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Introduction 
Between May 2021 and April 2023, 24 digital aerial surveys were flown monthly at the proposed 
Caledonia Offshore Wind Farm (OWF) wherein transects included the site plus a 4 km buffer. NatureScot 

recommends that the MRSea modelling framework (Mackenzie et al., 2013) is used for estimating 

densities of birds for baseline characterisation (NatureScot, 2023).  

 
This methods statement lays out the proposed methodology for applying MRSea to the Caledonia OWF 

as well as supplementary analyses to support the application including:  

- An exploratory analysis to justify which species are able to be modelled 

- Adjustments for density estimates based on availability bias and animals unable to be ID’d to 
species level 

- A hotspot analysis based on modelled species 

- A displacement analysis based on a distance to turbine parameter 

- Scenarios of displacement using a Random Forests model 

Exploratory Analysis and Data Preparation  
To ensure adherence to the most recent NatureScot recommendations (NatureScot, 2023), we will first 

conduct an exploratory analysis to identify which species have enough data for model generation. For 

example, a tight cluster of 30 birds in one location would not be appropriate for modeling, but it's 

possible that several small clusters of 1–2 birds adding up to 30 individuals may be appropriate. Such an 

analysis would involve looking at both the quantity of observations available as well as the distribution. 

We will generate a table of counts for all seabird species recorded by survey and receptor behaviour (i.e., 

flying, sitting, and all birds). Using the raw counts, any species/survey/behaviour combinations with < 20 

observations will be immediately discounted from modelling. Any species/survey/behaviour combinations 

with 21 – 30 observations will be mapped, and a decision will be made on the appropriateness of 

inclusion for modelling. This decision will likely have levels of subjectiveness associated with it based on 

past experience with similar data and this decision-making process will be laid out clearly during the 

reporting phase.   

This analysis will also help identify the most feasible temporal scales for modelling (i.e., by survey, or 
NatureScot and/or Furness (2015) seasons). This will be done by examining the list of 

species/survey/behaviour combinations that are able to be modelled. Species that are absent or nearly 

absent from the site during (for example) the non-breeding season would not be able to be modelled at 

that temporal scale. To further clarify, if, for example, a species’ non-breeding season was from Sept - 
Apr, and we were only able to model Sept and Oct, then we would present those as survey-level models 

and not as a full non-breeding season model.  We anticipate at this stage; we would also identify which 

environmental covariates from Table 1 are suitable for modeling. For example,  the key environmental 

parameters that can be used in this analysis might be expected to be different between flying and sitting 
birds because the covariates that would impact their density and distributions may be different. For 

example, we might expect wind speed and direction to impact flying birds, but not necessarily birds 

sitting on the water, and we will explore if a source of µ and v wind components can be acquired at the 

appropriate spatio-temporal scale for modelling flying birds. This exploration of other environmental 
covariates could improve density estimates for flying birds which is important because of the need for 

accurate density estimates of flying birds for collision risk modelling.  
 

Effort and observation data from 24 monthly digital video aerial surveys conducted by APEM between 

May 2021 and April 2023 will be used for spatial modelling of species distribution and abundance. The 

Marine Renewables Strategic Environmental Assessment (MRSea) package in R (Scott-Hayward et al., 

2013) will be used for density surface modeling/abundance estimation for up to 13 key species within 

the Caledonia OWF study area. The likely candidate species for consideration of inclusion are guillemot, 
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 kittiwake, fulmar, puffin, razorbill, gannet, great black-backed gull, herring gull, great skua, Manx 

shearwater, common gull, Arctic tern and common tern.   

No-ID Apportioning 
Birds not identified to species-level will be apportioned using a proportional technique based on species 

groupings provided by the digital aerial survey provider. For example, if there is a species grouping called 

“large auks” which is made up of possible Guillemots or Razorbill, then the proportional species 

composition will be applied within spatial bins that will be used for modelling. In other words, if 80 

Guillemot and 20 Razorbill were identified, and a spatial bin/cluster had 10 unidentified large auks, then 

8 Guillemot and 2 Razorbills would be apportioned into that bin. In the case that a proportional approach 

leads to fractional values (for example, if the split was 80/20 for Guillemot to Razorbill, and there were 7 

unidentified large auks in a cluster, this would equate to 5.6 Guillemot and 1.4 Razorbill. This would be 

rounded to 6 Guillemot and 1 Razorbill). The apportioned data would be used in the modelling process.  

Proportional no-id apportioning will be attempted first at a transect level (which will ensure a more 

accurate proportional representation of non-identified species), and if that is unable to be performed, 

then it will be done at the survey level. In cases where no or low numbers of observations identified to 

species level versus the species grouping, we will use the average of the proportions from the months 

within the associated NatureScot season. If the within year seasonal average is not possible to be used, 

we will use the proportional average from the associated season across both years of surveys, and if that 

is not possible, we will use the proportional average across all surveys.  

Availability Bias 
 

Diving birds, such as guillemots and razorbills, spend time foraging beneath the water surface. As a 

result, given the snapshot nature of airborne survey methodologies, a significant number of birds might 

go undiscovered. Thus, an “availability bias” adjustment must be made.  

Based on the correction factors suggested by Thaxter et al. (2010) for guillemot, razorbill, and by 

Spencer (2012) for puffin, the adjustments will be applied to each relevant auk species. The total 

number of 'unavailable' birds are therefore calculated (23.75% of guillemots, 17.39% of razorbills, and 

16.50% of puffins) and added to the monthly sitting bird totals. 

 

Data preparation for modelling 
We will use the Complex Regional Spatial Smoother (CReSS) spatial modelling method with Spatially 

Adaptive Local Smoothing Algorithm (SALSA) based model selection (Scott-Hayward et al., 2013). The 

models will fit the relationship between the observations (count response variable) and the environment 

(covariates) at each location, allowing for estimation and prediction of the animal density across the 

study region.   

For each survey, counts of individuals of each species will be assigned to the midpoint of the respective 

aerial image footprint to produce the input data for each species-specific model. This generates a count 

variable (i.e., the dependent variable) for each footprint, and the footprint area thus becomes the offset 

for the model to ensure predicted outputs represent density. Covariate values will be assigned to the 

midpoint of each segment such that the resulting model input data frame will include survey-specific 

species counts and covariate values for each transect segment.   
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Model Inference  
Count data from the aerial transect surveys will be correlated to consecutive measurements through 

space and time. Furthermore, due to environmental and prey conditions, the number of animals in any 

given area is more likely to be similar for points closer temporally, than those more distant in time. 

Models fitted to (relative) abundance data attempt to explain animal abundance at any location, but the 

information (covariate data) that describes why animals are found in high/low numbers at specific 

locations is frequently missing from the model, leaving patterns in the model's noise component (model 

residuals). These patterns are also expected to be similar along the track lines. This (positive) correlation 

in model residuals along the track lines violates a critical assumption for standard statistical models that 

require an independent set of residuals (such as Generalised Linear Models (GLMs) / Generalised 

Additive Models (GAMs)). Ignoring this violation can invalidate all model-based precision estimates (e.g., 

standard errors, confidence intervals, and p-values), resulting in overly complex models that can suggest 

irrelevant environmental covariates are statistically significant.  

Transect data are frequently prone to such spatiotemporal autocorrelation, which violates a core 

assumption of GLMs/GAMs. Transect ID will thus be included as a blocking factor in the analysis to 

control for autocorrelation in the model. This informs the model that correlation within a transect is 

accepted and that transect independence is assumed.   

A one-way Analysis of Variance (ANOVA) will be performed to determine the statistical significance of 

covariates in the predictive model. Partial dependence plots will be used to investigate covariates that 

have significant relationships with the data in the model. Further model inference can be made by 

examining the cumulative residual plots output by the models.  

Selection of Model Covariates  
A full model with all appropriate terms (e.g., as identified from Table 1) will first be fitted for each 

species without a smooth term for the spatial component. This allows the potential relationships 

between covariates and species observations to be initially unhindered by spatial information. We will 

then use Variance Inflation Factors to select terms from the initial model fitting process that should be 

removed due to collinearity based on a threshold value of 2.   

The flexibility of the smoother-related term for each model term will then be chosen, followed by the 

model selection for the two-dimensional smoother term for the spatial component. Segment area will 

then be incorporated into the model as an offset term because the transects’ division may have resulted 

in slightly different dimensions. Each model will be permitted to retain the covariates as a smooth or 

linear term (or omitted completely). SALSA will be used to fit a smooth function for each covariate. 

Model selection for both the covariates and spatially based smoothers will be conducted by an objective 

fit measure like a Bayesian Information Criterion (BIC) for quasi-likelihood (QL) models. Models that 

permit over-dispersion for Poisson-style counts are QL based, necessitating QL-based fit scores.   

Knot Placement and Basis Function Details  
The number of “knots” used for the model and the effective range of each knot (the spatial extent to 

which each knot influences the fitted surface) are both key factors in determining the model flexibility for 

the spatial surfaces in this setting. The candidate models will be chosen from a range of models that vary 

in the number of knots provided and the effective range (R-value) of each knot because the optimal 

choices for both these values are always unknown.   

The starting knot positions on the spatial surface are chosen to maximize coverage across the spatial 

area (via a space filling algorithm; John et al., 1995), and these positions are allowed to move according 

to the SALSA (Walker et al., 2011) model selection technique. The local exponential basis function 

((exp(-d/r2)) with d=Euclidean distance) will be used, allowing for varied R-values over the surface.  
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 A variable number of knots (2-40 depending on data sparsity; the number is denoted by the degrees of 

freedom in the model) will be used for the candidate models, and an objective fit criterion will be 

employed to select the best model(s). In effect, the position of the knot placement, and to a lesser 

extent the number of knots, reflect the complexities of the spatial relationship between bird abundance 

and the covariates chosen for the study.   

Knot locations will be identified separately for each survey to accommodate for differences in survey 

effort and bird distributions across surveys.  

  

Table 1. Candidate covariates to be tested in the MRSea analyses.   

  

Model covariate  Definition  Source  

Survey ID  Unique ID for each survey  APEM Aerial Surveying  

Seabed sediment type 
(factor)  

Marine habitat 
classification of seabed 

substrate for Britain and 

Ireland  

JNCC UK SeaMap 2018 Version 2 
(https://hub.jncc.gov.uk/assets/202874e5 -0446-

4ba7-8323-24462077561e)  

Bathymetry   Depth below sea surface 

(m)  
GEBCO Gridded Bathymetry Data 2019  

Bathymetric slope   Change in bathymetry 

between pixels  
GEBCO Gridded Bathymetry Data 2019  

Bathymetric aspect   Direction bathymetric 
slope faces  

GEBCO Gridded Bathymetry Data 2019  

SST   Interpolated sea surface 

temperature on hourly 

0.01 degree grid  

PODAAC   (https://podaac.jpl.nasa.gov/dataset/MU 

R-JPL-L4-GLOB-v4.1)  

SST gradient   Change in SST between 

pixels/ slope of SST  
PODAAC (https://podaac.jpl.nasa.gov/dataset/MU 

R-JPL-L4-GLOB-v4.1)  
Sandeel predicted 
density   

Probability of presence of 
buried sandeel in the 

North Sea study region.  

Marine Scotland 
(https://spatialdata.gov.scot/geonetwork/ 

srv/eng/catalog.search#/metadata/Marin 

e_Scotland_FishDAC_12377)  
Sandeel probability of 

presence   
Predicted density of buried 

sandeel in the North Sea 

study region (number per 
m2)  

Marine Scotland 

(https://spatialdata.gov.scot/geonetwork/ 

srv/eng/catalog.search#/metadata/Marin 
e_Scotland_FishDAC_12377)  

Distance to coast  Distance to coast (m)  NA  

Distance to colony Distance to colony (m) JNCC Seabird Monitoring database 

Segment area   Area of each segment 

within a transect (m2)  
APEM Aerial Surveying  

Spatial component   Northing and Easting GIS (UTMs)  

Distance to wind turbine  Distance to the nearest 

operational turbine (m)  
Moray East Wind Farm, Beatrice Wind Farm  

Wind Vectors  µ and v components   NCEP global forecasting system 
https://www.ncei.noaa.gov/products/weather-

climate-models/global-forecast  
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Geo-Referenced Results  
The species-specific fitted surfaces will be generated by making predictions to a grid using the final 

model at a 1km x 1km resolution. The grid is a series of regular points spaced at 1km resolution across 

the surface of the area of interest. These regular points are associated with the same environmental 

covariates as those used in the modelling process. This allows the trained MRSea model to make 

predictions of animal density on each of those points. Those data can then be visualized or interpolated 

to create surfaces. These grids will be projected as the Universal Transverse Mercator (Zone 30) 

projection.   

To measure uncertainty spatially and in the population estimates, the model will be bootstrapped 500 

times (wherein random subsets of the modelled coefficients are drawn from a multivariate normal 

distribution and predictions are made for each grid cell, 500 times). From this we will calculate the mean 

predicted density, the upper and lower 95% confidence limits, and the coefficient of variation (CV; as 

defined by the ratio of the standard deviation to the mean). These measures of uncertainty will be 

visualized and presented in the final report.   

Abundance Estimates from MRSea Density Surfaces  
Abundance estimates will be calculated by summing the grid cells across the prediction surface at the 

temporal scale specified by the exploratory analysis. To calculate abundance estimates within the survey 

area, we will sum grid cells that fall within the boundary or touch the edges, ensuring that grid cells at 

the boundary are clipped to the boundary footprint. The upper and lower confidence limits of the 

population estimate will be calculated by determining the 95% confidence limits of the 500 

bootstrapped surfaces. We note that in previous work in the offshore wind industry in the UK, the term 

“coefficient of variation” is often applied to population estimates derived from bootstrap 

exercises.  However, this is a misnomer because the standard deviation of a bootstrapped mean is the 

standard error. The calculation of the ratio of the standard error to the mean is called the relational 

standard error (RSE), and not the CV as has been previously used. For the sake of accuracy in the 

vocabulary used and to distinguish this measure of uncertainty from the spatial CV, we will present the 

uncertainty as the RSE, but note that this is equivalent to what has been referred to as the CV in past 

work.  

A hotspot analysis (task 1b) will be performed upon completion of all species models. The analysis will 

be informed by the “all birds” survey-level MRSea models. Model outputs from all species and survey-

level outputs are normalized on a scale of 0 –1 and then averaged. We also compute the cell-by-cell 

coefficient of variation by dividing the standard deviation by the mean. This will give us a single 

magnitude (I.e., mean normalized prediction layer) and persistence (I.e., variability as defined by the CV) 

layer. The upper and lower 95th percentiles of all values in the magnitude and persistence layers will be 

computed to use as thresholds for determining if a grid cell is persistent hot or cold spot. This is 

categorized as per table 2.   

 

Table 2. Classifications of hot spots as defined by percentiles from magnitude and persistence layers  
 

Persistence  Magnitude  Classification  

CV > 95th percentile  Mean > 95th percentile  Persistent hot spot  

CV > 95th percentile  Mean < 5th percentile  Persistent cold spot  

CV < 5th percentile  Mean > 95th percentile  Volatile hot spot  

CV < 5th percentile  Mean < 5th percentile  Volatile cold spot  

CV > 5th percentile, < 95th 

percentile  
Mean > 95th percentile  
  

Transient hot spot  
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 CV > 5th percentile, < 95th 

percentile  
  

Mean < 5th percentile  
  

Transient cold spot  

CV > 5th percentile, < 95th 
percentile  
  

Mean > 5th percentile, < 95th 
percentile  

Transient ambient spot  

CV > 95th percentile  
  

Mean > 5th percentile, < 95th 

percentile  
Persistent ambient spot  

CV < 5th percentile  
  

> 5th percentile, < 95th 

percentile  
Volatile ambient spot  

Displacement Modelling  
We would make use of the precise Moray East offshore wind farm operational turbine locations and 

timing of installation to build a series of “distance to turbine” predictor layers that would be used in the 

modelling process. We will construct monthly “distance to turbine” layers that will be representative of the 

active turbines in the water at the time of each survey (akin to monthly SST layers). We will examine the 

partial dependence plots of the distance to turbine layers to make assessments of displacement as 

inflection points in those figures will indicate if displacement is occurring, and at what spatial scales. This 

information will be incorporated into the final report as opposed to being a separate analysis, as it will be 

informed by the partial dependence plots from the MRSea modelling exercise.   

Predictive Displacement Scenarios  
Subject to engagement with stakeholders, an analysis is proposed which would perform spatial 

displacement scenarios based on proposed turbine locations. The distance to turbine layers from the 

operational Moray East offshore wind farm will be used to train a spatial model that uses a machine 

learning algorithm called random forests. The random forest algorithm is a supervised machine learning 

algorithm used widely for regression and classification problems in machine learning (Breiman 2001). A 

random forest is a classifier that includes many decision trees on various subsets of a given dataset. The 

classifier takes the average decision of that subset to improve the predictive performance. It is built on 

the idea of ensemble learning, where multiple classifiers are integrated to solve complex problems and 

improve model performance. In the same way that a forest with many trees is more robust, a random 

forest algorithm with more decision trees will have greater accuracy and higher predictive ability.   

In a spatial context, this is applied in an almost identical fashion to MRSea, where observations or counts 

are associated with environmental covariates which allows for a model to be trained. This trained model 

is then applied to a grid of regular points to generate predictions in space. We will use the same 

environmental covariates as MRSea, however, the spatial component will be replaced by spatial 

autocorrelation terms, which will help capture the nature of flocking behaviour by marine birds. To 

generate the predicted scenarios of displacement, we will work with Ocean Winds to create three 

plausible wind turbine configurations and use each of those scenarios to create distance to wind turbine 

layers, which will be used to predict displacement.   

We propose to use this algorithm in this case as opposed to MRSea because MRSea requires the spatial 

knots as calculated using the raw observations which have been captured prior to any turbines being 

installed. We would like to create predictive scenarios of turbines being installed in various spatial 

configurations without being constrained by the locations of birds as they existed prior to the installation. 

Working with Caledonia as part of the initial methodology proposal, we would design three wind farm 

configuration scenarios and create these three predictive models for Guillemot, Razorbill, Kittiwake, 

Fulmar, Puffin and Gannet.   
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