.20	- - - - - - - -		
					2.50	-0.40		E		
Medium strong da	ark grey granitic SCHIST.		**************************************	\approx	=		D 007 2.60	-		
Excavation complet	e at 2.80 m.			~~	2.80 -	-0.70		E		
						Excava	tion dimens	ons and ol	rientation	
Stability	Spalling from 0.00m to	o 2.50m on faces B and D								
Shoring	None used					_	(sides A and	-	3.20m	
Shoring	World used						(sides B and	•	1.20m	
Remarks	1. Trial pit terminate	d at 2.80m due to bedrock.				Depth		:	2.80m	
						Bearing	g of side A	;	210°	
				Ī			WATER	STRIKES		
				Ī	Dat	te	Time	Strike at	Rise	Time taken
				ŀ				depth	to depth	to rise
All bear	ings given relate to mag	rengths are average in kPa Inetic North								
See lead	end sheet for key to syn itu test results, see acco	nbols and abbreviations ompanying records	·34·30					SOIL	engine	eering
Form No. SI EXC LOG	For in situ test results, see accompanying records Log Print Date And Time: 23/12/2013 10:34:30 No. SI EXC LOG Issue Revision No. 1.04 Issue Date 22/10/2012							1000	the Bachy Soleta	

										
	Bay of Nigg Harbour Deve	elopment Ground Investig	gation						Hole I	D.
Project No.	TA7148				Exc	avatic	on Log		TD1	_
Engineer	Arch Henderson LLP								TP1	′
Employer	Aberdeen Harbour Board								Sheet 1 c	of 1
	1.64m CD	Coordinates	396634.80 E, 8049	¥950.10) N Nation	nal Grid				
Hole Type	TP	Method and equipment	20T Tracked Exca	avator						ļ
Date Started	27/09/2013	Date Completed	27/09/2013			Logç	ged by GD			,
		·				-	· · · · · · · · · · · · · · · · · · ·			
	Description of Strata		Le	egend	Depth	Datum Level	Sample Details		In Situ Test Details	Install- ation
subangular to subi	Ily fine to coarse SAND with low cob prounded fine to coarse of mixed ign es are subangular to subrounded fin	neous and metamorphic								
and metamorphic		16 to coalse of things 19		10 m	1 200	0.84	D 001 0.50	- - -		
	vn sandy slightly gravelly CLAY with		0.0	P - 5	0.80 -	0.67	B 002 1.00 - 1.	150		
igneous and metai	avel is subangular to subrounded fin amorphic lithologies. Cobbles are su		0	0 0	1	4	D 003 1.20	<u></u>		
	nd metamorphic lithologies.	•	P	0 0	. 3	1	1	Ė		
			p	200		₁	1	Ē		
			P	0 0	1	4	1	F		
	elly clayey fine to medium SAND. Gr	ravel is subangular to			2.00	-0.36		.50		
	to coarse of dark grey schist.]	1	D 005 2.20	Ė		
					4	1	1	F		
			77	7	4	4 1	1	F		
- 0.00m			73		1 4	4	B 006 3.00 - 3.	3.50		
	to 4.40m medium cobble content. C of mixed lithologies predominantly		7	X. T	. J	1	1	Ė		
Junica	JI IIIIAGU IIUIOIOGIOO F	/ SCHIST	TO THE REAL PROPERTY.	Na VVI]	1	2 227 3 50	Ė		
				5.77	į	1	D 007 3.50	E		
					<u> </u>	1	1	E		
			<u>₹</u>		1	4 1	1	-		
			4.	5.70	4	, <u> </u>	1	þ		
Excavation complete	:e at 4.40 m.				4.40 -	-2.76	1	Ė		
ı					.]	1	1	E		
ı					<u>.</u> _	₁ 1	1	E		
ı					,	1	1	F		
ı					, ‡]	1	F		
					, ‡	₄ 1	1	þ		
					, 4	1	1	F		
					, <u> </u>	1	1	E		
ı					<u>,</u>	1	1	E		
ı					, ‡	, 1	1	þ		
ı					, ‡	4 1	1	þ		
ı					,	1	1	Ė.		
ı					, <u> </u>	1	1	E		
ı					, ‡	1	1	E		!
v usa.,	- " C 2 00m to 4 40m/		1			Excava	tion dimension	ns and o	rientation	
Stability	Spalling from 2.00m to 4.40m o	in all faces			i	Length	n (sides A and 0	C)	3.80m	ļ
Shoring	None used				i	_	(sides B and D	-	1.90m	ļ
_					i	Depth		-	4.40m	ļ
Remarks	1. Trial pit terminated at 4.40n	m due maximum depth reached	d.		i	•				!
						Веатту	g of side A		180°	
							WATER S			
					Dat	īe		Strike at depth	Rise 1	Time taken to rise
				ļ				исра.	10 405	10 1100
					i	ļ	1			
					i	ļ	1			
					i	ļ	1			
All dant	" " " " - " - +vonatho a	. (5.					<u> </u>			
All beari	ths in metres, all soil strengths ar rings given relate to magnetic Nor	orth								
See leae	end sheet for key to symbols and itu test results, see accompanying	abbreviations								
		Date And Time: 23/12/2013 10	0:34:32			-		SOIL	engine	eering
Form No. SLEXC LOG	Issue Revision N	No. 1.04 Issue Date 22/10/	(2012					Part of	f the Bachy Soleta	anche group

-	Bay of Nigg Harbour Develo	pment Ground Investig	ation		_	_			Hole	ID.
Project No.	TA7148				Exc	avatio	on Log		TP1	8
Engineer	Arch Henderson LLP									J
Employer	Aberdeen Harbour Board								Sheet 1	of 1
Ground Level	2.93 m CD	Coordinates	396607.30 E, 80			ial Grid				
,,	TP	Method and equipment		cavator						
Date Started	27/09/2013	Date Completed	27/09/2013			Log	ged by GD			
	Description of Strata		1	Legend	Depth	Datum Level	Sample Details	ı	n Situ Test Details	Install- ation
metamorphic litho Cobbles are suban lithologies. Boulde	pangular to subrounded fine to coarse (oblogies with high cobble content and higular to subrounded of mixed igneous ers (up to 0.80m x 0.60m x 0.50m) are smorphic lithologies predominantly grains	igh boulder content. and metamorphic subangular of mixed					B 001 0.50 - 1	.00	1	
fine to coarse. Gra	y slightly gravelly sandy CLAY with low vel is subrounded fine to coarse of gran unded of granite and predominantly da	nite and schist.	- ¥ ,,	0 0	1.10 -	1.83	D 002 1.00 B 003 1.50 - 2	.00		
			ρ ρ	0 0	2.00	0.93	D 004 2.00	-		
Excavation complete	e at 2.00 m.				2.00					
Stability	Collapse from 0.00m to 1.30m on a	ıll faces					tion dimension (sides A and e		rientation 3.90m	
Shoring	None used					Width	(sides B and D))	3.60m	
Remarks	Trial pit terminated at 2.00m d	ue to constant collapse.				Depth			2.00m	
		•				Bearin	g of side A		330°	
							WATER S	TRIKES		
					Dat	te	Time	Strike at	Rise	Time taken
					27/09/	/2013		<u>depth</u> 1.00	to depth 1.00	to rise 0
All beari See lege	hs in metres, all soil strengths are a ings given relate to magnetic North end sheet for key to symbols and abl tu test results, see accompanying re Log Print Date	oreviations cords And Time: 23/12/2013 10							engin	eering

SUPPORTING FACTUAL DATA

SECTION A

Exploratory Hole Records and Field Data

GROUNDWATER / GAS MONITORING RESULTS

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148				Groundwater Inflows						
				Recorded in						
Engineer	Arch Henderso	on LLP			Exp	lorator	y Hole	S		Table No.
Employer	Aberdeen Harl	bour Boar	d							25
, ,						Casing				
Hole ID	Date	Time	Strike at depth	Rise to depth	Time taken to rise	depth at strike time	Casing depth to seal flow		ratum	Flow rate remarks
	dd/mm/yyyy	hhmm	m	m	mins	m	m			
TP01	26/09/2013	NR	0.95	0.50	2			S	CHIST	
TP02	26/09/2013	NR	1.00	0.90	5			S	CHIST	
TP03	26/09/2013	NR	1.00	0.35	5				CLAY	
TP04	27/09/2013	NR	0.00	0.00	0				SAND	
TP05	26/09/2013	NR	1.00	0.80	2			G	RAVEL	
TP07	25/09/2013	NR	0.40	0.40	1			G	RAVEL	
TP08	25/09/2013	NR	3.10	3.00	5			G	RAVEL	
TP09	25/09/2013	NR	0.80	0.80	1			CC	OBBLES	
TP10	25/09/2013	NR	3.10	3.00	5				CLAY	
TP11	24/09/2013	NR	1.40	1.00	2			MADI	E GROUND	
TP13	24/09/2013	NR	1.40	1.40	3			MADI	E GROUND	
TP18	27/09/2013	NR	1.00	1.00	0			G	RAVEL	
Recorded By:	Thomas.Walto	n Che	cked By:	Thomas.\	Nalton	Approved	By: Thor	mas.V	Valton	<u> </u>
Date:	06/11/2013	Date		06/11/20		Date:		11/20		SOIL ENGINEERING
Form No. SE-PGR-F-007		Issue	No.RevisionI	No 3.04		Issue Date	26/07/20	013		Part of the Bachy Soletanche Group

SUPPORTING FACTUAL DATA

SECTION B

Laboratory Testing

KEY TO LABORATORY TEST RESULTS AND SUMMARY SHEETS

SECTION B: KEY TO LABORATORY TEST RESULTS AND SUMMARY SHEETS

FIELD IDENTIFICATION

Sample Type	U UT P TW L	Undisturbed sample Thin wall open drive tube sample Piston sample Thin walled sample Liner sample	D B AMAL BLK C	Small disturbed sample Bulk disturbed sample Amalgamated sample Block sample Core sample
Test status		esult in italics indicates a test that is not s laboratory.	within the s	scope of the UKAS accreditation

SUMMARY OF LABORATORY SOIL TESTS: INDEX / CLASSIFICATION TESTS

Particle density	р	Small pyknometer method	9	Gas jar method	
Plastic index N/P		Non plastic, although liquid limit will have been determined if requested			
Particle size (PSD) 1		Following value in silt column denotes following value in clay column denotes sedimentation is by hydrometer.			

SUMMARY OF LABORATORY SOIL TESTS: STRENGTH AND PERMEABILITY TESTS

Triaxial	UU UUM UU3 CU CUM CU3 CD CDM CD3	Single stage unconsolidated quick undrained Multi stage unconsolidated quick undrained Set of 3 unconsolidated quick undrained Single stage consolidated undrained Multi stage consolidated undrained Set of 3 consolidated undrained Single stage consolidated drained Multi stage consolidated drained Multi stage consolidated drained Set of 3 consolidated drained Note that single stage tests are reported assuming phi = 0 for total stress
Consolidation	Oed mv	One-dimensional oedometer Coefficient of compressibility quoted for range p0 to p0 + 100kPa, where determined
Permeability	С	Constant head permeability
Shearbox	SSB LSB p r RS	Small shear box Large shear box Peak value Residual shear strength Ring shear

SECTION B: KEY TO LABORATORY TEST RESULTS AND SUMMARY SHEETS

SUMMARY OF LABORATORY SOIL RE-USE TESTS

MCV	S	MCV value at natural or specified moisture content
	int	Intercept of calibration line in MCV calibration

SUMMARY OF LABORATORY ROCK STRENGTH TESTS

Point	Туре	D	Diametral	Α	Axial		
Load	(combination	1	Irregular lump	В	Block		
	of)	L	Test performed parallel to planes of weakness				
		Р	Test performed perpendicular to planes of weakness				
		Χ	Invalid failure of point load (not broken between points of load application)				

SUMMARY OF LABORATORY ROCK MATERIALS TESTS

Ten% fines w Soaked test	d Dry test
--------------------------	------------

Important note:

Summary sheets are provided for convenience and in no way replace individual test result sheets which shall, without exception, be regarded as the definitive result.

POINT LOAD INDEX RESULT

Point	Туре	D	Diametral	Α	Axial				
Load	(combination	1	Irregular lump	В	Block				
	of)	L	Test performed parallel to planes of weakness						
		Р	Test performed perpendicular to pla	Test performed perpendicular to planes of weakness					
		Χ	Invalid failure of point load (not broken	ken betweer	n points of load application)				
Dimensions		W	Diameter of core or average smallest width perpendicular to axis of loading in a block or irregular lump						
D		D	Distance between platens when just in contact with specimen						
		D'	Distance between platens at point of	of failure					
		De	Equivalent core diameter	ls	P/De ²				
		Is(50)	FxIs	F	(De/50) ^{0.45}				
		For Axia	point load strength index corrected for al/Lump tests $De^2 = (4/Pi) \times (W \times D')$ metral tests $De^2 = D \times D'$	a diametra	I test of core diameter 50mm				

SUPPORTING FACTUAL DATA

SECTION B

Laboratory Testing

LABORATORY SOIL TEST SUMMARY SHEETS

Project Name Project No.	Bay of Nig Investigat TA7148		rbour	Developm	nent (Groun	d	C	las		cation mm	on 1 ary	est	S						
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				μ		tent			ty				٤	əbı		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	Silt	% Sand	Gravel	Cobbles	
立 D101	1.50	004	SS B	1.50	01	%		Vlg/m	•	%	%	%	%	%	%	% 8¹	80	12	0	
	1.50	004	В	1.50	01												80	12	U	
D101	3.50	800	В	3.50	01											6 ¹	71	24	0	
L01	0.50	001	В	0.50	01											7 ¹	85	8	0	
L01	2.50	005	В	2.50	01											4 ¹	52	30	14	
A05	1.40	001	В	1.40	01										9	18	43	30	0	
A05	5.98		С	5.98	02	11				29	15	14	66							
A05	5.98		С	5.98	03										12	19	38	31	0	
A05	19.64		С	19.64	01	8.6														
A05	22.10		С	22.10	01	7.4				22	14	8	61							
A08	0.50	001	В	0.50	01										5	13	27	55	0	
A08	7.73		С	7.73	02	8.7				27	15	12	65							
A08	7.73		С	7.73	03										12	19	37	32	0	
A08	17.60		С	17.60	02	8.6				26	13	13	66							
A08	29.10		С	29.10	01	8.5														
A11	0.00	002	В	0.00	01											4 ¹	95	1	0	
A11	8.58		С	8.58	01	7.3				31	16	15	67							
A11	8.58		С	8.58	02										9	22	35	33	1	
A11	12.78		С	12.78	01										22	37	21	21	0	
A11	25.28		С	25.28	01	7.3														
A11	25.28		С	25.28	02										8	19	40	31	2	
Approved by:		<u> </u>	Leed	s Laborato	rv											<u> </u>				L
Sushil Sharda											so		S		ng					
	Revision No. 2.03 Issue Date 20/11/2012												Part o	of the Ba	chy Sole	tanche	Group			

Project Name Project No.	Investigation										cation mm		est	S						
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				Ε		tent			ity				٤	age		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
Д А29	0.50	003	B	0.50	01	70		Vlg/m		70	70	70	70	70	70	⁹⁰ 2 ¹	95	3	0	
															42					
A29	4.70	010	С	4.70	01										13	22	39	25	2	
A29	10.80	011	С	10.80	03	8.1				31	17	14	59							
A29	15.25	012	С	15.25	01										9	21	33	37	0	
A29	21.50	014	С	21.71	01										26	36	24	14	0	
A31	0.50	002	В	0.50	01											5 ¹	93	2	0	
A31	4.80	005	С	4.80	01										11	21	36	32	0	
A31	15.76	5.76 008 C 15.76 02 11 31 16 15 6																		
A31	19.30	009	009 C 19.52 01												59	36	4	0	0	
A34	0.50	002	009 C 19.52 01													6¹	94	0	0	
A34	1.00	004	D	1.00	01				2.67 p											
A34	1.50	006	В	1.50	01											4 ¹	95	1	0	
A34	4.75		С	4.75	01										11	23	37	29	0	
A34	6.25		С	6.25	02	12				29	16	13	64							
A51	0.50	003	В	0.50	01											8 ¹	92	1	0	
A54	1.50	006	В	1.50	01											4 ¹	94	3	0	
A54	6.00	014	С	6.16	01	7.1	2.21	2.07												
A54	6.00	014	С	6.00	02										11	22	37	30	0	
A54	8.00	015	С	8.24	02	11				36	19	17	68							
A54	10.15	016	С	10.15	01	14	2.16	1.90												
Approved by:	1	<u> </u>	Leed	s Laborato	ry															<u> </u>
Sushil Sharda					-					Print da	te	28/11/2	2013			so	oir ei	ngin	eerii	ng
			Revisi	on No.	2.03			Issue	Date	20	/11/20	012				Part o	of the Ba	chy Sole	tanche	Group

Project Name Project No.	Investigation									ation		est	S							
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				Ε		tent			ity				E	age		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
Т А54	10.15	016	C	10.15	02	70		Vlg/m		70	70	70	70	70	20	23	33	24	0	
A57	0.50	003	В	0.50	01											10¹	84	6	0	
A57	1.50	006	В	1.50	01											10¹	84	5	0	
A57	4.50	015	В	4.50	01											11 ¹	87	2	0	
A57	7.00	019	D	7.00	01	10				31	17	14	40							
A57	9.20	022	С	9.20	01										10	20	34	32	4	
A57	17.30	025 C 17.30 01 006 B 1.50 01													11	19	35	35	0	
A59	1.50	50 006 B 1.50 01														9 ¹	90	1	0	
A59	5.50	016	06 B 1.50 01												6	15	31	21	27	
A59	7.50	020	16 B 5.50 01										67							
A59	10.45	024	С	10.72	01										14	23	40	23	0	
A59	21.20	027	С	21.43	01										9	17	39	32	2	
A59	26.60	028	С	26.60	01	5.8				30			62							
A63	1.00	006	В	1.00	01											6¹	92	1	0	
A63	2.00	010	В	2.00	01											7 ¹	91	2	0	
A63	3.00	014	В	3.00	01											8 ¹	89	4	0	
A63											13	66								
A63	7.50 024 B 7.50 01												9	18	34	40	0			
B61	1.50	007	В	1.50	01											6 ¹	89	5	0	
B61	2.00 008 D 2.00 01 2.67 p																			
Approved by:			Leed	s Laborato	ry					I										
Sushil Sharda			Revisi	on No	3 U3			Issue			te /11/20	28/11/2	013					nGIN		
	Revision No. 2.03 Issue Date 20/										/ 11/2(112				rart c	и пие ва	city 5016	tancne	uroup

Project Name Project No.		Bay of Nigg Harbour Development Ground Investigation TA7148 Classification T Summary Arch Henderson LLP Aberdeen Harbour Board																		
Engineer	Arch Hen	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				٤		tent			ty				Е	agı		Par	ticle	size		
Ное ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	Silt	Sand	Gravel	Cobbles	
五 B61	3.50	015	ß	3.50	01	%	'	Vlg/m		%	%	%	%	%	%	% 3¹	93	4	0	
	3.30				01											3	33	4	0	
B61	28.05	020	С	28.07	01	3.6	2.07	1.99												
B61	28.05	020	С	28.10	02										9	20	36	35	0	
B61	30.30	021	С	30.35	01	7.2	2.16	2.02												
B61	30.30	021	С	30.30	02										10	19	34	36	0	
B61	30.30	021	С	30.30	03	7.2				34	20	14	62							
B61	30.80	022	С	30.85	01	6.5	2.19	2.05												
B61	30.80	022	022 C 30.80 02											9	20	35	35	0		
C79	0.50	002	002 B 0.50 01												5 ¹	55	40	0		
C81	0.50	002	В	0.50	01											6¹	53	41	0	
C81	1.50	004	В	1.50	01											7 ¹	77	16	0	
C81	4.40		С	4.40	01	9.5				30	17	13	60							
C81	6.30		С	6.30	01										10	25	40	25	0	
C83	0.00	002	В	0.00	01											2 ¹	72	27	0	
C83	1.00	003	D	1.00	01				2.66 p											
C83	2.75	008	С	2.90	01										14	22	37	27	0	
C83	2.75	008	С	2.75	03	12				32	15	17	56							
C83	9.05	010	С	9.05	01										13	19	40	28	0	
C83	9.05	010	С	9.05	02	8.4														
C84	0.30	002	В	0.30	01											2 ¹	56	42	0	
Approved by:			Leed	s Laborato	ry															
Sushil Sharda			Destin	on N-	2.02			la ·					013				IL e	ngin	eerii	
	Revision No. 2.03 Issue Date 20/11/2012												Part o	of the Ba	chy Sole	tanche	Group			

Project Name Project No.	Bay of Nig Investigat TA7148	-	rbour	Developm	Groun	d	C	las		ation	on 1 ary	est	S							
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				Е		itent			ity				٤	age		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
Т С84	3.60	006	C	3.75	01	70		Vlg/m		70	70	70	70	70	7	12	24	18	38	
C84	5.50	007	С	5.50	02	9.4				33	17	16	54							
C84	7.10	800	С	7.10	01										10	16	29	42	3	
C84	7.10	800	С	7.10	02	10.0				30	15	15	68							
C87	0.00	002	В	0.00	01											4 ¹	90	6	0	
C87	2.40	004	С	2.40	01	8.3														
C87	4.15	005	002 B 0.00 01												13	20	39	27	2	
C88	0.00	002	02 B 0.00 01													2 ¹	56	32	10	
C88	2.05	005	5 C 2.05 01											10	16	31	29	14		
C88	4.30	006	95 C 2.05 01																	
C88	6.20	007	С	6.20	01										13	20	38	28	0	
C88	6.20	007	С	6.20	02	29														
C96	0.50	003	В	0.50	01											4 ¹	85	11	0	
C96	3.50	012	В	3.50	01											9 ¹	83	8	0	
D98	0.00	001	В	0.00	01											8 ¹	92	0	0	
D98	1.50	006	В	1.50	01											11¹	89	0	0	
D99	0.50 003 B 0.50 01												5 ¹	86	9	0				
D99	1.50 006 B 1.50 01												7 ¹	88	6	0				
D99	6.00		С	6.00	01										11	21	36	32	0	
D100	0.50 003 B 0.50 01													7 ¹	92	1	0			
Approved by:		•	Leed	s Laborato	ry												•			
Sushil Sharda										Print da		28/11/2	013					ngin		
			Revisi	ion No.	2.03			Issue	Date	20	/11/20)12				Part o	f the Ba	chy Sole	tanche	Group

Project Name Project No.	Bay of Nig Investigat TA7148		rbour	Developm	nent (Groun	d	C	las		cation mm	on 1 ary	est	S						
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				٤		tent			ty				۲	ge		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Je Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
D100	1.50	006	B	1.50	01	24		vig/iii		26	NP	NP	100	70	70	70	70	70	70	
D100	2.50	009	В	2.50	01											5 ¹	95	1	0	
D102	0.50	003	В	0.50	01				2.00							6 ¹	92	2	0	
D102	1.50	006	В	1.50	02				2.68 p											
D102	2.50	009	В	2.50	01											4 ¹	95	1	0	
D104	1.50	004	В	1.50	01											4 ¹	50	46	0	
D104	5.50	012	В	5.50	01											7 ¹	85	8	0	
E65	0.50	003	В	0.50	01											10¹	83	7	0	
E65	1.50	005	D	1.50	01				2.67 p											
E65	2.50	009	В	2.50	01											10¹	83	8	0	
E65	4.50	015	В	4.50	01											3 ¹	63	34	0	
E65	8.00		С	8.24	01										10	22	33	36	0	
E65	9.80		С	9.80	01	9.6				31	19	12	55							
E66	1.50	004	В	1.50	01											5 ¹	87	8	0	
E66	3.50	800	В	3.50	01											6 ¹	89	4	0	
E66	6.50	014	В	6.50	01											7 ¹	84	9	0	
E66	11.60		С	11.60	01										11	19	34	36	0	
E66	12.80		С	12.80	02	11				31	16	15	55							
E69	1.50	004	В	1.50	01											11¹	87	3	0	
E69	3.50	008	В	3.50	01											8 ¹	83	10	0	
Approved by:	<u> </u>	<u> </u>	Leed	s Laborato	rv	<u> </u>					<u> </u>	<u> </u>]		<u> </u>]			
Sushil Sharda Print date 28/11/2013											so		ngine	eerii	ng					
	Revision No. 2.03 Issue Date 20/11/2012												Part o	of the Ba	chy Sole	etanche	Group			

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148 Arch Henderson LLP Classification Test Summary													S						
Engineer	Arch Hen	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				π		tent			ty				E	agi		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Jey Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
E69	8.10	.,	С	8.10	01										10	21	32	38	0	
E69	8.80		С	8.80	01	8.0				27	20	7	60							
E71	1.50	004	В	1.50	01											8 ¹	86	6	0	
E71	2.00	005	D	2.00	01				2.66 p											
E71	4.50	010	В	4.50	01											8 ¹	84	8	0	
E71	9.00	016	В	9.00	01											8 ¹	85	7	0	
E71	10.30		С	10.30	01	10				31	17	14	56							
E72	1.50	004	В	1.50 O1 3.50 O1											11¹	84	5	0		
E72	3.50	008	В	3.50	01											9 ¹	86	6	0	
E75	0.50	002	В	0.50	01											3 ¹	33	63	0	
E75	2.50	006	В	2.50	01											4 ¹	43	53	0	
E105	0.00	002	В	0.00	01											2 ¹	83	15	0	
E105	1.50	006	В	1.50	01				2.68 p											
E105	3.50	014	В	3.50	01											2 ¹	88	10	0	
E105	5.50	022	В	5.50	01											1¹	73	26	0	
E106	0.00	002	В	0.00	01											2 ¹	92	6	0	
E106	2.50	010	В	2.50	01											2 ¹	87	11	0	
E106	4.50	018	В	4.50	01											2 ¹	93	5	0	
E107	0.50	003	В	0.50	01											3 ¹	93	5	0	
E107	4.50	011	В	4.50	01											8 ¹	90	3	0	
Approved by:	1		l eed	s Laborato	rv	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			L
Sushil Sharda					-,]												
Justin Stiatua			Revisi	on No.	2.03			Issue		Print da	te /11/20	28/11/2 0 12	2013			_		chy Sole		-

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148 Classification Tes Summary Arch Henderson LLP													S						
Engineer	Arch Hen	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				c		ent			<u>ج</u>				ے	ge		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	de Dry Density	" Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
E107	5.00	012	D	5.00	01			1	2.68											
E108	0.00	001	В	0.00	01				р							2 ¹	75	22	0	
E108	2.00	008	В	2.00	01											11¹	63	26	0	
E108	3.00	011	В	3.00	01											4 ¹	60	36	0	
E109	0.00	002	В	0.00	01											4 ¹	95	1	0	
E109	2.00	008	В	2.00	01				2.67 p											
E109	2.50	010	В	2.50	01											1¹	61	38	0	
E109	5.00	019	В	5.00	01											4 ¹	75	21	0	
E110	1.50	005	В	1.50	01											2 ¹	67	31	0	
E111	0.50	003	В	0.50	01											6 ¹	87	7	0	
E111	2.50	009	В	2.50	01											5 ¹	94	0	0	
E112	0.00	001	В	0.00	01											5 ¹	65	30	0	
E112	2.00	006	В	2.00	01											4 ¹	96	0	0	
E112	2.00	006	В	2.00	02				2.67 p											
E115	0.50	003	В	0.50	01											5 ¹	74	21	0	
E116	0.50	002	В	0.50	01											7 ¹	58	27	8	
GS11	6.80		С	6.80	01	8.0				52	21	31	63							
GS11	6.80		С	6.80	02										10	23	40	27	0	
TP01	0.10	001	В	0.10	01											2 ¹	11	67	20	
TP01	0.50	003	В	0.50	01	9.4				36	21	15	49							
Approved by:	1		امما	s Laborato	rv	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			L
Sushil Sharda			Locu	Laborato	· · y															
Sustill Stiarda	Pfill date 26/11/2013										_		nGIN(-					
	Revision No. 2.03 Issue Date 20/11/2012												Part c	n rue Ra	chy Sole	canche	aroup			

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148 Arch Henderson LLP Aberdeen Harbour Board Classification 1 Summary													S						
Engineer	Arch Hend	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				Ε		tent			ity				E	age		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
Т ТР02	ن 0.50	003	B	0.50	01	%		Vlg/m		%	%	%	%	%	6	18	35	40	0	
TP03	0.00	001	В	0.00	01											12 ¹	61	16	11	
TP03	1.50	005	В	1.50	01	14				30	18	12	63							
TP04	2.00	005	В	2.00	01										7	21	43	29	0	
TP05	0.50	003	В	0.50	01				2.67 g											
TP05	0.50	003	В	0.50	02											O ¹	6	65	29	
TP05	1.50	005	В	1.50	01	12				26	14	12	56							
TP06	2.50	006	006 B 2.50 01												1¹	26	49	24		
TP07	1.00	002	В	1.00	01											1¹	15	82	2	
TP08	1.50	003	В	1.50	01											3 ¹	18	58	21	
TP09	0.60	003	В	0.60	01											3 ¹	21	66	11	
TP09	2.50	008	D	2.50	01	15				20	NP	NP	66							
TP10	0.50	001	В	0.50	01											2 ¹	26	62	10	
TP11	1.50	003	В	1.50	01											1¹	27	57	15	
TP11	2.80	007	В	2.80	01	5.9				29	19	10	56							
TP11	2.80	007	В	2.80	02										3	21	38	37	0	
TP12	1.50	004	В	1.50	01											11¹	44	44	1	
TP13	1.50	003	В	1.50	01											3 ¹	36	56	6	
TP13	3.50	800	D	3.50	01	7.0				27	15	12	63							
TP14	0.50	002	В	0.50	01											11¹	37	48	4	
Approved by:	by: Leeds Laboratory													-						
Sushil Sharda	Pfilit date 26/11/2015														ngin		-			
	Print date 28/11/2013 Revision No. 2.03 Issue Date 20/11/2012												Part o	of the Ba	chy Sole	tanche	Group			

Project Name Project No.	Bay of Nig Investigat TA7148		rbour	Developn	nent (Grour	nd	C	las			on T ary		S						
Engineer	Arch Hen	derso	n LLP																	
Employer	Aberdeen	Harb	our B	oard																
				٤		tent			ΓŹ				۴	ge		Par	ticle	size		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	6 Dry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	% Passing 425µm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
TP14	1.20	003	D	1.20	01				2.61 p											
TP15	1.80	003	В	1.80	01				۲							3 ¹	22	64	11	
TP16	0.00	001	В	0.00	01										6	19	39	32	4	
TP17	1.20	003	D	1.20	01	25				22	NP	NP	100							
TP17	3.00	006	В	3.00	01											10¹	46	11	33	
TP18	0.50	001	1 B 0.50 01 End												2	19	25	52	1	
Approved by:			Leed	s Laborato	ry															
Sushil Sharda			Revisi	on No.	2.03			Issue	Date	Print da	_{te} /11/20	28/11/2)12	2013				oir ei	nGIN	eerii	_

	Investiga		arbour	Developr	ory									
Project No.	TA7148							JUII K	le-Use	16212				
Engineer	Arch Her	nderso	on LLP											
Employer	Aberdeer	n Harl	oour B	oard										
	ε			:h m			ry.	Comp	paction	MCV	CI	BR	sion	
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	Moisture Content	Bulk Density	OMC %	Max DD Mg/m³		Top %	Base %	Pinhole Dispersion	
TP17	1.00	002	В	1.00	01	16	2.20				0.49	0.65		
TP18	1.50	003	В	1.50	01	14	2.24				0.31	0.45		
Approved by:			Leeds	Laborato	ry			End						
Approved by: Sushil Sharda			Leeas	ranoiato	У					00.111.77		56"		NDISC.
	Sharda Print date 28/11/2013 Revision No. 2.03 Issue Date 09/01/2013												enginee Bachy Soletar	

Project Name Project No.		_		evelopment		Pe		reng abilit			ary						
Engineer	Arch Hend	erson l	_LP														
Employer	Aberdeen l	Harbou	ır Boar	⁻ d													
									Triaxial		Со	nsol	Perme	eability	:	Shearbo	x
Ное ID	Sample depth m	Permeability Summary Permeability Summary					m _v	Туре	K m/s	Туре	c kPa	Ø					
A05	5.00	0,				9.2			254	0							
A05	7.95		С	7.98	1	10	2.27	uu	135	0							
A05	21.20		С	21.21	1	8.5	2.36	uu	391	0							
A08	4.63		С	4.63	1	9.5	2.34	uu	187	0							
A08	12.23		С	12.25	1	6.4	2.16	uu	351	0							
A08	20.95	63 C 7.64 1 9 2.25 CUM 18 29.5															
A11	7.63	7.63 C 7.64 1 9 2.25 CUM 18 29.5															
A11	9.81	9.81 C 9.99 1 7.0 2.37 UU 488 0															
A11	11.64	C 9.99 1 7.0 2.37 UU 488 0															
A11	21.75		С	21.77	1	8.8	2.22	uu	388	0							
A29	4.70	010	С	4.92	2	8.2	2.34	uu	458	0							
A29	10.80	011	С	10.81	1	10.0	2.27	uu	355	0							
A29	21.50	014	С	21.53	2	18	2.11	uu	114	0							
A31	9.70	006	С	9.72	1	8.1	2.31	uu	393	0							
A31	13.00		С	13.04	1	10	2.24	uu	166	0							
A31	19.30	009	С	19.32	2	32	1.96	uu	58	0							
A34	4.75		С	4.88	2	7.7	2.33	uu	448	0							
A34	8.50		С	8.50	1	8.6	2.27	uu	313	0							
A54	2.50	009	В	2.50	1										SSB	p7.5	p40
A54																	
Approved by:		<u> </u>	Leeds	Laboratory													
Sushil Sharda									Print data	25	8/11/2013			SOI		Ineer	ıng
	rda Print date Revision No. 3.03 Issue Date 23/11/2															Soletanch	

Project Name Project No.	Bay of Nig Ground Inv TA7148	-		evelopment		Pe	St rmea		th a		ary						
Engineer	Arch Hend	erson l	LP.														
Employer	Aberdeen l	Harbou	r Boar	·d													
									Triaxial		Со	nsol	Perme	eability		Shearbo	x
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	by Bulk Density	Туре	c kPa	Ø	Type	m _v	Туре	K m/s	Туре	c kPa	Ø
A57	9.20	022	С	9.30	2	7.8	2.33	uu	441	0			Г				
A57	17.30	025	С	17.33	2	9.1	2.26	uu	202	0							
A59	10.45	024	С	10.50	2	8.7	2.36	uu	452	0							
A59	21.20	027	С	21.22	2	8.5	2.29	uu	417	0							
B61	2.50	011	В	2.50	1										SSB	p6.9 r1.8	p35.5
C81	4.40		С	4.61	2	8.4	2.36	uu	364	0							
C81	7.59		С	7.61	1	9.2	2.29	uu	218	0							
C83	2.75	008	С	2.77	2	9.8	2.34	uu	131	0							
C84	3.60	006	С	3.80	2	8.0	2.36	uu	380	0							
C87	4.15	005	С	4.17	2	9.2	2.37	uu	254	0							
C87	8.45	007	С	8.48	1	8.1	2.35	uu	374	0							
C88	2.05	005	С	2.24	2	8.4	2.31	uu	228	0							
D99	6.60		С	6.61	1	9.1	2.28	uu	190	0							
E65	8.00		С	8.03	2	9.3	2.25	cu									
E65	9.80		С	10.10	1	9.3	2.24	uu	320	0							
E66	12.80		С	13.06	1	11	2.24	uu	111	0							
E69	2.50	006	В	2.50	1										SSB	p2.5	p39
E69	8.10		С	8.12	2	10	2.39	cu									
E69	8.80		С	8.82	2	9.1	2.28	uu	168	0							
E69	9.80		С	9.85	2	9.7	2.26	uu	173	0							
Approved by:			Leeds	Laboratory													
Sushil Sharda				,			1		Print date	2	8/11/2013			SOI	L eng	Ineer	אוויפ
		Revisio	n No.	3.03	l .	Iss	ue Date			/2012					the Bachy		

Project Name Project No.	Bay of Nigo Ground Inv TA7148			velopment		Pe	St rmea	reng abilit			ary						
Engineer	Arch Hend	erson l	LP.														
Employer	Aberdeen I	Harbou	ır Boar	d													
									Triaxial		Со	nsol	Perme	eability	,	Shearbo	х
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	w/Bulk Density	Туре	c kPa	Ø	Туре	m _v	Туре	K m/s	Туре	c kPa	Ø
E71	10.30	0,	С	10.56	2	9.3	2.32	uu	242	0					·		
E71	11.92		С	11.92	1	10	2.40	сим	19	33.0							
E71	12.55		С	12.76	2	9.1	2.25	uu	312	0							
E105	2.00	008	В	2.00	1										SSB	p8.1 r4.9	p39.5 r34
E108	1.00	005	В	1.00	1										SSB	p10 r1.0	p41 r38
E111	1.50	006	В	1.50	1										SSB	p0.28	p42
GS11	4.70		С	4.80	1	8.4	2.32	uu	306	0							
GS11	7.27		С	7.29	1	9.8	2.34	uu	232	0							
GS11	13.70		С	13.72	1	8.7	2.34	uu	478	0							
								End									
Approved by:			Leeds	Laboratory											1		
Sushil Sharda		Dovi-:	n Ne	2.02		I= -	nio Dete		Print date		3/11/2013				L eng	ineer	
		Revisio	on No.	3.03		Iss	sue Date		23/11	./2012				Part of	ne Bachy	Soletanch	e Group

SUPPORTING FACTUAL DATA

SECTION B

Laboratory Testing

LABORATORY SOIL TEST DATA SHEETS

David North	D of Ni		.l	D I				_		
Project Name Project No.	Bay of Nig Investigat TA7148		bour	Developm	ent G	round	Moisture Cont	tent		
Engineer	Arch Hend	dersor	ı LLP					-		
Employer	Aberdeen	Harbo	our Bo	oard			BS1377: Part 2: 1990): 3.2		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.		Description		Remarks	Moisture % Content
A05	19.64		С	19.64	01		ly gravelly CLAY. Gravel is coarse subangular.			8.6
A08	29.10		С	29.10	01		ly gravelly CLAY. Gravel is coarse subangular.			8.5
A11	25.28		С	25.28	01		ly gravelly CLAY. Gravel is coarse subangular.			7.3
C83	9.05	010	С	9.05	02		wn slightly sandy slightly AY. Gravel is fine to medium			8.4
C87	2.40	004	С	2.40	01		ly gravelly CLAY. Gravel is coarse subangular.			8.3
C88	6.20	007	С	6.20	02		wn slightly sandy gravelly el is fine to coarse angular.			29
Approved by:		<u> </u>	l eed	s Laborato	rv					
Sushil Sharda					. ,		Drine Jaca 20 (cd. (2	013		(ineering
			Revisi	on No.	2.03		Print date 28/11/2 Issue Date 21/11/2012	.012		chy Soletanche Group

Project Nan	ne Bay of Nigg Investigatio	Harbour Develo	pment Ground	Lie	quid And P		Hole A0	
Project No.	TA7148				Limit Tes	st	Sample 5.98	
Engineer	Arch Hende	rson LLP					Sample I	
Employer	Aberdeen H	arbour Board		Test N	Method: BS1377: P Clause 4.3 and		Sample	
Description	Brown sandy	gravelly CLAY. Gr	avel is medium to	coarse suba	angular.		Specime 5.98	
							Specimen	Number
							2	<u>'</u>
27								
25								
_ 23								
шш				•				
Cone Penetration mm 17								
19								
е В 17								
ි 15			·					
13	20	24	28		32	36	 6	 40
Natural mois	ture content:		11%	oisture Co Percent	ntent % age retained on 4	i25μm sieve:		34%
Liquid limit: Plastic limit:			29% 15%		tion of sample: W	let sieve		
Plasticity ind		ina /25	14% 17%					
Liquidity inde	ex:	ing 425µm	0.11					
100	0	CL		CI	СН		CV I	CE
80								
(%)×6								
ludex								
Plasticity Index(%)								
Plast								
20				\rightarrow				
				` <u> </u>		_		
(0 10	ML 20	30 40	MI 50	MH 60	Ť	V V ↓ 80 90	ME 100
	0 10	20	30 40	Liquid Li		10	50 50	100
Approved by		Leeds Labor	atory					
Sushil Shard		LCCU3 LabOl			Drive I to Co. 11	1 (2012	SOIL 65	GINEERING
- ze Silai u		Revision No.	2.07	Issue Dat		1/2013		chy Soletanche Grou

Project Name Project No.	Bay of Nigg Ha Investigation TA7148	rbour Develop	oment Ground	Liqu	uid And Pl Limit Tes		Hole ID A05 Sample Depth
Engineer	Arch Henderso	n LLP					22.10m Sample Number
Employer	Aberdeen Harb	our Board		Test Met	:hod: BS1377: Pa Clause 4.3 and		Sample Type C
Description	Brown sandy gra	velly CLAY. Gra	vel is medium to c	oarse subang		-	Specimen Depth 22.10m Specimen Number 1
27 — 25 — 23 — 21 — 21 — 20 — 25 — 23 — 21 — 20 — 20 — 20 — 25 — 25 — 25 — 26 — 26 — 26 — 26 — 26		22	24 Mo	isture Conte	26 ent %	28	30
Natural moisture Liquid limit: Plastic limit: Plasticity index: Moisture conter Liquidity index:		425µm	7.4% 22% 14% 8% 12% -0.23	_	e retained on 4 n of sample: W		39%
100		CL		CI	СН	CV	/ CE
80 -							
Index(%)							
Plasticity Index(%)							
20 -							
0 -		ML 20	30 40	MI 50	MH 60	70 8	1
				Liquid Limi	t (%)		
Approved by: Sushil Sharda		Leeds Labora	2.07	Issue Date	Print date 28/1: 19/11/2012	1/2013	SOIL ENGINEERING Part of the Bachy Soletanche Group

Project Name	Bay of Nigg F Investigation		opment Grou	ınd	Liqu	uid And P			Hole ID A08
Project No.	TA7148					Limit Te	st		Sample Depth
Engineer	Arch Henders	son LLP							7.73m Sample Number
Employer	Aberdeen Hai	rbour Board			Test Me	thod: BS1377: I Clause 4.3 and			Sample Type C
Description	Brown sandy g	ravelly CLAY. Gr	ravel is mediui	m to co	arse subanç	gular.			Specimen Depth 7.73m
								S	Specimen Number
									2
27 -									
25 -									
_ 23 =									
23 = E E									
년 21 - 일									
- 19 etra									
Cone Penetration mm 12 - 15 -									
Б О 15 -									
13 - 2	n	22		24		26		28	30
_	•							20	
				IVIOIS	sture Cont	ent %			
Natural moistu	re content:			3.7% 27%		e retained on):	35%
Liquid limit: Plastic limit:				27% 15%	Remarks:	n of sample: V	vet sieve		
Plasticity index	: nt of soil passin	o 425um		12% 13%					
Liquidity index:		g 423μπ		0.13					
100		CL			CI	СН		CV	CE
		CL			j.				
80									
(%)									
)) 60									
Plasticity Index(%)									
olasti O									
20									
				_					
0		ML		1	MI	МН		MV	ME
	0 10	20	30	40	50	60	70	80	90 100
				L	iquid Limi	t (%)			
Approved hv		Leeds Labor	ratorv					1	
Approved by: Sushil Sharda		Leeds Labor	ratory			Print date 28/	11/2013		SOIL ENGINEERIN

Project I	Name	Bay of Nigg H Investigation	arbour Devel	opment Gro	und	Liqu	uid And P			Hole ID A08	
Project I	No.	TA7148					Limit Tes	st	5	Sample Depth	
Enginee	r	Arch Henders	on LLP						Sa	17.60m ample Number	
Employe	er	Aberdeen Har	bour Board			Test Me	thod: BS1377: F Clause 4.3 and			Sample Type C	
Descript	ion	Brown sandy g	ravelly CLAY. G	ravel is mediu	ım to co	arse subanç	gular.		Sp	pecimen Depth 17.60m	
									Spe	ecimen Number 2	r
	27										
	25										
ш	23									, 	
noi m	21										
Cone Penetration mm	19										
ne Per	17										
Co	15										
	13										
	20		22		24		26		28	30	
					Mois	sture Cont	ent %				
		e content:			8.6%		e retained on			34%	ó
Liquid lim Plastic lir					26% 13%	Preparatio Remarks:	on of sample: V	Vet sieve			
Plasticity			- /25		13%						
Liquidity		t of soil passin	ј 425μm		13% 0.01						
	100										
	100		CL			CI	СН		CV	CE	
			CL			CI	СН		CV	CE	
(80 -		CL		- (CI	СН		CV	CE	
1ex(%)			CL			CI	СН		CV	CE	
ity Index(%)	80 -		CL			CI	СН		CV	CE	
lasticity Index(%)	80 -		CL			CI	СН		CV	CE	
Plasticity Index(%)	80 -		CL			CI	СН		CV	CE	
Plasticity Index(%)	80 - 60 - 40 - 20 -										
Plasticity Index(%)	80 - 60 - 40 - 20 -) 10	ML			MI	MH	70	MV	ME	10
Plasticity Index(%)	80 - 60 - 40 - 20 -) 10		30	40		MH 60	70			0
	80 - 60 - 40 - 20 -) 10	ML 20	30	40	MI 50	MH 60	70	MV	ME	
Approved Sushil Ships Sh	80 - 60 - 40 - 20 - 0 -) 10	ML	30	40	MI 50	MH 60 st (%)	70	MV 80	ME	

	Investiga		velopment Gro	und	Liq	uid And P Limit Tes		Hole ID A11
Project No. Engineer	TA7148 Arch Hen	derson LLP				Lilling 163	_	Sample Depth 8.58m Sample Number
			.		Tost Ma	ethod: BS1377: P	art 2: 1000:	·
Employer		n Harbour Boar				Clause 4.3 and		Sample Type C
Description	Brown gra	velly slightly sar	dy CLAY. Gravel	is mediu	im to coars	e subangular.		Specimen Depth 8.58m Specimen Number 1
27								
25								
23 E	-							
<u> </u>	-							
Cone Penetration mm 17								
อ 17					"			
5 75				•				
13	20	24		28		32	36	40
				Moi	sture Con	tent %		
Natural moist	ture content:			7.3%	Percentag	ge retained on 4	25µm sieve:	33%
Liquid limit: Plastic limit: Plasticity inde Moisture con	tent of soil pa	assing 425µm		31% 16% 15% 11%	Preparati Remarks:	on of sample: W	let sieve	
Liquidity inde	ex:			-0.33				
100)	CL			CI	СН	CV	CE
80)							
96 (%))							
Plasticity Index(%)								
20			A		+			
C		ML		i	МІ	МН	М	•
	0	10 20	30	40 I	50 Liquid Lim	60 it (%)	70 8	0 90 100
Approved by		Landa La	boratory					
Approved by Sushil Sharda		Leeus La	iboratory			Print date 28/1	1/2013	SOIL ENGINEERING
		Revision N	lo. 2.07		Issue Date	19/11/2012	11/2/13	Part of the Bachy Soletanche Group

Project Name	e Bay of Nigg		lopment Ground	I		d And P			Hole ID A29
Project No.	TA7148	J.1.			L	imit Te	st		Sample Depth
Engineer	Arch Hend	erson IIP							10.80m Sample Number
									011
Employer		Harbour Board			CI	d: BS1377: F ause 4.3 and	Part 2: 1990: I 5		Sample Type C
Description	Brown sand	y gravelly CLAY. G	iravel is fine to coa	arse a	ngular.				Specimen Depth 10.80m
								S	pecimen Number
									3
27									
25									
25						1			
_ 23 -									
E 21 -									
Cone Penetration mm 15									
19 letr									
න 17 -									
				√					
15									
13									
2	20	24	28			32	3	6	40
			ľ	Moist	ure Content	t %			
Natural moistu	ure content:		8.19	% I	Percentage r	etained on 4	425µm sieve:		41%
Liquid limit:			319	% I	Preparation o				
Plastic limit: Plasticity index	v·		179 149		Remarks:				
Moisture cont		sing 425µm	149						
Liquidity index	:		-0.2	23					
100		CL		С		СН		CV	CE
80									
(%)									
60 (%									
Plasticity Index(%)									
40 sticit									
Plas									
20					\mathcal{A}	-			
0		ML	_	N	•	МН	T	MV	ME
	0 10) 20	30 4	0	50	60	70	80	90 100
				Li	quid Limit (%)			
Approved by:		Leeds Labo	oratory						
Sushil Sharda		_					11/2013		soil engineering
		Revision No.	2.07	I	ssue Date	19/11/2012		F	Part of the Bachy Soletanche Group

Project	Name	Bay of Nigg Hark Investigation	our Develop	ment Ground	Liqu	iid And Pl		Hole ID A31		
Project	No.	TA7148				Limit Tes	t	Sample Depth 15.76m		
Engine	er	Arch Henderson	LLP					Sample Number		
Employ	yer	Aberdeen Harbo	ur Board			hod: BS1377: Pa Clause 4.3 and		008 Sample Type C		
Descrip	otion	Brown sandy grave	elly CLAY. Grav	rel is medium to co				Specimen Depth 15.76m Specimen Number 2		
	²⁷ T									
	25									
_	23									
n mr	21									
tratio	19 -									
Cone Penetration mm										
Cone	17 +									
	15 +									
	13 		24	28		32	36	40		
				Mo	sture Conte	ent %				
Liquid li Plastic l Plasticit	imit: limit: ty index: re conter	e content: nt of soil passing 42	25µm	11% 31% 16% 15% 18% 0.12		e retained on 4. n of sample: W		36%		
	100 -	CL	-		CI	СН	СУ	CE		
	80 -									
Plasticity Index(%)	60 -									
Plasticity	40 -									
	20 -			A						
	0 -	M 10	20	30 40	MI 50	MH 60	70 80	Ī		
	`	, 10	20		50 Liquid Limit		70 80	, 50 100		
Approve	ed by:	L	eeds Laborat	cory						
Sushil S	Sharda						./2013	SOIL ENGINEERING		
		R	evision No.	2.07	Issue Date	19/11/2012		Part of the Bachy Soletanche Group		

Project Name Project No.	Bay of Nigg Ha Investigation TA7148	arbour Develop	ment Ground		d And Pla		Hole ID A34 Sample Depth
Engineer	Arch Henderso	on LLP					6.25m Sample Number
Employer	Aberdeen Harl	oour Board			d: BS1377: Pa ause 4.3 and !		Sample Type C
Description	Brown sandy gra	avelly CLAY. Grav	vel is medium to co				Specimen Depth 6.25m Specimen Number 2
27							
25 -							
23 + E E E 21 -							
Cone Penetration mm 12 -							
e 17 -				•			
ි 15 -			•				
13 +)	24	28		32	36	40
	•	21		sture Content		30	.0
Natural moistu	e content:		12%	Percentage r	etained on 42	5µm sieve:	36%
	nt of soil passing	յ 425μm	29% 16% 13% 18%	Preparation of Remarks:	of sample: We	t sieve	
Liquidity index:			0.17				
100		CL		CI	СН	CV	CE
80							
00 (%)							
Plasticity Index(%)							
20			A				
0	0 10	ML 20	30 40	MI 50	MH 60	70 80	<u> </u>
	. 10	20		50 Liquid Limit (9		,	, 30 100
Approved by:		Leeds Labora	tory				
Sushil Sharda		Revision No.	2.07	Priu Issue Date	nt date 28/11/ 19/11/2012	2013	SOIL ENGINEERING Part of the Bachy Soletanche Group

		Bay of Nigg H Investigation	arbour De	velopment G	iround		id And Pl Limit Tes		Hole ID A54	
Project	No.	TA7148					riiiii ies	•	Sample De 8.00m	pth
Engine	er	Arch Henders	on LLP						Sample Nur 015	nber
Employ	yer	Aberdeen Har	bour Boar	d			hod: BS1377: Pa Clause 4.3 and		Sample Ty C	
Descrip	otion	Brown gravelly	sandy CLA\	. Gravel is fine	e to coarse	subangular t	to subrounded		Specimen D 8.24m	epth
									Specimen Nu 2	ımber
	²⁷ T									\neg
	25									
٤	23								<u>, </u>	
on mr	21									
netrati	19									
Cone Penetration mm	17									
ŭ	15		•							
	13 -		32		34		36	38		40
	30		52					38		40
					Mois	ture Conte	nt %			
		e content:			11%		retained on 4			32%
Liquid li Plastic l					36% 19%	Preparation Remarks:	n of sample: W	et sieve		
	ty index:				17%					
		nt of soil passing	g 425µm		17%					
Liquidity	y index:				-0.14					
	100 -		CL				СН	C∜	CE	
	80 -		CL			-1	СП	CV	CE	
(9)	00 -									
hdex(9	60 -									
Plasticity Index(%)	40 -									
	20 -					1				-
	0 -		ML		•	ЛІ	МН	M	1	
	() 10	20	30	40 L	50 iquid Limit	60	70 80	90	100
			10-2-1	la quate						
Approve Stuart k	-		Leeds La	boratory						
Juan C	WI IV		Revision N	lo. 2.07		Issue Date	Print date 28/11 19/11/2012	1/2013	SOIL ENGIR	
										'

1	Name	Bay of Nigg H Investigation	arbour Devel	opment Grour	nd		uid And P		Hole ID A57		
Project	No.	TA7148					Limit Te	st		Sample Depth	
Enginee	or	Arch Henders	on II P						5	7.00m Sample Number	
									019		
Employe	er	Aberdeen Har	bour Board				hod: BS1377: F Clause 4.3 and	Sample Type D			
Descript	tion	Brown gravelly	y slightly sandy CLAY. Gravel is fine to coarse angular.						S	Specimen Depth	
									Sp	7.00m becimen Numbe	r
										1	
	27 -										
	25							<u> </u>			
_	23										
E	21										
ation	21										
Cone Penetration mm	19										
le Pe	17										
Con					4						
	15										
	13										
	20		24	2	32	:	36	40			
					Moi	sture Conte	ent %				
Natural r	moisture	e content:		1	0%	Percentage	e retained on	425µm sieve:		609	%
Liquid lin	mit:			3:	1%	Preparatio	n of sample: V				
Plastic lir					7%	Remarks:					
Diacticity				1.	/. 0/_						
Plasticity Moisture		nt of soil passing	g 425µm		4% 6%						
	e conter	nt of soil passing	g 425µm	2							
Moisture	e conter	nt of soil passino	g 425µm	2	6%						
Moisture	e conter	nt of soil passing		2	6% .68		СН		CV	■ CE	
Moisture	e conter index:	nt of soil passing	g 425μm CL	2	6% .68	CI	СН		CV	CE	
Moisture	e conter index:	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter index:	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter index:	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter vindex: 100 - 80 -	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter vindex: 100 - 80 -	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture	e conter vindex: 100 - 80 - 60 -	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter vindex: 100 - 80 - 60 -	nt of soil passing		2	6% .68	CI	СН		CV	CE	
Moisture Liquidity	e conter 100 - 80 - 60 - 40 -	nt of soil passing	CL	2	6%						
Moisture Liquidity	e conter r index: 100 - 80 - 60 - 40 - 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		CL	200	6%	MI	MH	70	MV	ME	
Moisture Liquidity	e conter r index: 100 - 80 - 60 - 40 - 20 - 60 - 60 - 60 - 60 - 60 - 60 - 6		CL	200	40	MI 50	MH 60	70		ME	000
Moisture Liquidity	e conter r index: 100 - 80 - 60 - 40 - 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		CL	200	40	MI	MH 60	70	MV	ME	00
Moisture Figure 7. Plasticity Index(%)	e conter r index: 100 - 80 - 60 - 40 - 60 - 60 - 60 - 60 - 60 - 6		CL ML 20	30	40	MI 50	MH 60	70	MV	ME	000
Moisture Liquidity	e conter rindex: 100 - 80 - 60 - 40 - 60 - 60 - 60 - 60 - 60 - 6		CL	30	40	MI 50	MH 60 t (%)	70	MV 80	ME	

Project N	ame	Bay of Nigg Investigatio		Developr	nent C	iround			And P			Hole ID A59		
Project N	0.	TA7148						Lir	nit Te	st		Sample Depth 7.50m		
Engineer		Arch Hende	rson LLP									Sample Number 020		
Employer		Aberdeen H	arbour Bo	ard			Tes		: BS1377: F use 4.3 and		Sample Type D			
Descriptio	on	Brown sandy	gravelly C	LAY.				Ciac	une			Specimen Depth 7.50m Specimen Number 1		
7	²⁷ T													
:	25													
<u>ہ</u> 2	23													
E G	21													
tratic	19													
Pene	17							•						
					•									
1	15 +													
:	13 ↓ 30	32							36		38	40		
		30 32 34 36 38 Moisture Content %												
Natural mo		e content:				7.7% 37%		-	ained on 4 sample: V	425µm sieve Vet sieve	e:	33%		
Plastic lim	it:					19%	Rema		ourripie. v	vet sieve				
Plasticity i		nt of soil pass	ina 425um	1		18% 12%								
Liquidity ir		ne or oon paoo	g 120µ11			-0.41								
:	100 -		CL				CI		СН		CV	CE		
	80 -													
(%)xe	60 -													
Plasticity Index(%)														
sticity	40 -													
Pla														
	20 -							1						
	0 -		ML				MI		МН		MV	ME		
		10	20	0	30	40		50	60	70	80	90 100		
							Liquid	Limit (%))					
Approved	bv:		Leeds	Laborato	ory									
Sushil Sha	-						Print date 28/11/2013					SOIL ENGINEERING		
			Revisio	n No.	2.07		Issue		.9/11/2012			Part of the Bachy Soletanche Group		

Project Name Bay of Nigg Harbour Development Ground **Liquid And Plastic** Hole ID A59 Investigation **Limit Test** Sample Depth TA7148 Project No. 26.60m Sample Number Engineer Arch Henderson LLP 028 Aberdeen Harbour Board Test Method: BS1377: Part 2: 1990: Sample Type Employer Clause 4.3 and 5 C Specimen Depth Description Brown sandy gravelly CLAY. Gravel is medium to coarse subangular. 26.60m Specimen Number 27 25 23 Cone Penetration mm 21 19 17 15 13 20 24 28 32 36 40 Moisture Content % Natural moisture content: 5.8% Percentage retained on 425µm sieve: 38% Liquid limit: 30% Preparation of sample: Wet sieve Plastic limit: Remarks: Plasticity index: Moisture content of soil passing 425µm 9.4% Liquidity index: 100 CL CE CI СН C۷ 80 Plasticity Index(%) 60 40 20 ML MI MΗ ΜV ME 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (%) Approved by: Leeds Laboratory Sushil Sharda SOIL ENGINEERING Print date 28/11/2013 2.07 19/11/2012 Part of the Bachy Soletanche Group Revision No. Issue Date

Project N	Vame	Bay of Nigg H Investigation		opment Ground	Li	quid And Pl		Hole ID A63		
Project N	No.	TA7148				Limit Tes	t	Sample Depth		
Engineer	r	Arch Henders	son LLP					6.50m Sample Numbe	r	
							. 0 4000	022		
Employe	er	Aberdeen Hai	rbour Board		l est l	Method: BS1377: Pa Clause 4.3 and		Sample Type D		
Description	ion	Brown sandy s	lightly gravelly	CLAY.	<u> </u>			Specimen Deptl 6.50m	h	
								Specimen Numb	er	
								1		
	27 —									
	25									
Ē	23									
no m	21				• .					
trati	19									
Pene					/					
Cone Penetration mm	17									
	15			V						
	13									
	20		24	28		32	36	40)	
				N	Noisture Co	ontent %				
Natural m	noisture	e content:		12%	Percen	tage retained on 4	25um sieve:	34	4%	
Liquid lim	nit:			30%	Prepara	ation of sample: W			.,,	
Plastic lim Plasticity				17% 13%		(S:				
Moisture	conter	nt of soil passin	g 425µm	18%	b					
Liquidity i	index:			0.06	i					
	100 -		CL		CI	СН	CV	CE	7	
	00									
	80 -									
(%)×										
<u> </u>	60 -									
<u> </u>	60 -									
icity Inc	60 -									
Plasticity Index(%)										
Plasticity Inc										
Plasticity Inc	40 -									
Plasticity Inc	40 -		ML		MI	MH	M	•		
Plasticity Inc	40 -	0 10	ML 20	30 4) 50	0 60	70 80	†	100	
Plasticity Inc	40 -) 10	1	30 4	•	0 60	Ť	†	100	
	40 - 20 - 0 -) 10	20) 50	0 60	Ť	†	100	
Approved Susshicity Ind	40 - 20 - 0 - 0) 10	1) 50	0 60 imit (%)	Ť	†		

Project Name	Investigation	arbour Devel	opment Grou	und	Liq	uid And P Limit Tes		Hole ID B61	
Project No.	TA7148					LIMIT 169	ST	Sample Depth 30.30m	
Engineer	Arch Henders	on LLP						Sample Number 021	
Employer	Aberdeen Harl	bour Board			Test Me	ethod: BS1377: F Clause 4.3 and	Sample Type C		
Description	Brown gravelly	slightly sandy	CLAY. Gravel i	s fine to	coarse an	gular.		Specimen Depth 30.30m Specimen Number 3	
25									
23 +							•		
E E c 21 +									
ation			/						
e netr									
Cone Penetration mm 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1									
රි 15 +	•								
13									
30)	32		34		36	38	40	
				Mois	sture Cont	ent %			
Natural moistur	e content:		.	7.2%	Percentag	ge retained on 4	425µm sieve:	38%	
Liquid limit: Plastic limit: Plasticity index: Moisture conter Liquidity index:		յ 425µm		34% 20% 14% 12% -0.60		on of sample: W			
1									
100 -		CL			CI	СН	С	V CE	
80 -									
- 00 mgex(%)									
Plasticity Index(%)									
20 -			4		1				
0 -		ML		-	ΜI	МН	1	IV ME	
	0 10	20	30	40 L	50 iquid Lim	60 it (%)	70 8	30 90 100	
Approved by:		Leeds Labo	ratory						
Sushil Sharda		Revision No.	2.07		Issue Date	Print date 28/1	SOIL ENGINEERING		
		vension ino.	2.01		issue Date	13/11/2012		Part of the Bachy Soletanche Group	

Project N	lame	Bay of Nigg F Investigation		opment Grour	ıd		nd Plastic		Hole ID C81	
Project N	lo.	TA7148				Limi	t Test		Sample Depth 4.40m	
Engineer		Arch Henders	son LLP						Sample Number	
Employe	r	Aberdeen Ha	rbour Board			Test Method: BS Clause	0:	Sample Type C		
Descripti	on	Brown gravelly	slightly sandy	CLAY. Gravel is	ine to co	arse angular.			Specimen Depth 4.40m	
									Specimen Number	
									1	
	²⁷ T									
	25						_			
	23						,			
ш										
tion	21 +									
Cone Penetration mm	19					/				
e Per	17									
				*/						
	15 +									
	13 20	1	24	2	•	32	<u> </u>	36	40	
	20		24	2				30	40	
					Moisti	re Content %				
		e content:					ed on 425µm sie	eve:	40%	
Liquid lim Plastic lim						eparation or sar emarks:	mple: Wet sieve			
Plasticity		nt of soil passin	00 (2Eum		3% 6%					
Liquidity i		it of soil passiii	ig 423μπ		.09					
	100 -		CL		CI	С	н Т	CV	CE	
	80 -									
(%)										
Plasticity Index(%)	60 -									
city I	40 -									
Plasti	40 -									
ш.	20 -					_				
					+					
	0 -		ML		MI	Ť	1H	MV	ME	
	(0 10	20	30	40		50 70	80	90 100	
					Liq	uid Limit (%)				
Λ · · ·	1 1		l oodo Laka	raton:				Г		
Approved	-		Leeds Labo	ratory		Print date	28/11/2013		soil engineering	

		Bay of Nigg H Investigation	arbour [Developmen	t Ground	Liqu	uid And Pla		Hole ID C83		
Project	: No.	TA7148					LIIIII Iesi	•	Sample Dep 2.75m	oth	
Engine	er	Arch Henders	on LLP						Sample Num 008	ber	
Employ	yer	Aberdeen Har	bour Bo	ard		Test Me	thod: BS1377: Pa Clause 4.3 and !		Sample Type C		
Descrip	otion	Reddish brown	gravelly	slightly sandy	CLAY. Gravel	is fine to co			Specimen De 2.75m	epth	
									Specimen Nu	mber	
	27 _		ı		T			1		_	
	25										
	23										
nm r	21										
tration	19					•					
Cone Penetration mm	17										
Cone	15					•					
	13 20)	24		28		32		 40		
Liquid li Plastic l Plasticit	imit: limit: ty index: re conter	e content: nt of soil passino	ց 425µm		12% 32% 15% 17% 22% 0.38		e retained on 42 n of sample: We			44%	
Elquidity	у шаск.				0.50	1					
	100 -		CL			CI	СН	CV	CE		
	80 -										
udex(%)	60 -										
Plasticity Index(%)	40 -										
	20 -			4							
	0 -	0 10	ML 20	30	40	MI 50	MH 60	70 80	•	100	
	·	. 10	20	30		Jo Liquid Limi		, , , , ,	. 30	100	
Approve Sushil S			Leeds	Laboratory			Print date 28/11.	SOIL ENGINEERING			
			Revision	n No. 2.0	7	Issue Date	19/11/2012		Part of the Bachy Soletanche Grou		

	Bay of Nigg Ha	arbour Develo	pment Ground	Lic	uid And P Limit Tes		Hole ID C84	
Project No.	TA7148				Limit 169	S L	Sample Depth 5.50m	
Engineer	Arch Henderso	on LLP					Sample Number 007	
Employer	Aberdeen Hark	our Board		Test M	ethod: BS1377: P Clause 4.3 and		Sample Type C	
Description	Brown gravelly s	andy CLAY. Gra	avel is fine to coa	rse angular			Specimen Depth 5.50m Specimen Number 2	
27 _T								
25 -					•			
23 +								
E 21								
ation 21 -								
19 -								
Cone Penetration mm 12 -	•/							
ت 15 -								
13 -								
30)	32	34		36	38	40	
			N	loisture Cor	ntent %			
Natural moistu	e content:		9.4%		nge retained on 4		46%	
Liquid limit: Plastic limit:			33% 17%		ion of sample: W ::	let sieve		
Plasticity index:		/2 5.	16%					
Moisture conte Liquidity index:	nt of soil passing	425µm	17% 0.01					
				-				
100		CL		CI	СН	CV	CE	
80								
(%)×60								
Plasticity Index(%)								
sticity 40								
20			A					
0		ML		МІ	МН	M\	/ ME	
	0 10	20	30 40	50	60	70 80	90 100	
				Liquid Lin	nit (%)			
Approved by:		Leeds Labor	atorv					
Stuart Kirk					Print date 28/1	11/2013	SOIL ENGINEERING	
		Revision No.	2.07	Issue Date		22, 2010	Part of the Bachy Soletanche Group	

Project Name	Bay of Nigg H Investigation		opment Ground	I		id And P			Hole ID C84		
Project No.	TA7148				L	imit Te	st		Sample Depth		
Engineer	Arch Henders	son LLP							7.10m Sample Number		
					-		D . 0 4006		008		
Employer	Aberdeen Har	bour Board		Test Method: BS1377: Part 2: 1990: Clause 4.3 and 5					Sample Type C		
Description	Brown slightly	sandy slightly g	ravelly CLAY.						Specimen Depth 7.10m	l	
									Specimen Numbe	er	
									2		
27 _											
25											
돌 23 +											
E 21											
stratic +					/ *						
Pene			•]		
Cone Penetration mm 17 -											
15											
13											
20)	24	28			32		36	40		
Natural moistur			10.0	00/ Ir			/25 sia:		320	0/	
Liquid limit:	e content:		30%			retained on of sample: V		/e:	32	70	
Plastic limit:				15% Remarks:							
Plasticity index: Moisture conte		a 425um	15% 15%								
Liquidity index:			-0.0								
100		CL		CI		СН		CV	CE	1	
80										-	
(%)											
))x 60										1	
Plasticity Index(%)											
astici											
20			A								
0 -		ML		М	II _	МН		MV	ME		
	0 10	20	30 4	0	50	60	70	80	90 1	00	
				Lic	quid Limit ((%)					
Approved by:		Leeds Labor	 ratorv	$\overline{}$							
				$\perp \perp$					soil engineering		
Sushil Sharda						rint date 28/	/11/2013		SOIL ADGIDAGE		

	Bay of Nigg H Investigation	arbour Develo	opment Grou	ınd	Liq	uid And P		Hole ID C88	
Project No.	TA7148					LIMIT 165	ST.	Sample Depth 4.30m	
Engineer	Arch Henders	on LLP						Sample Number 006	
Employer	Aberdeen Har	bour Board			Test Me	thod: BS1377: P Clause 4.3 and	Sample Type C		
Description	Brown sandy gr	ravelly CLAY. Gr	ravel is mediur	n to co	arse suban			Specimen Depth 4.30m Specimen Number 1	
27									
25 -						•			
23 E									
E 21 +									
Cone Penetration mm 12 -									
e 17 -					/*				
15 -									
13 - 20	<u> </u>	24		28		32	36	40	
20	J	24					30	40	
				Moi	sture Cont	ent %			
Natural moistu	e content:			3.9% 30%		e retained on 4		35%	
Liquid limit: Plastic limit:				18%	Remarks:	on of sample: W	ret sieve		
Plasticity index:	nt of soil passing	. 425um		12% 14%					
Liquidity index:	nt or son passing	g 423μπ		0.36					
100		CL			CI	СН	C	V CE	
80									
(%)×3 60									
Inde									
Plasticity Index(%)					-				
20					\rightarrow				
		ML			MI	MH		1V ME	
0	0 10	20	30	40	50	60	Ť	30 90 100	
					Liquid Lim				
Approved by:		Leeds Labor	ratory						
Sushil Sharda		LOCAS LADOI	acory		Print date 28/11/2013			SOIL ENGINEERING	
		Revision No.	2.07		Issue Date	Print date 28/1 19/11/2012	1/2013	Part of the Bachy Soletanche Gro	

Project Project		Bay of Nigg H Investigation TA7148	arbour Develo	opment Gro	und	Liqu	ıid And F Limit Te		Sa	Hole ID D100 Sample Depth		
Engine		Arch Henders	on LLP						1.50m Sample Number			
Employ	yer	Aberdeen Har	bour Board			Test Method: BS1377: Part 2: 1990:				006 ample Type)	
Descrip	otion	Brown SAND.					Clause 4.4 an	d 5 _	-	B ecimen Dep 1.50m eimen Num 1		
	27 _T										1	
	25										_	
_	23											
n mn	21											
etratic	19						•				_	
Cone Penetration mm	17											
Cor	15										-	
	13											
	20)	22		24		26	2	8	\$	30	
Liquid li Plastic l Plasticit	imit: limit: ty index:	re content:	g 425μm		24% 26% NP NP NP 24%	Preparatio	n of sample: I Tested as 1 ր	etained on 425µ Natural point Limit Liqu nd it is very diffi	id due to tl	ne sample b		
	y index:											
	100		CL		(CI	СН		CV	CE		
	80											
ndex(%)	60											
Plasticity Index(%)	40									1		
Ē	20											
	0 -	0 10	ML	30	40	МI 50	MH	70	MV	ME	100	
	'	0 10	20	30		50 Liquid Limit	60 t (%)	10	80	90	100	
Approve Sushil S	-		Leeds Labor	ratory						soil engineering		
			Revision No.	2.07		Issue Date	Print date 28 19/11/2012	/11/2013		f the Bachy Solet		

	e Bay of Nigg Investigation		opment Groun	ıd		id And P Limit Tes			Hole ID E65	
Project No. Engineer	TA7148 Arch Hender	son LLP				Lilling 163	_		ple Depth 9.80m ole Number	
Employer	Aberdeen Ha					nod: BS1377: P Clause 4.3 and			nple Type C	
Description	Brown gravell	y slightly sandy	CLAY. Gravel is f	fine to			_	-	men Depth 9.80m nen Number 1	
27 25										
23							•			
Cone Penetration mm 12										
stration 19										
e Bene 17										
9 0 15				1						
13										
	20	24	2	8		32	30	6	40	
				Mois	ture Conte	nt %				
Natural moist	ure content:		9.0	6%	Percentage	retained on 4	i25µm sieve:		45%	
Liquid limit: Plastic limit: Plasticity inde Moisture con Liquidity inde	tent of soil passi	ng 425µm	19 12 18		Preparatior Remarks:	n of sample: W	let sieve			
	···									
100		CL		С	l	СН	(CV	CE	
80	-									
Index(%)										
Plasticity Index(%)										
20					1					
C		ML		N N	Ť	МН	1	ИV	ME	
	0 10	20	30	40 Li	50 quid Limit	60 (%)	70	80 9	90 100	
Approved by:		Leeds Labo	ratory							
Sushil Sharda		Leeus Labo	. acory		Print date 28/11/2013				SOIL ENGINEERING	
		Revision No.	2.07		ssue Date	19/11/2012		Part of th	e Bachy Soletanche Group	

Project Name	e Bay of Nigg Ha Investigation TA7148	arbour Develop	ment Ground	Liquid And F Limit Te		Hole ID E66 Sample Depth
Engineer	Arch Henders	on LLP				12.80m Sample Number
Employer	Aberdeen Harl	bour Board		Test Method: BS1377: Clause 4.3 an	Sample Type C	
Description	Brown gravelly	slightly sandy CL	AY. Gravel is fine to			Specimen Depth 12.80m Specimen Number 2
27 · 25 ·						
23						
Cone Penetration mm 17				y /		
enetratii 61						
			•			
15						
	20	24	28	32	36	40
			Moi	sture Content %		
Natural moistu Liquid limit: Plastic limit: Plasticity index Moisture contu Liquidity index	c ent of soil passing	յ 425µm	11% 31% 16% 15% 20% 0.28	Percentage retained on Preparation of sample: \ Remarks:	•	45%
100		CL		СІ СН	CV	CE
80						
60 (%)						
Plasticity Index(%) 09 09						
20			A			
0	0 10	ML 20	30 40	MI MH 50 60	70 80	•
				Liquid Limit (%)		200
Approved by: Sushil Sharda		Leeds Laborat	ory	Print date 28.	/11/2013	SOIL ENGINEERING
		Revision No.	2.07	Issue Date 19/11/2012		Part of the Bachy Soletanche Group

Project Nam	Bay of Nigg Investigation		pment Ground	Lic	quid And P		Hole ID E69		
Project No.	TA7148				Limit Tes	st	Sample Depth		
Engineer	Arch Hender	son LLP					8.80m Sample Number		
Employer	Aberdeen Ha	arbour Board		Test M	lethod: BS1377: P Clause 4.3 and		Sample Type C		
Description	Brown gravell	y slightly sandy C	LAY. Gravel is fine	to coarse a	ngular.		Specimen Depth 8.80m		
							Specimen Number		
							1		
27	1								
25									
25							<u> </u>		
23 E									
E 21									
stratic 19									
Pene					•				
- 9 17									
15									
13									
	20	22	24		26	28	30		
				oisture Cor					
Natural moisto Liquid limit:	ıre content:		8.0% 27%		age retained on 4 ion of sample: W		40%		
Plastic limit:			20%	Remarks		ret sieve			
Plasticity inde	र: ent of soil passiı	na 425um	7% 13%						
Liquidity index		ig 423μm	-0.96	i					
100	T	CL		CI	СН	CV	/ CE		
		CL		Ci	Cili				
80									
(%									
5) (xep) 60									
ity In									
Plasticity Index(%) 09				-+					
20									
_		ML '		MI	МН	М	V ME		
0	0 10	20	30 40	•	1	70 8	1		
				Liquid Lir	mit (%)				
Approved by:		Leeds Labor	atory						
Approved by: Sushil Sharda		Leeds Labor	atory		Print date 28/1	11/2013	SOIL ENGINEERING		

	Bay of Nigg Ha	arbour Develo	pment Ground	Liq	uid And Pl Limit Tes		Hole ID E71 Sample Depth		
Project No. Engineer	TA7148 Arch Henderso	on LLP			<u> </u>	_	10.30m Sample Number		
Employer	Aberdeen Hark	oour Board		Test Mo	ethod: BS1377: Pa Clause 4.3 and	Sample Type C			
Description	Brown gravelly s	slightly sandy C	LAY. Gravel is fine	e to coarse an			Specimen Depth 10.30m Specimen Number 1		
27									
25 +					,				
E 23 + E 25 + E 21 + E									
Cone Penetration mm 17 -									
ei 9 17 +			•						
15 -									
13 20)	24	28		32	36	40		
			N	oisture Con	tent %				
Natural moistur	e content:		10%		ge retained on 42	•	44%		
Liquid limit: Plastic limit:			31% 17%		on of sample: W	et sieve			
Plasticity index:			14%						
Moisture conte	nt of soil passing	425µm	19% 0.11						
100 -		CL		CI	СН	CV	CE		
80 -									
60 - 60 -									
Plasticity Index(%)									
<u>급</u> 20 -									
0 -		ML		MI	МН	M	•		
	0 10	20	30 40	50 Liquid Lim	60 nit (%)	70 80	90 100		
Approved by:		Leeds Labora	atory						
Sushil Sharda		Revision No.	2.07	Issue Date	Print date 28/11 19/11/2012	1/2013	SOIL ENGINEERING		
		REVISION NO.	2.01	issue Date	13/11/2012		Part of the Bachy Soletanche Group		

Project N	Vame	Bay of Nigg Investigation	Harbour Devel	opment Grour	nd	Liqu	iid And P			Hole ID GS11		
Project N	Vo.	TA7148					Limit Tes	st		Sample Depth 6.80m		
Engineer	r	Arch Hender	son LLP						Sample Number			
Employe	er	Aberdeen Ha	rbour Board				hod: BS1377: F Clause 4.3 and		Sample Type C			
Descripti	ion	Brown sandy (gravelly CLAY. G	ravel is medium	n to coa	rse subang	ular.			Specimen Depth 6.80m		
										Specimen Number		
										1		
	²⁷ T											
	25											
	23							^				
E E												
tion	21 +											
Cone Penetration mm	19					•/						
ne Pe	17											
	15				•							
	13 ↓ 40		44	4	 		52		56	60		
					Mois	ture Conte	ent %					
Natural m Liquid lim		e content:					e retained on 4 n of sample: W			37%		
Plastic lin	nit:			2	1%	Remarks:						
Plasticity Moisture		nt of soil passin	na 425um		1% 3%							
Liquidity i		'			0.27							
	100 -		CL		С	:1	СН		CV	CE		
	80 -											
(%)>	60 -											
Plasticity Index(%)	00 -											
ticity	40 -											
Plast												
	20 -					\nearrow						
			N.A.I	_	1.		B. 41.		D 63.6			
	0 -) 10	ML 20	30	40	/II	MH 60	70	MV 80	90 100		
	(, 10	20	30		50 iquid Limi		10	٥ U	90 100		
					L	iquiu LIIIII	. (/0)					
Approved	d bv:		Leeds Labo	ratory					T			
Sushil Sh	-			•	Print date 28/11/2013				soil engineering			
Justin Jii								LLI CULLI				

		Investigation						iquid A				Hole ID TP01	
Project No.		TA7148					Limit Test					Sample Depth 0.50m	
Engineer		Arch Hender	son LLP									Sample Number 003	
Employer		Aberdeen Ha	rbour Bo	ard			Test	Method: B	S1377: Pa e 4.3 and			Sample Type B	
Description		Brown sandy o	gravelly CL	AY.								Specimen Depth 0.50m Specimen Number 1	
27	' т												
25	5												
<u> </u>	3 +												
Cone Penetration mm	ı									•			
netrati	}							•					
eu 17	,						/						
රි 15	5												
13									_				
	30		32			34		30	6		38	40	
						Mo	isture C	ontent %					
Natural mois Liquid limit:		e content:				9.4% 36%		ated percer ration of sa		ained on 4	25µm si	eve: 51%	
Plastic limit:						21%	Remai		iitipie.				
Plasticity ind						15%							
Moisture co Liquidity ind		it of soil passir	ig 425μm			19% -0.13							
10	00 -		CL				CI		СН		CV	CE	
8	30 -												
(%)													
lndex(50 -												
Plasticity Index(%)	40 -												
2	20 -												
	0 -		ML				МІ	Ť	ИΗ		MV	ME	
	() 10	20)	30	40		50 Limit (%)	60	70	80	90 100	
							T					-	
Approved by	-		Leeds	Laborate	ory								
Sushil Shard	ıa		Revisio	n No	2.07		Issue D	Print date	28/11 11/2012	1/2013		SOIL ENGINEERING Part of the Bachy Soletanche Grou	
			1/6/12/01	II INU.	2.01		เออนซ D	uic 13/	11/2012			i art or the bachy soletalithe Grou	

Project	t Name	Bay of Nigg Hai	rbour Develop	ment Ground		id And Pla		Hole ID TP03		
Project	t No.	TA7148				Limit Test		Sample Depth 1.50m		
Engine	er	Arch Henderson	n LLP					Sample Number		
Employ	yer	Aberdeen Harbo	our Board			nod: BS1377: Par Clause 4.3 and 5		005 Sample Type B		
Descrip	otion	Brown slightly sa	ndy gravelly CLA	AY.				Specimen Depth 1.50m Specimen Number 1		
	²⁷ T									
	25									
_	23					/				
um u	21				/•					
etratio	19									
Cone Penetration mm	17			"						
Con	15			•						
	13									
	20		24	28		32	36	40		
				Mois	sture Conte	nt %				
Liquid li Plastic l Plasticit	imit: limit: ty index: re conter	e content: nt of soil passing 4	425μm	14% 30% 18% 12% 22% 0.30		retained on 42! of sample: Wet		37%		
	100 -	C	CL		CI	СН	CV	CE		
	80 -									
Plasticity Index(%)	60 -									
Plasticity	40 -									
	20 -				_					
	0 -) 10	ИL 20	30 40	MI 50	MH 60	70 80	90 100		
	·	10			iquid Limit.			23 100		
Approv			Leeds Laborat	ory						
Sushil S	Sharda		Dovision N-	2.07		Print date 28/11/2	2013	SOIL ENGINEERING		
			Revision No.	2.07	Issue Date	19/11/2012		Part of the Bachy Soletanche Group		

		Bay of Nigg Ha Investigation TA7148	arbour Develo	opment Gi	round	Liqu	uid And Pl Limit Tes		Hole ID TP05 Sample Depth		
Project Enginee		Arch Henderso	on LLP						1.50m Sample Number		
Employ		Aberdeen Harl					hod: BS1377: Pa Clause 4.4 and		005 Sample Type B		
Descript	tion	Grey mottled br	own slightly sa	andy gravel	ly CLAY. G				Specimen Depth 1.50m Specimen Number 1		
	²⁷ T										
	25							•			
E E	23										
ration	21										
Cone Penetration mm	19 17 			<i>></i>							
Cone	15		•								
	13										
	20	1	22		24	Ct	26	28	30		
Natural r	moistur	e content:			12%	ture Conte	ent % e retained on 4	25μm sieve:	44%		
Liquid lir Plastic li Plasticity Moisture Liquidity	mit: y index: e conter	nt of soil passing	յ 425μm		26% 14% 12% 22% 0.67	_	n of sample: W	•			
qu.u.s					0.0.						
	100 -		CL		(Cl	СН	CV	CE		
	80 -										
(%)xəpu	60 -										
Plasticity Index(%)	40 -										
<u> </u>	20 -					1					
	0 -		ML 30			MI FO	МН	M)	•	<u> </u>	
		0 10	20	30	40 L	50 iquid Limi	60 t (%)	70 80	90 100	J	
Approve Sushil SI	-		Leeds Labor	ratory			Print date 28/1	1/2013	SOIL ENGINEERII	ng	
			Revision No.	2.07		Issue Date	19/11/2012		Part of the Bachy Soletanche		

Project Name	Bay of Nigg Ha	arbour Develo	pment Ground	Liquid And Pl		Hole ID TP09		
Project No.	TA7148			Limit Tes	t	Sample Depth		
Engineer	Arch Henders	on II P				2.50m Sample Number		
	Alciillelluels	JII LLI				800		
Employer	Aberdeen Harl	bour Board		Test Method: BS1377: Pa Clause 4.3 and	Sample Type D			
Description	Brown slightly o	gravelly slightly o	clayey SAND.	Clause 4.5 allu	Specimen Depth			
						2.50m Specimen Number		
						Specimen Number 1		
27 -								
25 -								
				7				
23 - E								
⊆ 21 -								
stratic 19 -								
enet				<i>/</i> *				
Cone Penetration mm 12 - 11				/				
රි 15 -			- ✓					
15								
13 -	0	1.	10	22	20			
1	0	14	18	22	26	30		
			Moi	sture Content %				
Natural moistu	re content:		15%	Percentage retained on 4	25um sieve:	34%		
Liquid limit:			20%	Preparation of sample: W				
Plastic limit:			NP NP	Remarks:				
Plasticity index Moisture conte	: ent of soil passing	յ 425μm	23%					
Liquidity index:		, , 						
100		CL		CI CIII	CV	CF		
		CL		СІ СН	CV	CE		
80								
Plasticity Index(%) 6 0								
Inde								
icity 40								
lasti								
20								
_		ML	1	мі мн	MV	, ME		
0	0 10	20	30 40	50 60	70 80	1		
	_ 10	20				100		
				Liquid Limit (%)				
				1		т-		
Approved by:		Leeds Labora	atory					
Sushil Sharda					1/2013	SOIL ENGINEERING		
		Revision No.	2.07	Issue Date 19/11/2012		Part of the Bachy Soletanche Group		

Project Name	Bay of Nigg H Investigation	arbour Develo	opment Gro	und	Liq	uid And P		Hole ID TP11		
Project No.	TA7148					Limit Tes	ST	Sample Depth 2.80m		
Engineer	Arch Henders	on LLP						Sample Number 007		
Employer	Aberdeen Har	bour Board			Test Me	thod: BS1377: P Clause 4.3 and		Sa	imple Type B	
Description	Brown slightly s	sandy gravelly (CLAY. Gravel i	s fine to	o coarse ang			-	cimen Depth 2.80m imen Number 1	
27										
25										
23 +										
Cone Penetration mm 17 -										
stratio					<u>/</u>					
Pene										
15 +			•							
13 1	<u> </u>	24		28		32		86	40	
20	,	4 4			- 		3	,,	4∪	
					sture Cont					
Natural moisture Liquid limit:	e content:			5.9% 29%	_	ge retained on 4 on of sample: W			44%	
Plastic limit:				19%	Remarks:					
Plasticity index: Moisture conter		g 425µm		10% 11%						
Liquidity index:				-0.84						
100										
100 -		CL			CI	СН		CV	CE	
80 -										
(%										
%) 60 -										
Plasticity Index(%)										
<u>e</u> 20 -										
20 -				_						
0 -		ML		1	MI	МН	7	MV	ME	
	0 10	20	30	40 I	50 Liquid Limi	60 it (%)	70	80	90 100	
		11-2-2						Т	48*	
Approved by: Sushil Sharda		Leeds Labor	ratory							
Justill Stidlud					Print date 28/11/2013 SOIL ENGINEER Issue Date 19/11/2012 Part of the Bachy Soletanch				i engineeping	

Project Nar		f Nigg Ha tigation	rbour Deve	elopment G	round	Liq	uid And P		Hole ID TP13		
Project No.							Limit Te	st		Sample Depth 3.50m	
Engineer	Arch	Henderso	n LLP							Sample Number 008	
Employer	Abero	deen Harb	our Board			Test M	ethod: BS1377: Clause 4.3 an			Sample Type D	
Description	Brown	n sandy gra	velly CLAY.			<u> </u>	2.2.200 1.0 dil	- •		Specimen Depth	
27 25 23 24 21 25 26 27 27 27 28 20 21 21 21 21 21 21 21 21 21 21 21 21 21	sture conte	ent:	22		24 Moi 7.0% 27% 15% 12% 11% -0.32		ge retained on ion of sample: \	•	28	3.50m Specimen Number 1	
4.0											
10			CL			CI	СН		CV	CE	
8	80					-					
Index(%)	50					-					
Plasticity Index(%)	60										
2	20			A		1					
	0		VIL 20		-	МІ	МН	70	MV	ME 100	
	0	10	20	30	40	50 Liquid Lin	60 nit (%)	70	80	90 100	
A m. m. co			l oods Lat	oratoni					Т		
Approved by	y:		Leeds Lab	oratory		Print date 28/11/2013				SOIL ENGINEERING	
Sushil Shard	da						Daine des	/11 /2012		SOIL EDGIDEEDIDG	

		Bay of Nigg H Investigation	arbour Devel	opment G	uid And Pl Limit Tes		Hole ID TP17				
Project	t No.	TA7148					FIIII 162	•	Sample De 1.20m		
Engine	er	Arch Henders	on LLP						Sample Number 003		
Employ	yer	Aberdeen Har	bour Board			Test Met	hod: BS1377: Pa Clause 4.4 and		Sample Type D		
Descrip	otion	Brown slightly o	clayey SAND.						Specimen De 1.20m	epth	
									Specimen Nu	mber	
									1		
	²⁷ T										
	25										
_	23										
שש ר	21										
tratior	19		•								
Cone Penetration mm											
Cone	17 +										
	15 +										
	13 20		22		24		26	28		 30	
					Mois	ture Conte	ent %				
		e content:			25%			ained on 425µm	sieve:	0%	
Liquid li					22%	-	n of sample: Na				
Plastic I	limit: ty index:				NP NP	Remarks:			due to the sample It to get all four p		
		nt of soil passing	g 425µm		25%		line.	it is very difficu	it to get all lour p	onits on a	
Liquidity											
	100 -		CL			CI	СН	CV	CE		
	80 -										
(%)xə	60 -										
ty Ind											
Plasticity Index(%)	40 -										
<u>.</u>	20 -					\nearrow					
			ML			ΜI	МН	M	/ ME		
	0 -) 10	20	30	40	50	60	70 80	Ť	100	
						iquid Limi					
Approve	ed by:		Leeds Labo	ratory							
Sushil S	-			-			Print date 28/11	./2013	soil engir	eering	
			Revision No.	2.07		Issue Date	19/11/2012		Part of the Bachy So		

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		D101
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
ŭ			004
Employer	Aberdeen Harbour Board	PC 1277, Part 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND.		Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

 Silt and clay:
 8

 Sand:
 80

 Gravel:
 12

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		99
		6.3		98
125.0	100	5.0		96
90.0	100	3.35		93
75.0	100	2.00		88
63.0	100	1.18		81
50.0	100	0.600		67
37.5	100	0.425		57
28.0	100	0.300		48
20.0	100	0.212		31
		0.150		20
		0.063		8

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	Distribution	D101
Project No.	TA7148	Distribution	Sample Depth
			3.50m
Engineer	Arch Henderson LLP		Sample Number
			008
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		BS 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND. Gravel is medium to	coarse subrounded.	Specimen Depth
			3.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 6
Sand: 71
Gravel: 24
Cobbles: 0

T	
C	remarks
ICaenera I	ı remarks

	WET SIEVE DATA					
Sieve size mm	Cumulative	Sieve size mm	Cumulative			
	% passing		% passing			
		14.0	95			
		10.0	90			
		6.3	85			
125.0	100	5.0	82			
90.0	100	3.35	79			
75.0	100	2.00	76			
63.0	100	1.18	74			
50.0	100	0.600	64			
37.5	100	0.425	56			
28.0	100	0.300	46			
20.0	97	0.212	18			
		0.150	10			
		0.063	6			

Approved by:	Leeds Laboratory				
Sushil Sharda				Print date	28/11/2013
	Revision No. 3.03	I	Issue Date	19/11/20	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID L01
Project No.	Investigation TA7148	Distribution	Sample Depth 0.50m
Engineer	Arch Henderson LLP		Sample Number 001
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown SAND with occasional gravel.		Specimen Depth 0.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 85

 Gravel:
 8

 Cobbles:
 0

General remarks

	WET SIEVE DATA					
Sieve size mm	Cumulative	Sieve size mm	Cumulative			
	% passing		% passing			
		14.0	100			
		10.0	99			
		6.3	97			
125.0	100	5.0	97			
90.0	100	3.35	96			
75.0	100	2.00	92			
63.0	100	1.18	86			
50.0	100	0.600	68			
37.5	100	0.425	54			
28.0	100	0.300	38			
20.0	100	0.212	27			
		0.150	18			
		0.063	7			

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		L01
Project No.	TA7148	Distribution	Sample Depth
			2.50m
Engineer	Arch Henderson LLP		Sample Number
			005
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
] ' '		BS 1377. Part 2. 1990. 9.2	В
Description	Brown gravelly SAND. Gravel is medium to coarse s	ubrounded with cobbles.	Specimen Depth
			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

14

Silt and clay: 4 Sand: 52 Gravel: 30 Cobbles:

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	74
		10.0	72
		6.3	70
125.0	100	5.0	69
90.0	87	3.35	64
75.0	87	2.00	56
63.0	87	1.18	43
50.0	82	0.600	25
37.5	77	0.425	18
28.0	77	0.300	13
20.0	75	0.212	10
		0.150	8
		0.063	4

Leeds Laboratory Approved by: Sushil Sharda Print date 28/11/2013 Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A05
Project No.	TA7148	Distribution	Sample Depth
			1.40m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	DC 1277, Dow+ 2, 1000, 0.2. 0.E	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Brown slightly clayey slightly gravelly SAND. Gravel	is fine to medium.	Specimen Depth
			1.40m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 9

 Silt:
 18

 Sand:
 43

 Gravel:
 30

 Cobbles:
 0

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	89	diameter mm	
		10.0	85	0.0501	26
		6.3	79	0.0255	22
125.0	100	5.0	76	0.0183	19
90.0	100	3.35	73	0.0083	15
75.0	100	2.00	70	0.0041	13
63.0	100	1.18	66	0.0028	11
50.0	100	0.600	59	0.0015	8
37.5	100	0.425	54		
28.0	100	0.300	50		
20.0	100	0.212	42		
		0.150	37		
		0.063	27		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	ct Name Bay of Nigg Harbour Development Ground Particle Size		Hole ID
	Investigation		A05
Project No.	TA7148	Distribution	Sample Depth
			5.98m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is medium to coa	arse subangular.	Specimen Depth
-			5.98m
			Specimen No.
			3

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 12

 Silt:
 19

 Sand:
 38

 Gravel:
 31

 Cobbles:
 0

General remarks

	WET SIEV		SEDIMENTAT	ION DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	78	0.0484	30
		6.3	75	0.0248	25
125.0	100	5.0	74	0.0177	23
90.0	100	3.35	72	0.0081	18
75.0	100	2.00	69	0.0054	17
63.0	100	1.18	64	0.0031	13
50.0	100	0.600	57	0.0015	11
37.5	93	0.425	53		
28.0	91	0.300	49		
20.0	85	0.212	44		
		0.150	40		
		0.063	31		

Approved by:	Leeds Laborato	ory			
Sushil Sharda				Print date	28/11/2013
	Revision No	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A08
Project No.	TA7148	Distribution	Sample Depth
'			0.50m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Orangish brown mottled grey slightly clayey sandy (GRAVEL	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 5

 Silt:
 13

 Sand:
 27

 Gravel:
 55

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV		SEDIMENTAT	ION DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	86	diameter mm	
		10.0	78	0.0497	18
		6.3	64	0.0257	13
125.0	100	5.0	58	0.0183	12
90.0	100	3.35	51	0.0083	10
75.0	100	2.00	45	0.0044	8
63.0	100	1.18	40	0.0029	6
50.0	100	0.600	34	0.0015	4
37.5	100	0.425	32		
28.0	100	0.300	29		
20.0	93	0.212	26		
		0.150	23		
		0.063	17		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID	
	Investigation		A08	
Project No.	TA7148	Distribution	Sample Depth	
			7.73m	
Engineer	Arch Henderson LLP		Sample Number	
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C	
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth	
			7.73m	
			Specimen No.	
			3	

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	79	diameter mm	
		10.0	77	0.0481	29
		6.3	75	0.0246	25
125.0	100	5.0	73	0.0175	24
90.0	100	3.35	71	0.0093	20
75.0	100	2.00	68	0.0057	17
63.0	100	1.18	65	0.0031	14
50.0	100	0.600	59	0.0015	11
37.5	100	0.425	55		
28.0	87	0.300	51		
20.0	83	0.212	46		
		0.150	42		
		0.063	31		

Approved by:	Leeds Laborato				
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148	Particle Size Distribution	Hole ID A11 Sample Depth 0.00m		
Engineer Employer	Arch Henderson LLP Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample Number 002 Sample type B		
Description	Brown SAND		Specimen Depth 0.00m Specimen No. 1		
100					
90					
70					

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

 Silt and clay:
 4

 Sand:
 95

 Gravel:
 1

 Cobbles:
 0

General remarks

	WET SIEVE	DATA		
Sieve size mn	n Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
90.0	100	3.35		100
75.0	100	2.00		99
63.0	100	1.18		99
50.0	100	0.600)	96
37.5	100	0.425	;	89
28.0	100	0.300)	77
20.0	100	0.212	!	40
		0.150)	10
		0.063	1	4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A11
Project No.	TA7148	Distribution	Sample Depth
l '			8.58m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth
			8.58m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 9

 Silt:
 22

 Sand:
 35

 Gravel:
 33

 Cobbles:
 1

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

WET SIEVE DATA SEDIMEN Sieve size mm Cumulative Sieve size mm Cumulative Equivalent	ITATION DATA Cumulative
Sieve size mm Cumulative Sieve size mm Cumulative Equivalent	Cumulative
-1	
% passing % passing particle	% passing
14.0 80 diameter mm	
10.0 78 0.0488	31
6.3 74 0.0250	25
125.0 100 5.0 72 0.0179	23
90.0 100 3.35 70 0.0082	17
75.0 100 2.00 66 0.0045	15
63.0 100 1.18 62 0.0029	12
50.0 95 0.600 56 0.0015	8
37.5 92 0.425 53	
28.0 88 0.300 49	
20.0 85 0.212 45	
0.150 41	
0.063 31	

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A11
Project No.	TA7148	Distribution	Sample Depth
l			12.78m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth
-			12.78m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	84	diameter mm	
		10.0	84	0.0429	55
		6.3	82	0.0225	48
125.0	100	5.0	81	0.0162	43
90.0	100	3.35	81	0.0076	34
75.0	100	2.00	79	0.0038	28
63.0	100	1.18	76	0.0034	26
50.0	100	0.600	72	0.0010	19
37.5	91	0.425	71		
28.0	87	0.300	69		
20.0	86	0.212	67		
		0.150	65		
		0.063	59		

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A11
Project No.	TA7148	Distribution	Sample Depth
l			25.28m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular	Specimen Depth
-			25.28m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

		i di ticio dell	51ty. 2.001vig	7111 7105011100	
	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	77	0.0503	24
		6.3	74	0.0254	23
125.0	100	5.0	72	0.0182	20
90.0	100	3.35	71	0.0083	15
75.0	100	2.00	67	0.0043	12
63.0	100	1.18	61	0.0037	10
50.0	92	0.600	53	0.0010	7
37.5	92	0.425	49		
28.0	88	0.300	44		
20.0	84	0.212	40		
		0.150	36		
		0.063	27		
					_

Approved by:	Leeds Laboratory				
Stuart Kirk				Print date	28/11/2013
	Revision No. 3.03	}	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A29
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown SAND with rare medium gravel.		Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 2

 Sand:
 95

 Gravel:
 3

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	98
		6.3	98
125.0	100	5.0	98
100.0	100	3.35	98
75.0	100	2.00	97
63.0	100	1.18	97
50.0	100	0.600	95
37.5	100	0.425	89
28.0	100	0.300	74
20.0	100	0.212	31
		0.150	4
		0.063	2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
,	Investigation		A29
Project No.	TA7148	Distribution	Sample Depth
'			4.70m
Engineer	Arch Henderson LLP		Sample Number
			010
Employer	Aberdeen Harbour Board	DC 1277: Dowt 2: 1000: 0.2. 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	C
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	o coarse subangular.	Specimen Depth
·			4.70m
			Specimen No.
		·	1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 13

 Silt:
 22

 Sand:
 39

 Gravel:
 25

 Cobbles:
 2

General remarks

Dispersant used when soaking specimen.

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	85	diameter mm	
		10.0	83	0.0479	32
		6.3	80	0.0246	27
125.0	100	5.0	79	0.0175	26
100.0	100	3.35	76	0.0080	20
75.0	100	2.00	73	0.0043	18
63.0	100	1.18	69	0.0028	14
50.0	93	0.600	62	0.0015	12
37.5	93	0.425	58		
28.0	91	0.300	54		
20.0	88	0.212	50		
		0.150	45		
		0.063	35		

Approved by:	Leeds Laborato	ry			
Sushil Sharda				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A29
Project No.	TA7148	Distribution	Sample Depth
l			15.25m
Engineer	Arch Henderson LLP		Sample Number
			012
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth
			15.25m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	77	diameter mm	
		10.0	74	0.0502	29
		6.3	71	0.0257	23
125.0	100	5.0	69	0.0182	23
100.0	100	3.35	67	0.0083	17
75.0	100	2.00	63	0.0047	15
63.0	100	1.18	60	0.0029	11
50.0	100	0.600	54	0.0015	8
37.5	89	0.425	51		
28.0	87	0.300	47		
20.0	81	0.212	43		
		0.150	39		
		0.063	31		

Approved by:	Leeds Laboratory				
Stuart Kirk				Print date	28/11/2013
	Revision No. 3.03	}	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Davida Cina	Hole ID
Project Name	Investigation	Particle Size	A29
Project No.	TA7148	Distribution	Sample Depth
'			21.50m
Engineer	Arch Henderson LLP		Sample Number
			014
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	coarse angular.	Specimen Depth
			21.71m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

PARTICLE SIZE %
Clay: 26
Silt: 36
Sand: 24

Sand: 24
Gravel: 14
Cobbles: 0

General remarks

Dispersant used when soaking specimen.

		li ai ticle dell	sity. 2.03ivig/	Assumed	
	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	95	diameter mm	
		10.0	93	0.0450	59
		6.3	90	0.0231	52
125.0	100	5.0	90	0.0166	48
100.0	100	3.35	88	0.0077	39
75.0	100	2.00	86	0.0039	34
63.0	100	1.18	84	0.0026	28
50.0	100	0.600	80	0.0014	24
37.5	100	0.425	77		
28.0	100	0.300	75		
20.0	95	0.212	72		
		0.150	70		
		0.063	63		

Approved by:	Leeds Laboratory				
Sushil Sharda				Print date	28/11/2013
	Revision No. 3.0	13	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A31
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	DC 1277, D- + 2, 1000, 0.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brownish grey SAND with occasional medium gravel		Specimen Depth
-			0.50m
			Specimen No.
			. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 5
Sand: 93
Gravel: 2
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size	mm Cumulative
	% passing		% passing
		14.0	100
		10.0	99
		6.3	99
125.0	100	5.0	99
100.0	100	3.35	98
75.0	100	2.00	98
63.0	100	1.18	97
50.0	100	0.600	91
37.5	100	0.425	85
28.0	100	0.300	72
20.0	100	0.212	36
		0.150	9
		0.063	5

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A31
Project No.	TA7148	Distribution	Sample Depth
'			4.80m
Engineer	Arch Henderson LLP		Sample Number
			005
Employer	Aberdeen Harbour Board	DC 1377, David 3, 1000, 0 3, 0 F	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular	Specimen Depth
			4.80m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 11

 Silt:
 21

 Sand:
 36

 Gravel:
 32

 Cobbles:
 0

General remarks

	WET SIEV	SEDIMENTAT	TON DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	78	0.0500	31
		6.3	75	0.0255	26
125.0	100	5.0	73	0.0181	24
100.0	100	3.35	71	0.0082	20
75.0	100	2.00	68	0.0048	17
63.0	100	1.18	65	0.0030	13
50.0	100	0.600	59	0.0015	10
37.5	96	0.425	55		
28.0	92	0.300	51		
20.0	83	0.212	47		
		0.150	43		
		0.063	32		

Approved by:	Leeds Laborato				
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A31
Project No.	TA7148	Distribution	Sample Depth
l '			19.30m
Engineer	Arch Henderson LLP		Sample Number
			009
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown CLAY with rare fine angular gravel.		Specimen Depth
			19.52m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	100	diameter mm	
		10.0	100	0.0386	93
		6.3	100	0.0199	87
125.0	100	5.0	100	0.0142	86
100.0	100	3.35	100	0.0076	80
75.0	100	2.00	100	0.0048	73
63.0	100	1.18	99	0.0027	64
50.0	100	0.600	98	0.0013	55
37.5	100	0.425	98		
28.0	100	0.300	98		
20.0	100	0.212	97		
		0.150	97		
		0.063	96		

Approved by:

Sushil Sharda

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID		
•	Investigation		A34		
Project No.	TA7148	Distribution	Sample Depth		
,			0.50m		
Engineer	Arch Henderson LLP		Sample Number		
3			002		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type		
. ,		BS 1377: Part 2: 1990: 9.2	D		
Description	Greyish brown SAND		Specimen Depth		
			0.50m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 6
Sand: 94
Gravel: 0
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mi	m Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
90.0	100	3.35	100
75.0	100	2.00	100
63.0	100	1.18	100
50.0	100	0.600	98
37.5	100	0.425	94
28.0	100	0.300	84
20.0	100	0.212	45
		0.150	14
		0.063	6

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		A34
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
3			006
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Greyish brown SAND.		Specimen Depth
·			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
CLAT		SILT		SAND			G	RAVE	COBBLES	

Silt and clay: 4
Sand: 95
Gravel: 1
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
100.0	100	3.35		99
75.0	100	2.00		99
63.0	100	1.18		98
50.0	100	0.600)	93
37.5	100	0.425	;	83
28.0	100	0.300)	64
20.0	100	0.212		28
		0.150)	7
		0.063	1	4

Approved by:	Leeds Laborato	ry			
Stuart Kirk				Print date	28/11/2013
	Revision No	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A34
Project No.	TA7148	Distribution	Sample Depth
l			4.75m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth
-			4.75m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 11

 Silt:
 23

 Sand:
 37

 Gravel:
 29

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	82	diameter mm	
		10.0	80	0.0488	33
		6.3	77	0.0250	27
125.0	100	5.0	76	0.0179	24
100.0	100	3.35	74	0.0082	20
75.0	100	2.00	71	0.0047	17
63.0	100	1.18	66	0.0029	13
50.0	100	0.600	60	0.0015	10
37.5	95	0.425	56		
28.0	92	0.300	52		
20.0	85	0.212	48		
		0.150	43		
		0.063	34		

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A51
Project No.	TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		0.50m Sample Number 003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown SAND.		Specimen Depth 0.50m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 92
Gravel: 1
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
100.0	100	3.35		100
75.0	100	2.00		99
63.0	100	1.18		98
50.0	100	0.600		89
37.5	100	0.425		80
28.0	100	0.300		66
20.0	100	0.212		35
		0.150		14
		0.063		8

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148	Particle Size Distribution	Hole ID A54 Sample Depth 1.50m
Engineer	Arch Henderson LLP		Sample Number 006
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Grey SAND.		Specimen Depth 1.50m Specimen No. 1
100			

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

Silt and clay: 4
Sand: 94
Gravel: 3
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
100.0	100	3.35		100
75.0	100	2.00		97
63.0	100	1.18		92
50.0	100	0.600		81
37.5	100	0.425		70
28.0	100	0.300		53
20.0	100	0.212		26
		0.150		7
		0.063		3

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A54
Project No.	TA7148	Distribution	Sample Depth
l			6.00m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			014
Employer	Aberdeen Harbour Board	DC 4277: Deat 2: 4000: 0.2. 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown clayey gravelly SAND. Gravel is medium to co	parse subrounded.	Specimen Depth
			6.00m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 11

 Silt:
 22

 Sand:
 37

 Gravel:
 30

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	83	diameter mm	
		10.0	80	0.0494	31
		6.3	77	0.0251	27
125.0	100	5.0	75	0.0181	22
90.0	100	3.35	73	0.0082	18
75.0	100	2.00	70	0.0045	15
63.0	100	1.18	66	0.0029	13
50.0	100	0.600	60	0.0015	10
37.5	100	0.425	56		
28.0	94	0.300	52		
20.0	87	0.212	47		
		0.150	43		
		0.063	33		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	D: . :I .:	A54
Project No.	TA7148	Distribution	Sample Depth
'			10.15m
Engineer	Arch Henderson LLP		Sample Number
			016
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
		B3 1377. Part 2. 1990. 9.2, 9.3	С
Description	Brown sandy slightly gravelly CLAY. Gravel is mediu	m to coarse subangular.	Specimen Depth
-			10.15m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 20

 Silt:
 23

 Sand:
 33

 Gravel:
 24

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	87	diameter mm	
		10.0	84	0.0476	41
		6.3	82	0.0243	37
125.0	100	5.0	80	0.0174	33
90.0	100	3.35	79	0.0079	29
75.0	100	2.00	76	0.0041	25
63.0	100	1.18	73	0.0027	22
50.0	100	0.600	67	0.0014	19
37.5	96	0.425	64		
28.0	92	0.300	60		
20.0	90	0.212	57		
		0.150	53		
		0.063	44		

Approved by:

Sushil Sharda

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	D: . :! .:	A57
Project No.	TA7148	Distribution	Sample Depth
•			0.50m
Engineer	Arch Henderson LLP		Sample Number
3			003
Employer	Aberdeen Harbour Board	DC 1277, D- + 2, 1000, 0.2	Sample type
1 7		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly slightly clayey SAND. Gravel i	s fine to medium angular.	Specimen Depth
·			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 10
Sand: 84
Gravel: 6
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		95
		10.0		95
		6.3		95
125.0	100	5.0		95
100.0	100	3.35		95
75.0	100	2.00		94
63.0	100	1.18		93
50.0	100	0.600		87
37.5	100	0.425		81
28.0	100	0.300		69
20.0	100	0.212		37
		0.150		16
		0.063		10

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A57
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			006
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine.		Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 10
Sand: 84
Gravel: 5
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		99
90.0	100	3.35		98
75.0	100	2.00		95
63.0	100	1.18		91
50.0	100	0.600		80
37.5	100	0.425		70
28.0	100	0.300		58
20.0	100	0.212		33
		0.150		18
		0.063		10

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A57
Project No.	TA7148	Distribution	Sample Depth
			4.50m
Engineer	Arch Henderson LLP		Sample Number
			015
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		BS 1377. Part 2. 1990. 9.2	В
Description	Brownish grey SAND.		Specimen Depth
			4.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 11

 Sand:
 87

 Gravel:
 2

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
100.0	100	3.35		99
75.0	100	2.00		98
63.0	100	1.18		96
50.0	100	0.600		88
37.5	100	0.425		78
28.0	100	0.300		66
20.0	100	0.212		35
		0.150		20
		0.063		11

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A57
Project No.	TA7148	Distribution	Sample Depth
. .			9.20m
Engineer	Arch Henderson LLP		Sample Number
			022
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
		B3 1377. Part 2. 1330. 3.2, 3.3	С
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse.		Specimen Depth
			9.20m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	75	diameter mm	
		10.0	73	0.0489	29
		6.3	70	0.0251	24
125.0	100	5.0	69	0.0179	22
100.0	100	3.35	67	0.0082	17
75.0	100	2.00	64	0.0048	15
63.0	100	1.18	60	0.0030	11
50.0	81	0.600	54	0.0015	9
37.5	81	0.425	50		
28.0	81	0.300	47		
20.0	78	0.212	42		
		0.150	38		
		0.063	30		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A57
Project No.	TA7148	Distribution	Sample Depth
l			17.30m
Engineer	Arch Henderson LLP		Sample Number
			025
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy gravelly CLAY. Gravel is medium to co	arse subangular.	Specimen Depth
·			17.30m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 11

 Silt:
 19

 Sand:
 35

 Gravel:
 35

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	77	0.0491	30
		6.3	73	0.0251	26
125.0	100	5.0	71	0.0179	23
90.0	100	3.35	69	0.0082	18
75.0	100	2.00	65	0.0042	15
63.0	100	1.18	62	0.0028	14
50.0	100	0.600	55	0.0015	10
37.5	100	0.425	52		
28.0	93	0.300	48		
20.0	84	0.212	44		
		0.150	40		
		0.063	31		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		A59
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			006
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Grey mottled brown SAND		Specimen Depth
·			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

 Silt and clay:
 9

 Sand:
 90

 Gravel:
 1

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
90.0	100	3.35	100
75.0	100	2.00	99
63.0	100	1.18	97
50.0	100	0.600	90
37.5	100	0.425	82
28.0	100	0.300	71
20.0	100	0.212	42
		0.150	16
		0.063	9

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A59
Project No.	TA7148	Distribution	Sample Depth
'			5.50m
Engineer	Arch Henderson LLP		Sample Number
			016
Employer	Aberdeen Harbour Board	DC 1277: Dovt 2: 1000: 0.2. 0.E	Sample type
		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Brown sandy gravelly CLAY with occasional cobbles	Gravel is fine to coarse angular.	Specimen Depth
			5.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
		SILT		SAND			GRAVEL			COBBLES

 General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	62	diameter mm	
		10.0	59	0.0512	21
		6.3	57	0.0260	18
125.0	100	5.0	57	0.0185	17
100.0	100	3.35	55	0.0084	13
75.0	73	2.00	53	0.0051	11
63.0	73	1.18	50	0.0031	8
50.0	73	0.600	45	0.0015	6
37.5	73	0.425	42		
28.0	71	0.300	38		
20.0	67	0.212	33		
		0.150	28		
		0.063	22		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A59
Project No.	TA7148	Distribution	Sample Depth
l			10.45m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			024
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	coarse angular.	Specimen Depth
·			10.72m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT		SAND			GRAVEL			COBBLES

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV		SEDIMENTAT	TON DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	90	diameter mm	
		10.0	88	0.0485	35
		6.3	85	0.0249	29
125.0	100	5.0	82	0.0177	27
100.0	100	3.35	80	0.0081	22
75.0	100	2.00	77	0.0043	20
63.0	100	1.18	73	0.0028	17
50.0	100	0.600	67	0.0015	13
37.5	100	0.425	63		
28.0	95	0.300	59		
20.0	93	0.212	54		
		0.150	49		
		0.063	38		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A59
Project No.	TA7148	Distribution	Sample Depth
			21.20m
Engineer	Arch Henderson LLP		Sample Number
			027
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
. ,		BS 1377. Part 2. 1990. 9.2, 9.5	С
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular	Specimen Depth
			21.43m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
CLAY		SILT		SAND			GRAVEL			COBBLES

 PARTICLE SIZE
 %

 Clay:
 9

 Silt:
 17

 Sand:
 39

 Gravel:
 32

 Cobbles:
 2

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	78	diameter mm	
		10.0	75	0.0487	25
		6.3	73	0.0250	20
125.0	100	5.0	71	0.0177	20
100.0	100	3.35	69	0.0081	15
75.0	100	2.00	66	0.0045	13
63.0	100	1.18	61	0.0029	10
50.0	92	0.600	53	0.0015	9
37.5	92	0.425	49		
28.0	87	0.300	44		
20.0	82	0.212	40		
		0.150	36		
		0.063	27		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A63			
Project No.	TA7148	Distribution				
Engineer	Arch Henderson LLP		Sample Number 006			
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B			
Description	Brown SAND with some shell fragments		Specimen Depth 1.00m			
			Specimen No. 1			

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
CLAY		SILT		SAND			GRAVEL			COBBLES

Silt and clay: 6
Sand: 92
Gravel: 1
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
90.0	100	3.35		100
75.0	100	2.00		99
63.0	100	1.18		96
50.0	100	0.600		88
37.5	100	0.425		83
28.0	100	0.300		73
20.0	100	0.212		40
		0.150		11
		0.063		6

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A63
Project No.	TA7148	Distribution	Sample Depth
			2.00m
Engineer	Arch Henderson LLP		Sample Number
			010
	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		D3 1377.1 att 2. 1330. 3.2	В
Description	Brown SAND.		Specimen Depth
			2.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 91

 Gravel:
 2

 Cobbles:
 0

٠		
ı	Canara	remarks
ı	ltaenera.	remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
90.0	100	3.35		100
75.0	100	2.00		98
63.0	100	1.18		95
50.0	100	0.600		84
37.5	100	0.425		77
28.0	100	0.300		67
20.0	100	0.212		37
		0.150		11
		0.063		7

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID A63		
Project No.	TA7148	Distribution	Sample Depth		
			3.00m		
Engineer	Arch Henderson LLP		Sample Number		
			014		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type		
		B3 1377. Falt 2. 1990. 9.2	В		
Description	Brown slightly gravelly SAND.		Specimen Depth		
			3.00m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 89
Gravel: 4
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		99
125.0	100	5.0		99
90.0	100	3.35		98
75.0	100	2.00		96
63.0	100	1.18		92
50.0	100	0.600		81
37.5	100	0.425		74
28.0	100	0.300		63
20.0	100	0.212		35
		0.150		14
		0.063		8

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		A63
Project No.	TA7148	Distribution	Sample Depth
l			7.50m
Engineer	Arch Henderson LLP		Sample Number
			024
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
. ,		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
-			7.50m
		Specimen No.	
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	69	diameter mm	
		10.0	68	0.0507	26
		6.3	65	0.0258	21
125.0	100	5.0	64	0.0183	20
100.0	100	3.35	63	0.0083	16
75.0	100	2.00	60	0.0053	15
63.0	100	1.18	56	0.0031	11
50.0	100	0.600	50	0.0015	7
37.5	91	0.425	47		
28.0	83	0.300	43		
20.0	76	0.212	39		
		0.150	34		
		0.063	27		

Approved by:	Leeds Laboratory						
Stuart Kirk					Print date	28/11/2013	5
	Revision No.	3.03		Issue Date	19/11/2	.012	Pa

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		B61
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
J			007
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Grey slightly gravelly SAND		Specimen Depth
·			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 6
Sand: 89
Gravel: 5
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	100
		10.0	99
		6.3	98
125.0	100	5.0	98
90.0	100	3.35	97
75.0	100	2.00	95
63.0	100	1.18	92
50.0	100	0.600	81
37.5	100	0.425	71
28.0	100	0.300	59
20.0	100	0.212	33
		0.150	12
		0.063	6

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID B61
Project No.	TA7148	Distribution	Sample Depth 3.50m
Engineer	Arch Henderson LLP		Sample Number 015
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND		Specimen Depth 3.50m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 3
Sand: 93
Gravel: 4
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	97	
		10.0	97	
		6.3	97	
125.0	100	5.0	97	
90.0	100	3.35	97	
75.0	100	2.00	96	
63.0	100	1.18	92	
50.0	100	0.600	73	
37.5	100	0.425	55	
28.0	100	0.300	40	
20.0	100	0.212	17	
		0.150	6	
		0.063	3	

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		B61
Project No.	TA7148	Distribution	Sample Depth
l ′			28.05m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			020
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy gravelly CLAY.		Specimen Depth
-			28.10m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 9

 Silt:
 20

 Sand:
 36

 Gravel:
 35

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	75	0.0495	28
		6.3	73	0.0253	23
125.0	100	5.0	71	0.0181	21
90.0	100	3.35	69	0.0082	16
75.0	100	2.00	65	0.0043	14
63.0	100	1.18	61	0.0028	11
50.0	100	0.600	54	0.0015	8
37.5	92	0.425	49		
28.0	90	0.300	45		
20.0	85	0.212	41		
		0.150	37		
		0.063	29		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		B61
Project No.	TA7148	Distribution	Sample Depth
l			30.30m
Engineer	Arch Henderson LLP		Sample Number
			021
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy gravely CLAY. Gravel is medium to coa	rse subangular.	Specimen Depth
			30.30m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	76	diameter mm	
		10.0	73	0.0436	29
		6.3	70	0.0228	24
125.0	100	5.0	69	0.0165	22
90.0	100	3.35	67	0.0077	17
75.0	100	2.00	64	0.0043	15
63.0	100	1.18	60	0.0028	12
50.0	100	0.600	53	0.0014	9
37.5	100	0.425	50		
28.0	89	0.300	46		
20.0	83	0.212	42		
		0.150	38		
		0.063	30		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		B61
Project No.	TA7148	Distribution	Sample Depth
l			30.80m
Engineer	Arch Henderson LLP		Sample Number
			022
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	subrounded.	Specimen Depth
			30.80m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	76	diameter mm	
		10.0	74	0.0498	29
		6.3	71	0.0254	24
125.0	100	5.0	69	0.0181	22
90.0	100	3.35	68	0.0082	18
75.0	100	2.00	65	0.0047	15
63.0	100	1.18	61	0.0029	11
50.0	100	0.600	54	0.0015	9
37.5	87	0.425	50		
28.0	82	0.300	46		
20.0	78	0.212	42		
		0.150	39		
		0.063	30		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID C79
Project No.	TA7148	Distribution	Sample Depth 0.50m
Engineer	Arch Henderson LLP		Sample Number 002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown gravelly SAND. Gravel is fine to coarse angula	ır.	Specimen Depth 0.50m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 5
Sand: 55
Gravel: 40
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	92
		10.0	87
		6.3	79
125.0	100	5.0	74
90.0	100	3.35	68
75.0	100	2.00	60
63.0	100	1.18	52
50.0	100	0.600	40
37.5	100	0.425	35
28.0	100	0.300	29
20.0	96	0.212	21
		0.150	15
		0.063	5

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID C81
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown mottled grey gravelly SAND. Gravel is fine to	coarse subangular.	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 6
Sand: 53
Gravel: 41
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		86
		10.0		82
		6.3		76
125.0	100	5.0		72
90.0	100	3.35		66
75.0	100	2.00		59
63.0	100	1.18		52
50.0	100	0.600		41
37.5	94	0.425		35
28.0	94	0.300		30
20.0	90	0.212		22
		0.150		15
		0.063		6

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID C81
Project No.	TA7148	Distribution	Sample Depth
-			1.50m
Engineer	Arch Henderson LLP		Sample Number
_			004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Falt 2. 1390. 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to mediu	m angular	Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 77

 Gravel:
 16

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	97
		10.0	95
		6.3	93
125.0	100	5.0	91
90.0	100	3.35	89
75.0	100	2.00	84
63.0	100	1.18	79
50.0	100	0.600	68
37.5	100	0.425	60
28.0	100	0.300	49
20.0	100	0.212	28
		0.150	17
		0.063	7

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID C81
Project No.	Investigation TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		6.30m Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth 6.30m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 10

 Silt:
 25

 Sand:
 40

 Gravel:
 25

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	TON DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	89	diameter mm	
		10.0	87	0.0503	33
		6.3	84	0.0256	28
125.0	100	5.0	82	0.0182	25
90.0	100	3.35	79	0.0083	19
75.0	100	2.00	76	0.0044	14
63.0	100	1.18	71	0.0038	12
50.0	100	0.600	64	0.0010	9
37.5	100	0.425	60		
28.0	97	0.300	56		
20.0	93	0.212	50		
		0.150	46		
		0.063	36		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID C83
Project No.	Investigation TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		0.00m Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	002 Sample type B
Description	Brown slightly gravelly SAND. Gravel is fine to medic	m angular	Specimen Depth 0.00m Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 2
Sand: 72
Gravel: 27
Cobbles: 0

Approved by: Stuart Kirk General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size	mm Cumulative
	% passing		% passing
		14.0	97
		10.0	96
		6.3	91
125.0	100	5.0	86
90.0	100	3.35	80
75.0	100	2.00	74
63.0	100	1.18	65
50.0	100	0.600	40
37.5	100	0.425	32
28.0	100	0.300	26
20.0	100	0.212	13
		0.150	4
		0.063	1

Print date

19/11/2012

Issue Date

28/11/2013

SOIL ENGINEERING

Part of the Bachy Soletanche Group

Leeds Laboratory

3.03

Revision No.

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C83
Project No.	TA7148	Distribution	Sample Depth
			2.75m
Engineer	Arch Henderson LLP		Sample Number
			800
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	coarse angular.	Specimen Depth
-			2.90m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 14

 Silt:
 22

 Sand:
 37

 Gravel:
 27

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	TON DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	87	diameter mm	
		10.0	85	0.0474	33
		6.3	80	0.0244	28
125.0	100	5.0	78	0.0174	26
100.0	100	3.35	76	0.0080	21
75.0	100	2.00	73	0.0046	18
63.0	100	1.18	70	0.0029	15
50.0	100	0.600	63	0.0014	13
37.5	100	0.425	60		
28.0	95	0.300	56		
20.0	93	0.212	51		
		0.150	46		
		0.063	37		

Approved by:

Sushil Sharda

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C83
Project No.	TA7148	Distribution	Sample Depth
			9.05m
Engineer	Arch Henderson LLP		Sample Number
			010
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
		BS 1511. Fait 2. 1990. 9.2, 9.3	С
Description	Brown clayey slightly gravelly SAND, Gravel is fine to	o coarse angular.	Specimen Depth
			9.05m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 13

 Silt:
 19

 Sand:
 40

 Gravel:
 28

 Cobbles:
 0

General remarks

Dispersant used when soaking specimen.

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	85	diameter mm	
		10.0	82	0.0494	31
		6.3	80	0.0253	26
125.0	100	5.0	78	0.0180	24
100.0	100	3.35	76	0.0082	20
75.0	100	2.00	72	0.0042	16
63.0	100	1.18	68	0.0028	14
50.0	100	0.600	61	0.0014	12
37.5	100	0.425	57		
28.0	96	0.300	52		
20.0	93	0.212	47		
		0.150	43		
		0.063	33		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID C84
Project No.	TA7148	Distribution	Sample Depth
			0.30m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	DC 1277: David 2: 1000, 0.2	Sample type
,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown gravelly SAND. Gravel is fine to coarse subro	unded.	Specimen Depth
			0.30m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 2
Sand: 56
Gravel: 42
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		89
		10.0		85
		6.3		77
125.0	100	5.0		74
90.0	100	3.35		68
75.0	100	2.00		58
63.0	100	1.18		47
50.0	100	0.600		27
37.5	100	0.425		19
28.0	98	0.300		12
20.0	94	0.212		7
		0.150		3
		0.063		2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C84
Project No.	TA7148	Distribution	Sample Depth
'			3.60m
Engineer	Arch Henderson LLP		Sample Number
			006
Employer	Aberdeen Harbour Board	DC 1277: Dowt 2: 1000: 0.2. 0.E	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	coarse angular with cobbles.	Specimen Depth
			3.75m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 7

 Silt:
 12

 Sand:
 24

 Gravel:
 18

 Cobbles:
 38

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	51	diameter mm	
		10.0	50	0.0489	19
		6.3	48	0.0251	15
125.0	100	5.0	47	0.0178	14
100.0	100	3.35	46	0.0081	12
75.0	62	2.00	44	0.0047	10
63.0	62	1.18	41	0.0029	8
50.0	62	0.600	37	0.0015	7
37.5	62	0.425	34		
28.0	56	0.300	31		
20.0	54	0.212	29		
		0.150	26		
		0.063	20		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C84
Project No.	TA7148	Distribution	Sample Depth
l			7.10m
Engineer	Arch Henderson LLP		Sample Number
			800
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
' '		BS 1377. Part 2. 1990. 9.2, 9.5	С
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
			7.10m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 10

 Silt:
 16

 Sand:
 29

 Gravel:
 42

 Cobbles:
 3

General remarks

Sample size was insufficient to be representative of particle size Dispersant used when soaking specimen.

Particle density: 2.65Mg/m³ Assumed

			,	
WET SIEV	E DATA		SEDIMENTAT	ION DATA
Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
% passing		% passing	particle	% passing
	14.0	65	diameter mm	
	10.0	64	0.0483	24
	6.3	61	0.0248	20
100	5.0	59	0.0177	18
100	3.35	58	0.0081	15
100	2.00	55	0.0043	12
100	1.18	52	0.0028	11
85	0.600	47	0.0014	8
73	0.425	44		
72	0.300	41		
68	0.212	37		
	0.150	33		
	0.063	26		
	Cumulative % passing 100 100 100 100 85 73 72	WET SIEVE DATA Cumulative Sieve size mm % passing 14.0 10.0 6.3 100 5.0 100 3.35 100 2.00 100 1.18 85 0.600 73 0.425 72 0.300 68 0.212 0.150	WET SIEVE DATA Cumulative % passing Sieve size mm Cumulative % passing 14.0 65 10.0 64 6.3 61 100 5.0 59 100 3.35 58 100 2.00 55 100 1.18 52 85 0.600 47 73 0.425 44 72 0.300 41 68 0.212 37 0.150 33	WET SIEVE DATA SEDIMENTAT Cumulative % passing Sieve size mm Cumulative % passing Equivalent particle 14.0 65 diameter mm 10.0 64 0.0483 6.3 61 0.0248 100 5.0 59 0.0177 100 3.35 58 0.0081 100 2.00 55 0.0043 100 1.18 52 0.0028 85 0.600 47 0.0014 73 0.425 44 72 0.300 41 68 0.212 37 0.150 33

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID C87
Project No.	Investigation TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		0.00m Sample Number 002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND. Gravel is fine to medi	um subangular.	Specimen Depth 0.00m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 4

 Sand:
 90

 Gravel:
 6

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size	mm Cumulative
	% passing		% passing
		14.0	97
		10.0	97
		6.3	97
125.0	100	5.0	97
100.0	100	3.35	96
75.0	100	2.00	94
63.0	100	1.18	89
50.0	100	0.600	78
37.5	100	0.425	68
28.0	100	0.300	56
20.0	100	0.212	24
		0.150	8
		0.063	4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C87
Project No.	TA7148	Distribution	Sample Depth
l			4.15m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			005
Employer	Aberdeen Harbour Board	DC 1277: David 2: 1000: 0.2. 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy slightly gravelly CLAY. Gravel is fine to	coarse subangular.	Specimen Depth
			4.37m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV		SEDIMENTAT	ION DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	82	diameter mm	
		10.0	80	0.0463	30
		6.3	78	0.0241	24
125.0	100	5.0	76	0.0173	22
100.0	100	3.35	74	0.0079	18
75.0	100	2.00	71	0.0039	16
63.0	100	1.18	68	0.0027	14
50.0	91	0.600	61	0.0008	10
37.5	91	0.425	57		
28.0	89	0.300	53		
20.0	86	0.212	48		
		0.150	42		
		0.063	33		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID C88
Project No.	TA7148	Distribution	Sample Depth
·			0.00m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
, ,		BS 13/1. Part 2. 1990. 9.2	В
Description	Brown gravelly SAND with cobbles. Gravel is fine to	coarse sunagular to rounded.	Specimen Depth
			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 2
Sand: 56
Gravel: 32
Cobbles: 10

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	67
		10.0	66
		6.3	65
125.0	100	5.0	64
90.0	100	3.35	63
75.0	100	2.00	58
63.0	92	1.18	55
50.0	83	0.600	49
37.5	77	0.425	42
28.0	74	0.300	32
20.0	72	0.212	15
		0.150	4
		0.063	2

 Approved by:
 Leeds Laboratory
 Print date
 28/11/2013
 SOIL (CONTINUE)

 Revision No.
 3.03
 Issue Date
 19/11/2012
 Part of the

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
. .	Investigation		C88
Project No.	TA7148	Distribution	Sample Depth
'			2.05m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			005
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
' '		BS 1377: Part 2. 1990. 9.2, 9.5	С
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
			2.05m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 10

 Silt:
 16

 Sand:
 31

 Gravel:
 29

 Cobbles:
 14

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

			,	
WET SIEV	E DATA		SEDIMENTAT	ION DATA
Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
% passing		% passing	particle	% passing
	14.0	66	diameter mm	
	10.0	64	0.0475	24
	6.3	61	0.0244	20
100	5.0	61	0.0175	18
100	3.35	59	0.0080	15
100	2.00	57	0.0041	13
88	1.18	54	0.0027	11
81	0.600	49	0.0008	7
78	0.425	46		
71	0.300	42		
67	0.212	39		
	0.150	35		
	0.063	26		
	Cumulative % passing 100 100 100 88 81 78 71	WET SIEVE DATA Cumulative Sieve size mm % passing 14.0 10.0 6.3 100 5.0 100 3.35 100 2.00 88 1.18 81 0.600 78 0.425 71 0.300 67 0.212 0.150	WET SIEVE DATA Cumulative % passing Sieve size mm Cumulative % passing 14.0 66 10.0 64 6.3 61 100 5.0 61 100 3.35 59 100 2.00 57 88 1.18 54 81 0.600 49 78 0.425 46 71 0.300 42 67 0.212 39 0.150 35	WET SIEVE DATA SEDIMENTAT Cumulative % passing Sieve size mm Cumulative particle Equivalent particle 14.0 66 diameter mm 10.0 64 0.0475 6.3 61 0.0244 100 5.0 61 0.0175 100 3.35 59 0.0080 100 2.00 57 0.0041 88 1.18 54 0.0027 81 0.600 49 0.0008 78 0.425 46 71 0.300 42 67 0.212 39 0.150 35

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		C88
Project No.	TA7148	Distribution	Sample Depth
l ′			6.20m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			007
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	С
Description	Brown sandy slightly gravelly CLAY.		Specimen Depth
			6.20m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 13

 Silt:
 20

 Sand:
 38

 Gravel:
 28

 Cobbles:
 0

General remarks

Dispersant used when soaking specimen.

Particle density: 2.65Mg/m³ Assumed

			=	7.000	
	WET SIEV	'E DATA		SEDIMENTAT	ION DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	85	diameter mm	
		10.0	81	0.0480	31
		6.3	79	0.0247	26
125.0	100	5.0	77	0.0175	25
100.0	100	3.35	75	0.0080	20
75.0	100	2.00	72	0.0044	17
63.0	100	1.18	68	0.0028	15
50.0	100	0.600	61	0.0014	12
37.5	100	0.425	57		
28.0	94	0.300	53		
20.0	94	0.212	48		
		0.150	43		
		0.063	34		
				The state of the s	

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID C96
Project No.	Investigation TA7148	Distribution	Sample Depth 0.50m
Engineer	Arch Henderson LLP		Sample Number 003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND		Specimen Depth 0.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 4
Sand: 85
Gravel: 11
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		97
		6.3		95
125.0	100	5.0		93
90.0	100	3.35		91
75.0	100	2.00		89
63.0	100	1.18		85
50.0	100	0.600		76
37.5	100	0.425		59
28.0	100	0.300		38
20.0	100	0.212		18
		0.150		9
		0.063		4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID		
	Investigation		C96		
Project No.	TA7148	Distribution	Sample Depth		
,			3.50m		
Engineer	Arch Henderson LLP		Sample Number		
J			012		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type		
. ,		BS 1377: Part 2: 1990: 9.2	В		
Description	Brown gravelly SAND. Gravel is fine to medium subro	unded	Specimen Depth		
•			3.50m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 9

 Sand:
 83

 Gravel:
 8

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	97
		10.0	96
		6.3	94
125.0	100	5.0	94
90.0	100	3.35	93
75.0	100	2.00	92
63.0	100	1.18	90
50.0	100	0.600	84
37.5	100	0.425	75
28.0	100	0.300	65
20.0	99	0.212	36
		0.150	17
		0.063	9

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148	Particle Size Distribution	Hole ID D98 Sample Depth	
Engineer	Arch Henderson LLP		0.00m Sample Number 001	
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B	
Description	Brown SAND		Specimen Depth 0.00m	
			Specimen No. 1	

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 92
Gravel: 0
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	100	
		10.0	100	
		6.3	100	
125.0	100	5.0	100	
90.0	100	3.35	100	
75.0	100	2.00	100	
63.0	100	1.18	99	
50.0	100	0.600	90	
37.5	100	0.425	78	
28.0	100	0.300	62	
20.0	100	0.212	34	
		0.150	15	
		0.063	8	

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size Distribution	Hole ID D98 Sample Depth 1.50m		
Project No.	TA7148	Distribution			
Engineer	Arch Henderson LLP		Sample Number 006		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B		
Description	Brown SAND		Specimen Depth 1.50m Specimen No. 1		
100					

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 11
Sand: 89
Gravel: 0
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
90.0	100	3.35	100
75.0	100	2.00	100
63.0	100	1.18	98
50.0	100	0.600	89
37.5	100	0.425	78
28.0	100	0.300	63
20.0	100	0.212	36
		0.150	19
		0.063	11

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		D99
Project No.	TA7148	Distribution	Sample Depth
,			0.50m
Engineer	Arch Henderson LLP		Sample Number
J			003
Employer	Aberdeen Harbour Board	DC 1277: Deat 2: 1000: 0.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Greyish brown SAND with occasional fine to coarse g	ravel	Specimen Depth
·			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 5
Sand: 86
Gravel: 9
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size m	nm Cumulative
	% passing		% passing
		14.0	95
		10.0	94
		6.3	94
125.0	100	5.0	94
90.0	100	3.35	93
75.0	100	2.00	91
63.0	100	1.18	87
50.0	100	0.600	77
37.5	100	0.425	70
28.0	100	0.300	60
20.0	95	0.212	35
		0.150	11
		0.063	5

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		D99
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			006
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		BS 1377. Part 2. 1990. 9.2	В
Description	Greyish brown SAND with occasional medium gravel		Specimen Depth
•			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 88

 Gravel:
 6

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		98
		6.3		97
125.0	100	5.0		97
100.0	100	3.35		96
75.0	100	2.00		94
63.0	100	1.18		90
50.0	100	0.600)	79
37.5	100	0.425		73
28.0	100	0.300)	62
20.0	100	0.212	!	34
		0.150)	11
		0.063	1	7

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID D99
Project No.	TA7148	Distribution	Sample Depth
			6.00m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular.	Specimen Depth
		-	6.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 11

 Silt:
 21

 Sand:
 36

 Gravel:
 32

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	83	diameter mm	
		10.0	80	0.0495	31
		6.3	77	0.0254	25
125.0	100	5.0	75	0.0181	24
90.0	100	3.35	72	0.0082	19
75.0	100	2.00	68	0.0055	18
63.0	100	1.18	64	0.0031	13
50.0	100	0.600	58	0.0015	10
37.5	96	0.425	55		
28.0	90	0.300	51		
20.0	87	0.212	46		
		0.150	42		
		0.063	32		

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		D100
Project No.	TA7148	Distribution	Sample Depth
.,			0.50m
Engineer	Arch Henderson LLP		Sample Number
J			003
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
		BS 1377: Part 2: 1990: 9.2	В
Description	Greyish brown mottled black fine to medium SAND.		Specimen Depth
-			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 92

 Gravel:
 1

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
100.0	100	3.35	99
75.0	100	2.00	99
63.0	100	1.18	98
50.0	100	0.600	95
37.5	100	0.425	92
28.0	100	0.300	85
20.0	100	0.212	48
		0.150	17
		0.063	7

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		D100
Project No.	TA7148	Distribution	Sample Depth
,			2.50m
Engineer	Arch Henderson LLP		Sample Number
J			009
Employer	Aberdeen Harbour Board	DC 1277, Deat 2, 1000, 0.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Greyish brown SAND.		Specimen Depth
·			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 5
Sand: 95
Gravel: 1
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size	mm Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
100.0	100	3.35	100
75.0	100	2.00	99
63.0	100	1.18	99
50.0	100	0.600	96
37.5	100	0.425	92
28.0	100	0.300	84
20.0	100	0.212	45
		0.150	14
		0.063	4

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		D102
Project No.	TA7148	Distribution	Sample Depth
,			0.50m
Engineer	Arch Henderson LLP		Sample Number
J			003
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brownish grey SAND.		Specimen Depth
-			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 6
Sand: 92
Gravel: 2
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size r	nm Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	99
125.0	100	5.0	99
100.0	100	3.35	99
75.0	100	2.00	98
63.0	100	1.18	97
50.0	100	0.600	94
37.5	100	0.425	90
28.0	100	0.300	83
20.0	100	0.212	47
		0.150	16
		0.063	6

Project Name Bay of Nigg Harbour Development Ground Investigation Project No. TA7148		Particle Size Distribution	Hole ID D102 Sample Depth		
Engineer	Arch Henderson LLP		2.50m Sample Number 009		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B		
Description	Brown SAND		Specimen Depth 2.50m		
			Specimen No. 1		
100					
90					
80					

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 4

 Sand:
 95

 Gravel:
 1

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
90.0	100	3.35		100
75.0	100	2.00		99
63.0	100	1.18		99
50.0	100	0.600		96
37.5	100	0.425		92
28.0	100	0.300		84
20.0	100	0.212		42
		0.150		12
		0.063		4

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID D104
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			004
Employer	Aberdeen Harbour Board	DC 1277, Doub 2, 1000, 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown SAND and GRAVEL. Gravel is fine to coarse a	ngular	Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 4
Sand: 50
Gravel: 46
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		86
		10.0		81
		6.3		73
125.0	100	5.0		67
90.0	100	3.35		61
75.0	100	2.00		54
63.0	100	1.18		46
50.0	100	0.600		35
37.5	100	0.425		30
28.0	94	0.300		24
20.0	91	0.212		18
		0.150		12
		0.063		4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		D104
Project No.	TA7148	Distribution	Sample Depth
,			5.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			012
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown SAND		Specimen Depth
·			5.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 85

 Gravel:
 8

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	99
125.0	100	5.0	99
90.0	100	3.35	98
75.0	100	2.00	92
63.0	100	1.18	82
50.0	100	0.600	63
37.5	100	0.425	52
28.0	100	0.300	41
20.0	100	0.212	29
		0.150	20
		0.063	7

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E65
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND		Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 10
Sand: 83
Gravel: 7
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	97
		6.3	97
125.0	100	5.0	96
90.0	100	3.35	95
75.0	100	2.00	93
63.0	100	1.18	88
50.0	100	0.600	79
37.5	100	0.425	74
28.0	100	0.300	64
20.0	100	0.212	37
		0.150	17
		0.063	10

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	Distribution	E65
Project No.	TA7148	Distribution	Sample Depth
			2.50m
Engineer	Arch Henderson LLP		Sample Number
J			009
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		BS 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to mediu	m subangular	Specimen Depth
•			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

Silt and clay: 10
Sand: 83
Gravel: 8
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	99	
		10.0	98	
		6.3	97	
125.0	100	5.0	96	
90.0	100	3.35	95	
75.0	100	2.00	93	
63.0	100	1.18	89	
50.0	100	0.600	82	
37.5	100	0.425	77	
28.0	100	0.300	67	
20.0	100	0.212	37	
		0.150	17	
		0.063	10	
				T

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E65
Project No.	TA7148	Distribution	Sample Depth 4.50m
Engineer	Arch Henderson LLP		Sample Number 015
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND. Gravel is fine to medi	um subangular	Specimen Depth 4.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 3
Sand: 63
Gravel: 34
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	96
		10.0	91
		6.3	85
125.0	100	5.0	81
90.0	100	3.35	76
75.0	100	2.00	67
63.0	100	1.18	54
50.0	100	0.600	25
37.5	100	0.425	20
28.0	100	0.300	15
20.0	100	0.212	12
		0.150	7
		0.063	3

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E65
Project No.	TA7148	Distribution	Sample Depth
'			8.00m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular to subrounded.	Specimen Depth
			8.24m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 10

 Silt:
 22

 Sand:
 33

 Gravel:
 36

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	TON DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	81	diameter mm	
		10.0	77	0.0483	30
		6.3	73	0.0248	25
125.0	100	5.0	71	0.0177	22
90.0	100	3.35	68	0.0081	17
75.0	100	2.00	64	0.0040	15
63.0	100	1.18	60	0.0028	11
50.0	100	0.600	55	0.0014	9
37.5	100	0.425	52		
28.0	92	0.300	48		
20.0	88	0.212	44		
		0.150	40		
		0.063	32		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E66
Project No.	TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		1.50m Sample Number 004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND.		Specimen Depth 1.50m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 5
Sand: 87
Gravel: 8
Cobbles: 0

General remarks

	WET SIEVE DATA							
Sieve size mm	Cumulative	Sieve size	mm	Cumulative				
	% passing		% passing					
		14.0		100				
		10.0		100				
		6.3		98				
125.0	100	5.0		97				
90.0	100	3.35		95				
75.0	100	2.00		92				
63.0	100	1.18		90				
50.0	100	0.600)	80				
37.5	100	0.425	;	72				
28.0	100	0.300)	55				
20.0	100	0.212		19				
		0.150)	10				
		0.063		5				

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E66
Project No.	TA7148	Distribution	Sample Depth
			3.50m
Engineer	Arch Henderson LLP		Sample Number
			800
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND		Specimen Depth
			3.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 6
Sand: 89
Gravel: 4
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	99
125.0	100	5.0	99
90.0	100	3.35	97
75.0	100	2.00	96
63.0	100	1.18	93
50.0	100	0.600	84
37.5	100	0.425	76
28.0	100	0.300	61
20.0	100	0.212	20
		0.150	11
		0.063	6

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E66
Project No.	TA7148	Distribution	Sample Depth 6.50m
Engineer	Arch Henderson LLP		Sample Number 014
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND		Specimen Depth 6.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 7

 Sand:
 84

 Gravel:
 9

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing		% passing	
		14.0		98
		10.0		97
		6.3		96
125.0	100	5.0		95
90.0	100	3.35		93
75.0	100	2.00		91
63.0	100	1.18		88
50.0	100	0.600		78
37.5	100	0.425		70
28.0	100	0.300		57
20.0	100	0.212		23
		0.150		12
		0.063		7

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E66
Project No.	TA7148	Distribution	Sample Depth
l			11.60m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
-			11.60m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTATION DATA			
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	80	diameter mm	
		10.0	77	0.0481	28
		6.3	74	0.0243	27
125.0	100	5.0	71	0.0175	24
90.0	100	3.35	68	0.0080	18
75.0	100	2.00	64	0.0043	16
63.0	100	1.18	60	0.0028	13
50.0	100	0.600	54	0.0015	10
37.5	89	0.425	51		
28.0	86	0.300	47		
20.0	82	0.212	43		
		0.150	39		
		0.063	31		

Approved by:	Leeds Laboratory					
Sushil Sharda					Print date	28/11/2013
	Revision No.	3.03		Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E69
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
			004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown SAND		Specimen Depth
•			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 11
Sand: 87
Gravel: 3
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	100
		10.0	98
		6.3	98
125.0	100	5.0	98
90.0	100	3.35	98
75.0	100	2.00	97
63.0	100	1.18	96
50.0	100	0.600	92
37.5	100	0.425	85
28.0	100	0.300	69
20.0	100	0.212	29
		0.150	14
		0.063	11

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E69
Project No.	TA7148	Distribution	Sample Depth
			3.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			800
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to coars	e subangular	Specimen Depth
			3.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 Silt and clay:
 8

 Sand:
 83

 Gravel:
 10

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	96
		10.0	94
		6.3	93
125.0	100	5.0	92
90.0	100	3.35	91
75.0	100	2.00	90
63.0	100	1.18	89
50.0	100	0.600	83
37.5	100	0.425	75
28.0	100	0.300	58
20.0	97	0.212	23
		0.150	11
		0.063	7

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E69
Project No.	TA7148	Distribution	Sample Depth
'			8.10m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown sandy gravelly CLAY.		Specimen Depth
			8.10m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTATION DATA			
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	74	diameter mm	
		10.0	72	0.0470	29
		6.3	68	0.0243	24
125.0	100	5.0	67	0.0174	22
90.0	100	3.35	65	0.0080	17
75.0	100	2.00	62	0.0044	14
63.0	100	1.18	59	0.0037	13
50.0	100	0.600	53	0.0015	9
37.5	92	0.425	50		
28.0	82	0.300	46		
20.0	77	0.212	42		
		0.150	39		
		0.063	31		

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E71
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
			004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to mediu	m angular	Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 86
Gravel: 6
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	97
		10.0	97
		6.3	97
125.0	100	5.0	96
90.0	100	3.35	95
75.0	100	2.00	94
63.0	100	1.18	93
50.0	100	0.600	87
37.5	100	0.425	77
28.0	100	0.300	61
20.0	100	0.212	24
		0.150	11
		0.063	8

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E71
Project No.	TA7148	Distribution	Sample Depth
			4.50m
Engineer	Arch Henderson LLP		Sample Number
			010
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Fait 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND		Specimen Depth
			4.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

Silt and clay: 8
Sand: 84
Gravel: 8
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size m	nm Cumulative
	% passing		% passing
		14.0	100
		10.0	96
		6.3	94
125.0	100	5.0	93
90.0	100	3.35	93
75.0	100	2.00	92
63.0	100	1.18	91
50.0	100	0.600	85
37.5	100	0.425	77
28.0	100	0.300	64
20.0	100	0.212	27
		0.150	12
		0.063	8

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E71
Project No.	TA7148	Distribution	Sample Depth
			9.00m
Engineer	Arch Henderson LLP		Sample Number
			016
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND.		Specimen Depth
			9.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 85
Gravel: 7
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	98
		6.3	96
125.0	100	5.0	95
90.0	100	3.35	94
75.0	100	2.00	93
63.0	100	1.18	91
50.0	100	0.600	84
37.5	100	0.425	77
28.0	100	0.300	61
20.0	100	0.212	25
		0.150	11
		0.063	8

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E72
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
			004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		BS 1377. Part 2. 1990. 9.2	В
Description	Brownish grey SAND		Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 11
Sand: 84
Gravel: 5
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	100
		10.0	99
		6.3	97
125.0	100	5.0	96
90.0	100	3.35	96
75.0	100	2.00	95
63.0	100	1.18	93
50.0	100	0.600	87
37.5	100	0.425	80
28.0	100	0.300	63
20.0	100	0.212	27
		0.150	14
		0.063	11

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID		
	Investigation		E72		
Project No.	TA7148	Distribution	Sample Depth		
,			3.50m		
Engineer	Arch Henderson LLP		Sample Number		
J			008		
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type		
, ,		BS 1377: Part 2: 1990: 9.2	В		
Description	Brown slightly gravelly SAND. Gravel is fine to mediu	m.	Specimen Depth		
•			3.50m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 9

 Sand:
 86

 Gravel:
 6

 Cobbles:
 0

General remarks

	WET SIEV		
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	98
		6.3	97
125.0	100	5.0	96
90.0	100	3.35	95
75.0	100	2.00	94
63.0	100	1.18	93
50.0	100	0.600	86
37.5	100	0.425	78
28.0	100	0.300	60
20.0	100	0.212	25
		0.150	12
		0.063	9

Approved by:

Sushil Sharda

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E75
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	DC 1277, Dowt 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown sandy GRAVEL. Gravel is fine to coarse angula	ar.	Specimen Depth
]			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Silt and clay:	3
Sand:	33
Gravel:	63
Cobbles:	0

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size r	nm Cumulative
	% passing		% passing
		14.0	42
		10.0	39
		6.3	38
125.0	100	5.0	37
90.0	100	3.35	37
75.0	100	2.00	37
63.0	100	1.18	36
50.0	100	0.600	34
37.5	77	0.425	31
28.0	59	0.300	25
20.0	51	0.212	10
		0.150	5
		0.063	3

Approved by:	Leeds Laboratory				
Sushil Sharda				Print date	28/11/2013
	Revision No. 3.0	3	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E75
Project No.	TA7148	Distribution	Sample Depth
ĺ			2.50m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			006
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
' '		BS 1377: Part 2, 1990, 9,2	В
Description	Brown gravelly SAND. Gravel is fine to coarse subro	unded and angular.	Specimen Depth
			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 4
Sand: 43
Gravel: 53
Cobbles: 0

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	77	
		10.0	70	
		6.3	62	
125.0	100	5.0	58	
90.0	100	3.35	54	
75.0	100	2.00	47	
63.0	100	1.18	41	
50.0	100	0.600	32	
37.5	93	0.425	28	
28.0	90	0.300	23	
20.0	84	0.212	16	
		0.150	11	
		0.063	4	

Approved by:	Leeds Laborate	ory				
Sushil Sharda				Print date	28/11/2013	S
	Revision No.	3.03	Issue Date	19/11/2	2012	Pai

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E105
Project No.	TA7148	Distribution	Sample Depth 0.00m
Engineer	Arch Henderson LLP		Sample Number 002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND		Specimen Depth 0.00m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

 Silt and clay:
 2

 Sand:
 83

 Gravel:
 15

 Cobbles:
 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		97
		6.3		95
125.0	100	5.0		94
90.0	100	3.35		92
75.0	100	2.00		85
63.0	100	1.18		71
50.0	100	0.600		52
37.5	100	0.425		47
28.0	100	0.300		41
20.0	100	0.212		21
		0.150		5
		0.063		2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E105
Project No.	TA7148	Distribution	Sample Depth 3.50m
Engineer	Arch Henderson LLP		Sample Number 014
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Greyish brown slightly gravelly SAND		Specimen Depth 3.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 2

 Sand:
 88

 Gravel:
 10

 Cobbles:
 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size r	nm Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	98
125.0	100	5.0	97
90.0	100	3.35	95
75.0	100	2.00	90
63.0	100	1.18	82
50.0	100	0.600	63
37.5	100	0.425	58
28.0	100	0.300	51
20.0	100	0.212	31
		0.150	6
		0.063	2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E105
Project No.	TA7148	Distribution	Sample Depth
•			5.50m
Engineer	Arch Henderson LLP		Sample Number
· ·			022
Employer	Aberdeen Harbour Board	DC 1277, D- + 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown gravelly SAND. Gravel is fine to coarse subrou	nded	Specimen Depth
·			5.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 1
Sand: 73
Gravel: 26
Cobbles: 0

General remarks

	WET SIEV		
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	96
		10.0	94
		6.3	90
125.0	100	5.0	86
90.0	100	3.35	80
75.0	100	2.00	74
63.0	100	1.18	65
50.0	100	0.600	37
37.5	100	0.425	28
28.0	100	0.300	22
20.0	96	0.212	11
		0.150	3
		0.063	1

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E106
Project No.	TA7148	Distribution	Sample Depth
,			0.00m
Engineer	Arch Henderson LLP		Sample Number
J			002
Employer	Aberdeen Harbour Board	DC 1277: D-++ 2: 1000: 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brownish grey slightly gravelly SAND		Specimen Depth
			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 2
Sand: 92
Gravel: 6
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		98
125.0	100	5.0		97
90.0	100	3.35		96
75.0	100	2.00		94
63.0	100	1.18		91
50.0	100	0.600		83
37.5	100	0.425		79
28.0	100	0.300		70
20.0	100	0.212		34
		0.150		5
		0.063		2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E106
Project No.	TA7148	Distribution	Sample Depth
•			2.50m
Engineer	Arch Henderson LLP		Sample Number
J			010
Employer	Aberdeen Harbour Board	DC 1277, Doub 2, 1000, 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to mediu	m subangular.	Specimen Depth
·			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 2

 Sand:
 87

 Gravel:
 11

 Cobbles:
 0

General remarks

WET SIEVE DATA					
Sieve size mm	Cumulative	Sieve size	mm	Cumulative	
	% passing			% passing	
		14.0		100	
		10.0		99	
		6.3		97	
125.0	100	5.0		95	
100.0	100	3.35		92	
75.0	100	2.00		89	
63.0	100	1.18		84	
50.0	100	0.600)	65	
37.5	100	0.425		58	
28.0	100	0.300)	51	
20.0	100	0.212		28	
		0.150)	6	
		0.063		2	

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E106
Project No.	TA7148	Distribution	Sample Depth
			4.50m
Engineer	Arch Henderson LLP		Sample Number
			018
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
' '		BS 1377. Part 2. 1990. 9.2	В
Description	Brown SAND		Specimen Depth
			4.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 2

 Sand:
 93

 Gravel:
 5

 Cobbles:
 0

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	99
125.0	100	5.0	98
90.0	100	3.35	96
75.0	100	2.00	95
63.0	100	1.18	93
50.0	100	0.600	73
37.5	100	0.425	63
28.0	100	0.300	58
20.0	100	0.212	32
		0.150	7
		0.063	2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E107
Project No.	TA7148	Distribution	Sample Depth
•			0.50m
Engineer	Arch Henderson LLP		Sample Number
J			003
Employer	Aberdeen Harbour Board	DC 1277, Dart 2, 1000, 0.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND		Specimen Depth
·			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 3
Sand: 93
Gravel: 5
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	98
		10.0	98
		6.3	97
125.0	100	5.0	97
90.0	100	3.35	96
75.0	100	2.00	95
63.0	100	1.18	93
50.0	100	0.600	83
37.5	100	0.425	73
28.0	100	0.300	61
20.0	100	0.212	24
		0.150	6
		0.063	3

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
·	Investigation		E107
Project No.	TA7148	Distribution	Sample Depth
,			4.50m
Engineer	Arch Henderson LLP		Sample Number
3			011
Employer	Aberdeen Harbour Board	DC 1277, Dart 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Grey SAND.		Specimen Depth
			4.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 8
Sand: 90
Gravel: 3
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		100
100.0	100	3.35		99
75.0	100	2.00		98
63.0	100	1.18		95
50.0	100	0.600		82
37.5	100	0.425		66
28.0	100	0.300		48
20.0	100	0.212		21
		0.150		12
		0.063		8

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E108
Project No.	TA7148	Distribution	Sample Depth
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.00m
Engineer	Arch Henderson LLP		Sample Number
J			001
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
, ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown gravelly SAND.		Specimen Depth
-			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

Silt and clay: 2
Sand: 75
Gravel: 22
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		100
		6.3		100
125.0	100	5.0		99
90.0	100	3.35		95
75.0	100	2.00		78
63.0	100	1.18		60
50.0	100	0.600)	48
37.5	100	0.425	;	45
28.0	100	0.300)	42
20.0	100	0.212	!	26
		0.150)	7
		0.063	}	2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E108
Project No.	TA7148	Distribution	Sample Depth
,			2.00m
Engineer	Arch Henderson LLP		Sample Number
J			800
Employer	Aberdeen Harbour Board	DC 1277, Doub 2, 1000, 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Grey slightly clayey gravelly SAND. Gravel is fine to n	nedium rounded	Specimen Depth
·			2.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 11
Sand: 63
Gravel: 26
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		98
		6.3		95
125.0	100	5.0		92
90.0	100	3.35		88
75.0	100	2.00		74
63.0	100	1.18		62
50.0	100	0.600)	51
37.5	100	0.425		47
28.0	100	0.300)	43
20.0	100	0.212		31
		0.150)	18
		0.063		11

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E108
Project No.	TA7148	Distribution	Sample Depth
,			3.00m
Engineer	Arch Henderson LLP		Sample Number
Ĭ			011
Employer	Aberdeen Harbour Board	DC 1277: Dowt 2: 1000: 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Greyish brown gravelly SAND. Gravel is fine to coar	se well rounded.	Specimen Depth
			3.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

4

General remarks

Sample size was insufficient to be representative of particle size

Silt and clay: Sand: 60 Gravel: 36 Cobbles: 0

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	79	
		10.0	78	
		6.3	75	
125.0	100	5.0	74	
100.0	100	3.35	72	
75.0	100	2.00	64	
63.0	100	1.18	57	
50.0	100	0.600	46	
37.5	95	0.425	42	
28.0	89	0.300	38	
20.0	82	0.212	24	
		0.150	9	
		0.063	4	

Approved by:	Leeds Laborato	ry			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
•	Investigation		E109
Project No.	TA7148	Distribution	Sample Depth
,			0.00m
Engineer	Arch Henderson LLP		Sample Number
J			002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		BS 1377. Part 2. 1990. 9.2	В
Description	Greyish brown SAND		Specimen Depth
-			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 4
Sand: 95
Gravel: 1
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	100	
		10.0	100	
		6.3	100	
125.0	100	5.0	100	
90.0	100	3.35	100	
75.0	100	2.00	99	
63.0	100	1.18	96	
50.0	100	0.600	93	
37.5	100	0.425	91	
28.0	100	0.300	87	
20.0	100	0.212	48	
		0.150	9	
		0.063	4	

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E109
Project No.	TA7148	Distribution	Sample Depth
			2.50m
Engineer	Arch Henderson LLP		Sample Number
			010
Employer	Aberdeen Harbour Board	DC 1277, Dowt 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brwon gravelly SAND. Gravel is fine to coarse round	ed	Specimen Depth
			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

1

Silt and clay: Sand: 61 Gravel: 38 Cobbles: 0

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	84
		10.0	81
		6.3	77
125.0	100	5.0	74
90.0	100	3.35	70
75.0	100	2.00	62
63.0	100	1.18	52
50.0	100	0.600	36
37.5	100	0.425	31
28.0	89	0.300	25
20.0	86	0.212	13
		0.150	4
		0.063	1

Leeds Laboratory Approved by: Stuart Kirk Print date 28/11/2013 Revision No. 3.03 Issue Date 19/11/2012 Part of the Bachy Soletanche Group

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID		
•	Investigation		E109		
Project No.	TA7148	Distribution	Sample Depth		
•			5.00m		
Engineer	Arch Henderson LLP		Sample Number		
· ·			019		
Employer	Aberdeen Harbour Board	DC 1277, D- + 2, 1000, 0.2	Sample type		
' '		BS 1377: Part 2: 1990: 9.2	В		
Description	Brown gravelly SAND. Gravel is fine to medium roun	ded	Specimen Depth		
·			5.00m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 4
Sand: 75
Gravel: 21
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size in	nm Cumulative
	% passing		% passing
		14.0	96
		10.0	91
		6.3	88
125.0	100	5.0	85
90.0	100	3.35	82
75.0	100	2.00	79
63.0	100	1.18	75
50.0	100	0.600	64
37.5	100	0.425	57
28.0	100	0.300	47
20.0	100	0.212	21
		0.150	10
		0.063	4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E110
Project No.	TA7148	Distribution	Sample Depth
,			1.50m
Engineer	Arch Henderson LLP		Sample Number
Ŭ			005
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND with shell fragments		Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 2
Sand: 67
Gravel: 31
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		99
		6.3		98
125.0	100	5.0		95
100.0	100	3.35		90
75.0	100	2.00		69
63.0	100	1.18		53
50.0	100	0.600		41
37.5	100	0.425		37
28.0	100	0.300		32
20.0	100	0.212		18
		0.150		4
		0.063		2

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E111
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	DC 1277, D-+ 2, 1000, 0.2	Sample type
. ,		BS 1377: Part 2: 1990: 9.2	В
Description	Brown slightly gravelly SAND. Gravel is fine to media	ım subangular.	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 6
Sand: 87
Gravel: 7
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		98
		10.0		97
		6.3		95
125.0	100	5.0		95
100.0	100	3.35		94
75.0	100	2.00		93
63.0	100	1.18		91
50.0	100	0.600)	86
37.5	100	0.425		82
28.0	100	0.300)	75
20.0	100	0.212		40
		0.150)	14
		0.063	1	6

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID E111		
Project No.	TA7148	Distribution	Sample Depth 2.50m		
Engineer	Arch Henderson LLP		Sample Number 009		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B		
Description	Brown SAND		Specimen Depth 2.50m Specimen No. 1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 5
Sand: 94
Gravel: 0
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size m	nm Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
100.0	100	3.35	100
75.0	100	2.00	100
63.0	100	1.18	99
50.0	100	0.600	97
37.5	100	0.425	93
28.0	100	0.300	85
20.0	100	0.212	45
		0.150	14
		0.063	5

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID	
	Investigation	D:-4-:1	E112	
Project No.	TA7148	Distribution	Sample Depth	
,			0.00m	
Engineer	Arch Henderson LLP		Sample Number	
· ·			001	
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type	
, ,		BS 1377: Part 2: 1990: 9.2	В	
Description	Brown gravelly SAND. Gravel is fine to medium.		Specimen Depth	
-			0.00m	
			Specimen No.	
			1	

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 5
Sand: 65
Gravel: 30
Cobbles: 0

General remarks

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		100
		10.0		99
		6.3		97
125.0	100	5.0		94
100.0	100	3.35		86
75.0	100	2.00		71
63.0	100	1.18		57
50.0	100	0.600)	43
37.5	100	0.425	;	39
28.0	100	0.300)	35
20.0	100	0.212		22
		0.150)	10
		0.063	1	5

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name Project No.	Bay of Nigg Harbour Development Ground Investigation TA7148 Particle Size Distribution		Hole ID E112 Sample Depth 2.00m	
Engineer	Arch Henderson LLP		Sample Number 006	
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B	
Description	Brown SAND		Specimen Depth 2.00m Specimen No.	
			1	
100				
90				

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

Silt and clay: 4
Sand: 96
Gravel: 0
Cobbles: 0

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	100
		10.0	100
		6.3	100
125.0	100	5.0	100
90.0	100	3.35	100
75.0	100	2.00	100
63.0	100	1.18	99
50.0	100	0.600	96
37.5	100	0.425	93
28.0	100	0.300	85
20.0	100	0.212	47
		0.150	14
		0.063	4

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID E115
Project No.	Investigation TA7148	Distribution	Sample Depth 0.50m
Engineer	Arch Henderson LLP		Sample Number 003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly gravelly SAND. Gravel is fine to coars	se angular. (Diesel odour)	Specimen Depth 0.50m
			Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

PARTICLE SIZE % Genera Sample

0

Silt and clay: 5
Sand: 74
Gravel: 21

Cobbles:

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	80
		10.0	80
		6.3	80
125.0	100	5.0	80
100.0	100	3.35	80
75.0	100	2.00	79
63.0	100	1.18	78
50.0	100	0.600	75
37.5	100	0.425	72
28.0	80	0.300	65
20.0	80	0.212	32
		0.150	12
		0.063	5

Approved by:	Leeds Labora	atory				
Stuart Kirk				Print date	28/11/2013	
	Revision No.	3.03	Issue Date	19/11/	2012	

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		E116
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			002
Employer	Aberdeen Harbour Board	DC 1277, Do at 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown gravelly SAND. Gravel is fine to coarse angula	r.	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General rei

PARTICLE SIZE %

Silt and clay: 7
Sand: 58
Gravel: 27
Cobbles: 8

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	75
		10.0	74
		6.3	71
125.0	100	5.0	70
100.0	100	3.35	68
75.0	100	2.00	64
63.0	92	1.18	60
50.0	91	0.600	52
37.5	83	0.425	47
28.0	82	0.300	39
20.0	79	0.212	23
		0.150	9
		0.063	6

	0.00	3 0		
Approved by:	Leeds Laboratory			
Sushil Sharda		Print date	28/11/2013	SOIL ENGINEERING
	Revision No. 3.03	Issue Date 19/11/2	012	Part of the Bachy Soletanche Gro

Project Name	Bay of Nigg Harbour Development Ground	of Nigg Harbour Development Ground Particle Size	
	Investigation		GS11
Project No.	TA7148	Distribution	Sample Depth
l			6.80m
Engineer	Arch Henderson LLP		Sample Number
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type C
Description	Brown gravelly sandy CLAY. Gravel is fine to coarse	subangular	Specimen Depth
-			6.80m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
CLAY		SILT		SAND		GRAVEL			COBBLES	

 PARTICLE SIZE
 %

 Clay:
 10

 Silt:
 23

 Sand:
 40

 Gravel:
 27

 Cobbles:
 0

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	87	diameter mm	
		10.0	84	0.0497	32
		6.3	81	0.0254	27
125.0	100	5.0	79	0.0181	24
100.0	100	3.35	77	0.0083	19
75.0	100	2.00	74	0.0045	14
63.0	100	1.18	69	0.0039	13
50.0	100	0.600	61	0.0010	9
37.5	100	0.425	57		
28.0	95	0.300	52		
20.0	92	0.212	47		
		0.150	43		
		0.063	34		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP01
Project No.	TA7148	Distribution	Sample Depth
			0.10m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
' ´		BS 1377: Part 2, 1990, 9,2	В
Description	Brown sandy GRAVEL with cobbles. Gravel is fine to	coarse rounded and subangular.	Specimen Depth
			0.10m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

20

General remarks

Silt and clay: 2
Sand: 11

Sand: 11 Gravel: 67

Cobbles:

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	36
		10.0	28
		6.3	22
125.0	100	5.0	19
90.0	100	3.35	17
75.0	100	2.00	14
63.0	81	1.18	12
50.0	77	0.600	10
37.5	70	0.425	10
28.0	62	0.300	9
20.0	47	0.212	6
		0.150	3
		0.063	2

Approved by:	Leeds Labora	atory					
Stuart Kirk			<u>.</u>	Print date	28/11/2013		S
	Revision No.	3.03	Issue Date	19/11/	′2012	1	Par

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	Distribution	TP02
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
CLAY		SILT		SAND		GRAVEL			COBBLES	

 PARTICLE SIZE
 %

 Clay:
 6

 Silt:
 18

 Sand:
 35

 Gravel:
 40

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTAT	ION DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	75	diameter mm	
		10.0	71	0.0510	23
		6.3	68	0.0258	20
125.0	100	5.0	66	0.0184	18
90.0	100	3.35	64	0.0084	13
75.0	100	2.00	60	0.0048	10
63.0	100	1.18	56	0.0041	8
50.0	100	0.600	49	0.0010	6
37.5	96	0.425	46		
28.0	94	0.300	42		
20.0	84	0.212	38		
		0.150	33		
		0.063	25		

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	Distribution	TP03
Project No.	TA7148	Distribution	Sample Depth
			0.00m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	DC 1277, Dowt 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown gravelly SAND. Gravel is fine to coarse with o	cobbles.	Specimen Depth
			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
		SILT		SAND		GRAVEL			COBBLES	

General remarks Sample size was insufficient to be representative of particle size

Silt and clay: 12
Sand: 61
Gravel: 16

Gravel: 16 Cobbles: 11

	WET SIEV			
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	80	
		10.0	78	
		6.3	76	
125.0	100	5.0	75	
90.0	89	3.35	74	
75.0	89	2.00	73	
63.0	89	1.18	70	
50.0	89	0.600	56	
37.5	88	0.425	45	
28.0	85	0.300	34	
20.0	84	0.212	24	
		0.150	18	
		0.063	12	
avarrad bru	مام المام ما	a rata ri		

 Approved by:
 Leeds Laboratory

 Sushil Sharda
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		TP04
Project No.	TA7148	Distribution	Sample Depth
'			2.00m
Engineer	Arch Henderson LLP		Sample Number
			005
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Orangish brown slightly gravelly sandy CLAY. Grave	l is fine to coarse.	Specimen Depth
			2.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 7

 Silt:
 21

 Sand:
 43

 Gravel:
 29

 Cobbles:
 0

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	SEDIMENTATION DATA			
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	81	diameter mm	
		10.0	79	0.0510	28
		6.3	77	0.0260	22
125.0	100	5.0	76	0.0185	21
90.0	100	3.35	74	0.0084	15
75.0	100	2.00	71	0.0049	12
63.0	100	1.18	68	0.0042	10
50.0	100	0.600	62	0.0010	6
37.5	97	0.425	57		
28.0	92	0.300	51		
20.0	87	0.212	46		
		0.150	40		
		0.063	29		

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP05		
Project No.	TA7148	Distribution	Sample Depth 0.50m		
Engineer	Arch Henderson LLP		Sample Number 003		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B		
Description	Brown slightly sandy GRAVEL with occasional cobbl	es.	Specimen Depth 0.50m Specimen No. 2		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		G	RAVE	COBBLES

General remarks #N/A

Silt and clay: 0
Sand: 6
Gravel: 65
Cobbles: 29

Revision No.

3.03

Sushil Sharda

	WET SIEV			
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	37	
		10.0	32	
		6.3	26	
125.0	100	5.0	19	
90.0	72	3.35	11	
75.0	72	2.00	7	
63.0	72	1.18	5	
50.0	69	0.600	4	
37.5	64	0.425	4	
28.0	53	0.300	4	
20.0	41	0.212	2	
		0.150	1	
		0.063	1	
proved by:	Leeds Lab	oratory		

Print date

19/11/2012

Issue Date

28/11/2013

SOIL ENGINEERING

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	Dietribution	TP06
Project No.	TA7148	Distribution	Sample Depth
Í			2.50m
Engineer	Arch Henderson LLP		Sample Number
			006
Employer	Aberdeen Harbour Board	DC 1277: Dovt 2: 1000: 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown sandy fine to coarse GRAVEL with occasiona	l cobbles.	Specimen Depth
			2.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium		COBBLES
		SILT		SAND			GRAVEL			COBBLES

24

Silt and clay: 1 Sand: 26 Gravel: 49 Cobbles:

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	35
		10.0	35
		6.3	32
125.0	100	5.0	31
90.0	100	3.35	30
75.0	86	2.00	27
63.0	79	1.18	22
50.0	66	0.600	10
37.5	53	0.425	5
28.0	46	0.300	3
20.0	36	0.212	2
		0.150	2
		0.063	1

Approved by:	Leeds Labora	atory				
Stuart Kirk				Print date	28/11/2013	SOIL 6
	Revision No.	3.03	Issue Date	19/11/	2012	Part of the

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP07
Project No.	TA7148	Distribution	Sample Depth
Engineer	Arch Henderson LLP		1.00m Sample Number 002
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly sandy GRAVEL. Gravel is fine to coars	se rounded with occasional cobbles.	Specimen Depth 1.00m Specimen No. 1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
CLAY		SILT			SAND		G	RAVE	L	COBBLES

Silt and clay: 1
Sand: 15
Gravel: 82
Cobbles: 2

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size m	m Cumulative
	% passing		% passing
		14.0	65
		10.0	53
		6.3	38
125.0	100	5.0	30
90.0	100	3.35	22
75.0	100	2.00	17
63.0	98	1.18	12
50.0	98	0.600	8
37.5	92	0.425	7
28.0	86	0.300	5
20.0	81	0.212	4
		0.150	2
		0.063	1

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP08
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Dark brown sandy fine to coarse well rounded to rou	unded GRAVEL with cobbles	Specimen Depth
·			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Silt and clay: 3 Sand: 18 Gravel: 58 Cobbles: 21 Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size	mm	Cumulative
	% passing			% passing
		14.0		40
		10.0		34
		6.3		29
125.0	100	5.0		27
90.0	100	3.35		24
75.0	95	2.00		21
63.0	81	1.18		17
50.0	73	0.600		11
37.5	62	0.425		9
28.0	57	0.300		8
20.0	51	0.212		6
		0.150		5
		0.063		3

Approved by: Leeds Laboratory Stuart Kirk Print date 28/11/2013 Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP09
Project No.	TA7148	Distribution	Sample Depth
			0.60m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2	Sample type
' '		BS 1377: Part 2: 1990: 9.2	В
Description	Brown sandy fine to coarse GRAVEL with cobbles.		Specimen Depth
·			0.60m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

PARTICLE SIZE % Sampl

3 21

66

11

Sand: Gravel: Cobbles:

Silt and clay:

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	57
		10.0	46
		6.3	37
125.0	100	5.0	33
90.0	100	3.35	29
75.0	100	2.00	23
63.0	89	1.18	17
50.0	89	0.600	9
37.5	82	0.425	7
28.0	74	0.300	6
20.0	67	0.212	5
		0.150	4
		0.063	3

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name		Particle Size	Hole ID
Project No.	Investigation TA7148	Distribution	TP10 Sample Depth
1.10,000.110			0.50m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B
Description	Brown slightly sandy GRAVEL. Gravel is medium to	coarse subangular with cobbles.	Specimen Depth
-			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

Silt and clay: 2 Sand: 26 62

Gravel: Cobbles: 10 General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	55
		10.0	49
		6.3	41
125.0	100	5.0	37
90.0	100	3.35	33
75.0	100	2.00	28
63.0	92	1.18	22
50.0	84	0.600	12
37.5	78	0.425	8
28.0	72	0.300	6
20.0	67	0.212	5
		0.150	4
		0.063	2

Approved by:	Leeds Labora	atory				
Sushil Sharda			·	Print date	28/11/2013	sc
	Revision No.	3.03	Issue	e Date 19/11/	′2012	Part

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		TP11
Project No.	TA7148	Distribution	Sample Depth
'			1.50m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
' '		BS 1377. Part 2. 1990. 9.2	В
Description	Brown sandy GRAVEL with cobbles.		Specimen Depth
			1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

General remarks
Sample size was insufficient to be representative of particle size

Silt and clay: 1
Sand: 27
Gravel: 57

Cobbles:

1 27

15

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	57	
		10.0	47	
		6.3	39	
125.0	100	5.0	35	
90.0	100	3.35	32	
75.0	86	2.00	28	
63.0	86	1.18	23	
50.0	80	0.600	12	
37.5	76	0.425	8	
28.0	69	0.300	6	
20.0	65	0.212	4	
		0.150	2	
		0.063	1	

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP11
Project No.	TA7148	Distribution	Sample Depth
			2.80m
Engineer	Arch Henderson LLP		Sample Number
			007
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
		B3 1377. Part 2. 1990. 9.2, 9.3	В
Description	Brown sandy gravelly CLAY. Gravel is fine to coarse	angular.	Specimen Depth
-			2.80m
			Specimen No.
			2

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 3

 Silt:
 21

 Sand:
 38

 Gravel:
 37

 Cobbles:
 0

General remarks

Particle density: 265Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	77	diameter mm	
		10.0	74	0.0040	4
		6.3	71	0.0020	3
125.0	100	5.0	69	0.0014	3
90.0	100	3.35	66	0.0007	2
75.0	100	2.00	63	0.0004	2
63.0	100	1.18	58	0.0003	2
50.0	100	0.600	51	0.0001	1
37.5	95	0.425	48		
28.0	90	0.300	43		
20.0	82	0.212	39		
		0.150	35		
		0.063	26		

Approved by:	Leeds Laborato	ry			
Stuart Kirk				Print date	28/11/2013
	Revision No	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP12
Project No.	TA7148	Distribution	Sample Depth
			1.50m
Engineer	Arch Henderson LLP		Sample Number
			004
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	MADE GROUND: Dark brown slightly clayey sand ar	nd gravel with some concrete and	Specimen Depth
	tarmac fragments. Gravel is angular.		1.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 11

 Sand:
 44

 Gravel:
 44

 Cobbles:
 1

T	
C	remarks
ICaenera I	ı remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mr	n Cumulative
	% passing		% passing
		14.0	78
		10.0	72
		6.3	67
125.0	100	5.0	64
90.0	100	3.35	60
75.0	100	2.00	55
63.0	100	1.18	49
50.0	95	0.600	39
37.5	90	0.425	33
28.0	87	0.300	27
20.0	83	0.212	21
		0.150	17
		0.063	11

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP13		
Project No.	TA7148	Distribution	Sample Depth		
			1.50m		
Engineer	Arch Henderson LLP		Sample Number		
			003		
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type		
		B3 1377. Part 2. 1990. 9.2	В		
Description	Brown sandy GRAVEL with occasional cobbles. Grav	vel is fine to coarse subangular to	Specimen Depth		
	angular.		1.50m		
			Specimen No.		
			1		

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

PARTICLE SIZE % Sample size

56

6

Silt and clay: 3
Sand: 36

Gravel: Cobbles: General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	'E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	63
		10.0	58
		6.3	51
125.0	100	5.0	49
90.0	100	3.35	45
75.0	96	2.00	39
63.0	96	1.18	30
50.0	89	0.600	18
37.5	78	0.425	14
28.0	72	0.300	10
20.0	68	0.212	8
		0.150	6
		0.063	3

Approved by:	Leeds Laborato	ry			
Sushil Sharda				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	2012

Project Name	Bay of Nigg Harbour Development Ground	Development Ground Particle Size				
Project No.	Investigation TA7148	Distribution	TP14 Sample Depth			
			0.50m			
Engineer	Arch Henderson LLP		Sample Number 002			
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type B			
Description	MADE GROUND: Brown gravelly sand with occasion	nal cobbles, concrete and tar	Specimen Depth			
	fragments.		0.50m			
			Specimen No.			
			1			

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAT		SILT		5	SAND		G	RAVE	COBBLES

Silt and clay: 11
Sand: 37
Gravel: 48
Cobbles: 4

General remarks

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size n	nm Cumulative
	% passing		% passing
		14.0	73
		10.0	67
		6.3	59
125.0	100	5.0	56
90.0	100	3.35	52
75.0	96	2.00	47
63.0	96	1.18	42
50.0	94	0.600	33
37.5	90	0.425	29
28.0	87	0.300	24
20.0	81	0.212	20
		0.150	17
		0.063	11

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 3.03 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP15
Project No.	TA7148	Distribution	Sample Depth
			1.80m
Engineer	Arch Henderson LLP		Sample Number
			003
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
		B3 1377. Part 2. 1990. 9.2	В
Description	Brown sandy fine to coarse subrounded GRAVEL wi	ith some cobbles	Specimen Depth
			1.80m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

 Silt and clay:
 3

 Sand:
 22

 Gravel:
 64

 Cobbles:
 11

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA	
Sieve size mm	Cumulative	Sieve size mm	Cumulative
	% passing		% passing
		14.0	45
		10.0	40
		6.3	35
125.0	100	5.0	32
90.0	89	3.35	29
75.0	89	2.00	25
63.0	89	1.18	20
50.0	89	0.600	15
37.5	76	0.425	13
28.0	66	0.300	11
20.0	55	0.212	8
		0.150	6
		0.063	3

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation		TP16
Project No.	TA7148	Distribution	Sample Depth
'			0.00m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2, 9.5	Sample type
' '		BS 1377. Part 2. 1990. 9.2, 9.5	В
Description	Brown gravelly sandy CLAY with occasional cobbles	. Gravel is fine to coarse subangular	Specimen Depth
			0.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

 PARTICLE SIZE
 %

 Clay:
 6

 Silt:
 19

 Sand:
 39

 Gravel:
 32

 Cobbles:
 4

General remarks

Particle density: 2.65Mg/m³ Assumed

	WET SIEV	E DATA		SEDIMENTAT	TON DATA
Sieve size mm	Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
	% passing		% passing	particle	% passing
		14.0	79	diameter mm	
		10.0	77	0.0507	24
		6.3	74	0.0258	20
125.0	100	5.0	72	0.0183	19
90.0	100	3.35	69	0.0083	15
75.0	100	2.00	64	0.0053	11
63.0	96	1.18	58	0.0045	7
50.0	95	0.600	50	0.0010	6
37.5	91	0.425	47		
28.0	87	0.300	43		
20.0	84	0.212	38		
		0.150	34		
		0.063	26		

Approved by:	Leeds Laborato	ory			
Stuart Kirk				Print date	28/11/2013
	Revision No.	3.03	Issue Date	19/11/2	012

Project Name	Bay of Nigg Harbour Development Ground Investigation	Particle Size	Hole ID TP17
Project No.	TA7148	Distribution	Sample Depth
'			3.00m
Engineer	Arch Henderson LLP		Sample Number
			006
Employer	Aberdeen Harbour Board	BS 1377: Part 2: 1990: 9.2	Sample type
. ,		B3 1377. Part 2. 1990. 9.2	В
Description	Brown slightly gravelly SAND with occasional cobble	s.	Specimen Depth
			3.00m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT		5	SAND		Ü	RAVE	COBBLES

10 46

11

33

Gravel: Cobbles:

Silt and clay:

Sand:

General remarks

Sample size was insufficient to be representative of particle size

	WET SIEV	E DATA		
Sieve size mm	Cumulative	Sieve size mm	Cumulative	
	% passing		% passing	
		14.0	64	
		10.0	63	
		6.3	62	
125.0	100	5.0	61	
90.0	100	3.35	60	
75.0	67	2.00	56	
63.0	67	1.18	51	
50.0	67	0.600	42	
37.5	67	0.425	37	
28.0	65	0.300	31	
20.0	64	0.212	25	
		0.150	18	
		0.063	10	

Approved by:

Sushil Sharda

Revision No. 3.03

Leeds Laboratory

Print date 28/11/2013

Revision No. 1.03

Revision No. 2.03

Project Name	Bay of Nigg Harbour Development Ground	Particle Size	Hole ID
	Investigation	D:-4-:14:	TP18
Project No.	TA7148	Distribution	Sample Depth
			0.50m
Engineer	Arch Henderson LLP		Sample Number
			001
Employer	Aberdeen Harbour Board	DC 1277, David 2, 1000, 0.2, 0.5	Sample type
' '		BS 1377: Part 2: 1990: 9.2, 9.5	В
Description	Brownish grey slightly clayey sandy fine to coarse G	RAVEL	Specimen Depth
			0.50m
			Specimen No.
			1

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	COBBLES
CLAY		SILT			SAND		G	RAVE	COBBLES

General remarks

Sample size was insufficient to be representative of particle size

Particle density: 2.65Mg/m³ Assumed

WET SIEV	SEDIMENTAT	ION DATA		
Cumulative	Sieve size mm	Cumulative	Equivalent	Cumulative
% passing		% passing	particle	% passing
	14.0	79	diameter mm	
	10.0	74	0.0513	21
	6.3	67	0.0261	17
100	5.0	64	0.0186	15
100	3.35	57	0.0098	10
100	2.00	47	0.0060	8
100	1.18	39	0.0033	4
97	0.600	35	0.0016	2
92	0.425	33		
88	0.300	31		
85	0.212	29		
	0.150	26		
	0.063	22		
	Cumulative % passing 100 100 100 100 97 92 88	WET SIEVE DATA Cumulative Sieve size mm % passing 14.0 10.0 6.3 100 5.0 100 3.35 100 2.00 100 1.18 97 0.600 92 0.425 88 0.300 85 0.212 0.150	WET SIEVE DATA Cumulative % passing Sieve size mm Cumulative % passing 14.0 79 10.0 74 6.3 67 100 5.0 64 100 3.35 57 100 2.00 47 100 1.18 39 97 0.600 35 92 0.425 33 88 0.300 31 85 0.212 29 0.150 26	WET SIEVE DATA SEDIMENTAT Cumulative % passing Sieve size mm Cumulative % passing Equivalent particle 14.0 79 diameter mm 10.0 74 0.0513 6.3 67 0.0261 100 5.0 64 0.0186 100 3.35 57 0.0098 100 2.00 47 0.0060 100 1.18 39 0.0033 97 0.600 35 0.0016 92 0.425 33 88 0.300 31 85 0.212 29 0.150 26

 Approved by:
 Leeds Laboratory

 Stuart Kirk
 Print date 28/11/2013

 Revision No. 3.03
 Issue Date 19/11/2012

Leeds

Head Office & Geotechnical Laboratory Parkside Lane, Dewsbury Road, Leeds LS11 5SX T: 0113 2711111

E: enquiries@soil-engineering.co.uk

Camberley

Southern Office Foundation Court, Riverside Way, Watchmoor Park, Camberley GU15 3RG T: 01276 674940 E: southern@soil-engineering.co.uk

Motherwell

Scottish Office, Unit 22, Biggar Road Industrial Estate, Cleland, Motherwell ML1 5PB T: 01698 863 400 E: scotland@soil-engineering.co.uk

