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1 Introduction 

As part of the environmental impact assessment framework for the proposed Caledonia offshore 

wind farm, an assessment of the distribution and abundance of key species was contracted to be 

undertaken using the Marine Renewables Strategic Environmental Assessment (MRSea Windows 

package) in R (Scott-Hayward, 2013). The goal of this work was to first quantify the abundance 

and distribution of key seabird species while considering environmental covariates that could impact 

their ecology. Further to this, we developed and utilized a spatial apportioning approach for 

observations unable to be identified to species level which allowed for modelling and thus 

appropriate accounting for variability in the data. We also applied the random forests algorithm to 

create predictions of the distribution of birds based on several wind farm scenarios. The use of 

random forests also allowed for us to make some assessment of displacement based on the partial 

dependence plots. Finally, using the MRSea outputs, we performed a hot-spot analysis to determine 

if there were any parts of the proposed development area that had persistent hot-spots for the key 

species of the analysis.  

2 Methods statement 

Seabird observation and effort data from 24 digital aerial surveys conducted by APEM between May 

2021 – April 2023 were used for the spatial modelling of species’ monthly (or yearly, if too few 

observations) distribution and abundance. Aerial surveys were flown over the proposed Caledonia 

Offshore Wind Farm (OWF) development, wherein transects included the site and a 4km buffer. 

Data for eight species were processed: kittiwake (Rissa tridactyla), razorbill (Alca torda), guillemot 

(Cepphus grylle), puffin (Fratercula arctica), gannet (Morus bassanus), fulmar (Fulmarus glacialis), 
great black-backed gull (Larus marinus), and herring gull (Larus argentatus). All species were 

modeled with data for “all birds” (both flying and sitting behaviours). For kittiwake, gannet, and 

fulmar, there were sufficient observations to create additional models specifically for birds observed 

while flying. For all species except auks (puffin, razorbill, guillemot), only detections identified to 

species level were included in the analysis. For the auks, observations identified to species level 

were supplemented with counts apportioned using a proportional technique based on species 

groupings provided by APEM. Proportional no-id apportioning was made at the transect level to 

ensure a more accurate proportional representation of non-identified species (see section 2.5.1 for 

more detail). 

To model survey-specific bird distribution and abundance, we used the Complex Regional Spatial 

Smoother (CReSS) spatial modelling method using Spatially Adaptive Local Smoothing Algorithm 

(SALSA) based model selection (Scott-Hayward, 2013). The models effectively fit the relationship 

between the observations (count response variable) and the environment (candidate covariates, 

listed in table 1) at each location which was then be used to estimate the animal density over the 

area of interest. For each survey, individual counts for each species were assigned to the midpoint 

of the respective aerial image footprint to produce the input data for each species-specific model. 

This generated a count variable (the dependent variable) for each footprint, and the footprint area 

thus became the offset for the model to ensure predicted outputs represented density. Covariate 

values were then assigned to the midpoint of each segment such that the resulting model input 

data frame included survey-specific species counts and covariate values for each transect segment.  
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Count data from aerial transect surveys were correlated to consecutive measurements through 

space and time. Furthermore, due to environmental and prey conditions, the number of animals in 

any given area is more likely to be similar for points closer temporally, than those more distant in 

time. Models fitted to (relative) abundance data attempt to explain animal abundance at any 

location, but the information (covariate data) that describes why animals are found in high/low 

numbers at specific locations is frequently missing from the model, leaving patterns in the model’s 

noise component (model residuals). These patterns are also expected to be similar along the track 

lines. This (positive) correlation in model residuals along the track lines violates a critical 

assumption for standard statistical models that require an independent set of residuals (such as 

Generalised Linear Models (GLMs) / Generalised Additive Models (GAMs)). Ignoring this violation 

can invalidate all model-based precision estimates (e.g., standard errors, confidence intervals, and 

p-values), resulting in overly complex models that can suggest irrelevant environmental covariates 

are statistically significant. Transect data are frequently prone to such spatiotemporal 

autocorrelation, which violates a core assumption of GLMs/GAMs. Thus, transect ID was included 

as a blocking factor in the analysis to control for autocorrelation in the model. This informed the 

model that correlation within a transect is accepted and that transect independence is assumed.  

2.1 Model Inference 

For all models we assumed that the data followed a quasi-poisson distribution, which is typical 

when working with overdispersed count data (overdispersion occurs when the variance of the data 

is greater than the mean). This distribution assumes: 1) observations can be counted; 2) the rate 

at which observations occur can be calculated; 3) No two observations can occur at the same time 

and/or in the same place; 4) the variance is a linear function of the mean; and 5) that all 

observations are independent (Ver Hoef and Boveng, 2007). However, count data from aerial 

transect surveys are likely to be correlated (i.e., dependent) to consecutive measurements through 

space and time. Furthermore, due to environmental and prey conditions, the number of animals in 

any given area is more likely to be similar for points closer temporally, than those more distant in 

time. Models fitted to (relative) abundance data attempt to explain animal abundance at any 

location, but the variables that determine why animals are found in high/low numbers at specific 

locations are frequently missing from the model, leaving patterns in the model’s noise component 

(model residuals). These patterns are also expected to be similar along the track lines. This, 

temporal and spatial autocorrelation in model residuals along the track lines violates a critical 

assumption for standard statistical models which require an independent set of residuals (such as 

Generalised Linear Models (GLMs) / Generalised Additive Models (GAMs)). Ignoring this violation 

can invalidate all model-based precision estimates (e.g., standard errors, confidence intervals, and 

p-values), resulting in overly complex models that can result in a Type 1 statistical error whereby 

irrelevant environmental covariates are statistically significant. Transect data are frequently prone to 

such spatiotemporal autocorrelation, which violates a core assumption of GLMs/GAMs. To address 

this issue, transect ID was included as a blocking factor in the analysis to control for autocorrelation 

in the model. Including transect ID mitigates autocorrelation issues by including it as a factorial 

variable that describes the distribution of the individuals, accounting for the correlation within the 

transect. This is standard practice when accounting for autocorrelation in transect data.  A one-way 

Analysis of Variance (ANOVA) was performed to determine the statistical significance of covariates 

in the predictive model. Partial dependence plots were used to investigate covariates that have 

significant relationships with the data in the model. Further model inference was made by 

examining the cumulative residual plots output by the models. 
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2.2 Selection of Model Covariates 

First, a full model with all appropriate terms (e.g., as identified from Table 1) was fit for each 

species without a smooth term for the spatial component. This allowed the potential relationships 

between covariates and species observations to be initially unhindered by spatial information. 

Variance Inflation Factors (VIF) were then used to select covariate terms from the initial model 

fitting process that should be removed due to collinearity based on a VIF threshold value of 2. 

There is not a standardised approach to choosing this value, but in general, lower threshold values 

constitute a more conservative approach to eliminating issues with multicollinearity. The flexibility of 

the smoother-related term for each model term was then chosen, followed by the model selection 

for the two-dimensional smoother term for the spatial component. Segment area was then 

incorporated into the model as an offset term as the transects’ division may have resulted in slightly 

different dimensions. Each model was permitted to retain the covariates as a smooth or linear term 

(or omitted completely). SALSA was used to fit a smooth function for each covariate. Model 

selection for both the covariates and spatially based smoothers was conducted by using an 

objective fit measure (Bayesian Information Criterion (BIC) for quasi-likelihood (QL) models). 

Models that permit over-dispersion for Poisson-style counts are QL based, necessitating QL-based 

fit scores.  

Table 1. Candidate covariates for model selection in MRSea analysis 

Model Covariate Definition Source 

Survey ID Unique ID for each survey APEM Aerial Surveying 

Bathymetry Depth below sea surface (m) GEBCO Gridded Bathymetry Data 2019 

Bathymetric Slope Change in bathymetry between 

pixels 

GEBCO Gridded Bathymetry Data 2019 

Bathymetric aspect Direction bathymetric slope faces GEBCO Gridded Bathymetry Data 2019 

SeaSurface 

Temperature 

(SST) 

Interpolated sea surface temperature 

on daily 0.02 degree grid 

Copernicus (European North West Shelf/Iberia Biscay 

Irish Seas – High Resolution ODYSSEA L4 Sea Surface 

Temperature Analysis) 

SST gradient Change in SST between pixels/ slope 

of SST 

Copernicus (European North West Shelf/Iberia Biscay 

Irish Seas – High Resolution ODYSSEA L4 Sea Surface 

Temperature Analysis 

Sandeel predicted 

density 

Probability of presence of buried 

sandeel in the North Sea study 

region. 

Marine Scotland (Langton et al., 2021) 

Sandeel probability 

of presence 

Predicted density of buried sandeel 

in the North Sea study region 

(number per m2) 

Marine Scotland, (Langton et al., 2021) 

Distance to coast Distance to coast (m) GIS (UTMs) 

Distance to colony Distance to nearest colony (m) JNCC Seabird Monitoring database 

Segment area Area of each segment within a 

transect (m2) 

APEM Aerial Surveying 

Spatial component Northing and Easting GIS (UTMs) 

Distance to wind 

turbine 

Distance to the nearest operational 

turbine (m) 

Moray East Wind Farm, Beatrice Wind Farm 

https://spatialdata.gov.scot/geonetwork/srv/eng/catalog.search#/metadata/Marine_Scotland_FishDAC_12377
https://spatialdata.gov.scot/geonetwork/srv/eng/catalog.search#/metadata/Marine_Scotland_FishDAC_12377
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2.3 Knot Placement and Basis Function Details 

The number of “knots” used for the model and the effective range of each knot (the spatial extent 

to which each knot influences the fitted surface) are both key factors in determining the model 

flexibility for the spatial surfaces in this setting. The candidate models were chosen from a range of 

models that varied in the number of knots provided and the effective range (R-value) of each knot 

because the optimal choices for both values are always unknown. The starting knot positions on the 

spatial surface were chosen to maximize coverage across the spatial area (via a space filling 

algorithm; (John et al., 1995)), and these positions were allowed to move according to the SALSA 

(Walker et al., 2011) model selection technique. We used the local exponential basis function, 

defined as: 

((𝑒𝑥𝑝(−𝑑/𝑟2)) 

where d is the Euclidian distance, allowing for varied R-values over the surface. A variable number of 

knots (2-40 depending on data sparsity; the number is denoted by the degrees of freedom in the 

model) were used for the candidate models, and an objective fit criterion was employed to select 

the best model(s). In effect, the position of the knot placement, and to a lesser extent the number 

of knots, reflect the complexities of the spatial relationship between bird abundance and the 

covariates chosen for the study. Knot locations were identified separately for each survey to 

accommodate differences in survey effort and bird distributions across surveys. 

2.4 Geo-Referenced Results 

The species-specific fitted surfaces were generated by making predictions within a grid using the 

final model at a 1km x 1km resolution. The grid is a series of regular points spaced at 1km 

resolution across the surface of the area of interest. These regular points are associated with the 

same environmental covariates as those used in the modelling process. This allows the trained 

MRSea model to make predictions of animal density on each of those points. Those data can then 

be visualized or interpolated to create surfaces. These grids were projected as the Universal 

Transverse Mercator (UTM; Zone 30) projection. To measure uncertainty spatially and in the 

population estimates, the model was bootstrapped 1,000 times (wherein random subsets of the 

modelled coefficients are drawn from a multivariate normal distribution and predictions are made for 

each grid cell, 1,000 times). From this we calculated the mean predicted density, the upper and 

lower 95% confidence limits, and the coefficient of variation (CV; as defined by the ratio of the 

standard deviation to the mean). These measures of uncertainty were visualized and are presented 

in the results section. 

2.5 Abundance Estimates from MRSea Density Surfaces 

Abundance estimates were calculated by summing the grid cells across the prediction surface at the 

temporal scale specified by the exploratory analysis. To calculate abundance estimates within the 

survey area, we summed grid cells that fall within the boundary or touch the edges, ensuring that 

grid cells at the boundary are clipped to the boundary footprint and adjusted for the new area. The 

upper and lower confidence limits of the population estimate were calculated by determining the 

95% confidence limits of the 1000 bootstrapped surfaces. The bootstrap outputs were not 

normally distributed, and the mean was more sensitive to outliers therefore the median was chosen 

as a more representative measure of central tendency when presenting abundance estimates. We 
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note that in previous work in the offshore wind industry in the UK, the term “coefficient of variation” 

is often applied to population estimates derived from bootstrap exercises. However, this is a 

misnomer because the standard deviation of a bootstrapped mean is the standard error. The 

calculation of the ratio of the standard error to the mean is called the relational standard error 

(RSE), and not the CV as has been previously used. For the sake of accuracy in the vocabulary 

used and to distinguish this measure of uncertainty from the spatial CV, we present the uncertainty 

as the RSE, but note that this is equivalent to what has been referred to as the CV in past work. 

2.5.1 Species Apportioning 

To account for auks that have not been identified to species level, we applied a spatial proportional 

apportioning technique based on the species groupings defined by the digital aerial survey provider. 

For example, if there is a species grouping called “large auks” which is made up of possible 

guillemots or razorbill, then the proportional species composition will be applied within spatial bins 

that will be used for modelling. In other words, if 80 guillemot and 20 razorbill were identified in a 

survey, and a spatial bin/cluster had 10 unidentified large auks, then 8 guillemot and 2 razorbills 

would be apportioned into that bin. Spatial proportional no-id apportioning was first attempted at a 

transect level (which ensures a more accurate proportional representation of non-identified 

species). In cases when that was unable to be performed, then it was performed at the survey 

level. In the case that a proportional approach leads to fractional values (for example, if the split 

was 80/20 for guillemot to razorbill, and there were 7 unidentified large auks in a cluster, this 

would equate to 5.6 guillemot and 1.4 razorbill. This would be rounded to 6 guillemot and 1 

razorbill). The new observations apportioned from the non-identified birds were then used for 

MRSea modelling.  

2.6 Hotspot Analysis 
A hotspot analysis was performed upon completion of all species models. The analysis was 

informed by the “all birds” survey-level MRSea models. Model outputs from all species and survey-

level outputs were normalized on a scale of 0 –1 and then averaged. The cell-by-cell coefficient of 

variation was calculated by dividing the standard deviation by the mean. This provided a single 

magnitude (I.e., mean normalized prediction layer) and persistence (I.e., variability as defined by 

the CV) layer. The upper and lower 95th percentiles of all values in the magnitude and persistence 

layers were computed to use as thresholds for determining if a grid cell is persistent hot or cold 

spot. This is categorized as per table 2.   

 

Table 2. Classifications of hot spots as defined by percentiles from magnitude and persistence 
layers  

Persistence  Magnitude  Classification  

CV > 95th percentile  Mean > 95th percentile  Persistent hot spot  

CV > 95th percentile  Mean < 5th percentile  Persistent cold spot  

CV < 5th percentile  Mean > 95th percentile  Volatile hot spot  

CV < 5th percentile  Mean < 5th percentile  Volatile cold spot  

CV > 5th percentile, < 95th 

percentile  

Mean > 95th percentile  

  

Transient hot spot  

CV > 5th percentile, < 95th 

percentile  

Mean < 5th percentile  

  

Transient cold spot  



  

  

20 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

  

CV > 5th percentile, < 95th 

percentile  

  

Mean > 5th percentile, < 

95th percentile  

Transient ambient spot  

CV > 95th percentile  

  

Mean > 5th percentile, < 

95th percentile  

Persistent ambient spot  

CV < 5th percentile  

  

> 5th percentile, < 95th 

percentile  

Volatile ambient spot  

 

2.7 Assessment of Displacement from MRSea 

We made use of the precise Moray East offshore wind farm operational turbine locations and timing 

of installation to build a series of “distance to turbine” predictor layers that were used in the 

modelling process. We constructed monthly “distance to turbine” layers that were representative of 

the active turbines in the water at the time of each survey (akin to monthly SST layers). We then 

examined the partial dependence plots of the distance to turbine layers to make assessments of 

displacement because inflection points in those figures could indicate if displacement is occurring, 

and at what spatial scales.   

2.8 Random forests 

An additional analysis was conducted which performed spatial displacement scenarios based on 

proposed turbine locations. The distance to turbine layers from the operational Moray East offshore 

wind farm were used to train a spatial model that employs a machine learning algorithm called 

random forests. The random forest algorithm is a supervised machine learning algorithm used 

widely for regression and classification problems in machine learning (Breiman, 2001). A random 

forest is a classifier that includes many decision trees on various subsets of a given dataset. The 

classifier takes the average decision of that subset to improve the predictive performance. It is built 

on the idea of ensemble learning, where multiple classifiers are integrated to solve complex 

problems and improve model performance. In the same way that a forest with many trees is more 

robust, a random forest algorithm with more decision trees will have greater accuracy and higher 

predictive ability.   

Random Forests for regression represent a powerful ensemble learning approach, particularly adept 

at handling complex relationships in data (Hastie et al., 2008). The foundation of Random Forests 

lies in the construction of decision trees. In the context of regression, each tree is essentially a 

sequence of binary decisions or splits that recursively partition the input space. What sets Random 

Forests apart is the introduction of randomness in the process. During the creation of each tree, a 

random subset of the training data, known as a bootstrap sample, is drawn with replacement. 

Moreover, at each node of the tree, only a random subset of predictors is considered for 

determining the best split. This deliberate injection of variability helps prevent individual trees from 

fitting noise in the data and encourages diversity among the constituent trees. 

The aggregation of these independently grown and varied trees defines the strength of Random 

Forests. For regression, the final prediction is an average (or weighted average) of the predictions 

from all the trees, providing a robust and accurate estimate of the target variable. Importantly, 

Random Forests are equipped to handle both numerical and categorical predictors, making them 
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versatile across a range of real-world datasets. The algorithm’s adaptability, resilience to overfitting, 

and ability to capture non-linear relationships make it particularly well-suited for regression tasks 

where the underlying data structure is complex and multifaceted. 

The calculation of regression trees within the Random Forest framework involves recursive binary 

splits based on predictor variables. At each node, the algorithm identifies the predictor and split 

point that minimizes the sum of squared differences between the observed and predicted values. 

The splitting process continues until a predefined stopping criterion is met, such as a minimum 

node size or a maximum tree depth. This recursive partitioning results in a tree structure where 

each terminal node, or leaf, represents a distinct subset of the data. During prediction, an input 

observation traverses the tree, and its target value is determined by the average of the training 

observations in the terminal node to which it belongs. This process is repeated for each tree in the 

ensemble, and the final prediction for regression is the aggregated result of all individual tree 

predictions. The collective strength of Random Forests lies in their ability to capture intricate 

relationships in the data while minimizing the risk of overfitting (Breiman 2001; Cutler et al., 2012; 

Hastie et al., 2008). Furthermore, its non-parametric nature means that many of the typical 

frequentist statistical assumptions do not have to be adhered to, thus increasing the likelihood of 

generating statistically appropriate estimations. 

In a spatial context, this is applied in an almost identical fashion to MRSea, where observations or 

counts are associated with environmental covariates which allows for a model to be trained. This 

trained model is then applied to a grid of regular points to generate predictions in space. We used 

the same environmental covariates as MRSea, however, the spatial component was replaced by 

spatial autocorrelation terms, which helped capture the nature of flocking behaviour by marine birds. 

To generate the predicted scenarios of displacement, Ocean Winds was consulted to create three 

plausible wind turbine configurations, and each of those scenarios was used to create distance to 

wind turbine layers, which was used to predict displacement for Guillemot, Razorbill, Kittiwake, 

Fulmar, Puffin and Gannet. This algorithm was used as opposed to MRSea because MRSea requires 

the spatial knots as calculated using the raw observations which have been captured prior to any 

turbines being installed. The aim of this process was to create predictive scenarios of turbines being 

installed in various spatial configurations without being constrained by the locations of birds as they 

existed prior to the installation.  

2.9 Displacement simulation 

To assess the influence of the distance to turbine predictor layer in the model, we built a random 

forests model using the caret (Kuhn 2022) and ranger (Wright and Ziegler 2017) packages in R 

version 4.3.1. Using a grid-based tuning approach, we tested values of mtry (i.e., the number of 

randomly selected variables at each split), from 3 to 10, and the number of minimum observations 

in each terminal node between 80 and 100. As a metric for model selection, we used root mean 

squared error (RMSE) with five-fold cross validation. The model with the lowest RMSE was selected 

as the best model. 

To assess the effect of turbines on the distribution of key species, the partial dependence plots of 

the distance to turbine covariate were generated and examined. A partial dependence plot is a 

graphical method used in machine learning to visualize the marginal effect of a feature on the 

predicted outcome of a model while marginalizing over the values of all other features. It helps to 

understand the relationship between a feature and the target variable in isolation, holding other 
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features constant or averaging over their values. However, in terms of understanding displacement, 

we note that we are incorporating observations of birds throughout the entire survey area (i.e., 

outside of the likely distance of immediate impact of turbines on distribution as they would be 

outside of visual range). Furthermore, relationships noted (e.g., higher densities of birds predicted 

further away from turbines) could simply be due to other factors (e.g., presence of more favourable 

foraging conditions at a site that happens to fall at some distance away from the turbine blades), 

Thus these interpretations must be taken cautiously. Visual acuity varies between species 

depending on their foraging ecology, but based on data collected for Northern fulmar, the smallest 

low-contrast object that can be seen near sea-level would have to be 13m in diameter at 11 km 

distance (Mitkus et al., 2016). Thus, a conservative estimate of 20 km was applied as the 

maximum distance along the x-axis for interpretation of the partial dependence plots. 

Next, we used plausible scenarios of turbine distributions to generate spatial predictions, under the 

assumption that the distribution of birds in the region was representative of the post-construction 

phase. For the purposes of this analysis, we use all flying and sitting birds combined under the 

assumption that the impact will be the same for both behaviour types. 

Four scenarios were modeled: Scenario 1; where no new turbines were constructed - this 

represents the baseline scenario as per the digital aerial surveys. Scenario 2; where turbines were 

constructed only in the northern part of the proposed wind farm. Scenario 3; where turbines were 

constructed only in the southern part of the proposed wind farm. And Scenario 4; a combination of 

scenarios 2 and 3 (Figure 1). 

 

Figure 1: Turbine scenarios for examining distributional responses post-construction 
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Grid cells in the predicted outputs were adjusted for unequal areas around the borders of the survey 

region and predicted counts were summed to generate population estimates for each survey and 

turbine scenario. 

2.10 Interpretation of Random Forests outputs 

Although random forests offers a number of advantages as a predictive algorithm, interpretation of 

the outputs must be done carefully, particularly when attempting to understand mechanistic 

relationships. Firstly, Random forests are comprised of multiple decision trees, where each tree is 

trained on a subset of the data and with a subset of features. This ensemble approach often leads 

to improved performance compared to individual decision trees. However, interpreting the collective 

decision-making process of many trees can be complex, especially when there are many trees in 

the forest. Also, the building blocks of random forests are capable of learning complex non-linear 

relationships in the data. As a result, random forests can model intricate decision boundaries that 

may not be easily understandable or interpretable, especially in high-dimensional spaces. Further to 

this, even though decision trees are simpler models compared to some other machine learning 

algorithms, individual trees in a random forest can still be quite complex, especially if the dataset 

contains many features or if the trees are allowed to grow deep. Interpreting the decisions made by 

these trees can be challenging, particularly when trying to understand how they collectively 

contribute to the final prediction. 

3 Results 

Models were generated for each species using observations of that species for all behaviours, these 

will be referred to as the “all-birds” models. Additional models were generated for kittiwake, gannet, 

fulmar, and great black-backed gulls using only observations of flying birds, these models will be 

referred to as “flying-birds” models. Mean density surfaces for each survey from MRSea outputs 

mapped to the Caledonia OWF site are provided in figures 2 - 17 (all kittiwake), figures 21-24 

(flying kittiwake), figures 40-41 (all gannet), figures 51-52 (flying gannet), figures 62-66 (all 

fulmar), figures 85-89 (flying fulmar), figures 108-112 (guillemot), figures 130-133 (razorbill), 

figures 148-150 (puffin), figure 162 (all great black-backed gull), figure 169 (flying great black-

backed gull), figure 176 (herring gull). 

3.1 Kittiwake 

3.1.1 All Birds Model 

Table 3. Candidate and final covariates for all kittiwakes model. 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Survey ID Sandeel Density 

Bathymetry Distance to colony 

Sandeel Density  

Distance to colony  

Distance to turbine  

Standard deviation of Sea Surface Temperature  
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Distribution maps generated using MRSea (Figure 2-17) suggest that kittiwake are widely 

distributed throughout the area during the breeding season (15 April – 31 August), with higher 

concentrations in the south. In the non-breeding season, distribution declines, but is again generally 

higher in the south. The highest densities were observed in the southern third of the study area 

during July 2021. 

Model fit was poor with a marginal R squared value of 0.04 and root mean squared error of 13.13. 

Cumulative residuals in the model showed that there was a moderate relationship between 

predicted and observed values across the lower range of predicted values, though the model tends 

to under-predict for values between ~1.8 and ~5 birds/ km2 (bottom row, Figure 19). 
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Figure 2. Median density of all kittiwake in the survey area for months with sufficient observations between May and September 2021 
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Figure 3. Median density of all kittiwake in the survey area for months with sufficient observations between October 2021 and March 2022 
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Figure 4. Median density of all kittiwake in the survey area for months with sufficient observations between April and August 2022 
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Figure 5. Median density of all kittiwake in the survey area for months with sufficient observations between September 2022 and April 2023 
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Figure 6. Lower confidence limit of density of all kittiwake in the survey area for months with sufficient observations between May and September 
2021 
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Figure 7. Lower confidence limit of density of all kittiwake in the survey area for months with sufficient observations between October 2021 and 
March 2022 
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Figure 8. Lower confidence limit of density of all kittiwake in the survey area for months with sufficient observations between April and August 2022 
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Figure 9. Lower confidence limit of density of all kittiwake in the survey area for months with sufficient observations between September 2022 and 
April 2023 
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Figure 10. Upper confidence limit of density of all kittiwake in the survey area for months with sufficient observations between May and September 
2021 
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Figure 11. Upper confidence limit of density of all kittiwake in the survey area for months with sufficient observations between October 2021 and 
March 2022 



  

 

35 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

Figure 12. Upper confidence limit of density of all kittiwake in the survey area for months with sufficient observations between April and August 
2022 
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Figure 13. Upper confidence limit of density of all kittiwake in the survey area for months with sufficient observations between September 2022 and 
April 2023 
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Figure 14. Spatial coefficient of variation of predicted densities of all kittiwake from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 15. Spatial coefficient of variation of predicted densities of all kittiwake from MRSea across the survey area for months with sufficient 
observations between October 2021 and March 2022 
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Figure 16. Spatial coefficient of variation of predicted densities of all kittiwake from MRSea across the survey area for months with sufficient 
observations between April and August 2022 
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Figure 17. Spatial coefficient of variation of predicted densities of all kittiwake from MRSea across the survey area for months with sufficient 
observations between September 2022 and April 2023 
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Figure 18. Autocorrelation test for kittiwake density surface models when using transect as a 
blocking feature in MRSea showing no significant correlation. A Runs test on the data prior to using 
transect as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly 

autocorrelated when not using a blocking feature) 
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Figure 19. Fitted (MRSea predictions) versus observed counts of all kittiwake 

 

Table 4. ANOVA results from the best MRSea model for all kittiwake as selected by cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Sandeel Density 3 31.23 <<0.001 

Distance to Colony 5 17.63 0.003 

X/Y (location) 10 41.85 <<0.001 
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Figure 20. Partial dependence plots for significant variables for all kittiwake from MRSea. Note that 
distance to turbine was not a significant variable but was included to demonstrate the relationship. 

(Clockwise from top left: sandeel density, distance to colony, distance to turbine) 

3.1.2 Flying Birds Model 

Table 5. Candidate and final covariates for flying kittiwake model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Survey ID Sandeel Density 

Bathymetry Distance to colony 

Sandeel Density  

Distance to colony  

Distance to turbine  

Standard deviation of Sea Surface Temperature  

  

Distribution maps generated using MRSea (Figure 21-36) suggest elevated densities of flying 

kittiwake during the breeding season (15 April – 31 August) of both years, but were higher in 
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2022. In the non-breeding season, there is a notable drop in kittiwake density. The highest 

densities were observed in the south of the study area during July 2022. 

Model fit was poor with a marginal R squared value of 0.06 and root mean squared error of 3.94. 

Cumulative residuals in the model showed that there was a poor relationship between predicted 

and observed values particularly when predicted counts were above ~2.5 birds/km2 (Figure 38). 
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Figure 21. Median density of flying kittiwakes in the survey area for months with sufficient observations between May and September 2021 
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Figure 22. Median density of flying kittiwakes in the survey area for months with sufficient observations between October 2021 and April 2022 
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Figure 23. Median density of flying kittiwakes in the survey area for months with sufficient observations between May and September 2022 
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Figure 24. Median density of flying kittiwakes in the survey area for months with sufficient observations between October 2022 and April 2023 
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Figure 25. Lower confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between May and 
September 2021 
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Figure 26. Lower confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between October 2021 
and April 2022 
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Figure 27. Lower confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between May and 
September 2022 
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Figure 28. Lower confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between October 2022 
and April 2023 
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Figure 29. Upper confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between May and 
September 2021 
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Figure 30. Upper confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between October 2021 
and April 2022 
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Figure 31. Upper confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between October 2021 
and April 2022 
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Figure 32. Upper confidence limit of density of flying kittiwakes in the survey area for months with sufficient observations between October 2022 
and April 2023 



  

 

57 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure 33. Spatial coefficient of variation of predicted densities of flying kittiwakes from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 34. Spatial coefficient of variation of predicted densities of flying kittiwakes from MRSea across the survey area for months with sufficient 
observations between October 2021 and April 2022 
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Figure 35. Spatial coefficient of variation of predicted densities of flying kittiwakes from MRSea across the survey area for months with sufficient 
observations between May and September 2022 
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Figure 36. Spatial coefficient of variation of predicted densities of flying kittiwakes from MRSea across the survey area for months with sufficient 
observations between October and April 2023 
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Figure 37. Autocorrelation test for kittiwake density surface models when using transect as a 
blocking feature in MRSea showing no significant correlation. A Runs test on the data prior to using 
transect as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly 

autocorrelated when not using a blocking feature) 
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Figure 38. Fitted (MRSea predictions) versus observed counts of flying kittiwake 

 

Table 6. ANOVA results from the best MRSea model for flying kittiwakes as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Bathymetry 1 4.32 0.038 

Distance to Colony 3 2.01 0.569 

Distance to Turbine 1 0.98 0.323 

X/Y (location) 10 127.07 <<0.001 
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Figure 39. Partial dependence plots for significant variables for flying kittiwakes from MRSea. 
(Clockwise from top left: bathymetry, distance to colony, distance to turbine) 

3.2 Gannet 

3.2.1 All Birds Model 

 

Table 7. Candidate and final covariates for all gannets model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Aspect Aspect 

Slope Slope 

Bathymetry Bathymetry 

Sandeel Presence Sandeel Presence 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Standard deviation of Sea Surface Temperature Standard deviation of Sea Surface Temperature 

 

Distribution maps generated using MRSea (Figure 39-40) suggest that gannets are distributed 

mostly across the southern half of the study area during the breeding season (15 March – 30 

September). In the non-breeding season, gannets were largely absent from the study area. The 

highest densities were observed along the south east border of the study area in July 2022. 
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Model fit was poor with a marginal R squared value of 0.04 and root mean squared error of 0.87. 

Cumulative residuals in the model showed that there was a poor relationship between predicted 

and observed values across most of the range of predicted values, with the model generally over 

predicting for values under 0.4 birds/km2, and over predicting for values above. (Figure 48). 
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Figure 40. Median density of all gannets in the survey area for months with sufficient observations between June and October 2021 
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Figure 41. Median density of all gannets in the survey area for months with sufficient observations between May and October 2022 
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Figure 42. Lower confidence limit of density of all gannets in the survey area for months with sufficient observations between June and October 
2021 



  

 

68 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

Figure 43. Lower confidence limit of density of all gannets in the survey area for months with sufficient observations between may and October 
2022 
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Figure 44. Upper confidence limit of density of all gannets in the survey area for months with sufficient observations between June and October 
2021 
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Figure 45. Upper confidence limit of density of all gannets in the survey area for months with sufficient observations between May and October 
2022 
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Figure 46. Spatial coefficient of variation of predicted densities of all gannets from MRSea across the survey area for months with sufficient 
observations between June and October 2021 
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Figure 47. Spatial coefficient of variation of predicted densities of all gannets from MRSea across the survey area for months with sufficient 
observations between May and October 2022 
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Figure 48. Autocorrelation test for gannet density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect 

as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly 
autocorrelated when not using a blocking feature) 



  

 

74 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

Figure 49. Fitted (MRSea predictions) versus observed counts of all gannets 

 

Table 8. ANOVA results from the best MRSea model for all gannets as selected by cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Aspect 5 2.60 0.762 

Slope 5 4.07 0.539 

Bathymetry 5 2.83 0.726 

Sandeel Presence 5 3.79 0.58 

Distance to Colony 5 17.66 0.003 

Turbine Distance 5 6.03 0.303 

Sea Surface Temperature (SD) 5 23.91 <<0.001 

X/Y (location) 10 84.62 <<0.001 
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Figure 50. Partial dependence plots for significant variables for all gannets from MRSea. Note that 
distance to turbine was not a significant variable but was included to demonstrate the relationship. 
(Clockwise from top left: distance to colony, daily standard deviation of sea surface temperature, 

distance to turbine) 

3.2.2 Flying Birds Model 

 

Table 9. Candidate and final covariates for flying gannets model. 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Aspect Distance to turbine 

Slope Daily mean of Sea Surface Temperature 

Bathymetry  

Sandeel Presence  

Distance to colony  

Distance to turbine  

Daily mean of Sea Surface Temperature  

 

Distribution maps generated using MRSea (Figure 50-51) suggest that flying gannets are 

distributed mostly across the southern half of the study area during the breeding season (15 March 

– 30 September). In the non-breeding season, gannets were largely absent from the study area. 

The highest densities were observed in the southern third of the study area in June 2022. 
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Model fit was poor with a marginal R squared value of 0.01 and root mean squared error of 0.60. 

Cumulative residuals in the model showed that there was a moderate relationship between 

predicted and observed values across most of the range of predicted values, except between ~1.3 

and 0.2 birds/km2, where the model tended to underpredict density (Figure 59). 
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Figure 51. Median density of flying gannets in the survey area for months with sufficient observations between June 2021 and June 2022 
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Figure 52. Median density of flying gannets in the survey area for months with sufficient observations between July and October 2022 
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Figure 53. Lower confidence limit of density of flying gannets in the survey area for months with sufficient observations between June 
2021 and June 2022 
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Figure 54. Lower confidence limit of density of flying gannets in the survey area for months with sufficient observations between July and 
October 2022 
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Figure 55. Upper confidence limit of density of flying gannets in the survey area for months with sufficient observations between June 
2021 and June 2022 
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Figure 56. Upper confidence limit of density of flying gannets in the survey area for months with sufficient observations between July and 
October 2022 
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Figure 57. Spatial coefficient of variation of predicted densities of flying gannets from MRSea across the survey area for months with 
sufficient observations between June 2021 and June 2022 
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Figure 58. Spatial coefficient of variation of predicted densities of flying gannets from MRSea across the survey area for months with 
sufficient observations between July and October 2022 
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Figure 59. Autocorrelation test for gannet density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect 

as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly 
autocorrelated when not using a blocking feature) 
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Figure 60. Fitted (MRSea predictions) versus observed counts of flying gannets 

 

Table 10. ANOVA results from the best MRSea model for flying gannets as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Turbine Distance 1 1.86 0.173 

Sea Surface Temperature 1 0.66 0.416 

X/Y (location) 10 52.64 <<0.001 
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Figure 61. Partial dependence plots for significant variables for flying gannets from MRSea. Note 
that distance to turbine was not a significant variable, but was included to demonstrate the 

relationship. (left: distance to turbine; right: daily mean of sea surface temperature) 

3.3 Fulmar 

3.3.1 All Birds Model 

Table 11. Candidate and final covariate terms for all fulmar model. 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Bathymetry Bathymetry 

Sandeel Density Distance to colony 

Distance to colony Distance to turbine 

Distance to turbine  

Distribution maps generated using MRSea (Figure 61-65) suggest that all fulmar are distributed in 

higher densities in the southern and western areas of the study area during the breeding season 

(01 April - 15 September). In the non-breeding season, fulmar tend to be distributed in higher 

densities along the south edge of the study area. The highest densities were observed around the 

southern tip of the study area during July 2022. 

Model fit was moderate with a marginal R squared value of 0.14 and root mean squared error of 

5.20. Cumulative residuals in the model showed that there was a poor relationship between 

predicted and observed values across most of the range of predicted values, and tended to 

underpredict bird density (Figure 82). 
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Figure 62. Median density of all fulmar in the survey area for months with sufficient observations between May and September 2021 
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Figure 63. Median density of all fulmar in the survey area for months with sufficient observations between November 2021 and March 2022 
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Figure 64. Median density of all fulmar in the survey area for months with sufficient observations between April and August 2022 
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Figure 65. Median density of all fulmar in the survey area for months with sufficient observations between September 2022 and February 2023 
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Figure 66. Median density of all fulmar in the survey area for months with sufficient observations between March and April 2023 
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Figure 67. Lower confidence limit of density of all fulmar in the survey area for months with sufficient observations between May and September 
2021 
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Figure 68. Lower confidence limit of density of all fulmar in the survey area for months with sufficient observations between November 2021 and 
March 2022 
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Figure 69. Lower confidence limit of density of all fulmar in the survey area for months with sufficient observations between April and August 2022 
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Figure 70.  Lower confidence limit of density of all fulmar in the survey area for months with sufficient observations between September 2022 and 
February 2023 
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Figure 71. Lower confidence limit of density of all fulmar in the survey area for months with sufficient observations between March and April 2023 
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Figure 72. Upper confidence limit of density of all fulmar in the survey area for months with sufficient observations between May and September 
2021 
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Figure 73. Upper confidence limit of density of all fulmar in the survey area for months with sufficient observations between November 2021 and 
March 2022 
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Figure 74. Upper confidence limit of density of all fulmar in the survey area for months with sufficient observations between April and August 2022 
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Figure 75. Upper confidence limit of density of all fulmar in the survey area for months with sufficient observations between September 2022 and 
February 2023 
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Figure 76. Upper confidence limit of density of all fulmar in the survey area for months with sufficient observations between March and April 2023 



   

 

104 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure 77. Spatial coefficient of variation of predicted densities of all fulmar from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 78. Spatial coefficient of variation of predicted densities of all fulmar from MRSea across the survey area for months with sufficient 
observations between November 2021 and March 2022 
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Figure 79. Spatial coefficient of variation of predicted densities of all fulmar from MRSea across the survey area for months with sufficient 
observations between April and August 2022 
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Figure 80. Spatial coefficient of variation of predicted densities of all fulmar from MRSea across the survey area for months with sufficient 
observations between September 2022 and February 2023 
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Figure 81. Spatial coefficient of variation of predicted densities of all fulmar from MRSea across the survey area for months with sufficient 
observations between March and April 2023
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Figure 82. Autocorrelation test for fulmar density surface models when using transect as a blocking feature 
in MRSea showing no significant correlation. A Runs test on the data prior to using transect as a blocking 
feature gave a p-value of << 0.0001 (i.e., that the data were significantly autocorrelated when not using a 
blocking feature) 
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Figure 83. Fitted (MRSea predictions) versus observed counts of all fulmar 

 

Table 12. ANOVA results from the best MRSea model for All fulmar as selected by cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Bathymetry 1 13.73 <<0.001 

Distance to Colony 3 14.84 0.002 

Distance to Turbine 5 62.19 <<0.001 

X/Y (location) 15 57.36 <<0.001 
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Figure 84. Partial dependence plots for significant variables for all fulmar from MRSea. (Clockwise 
from top left, bathymetry, distance to colony, distance to turbine) 

 

3.3.2 Flying Birds Model 

 

Table 13. Candidate and final covariates for flying fulmar model.  

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Aspect Aspect 

Slope Slope 

Bathymetry Distance to turbine 

Sandeel Density Daily Mean of Sea Surface Temperature 

Distance to colony  

Distance to turbine  

Daily Mean of Sea Surface Temperature  

Distribution maps generated using MRSea (Figure 84-88) suggest that flying fulmar are distributed 

in higher densities during the breeding season (01 April - 15 September), in particular in July and 

August. In the non-breeding season, density declines considerably, however there are some 

interesting hotspots in the north and east corners in November 2021. The highest densities were 

observed consistently throughout the majority of the study area in July 2022, with slightly lower 

densities occurring along the western edge. 
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Model fit was moderate with a marginal R squared value of 0.12 and root mean squared error of 

0.21. Cumulative residuals in the model showed that there was a relatively poor relationship 

between predicted and observed values across most of the range of predicted values, but were 

typically bounded around 0 across the whole (Figure 105). 
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Figure 85. Median density of flying fulmar in the survey area for months with sufficient observations between May and September 2021 
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Figure 86. Median density of flying fulmar in the survey area for months with sufficient observations between November 2021 and March 2022 



   

 

115 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure 87. Median density of flying fulmar in the survey area for months with sufficient observations between April and August 2022 
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Figure 88. Median density of flying fulmar in the survey area for months with sufficient observations between November 2022 and March 2023 
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Figure 89. Median density of flying fulmar in the survey area for months with sufficient observations in April 2023 
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Figure 90. Lower confidence limit of density of flying fulmar in the survey area for months with sufficient observations between May and September 
2021 
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Figure 91. Lower confidence limit of density of flying fulmar in the survey area for months with sufficient observations between November 2021 and 
March 2022 
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Figure 92 .Lower confidence limit of density of flying fulmar in the survey area for months with sufficient observations between April and August 
2022 
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Figure 93. Lower confidence limit of density of flying fulmar in the survey area for months with sufficient observations between November 2022 and 
March 2023 
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Figure 94. Lower confidence limit of density of flying fulmar in the survey area in April 2023 
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Figure 95. Upper confidence limit of density of flying fulmar in the survey area for months with sufficient observations between May and September 
2021 
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Figure 96. Upper confidence limit of density of flying fulmar in the survey area for months with sufficient observations between November 2021 and 
March 2022 
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Figure 97. Upper confidence limit of density of flying fulmar in the survey area for months with sufficient observations between April and August 
2022 
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Figure 98. Upper confidence limit of density of flying fulmar in the survey area for months with sufficient observations between November 2022 and 
March 2023 
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Figure 99. Upper confidence limit of density of flying fulmar in the survey area in April 2023 
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Figure 100. Spatial coefficient of variation of predicted densities of flying fulmar from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 101. Spatial coefficient of variation of predicted densities of flying fulmar from MRSea across the survey area for months with sufficient 
observations between November 2021 and March 2022 
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Figure 102. Spatial coefficient of variation of predicted densities of flying fulmar from MRSea across the survey area for months with sufficient 
observations between April and August 2022 
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Figure 103. Spatial coefficient of variation of predicted densities of flying fulmar from MRSea across the survey area for months with sufficient 
observations between November 2022 and March 2023 
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Figure 104. Spatial coefficient of variation of predicted densities of flying fulmar from MRSea across the survey area in April 2023 
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Figure 105. Autocorrelation test for fulmar density surface models when using transect as a 
blocking feature in MRSea showing no significant correlation. A Runs test on the data prior to using 
transect as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly 

autocorrelated when not using a blocking feature) 
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Figure 106. Fitted (MRSea predictions) versus observed counts of flying fulmar 

 

Table 14. ANOVA results from the best MRSea model for flying fulmar as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Aspect 5 9.14 0.104 

Slope 5 6.51 0.259 

Distance to Turbine 3 31.41 <<0.001 

Sea Surface Temperature (daily) 5 6.78 0.238 

X/Y Location 10 130.91 <<0.001 
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Figure 107. Partial dependence plots for significant variables (distance to turbine) for flying fulmar 
from MRSea 

3.4 Guillemot 
Table 15. Candidate and final covatiates for guillemot MRSea model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Bathymetry Bathymetry 

Sandeel Density Sandeel Density 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Daily mean of Sea Surface Temperature Daily mean of Sea Surface Temperature 

 

Distribution maps generated using MRSea (Figure 107-111) suggest that guillemot are widely 

distributed throughout the study area during the breeding season (01 April – 15 August). In the 

non-breeding season, distribution is much patchier and density declines. The highest densities were 

observed along the eastern corner of the study area in May 2022. 

Broadly, model fit was better for guillemot than for most species, with a marginal R squared value of 

0.18 and root mean squared error of 37.33. Cumulative residuals in the model showed that there 

was a poor relationship between predicted and observed values across most of the range of 

predicted values, but typically bounded around 0 across the whole (Figure 128). 
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Figure 108. Median density of all guillemot in the survey area for months with sufficient observations between May and September 2021 
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Figure 109. Median density of all guillemot in the survey area for months with sufficient observations between October 2021 and February 2022 
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Figure 110. Median density of all guillemot in the survey area for months with sufficient observations between March and July 2022 
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Figure 111. Median density of all guillemot in the survey area for months with sufficient observations between August and December 2022 
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Figure 112. Median density of all guillemot in the survey area for months with sufficient observations between January and April 2023 
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Figure 113. Lower confidence limit of density of all guillemot in the survey area for months with sufficient observations between May and September 
2021 
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Figure 114. Lower confidence limit of density of all guillemot in the survey area for months with sufficient observations between October 2021 and 
February 2022 
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Figure 115. Lower confidence limit of density of all guillemot in the survey area for months with sufficient observations between March and July 
2022 
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Figure 116. Lower confidence limit of density of all guillemot in the survey area for months with sufficient observations between August and 
December 2022 
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Figure 117. Lower confidence limit of density of all guillemot in the survey area for months with sufficient observations between January and April 
2023 
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Figure 118. Upper confidence limit of density of all guillemot in the survey area for months with sufficient observations between May and September 
2021 
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Figure 119. Upper confidence limit of density of all guillemot in the survey area for months with sufficient observations between October 2021 and 
February 2022 
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Figure 120. Upper confidence limit of density of all guillemot in the survey area for months with sufficient observations between March and July 
2022 
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Figure 121. Upper confidence limit of density of all guillemot in the survey area for months with sufficient observations between August and 
December 2022 
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Figure 122. Upper confidence limit of density of all guillemot in the survey area for months with sufficient observations between January and April 
2023 
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Figure 123. Spatial coefficient of variation of predicted densities of all guillemot from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 124. Spatial coefficient of variation of predicted densities of all guillemot from MRSea across the survey area for months with sufficient 
observations between October 2021 and February 2022 
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Figure 125. Spatial coefficient of variation of predicted densities of all guillemot from MRSea across the survey area for months with sufficient 
observations between March and July 2022 
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Figure 126. Spatial coefficient of variation of predicted densities of all guillemot from MRSea across the survey area for months with sufficient 
observations between August and December 2022 
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Figure 127. Spatial coefficient of variation of predicted densities of all guillemot from MRSea across the survey area for months with sufficient 
observations between January and April 2023 
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Figure 128. Autocorrelation test for guillemot density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect as a 
blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly autocorrelated when not 
using a blocking feature) 
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Figure 129. Fitted (MRSea predictions) versus observed counts of all guillemot 

 

Table 16. ANOVA results from the best MRSea model for all guillemot as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Bathymetry 3 5.73 0.125 

Sandeel Density 3 10.53 0.015 

Distance to Colony 4 21.47 <<0.001 

Distance to Turbine 3 4.59 0.205 

SST (daily) 5 120.24 <<0.001 

X/Y (location) 15 183.63 <<0.001 
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Figure 130. Partial dependence plots for significant variables for all guillemot from MRSea, note that 
distance to turbine was not a significant covariate in the model but was included for reference. 

(Clockwise from top left: distance to colony, distance to turbine, daily mean of sea surface 
temperature.) 

 

3.5 Razorbill 
Table 17. Candidate and final covariates for razorbill MRSea model. 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Bathymetry Bathymetry 

Sandeel Density Sandeel Density 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Daily mean of Sea Surface Temperature Daily mean of Sea Surface Temperature 

Distribution maps generated using MRSea (Figure 130 - 133) suggest that the highest densities of 

all razorbill tend to be distributed throughout the southern region of the study area during the 

breeding season (01 April - 15 August). The highest densities occur during the non-breeding 

season, in September 2022, where birds are widely distributed across the entire region. 

Model fit was moderate with a marginal R squared value of 0.07 and root mean squared error of 

0.85. Cumulative residuals in the model showed that there was a moderate relationship between 

predicted and observed values across most of the range of predicted values, but bounded around 0 

across the whole (Figure 147). 
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Figure 131. Median density of all razorbill in the survey area for months with sufficient observations between May and September 2021 
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Figure 132. Median density of all razorbill in the survey area for months with sufficient observations between February and July 2022 
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Figure 133. Median density of all razorbill in the survey area for months with sufficient observations between August 2022 and February 2023 
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Figure 134. Median density of all razorbill in the survey area for months with sufficient observations between March and April 2023 
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Figure 135.  Lower confidence limit of density of all razorbill in the survey area for months with sufficient observations between May and September 
2021 
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Figure 136. Lower confidence limit of density of all razorbill in the survey area for months with sufficient observations between February and July 
2022 
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Figure 137. Lower confidence limit of density of all razorbill in the survey area for months with sufficient observations between August 2022 and 
February 2023 
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Figure 138. Lower confidence limit of density of all razorbill in the survey area for months with sufficient observations between March and April 
2023 
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Figure 139. Upper confidence limit of density of all razorbill in the survey area for months with sufficient observations between May and September 
2021 
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Figure 140. Upper confidence limit of density of all razorbill in the survey area for months with sufficient observations between February and July 
2022 
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Figure 141.  Upper confidence limit of density of all razorbill in the survey area for months with sufficient observations between August 2022 and 
February 2023 
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Figure 142. Upper confidence limit of density of all razorbill in the survey area for months with sufficient observations between March and April 
2023 
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Figure 143. Spatial coefficient of variation of predicted densities of all razorbill from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 144. Spatial coefficient of variation of predicted densities of all razorbill from MRSea across the survey area for months with sufficient 
observations between February and July 2022 
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Figure 145. Spatial coefficient of variation of predicted densities of all razorbill from MRSea across the survey area for months with sufficient 
observations between August 2022 and February 2023 
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Figure 146. Spatial coefficient of variation of predicted densities of all razorbill from MRSea across the survey area for months with sufficient 
observations between March and April 2023 
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Figure 147. Autocorrelation test for razorbill density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect as a 
blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly autocorrelated when not 
using a blocking feature) 
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Figure 148. Fitted (MRSea predictions) versus observed counts of all razorbill 

 

Table 18. ANOVA results from the best MRSea model for all razorbill as selected by cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Aspect 3 2.26 0.52 

Slope 3 3.66 0.3 

Bathymetry 3 5.12 0.163 

Sandeel Density 3 3.52 0.318 

Distance to Colony 3 16.79 <<0.001 

Distance to Turbine 3 14.68 0.002 

X/Y (location) 10 97.17 <<0.001 
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Figure 149. Partial dependence plots for significant variables for all razorbill from MRSea 

3.6 Puffin 
Table 19. Candidate and final covariates for puffin MRSea model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Aspect Aspect 

Slope Slope 

Bathymetry Bathymetry 

Sandeel Density Sandeel Density 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Standard deviation of Sea Surface Temperature Standard deviation of Sea Surface Temperature 

Distribution maps generated using MRSea (Figure 149-151) suggest that puffin are distributed 

more generally towards the eastern half of the study area during the breeding season (01 April - 

15 August). In the non-breeding season, with the exception of September - October 2021 and 

September 2022, puffins are mostly absent from the study area (less than 20 observations). The 

highest densities were observed in the center and southern regions of the study area in August 

2021. 

Model fit was better for Puffin than for most species, with a marginal R squared value of 0.17 and 

root mean squared error of 0.77. Cumulative residuals in the model showed that there was a 

moderate relationship between predicted and observed values across most of the range of 

predicted value, but the model tended to underpredict for densities above 1.75 birds/km2 (Figure 

160). 
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Figure 150. Median density of all puffin in the survey area for months with sufficient observations between May and September 2021 
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Figure 151. Median density of all puffin in the survey area for months with sufficient observations between October 2021 and July 2022 
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Figure 152. Median density of all puffin in the survey area for months with sufficient observations between August and September 2022 
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Figure 153. Lower confidence limit of density of all puffin in the survey area for months with sufficient observations between May and September 
2021 
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Figure 154. Lower confidence limit of density of all puffin in the survey area for months with sufficient observations between October 2021 and July 
2022 



   

 

186 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure 155. Lower confidence limit of density of all puffin in the survey area for months with sufficient observations between August and September 
2022 
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Figure 156. Upper confidence limit of density of all puffin in the survey area for months with sufficient observations between May and September 
2021 
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Figure 157. Upper confidence limit of density of all puffin in the survey area for months with sufficient observations between October 2021 and July 
2022 
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Figure 158. Upper confidence limit of density of all puffin in the survey area for months with sufficient observations between August and September 
2022 
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Figure 159. Spatial coefficient of variation of predicted densities of all puffin from MRSea across the survey area for months with sufficient 
observations between May and September 2021 
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Figure 160. Spatial coefficient of variation of predicted densities of all puffin from MRSea across the survey area for months with sufficient 
observations between October 2021 and July 2022 
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Figure 161. Spatial coefficient of variation of predicted densities of all puffin from MRSea across the survey area for months with sufficient 
observations between August and September 2022 
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Figure 162. Autocorrelation test for puffin density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect as a 
blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly autocorrelated when 

not using a blocking feature) 
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Figure 163. Fitted (MRSea predictions) versus observed counts of all puffin 

Table 20. ANOVA results from the best MRSea model for all puffin as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Aspect 3 4.35 0.226 

Slope 3 0.97 0.808 

Bathymetry 3 1.64 0.651 

Sandeel Density 3 2.03 0.566 

Distance to Colony 4 6.98 0.137 

Distance to Turbine 3 21.63 <<0.001 

SST (SD) 3 21.70 <<0.001 

X/Y (location) 10 85.76 <<0.001 
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Figure 164. Partial dependence plots for significant variables for all puffin from MRSea. (Left: 
Distance to turbine; right: daily standard deviation of sea surface temperature.) 

3.7 Great Black-backed Gull 

3.7.1 All birds model 

Table 21. Candidate and final covariates for all great black-backed gull MRSea model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Aspect Distance to colony 

Distance to colony Distance to turbine 

Distance to turbine Daily mean of Sea Surface Temperature 

Daily mean of Sea Surface Temperature  

Due to a limited number of observations, it was more appropriate to model great black-backed 

gulls by survey year rather than month. Distribution maps generated using MRSea (Figure 164) 

suggest that all great black-backed gulls are minimally distributed throughout the study area for 

both years of surveys. Higher densities are estimated along the central eastern boundary of the 

study area. 

Model fit was moderate with a marginal R squared value of 0.10 and root mean squared error 

of 0.01. Cumulative residuals in the model showed that there was poor relationship between 

predicted and observed values where the model tended to under predict above values of ~0.25 

birds/km2 (Figure 169). 
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Figure 165. Median density of all great black-backed gull in the survey area for each year of surveys. 

 

Figure 166. Lower confidence limit of density of all great black-backed gull in the survey area for each year of surveys 
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Figure 167. Upper confidence limit of density of all great black-backed gulls in the survey area for each year of surveys 
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Figure 168. Spatial coefficient of variation of predicted densities of all great black-backed gull from MRSea across the survey area for each year of 
surveys
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Figure 169. Autocorrelation test for great black-backed gull density surface models when using 
transect as a blocking feature in MRSea showing no significant correlation. A Runs test on the data 
prior to using transect as a blocking feature gave a p-value of << 0.0001 (i.e., that the data were 

significantly autocorrelated when not using a blocking feature) 
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Figure 170. Fitted (MRSea predictions) versus observed counts of all great black-backed gull 

 

Table 22. ANOVA results from the best MRSea model for all great black-backed gull as selected by 
cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Distance to Colony 5 18.53 0.002 

Distance to Turbine 3 234.67 <<0.001 

SST (daily) 5 65.72 <<0.001 

X/Y (location) 15 120.48 <<0.001 
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Figure 171. Partial dependence plots for significant variables for all great black-backed gull from 
MRSea (Clockwise from top left: distance to colony, distance to turbine, daily mean of sea surface 

temperature) 

3.7.2 Flying birds model 

Table 23. Candidate and final covariates for flying great black-backed gull MRSea model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Bathymetry Bathymetry 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Due to a limited number of observations, it was more appropriate to model great black-backed gulls 

by survey year rather than month. Distribution maps generated using MRSea (Figure 168) suggest 

that flying great black-backed gulls are very minimally distributed throughout the study area for both 

years. Year one has slightly higher densities along the central western boundary of the study area. 

Year two has lower densities in that region, but higher densities in the northern corner of the study 

area. 

Model fit was poor with a marginal R squared value of 0.004 and root mean squared error of 0.01. 

Cumulative residuals in the model showed that there was moderate relationship between predicted 

and observed values across most of the range of predicted values, but residuals were bounded 

around 0 across the whole (Figure 173).





   

 

203 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure 172. Median density of flying great black-backed gull in the survey area for each year of surveys. 
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Figure 173. Lower confidence limit of density of flying great black-backed gull in the survey area for each year of surveys 
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Figure 174. Upper confidence limit of density of flying great black-backed gulls in the survey area for each year of surveys 
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Figure 175. Spatial coefficient of variation of predicted densities of flying great black-backed gull from MRSea across the survey area for each year of 
surveys 
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Figure 176. Autocorrelation test for great black-backed gull density surface models when using transect as a 
blocking feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect 
as a blocking feature gave a p-value of << 0. 0001 (i.e., that the data were significantly autocorrelated 
when not using a blocking feature) 
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Figure 177. Fitted (MRSea predictions) versus observed counts of flying great black-backed gull 

 

Table 24. ANOVA results from the best MRSea model for flying Great Black-backed Gull as selected 
by cross-validation 

Variable Degrees of Freedom Chi-square P-value 

Bathymetry 5 4.89 0.429 

Distance to Colony 5 36.23 <<0.001 

Distance to Turbine 5 51.62 <<0.001 

X/Y (location) 15 79.72 <<0.001 
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Figure 178.  Partial dependence plots for significant variables for flying Great Black-backed Gull 
from MRSea (left: distance to colony, right: distance to tubine) 

3.8 Herring Gull 
Table 25. Candidate and final covariates for herring gull MRSea model 

Starting model covariates after VIF-based collinearity removal Final model covariates after removal by SALSA 

Bathymetry Bathymetry 

Distance to colony Distance to colony 

Distance to turbine Distance to turbine 

Daily mean of Sea Surface Temperature Daily mean of Sea Surface Temperature 

Due to a limited number of observations, we decided to model herring gulls by survey year rather 

than month. Distribution maps generated using MRSea (Figure 178) suggest that herring gull 

occur in minimal numbers throughout the study area. The highest densities were modeled to be 

along the southern edge during the first year. 

Model fit was relatively poor with a marginal R squared value of 0.03 and root mean squared error 

of 0.03. Cumulative residuals in the model showed that there was a poor relationship between 

predicted and observed values across most of the range of predicted values, especially above 

densities of 0.1 (Figure 183). Due to there being so few observations, we had to aggregate across 

the all the months of surveys and therefore the SD was very high, and our confidence in this model 

is low. 
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Figure 179. Median density of all herring gull in the survey area for each year of surveys 
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Figure 180. Lower confidence limit of density of all herring gull in the survey area for each year of surveys 
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Figure 181. Upper confidence limit of density of all herring gulls in the survey area for each year of surveys 
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Figure 182. Spatial coefficient of variation of predicted densities of all herring gull from MRSea across the survey area for each year of surveys 
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Figure 183. Autocorrelation test for herring gull density surface models when using transect as a blocking 
feature in MRSea showing no significant correlation. A Runs test on the data prior to using transect as a 
blocking feature gave a p-value of << 0.0001 (i.e., that the data were significantly autocorrelated when not 
using a blocking feature) 
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Figure 184. Fitted (MRSea predictions) versus observed counts of all herring gull 

 

Table 26. ANOVA results from the best MRSea model for all herring gull as selected by cross-
validation 

Variable Degrees of Freedom Chi-square P-value 

Bathymetry 5 23.77 <<0.001 

Distance to Colony 5 2.16 0.826 

Distance to Turbine 5 29.70 <<0.001 

SST (daily) 5 17.94 0.003 

X/Y (location) 15 134.92 <<0.001 
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Figure 185. Partial dependence plots for significant variables for all herring gull from MRSea (Clock 
wise from top left: Bathymetry, distance to turbine, daily standard deviation of sea surface 

temperature) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

218 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 
4 References 
 

Breiman, L., 2001. Random forests. Machine learning, 45, pp.5-32.  

Cutler, Adele, D. Richard Cutler, and John R. Stevens. 2012. “Random Forests.” In, 157–75. 

Springer New York. https://doi.org/10.1007/978-1-4419-9326-7_5. 

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2008. “Random Forests.” In, 587–604. 

Springer New York. https://doi.org/10.1007/978-0-387-84858-7_15. 

John, P. W. M., M. E. Johnson, L. M. Moore, and D. Ylvisaker. 1995. “Minimax Distance Designs in 

Two-Level Factorial Experiments.” Journal of Statistical Planning and Inference 44 (2): 249–63. 

https://doi.org/10.1016/0378-3758(94)00047-y. 

Kuhn, Max. 2022. “Caret: Classification and Regression Training.” https://CRAN.R-

project.org/package=caret. 

Langton, R., Boulcott, P. and Wright P.J. 2021. “A verified distribution model for the lesser sandeel 

Ammodytes marinus.” Marine Ecology Progress Series. https://doi.org/10.3354/meps13693.  

Mitkus, M., Nevitt, G.A., Danielsen, J. and Kelber, A., 2016. Vision on the high seas: spatial 

resolution and optical sensitivity in two procellariiform seabirds with different foraging strategies. 

Journal of Experimental Biology, 219(21), pp.3329-3338. 

Scott-Hayward, L., Oedekoven,C.. 2013. “User Guide for the MRSea Package: Statistical Modelling 

of Bird and Cetacean Distributions in Offshore Renewables Development Areas.” University of St. 
Andrews Contract for Marine Scotland. 

Ver Hoef, J. M., & Boveng, P. L. 2007. ”Quasi‐Poisson vs. negative binomial regression: how should 

we model overdispersed count data?” Ecology, 88(11): 2766-2772. 

Walker, C. G., M. L. Mackenzie, C. R. Donovan, and M. J. O’Sullivan. 2011. “SALSA: a Spatially 

Adaptive Local Smoothing Algorithm.” Journal of Statistical Computation and Simulation 81 (2): 

179–91. https://doi.org/10.1080/00949650903229041.  

Wright, Marvin N., and Andreas Ziegler. 2017. “Ranger: A Fast Implementation of Random Forests 

for High Dimensional Data in c++ and r” 77. https://doi.org/10.18637/jss.v077.i01. 

 

 

 

 

 

 

https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1007/978-0-387-84858-7_15
https://doi.org/10.1016/0378-3758(94)00047-y
https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
https://doi.org/10.3354/meps13693
https://doi.org/10.1080/00949650903229041
https://doi.org/10.18637/jss.v077.i01


  

219 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 
 

 

I Exploratory Data Analysis  

I.1 Introduction 

In order to properly model the data we first performed an exploratory data analysis to understand 

how many of each species were in each survey, and how they were spatially distributed throughout 

the study area. We did this by examining the observation data by species, then mapping species 

distribution in the study area for the smallest temporal scale that the number of observations would 

allow. The target temporal scale was by survey, but if the number of observations was too low, we 

try breeding season, then survey year, and finally for all surveys. MRSea models can fail with a 

minimal number of observations, therefore we used a threshold of 20 observations per species, 

Where possible, we mapped the observations plotting behaviours as sitting (red) or flying (blue). 

We found 624 observations of animals that were not identified to species level, which could 

supplement some data-poor surveys for some species through apportioning. We were confident we 

have sufficient data to model seven out of thirteen of the key species (See table I-1). For guillemot, 

puffin, and razorbill, we did not suggest modelling unique behaviours (sitting/flying) as these 

species do not fly high enough to be considered at risk for collision with a turbine. We summarise 

our findings in table I-1, then provide more detail and plots below. 

I.2 Summary Table 
 

Table I-1. Summary of all key species, including whether they have sufficient observations for 
modelling, at which temporal scale (survey, breeding season, survey year, or all surveys) we 
suggest that they should be modelled (# surveys that can be modelled / # total surveys are in 
brackets), and which behaviours we can model. Number of available surveys are in brackets. 

Species Can be modelled? Temporal Scale? Behaviour 

Guillemot Yes Survey (22/24) All 

Razorbill Yes Survey (15/24) All 

Kittiwake Yes Survey (19/24) All, Fly 

Fulmar Yes Survey (22/24) All, Fly 

Puffin Yes Survey (13/24) All 

Gannet Yes Survey (10/24) All, Fly 

Great Black-backed Gull Yes Survey Year All, Fly 

Herring Gull Yes All Surveys All 

Great Skua No   

Manx Shearwater No   

Common Gull No   

Arctic Tern No   

Common Tern No   
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I.3 Results by Species 

I.3.1 Guillemot 

Guillemot are the most common species throughout all surveys consisting of almost half of all 

observations (N=20135). Sufficient observations were recorded for 22/24 surveys. Surveys 8 and 

19 (Dec 2021, Nov 2022) do not have enough observations (more than 20), and will not be 

included in modelling. We could also model guillemot by breeding season (April - 15 August). The 

August surveys from both years fall within the breeding season (01 Aug 2021, 10 Aug 2022). We 

suggest modelling all behaviours (flying & sitting) together as guillemot do not fly high enough to 

be at risk for collision with turbines. 
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I.3.2 Razorbill 

We suggest modelling razorbill (N=2542) by survey for the surveys that had sufficient observations 

(15/24). We could also model razorbill by breeding season (April - 15 August). The August 

surveys from both years fall within the breeding season (01 Aug 2021, 10 Aug 2022). We 

suggest modelling all behaviours (flying & sitting) together as razorbill do not fly high enough to be 

at risk for collision with turbines. 
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I.3.3 Kittiwake 

We suggest modelling kittiwake (N=5366) by survey for the surveys that had sufficient 

observations (19/24). We have sufficient observations of kittiwake to include behaviour in the 

model. We could also model by breeding season (15 April - August). The April 2023 survey does 

fall outside of the breeding season (4 Apr 2023) and is therefore accounted for as “Non-Breeding.” 

The April 2022 survey (26 Apr 2022), however does fall within the breeding season. 
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I.3.4 Fulmar 

We suggest modelling fulmar (N=4611) by survey because the majority of surveys had sufficient 

observations (22/24). We have sufficient observations of fulmar to include behaviour in the model. 

We could also model by breeding season (April - 15 September). The September surveys from 

both years fall within the breeding season (14 Sep 2021, 11 Sep 2022). 
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I.3.5 Puffin 

We suggest modelling puffin (N=2054) by survey for the surveys that had sufficient observations 

(13/24). All but three surveys with enough observations occur during the breeding season, so we 

could also model puffin by breeding season (April - 15 August). The August surveys from both 

years fall within the breeding season (01 Aug 2021, 10 Aug 2022). We suggest modelling all 

behaviours (flying & sitting) together as puffin do not fly high enough to be at risk for collision with 

turbines. 
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I.3.6 Gannet 

We suggest modelling gannet (N=1042) by survey for the surveys that had sufficient observations 

(10/24). All but two surveys with enough observations occur during the breeding season, so we 

could also model gannet by breeding season (15 March - September). Neither of the March 

surveys (02 Mar 2022, 10 Mar 2023) occured within the the breeding season, and are therefore 

considered “Non-Breeding.” For months with enough observations of flying birds we will also 

suggest including behaviour in the model. 
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I.3.7 Great Black-backed Gull 

We suggest modelling Great Black-backed Gull (N=540) by survey-year because only 8/24 surveys 

had enough observations to model, and all occurred outside of the breeding season (April - 

August). Some surveys have minimal observations of flying birds, therefore behaviour would be 

better captured on the larger temporal unit of ‘survey year’. We also noticed that there are about 64 

observations of this species where the behaviour is listed as “perched”. Depending on what the 

birds are perched upon we may be able to use these observations. For example, if the gulls are 

perched on turbines, we would not be able to model them with a distance to turbine covariate. 
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I.3.8 Herring Gull 

With minimal observations, we will attempt to model herring gull (N=99) for all behaviours and 

surveys combined. This would constitute a “hot spot” analysis, which would identify potential areas 

of importance for this species within the study area, however this may be at a temporal scale too 

large to be very useful. 
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I.3.9 Great Skua 

Great skua observations were too few to be modeled (N=22). 
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I.3.10 Manx Shearwater 

Common tern observations were too few to be modelled (N=28). 
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I.3.11 Common Gull 

Common gull observations were too few to be modelled (N=13). 
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I.3.12 Arctic Tern 

Arctic tern observations were too few to be modelled (N=15). 
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I.3.13 Common Tern 

Common tern observations were too few to be modelled (N=3). 
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II Random Forests 

II.1 Kittiwake 

II.1.1 Model assessment 

The top five models had RMSE values between 15.662 and 15.656 with R squared values 

between 0.0485 and 0.0499. These values were higher than the MRSea model, which had an R-

squared value of 0.0426. The best model had an mtry value of 7, with a minimum node size of 80 

(Figure II-1, Table II-1). 

 

Figure II-1: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-1: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

7 80 15.656 0.0499 

6 90 15.659 0.0480 

7 100 15.660 0.0485 

5 80 15.661 0.0472 

6 80 15.662 0.0485 

 

II.1.2 Variable importance 

The top predictor variables were daily sea surface temperature, northing (y.pos), and monthly mean 

sea surface temperature, followed by survey ID. This shows that most of the signal in the data 

come from variables that represent temporal variability (Table II-2). 

Table II-2: The top 5 predictor variables from the random forests model and overall importance 
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Variable Overall importance 

SST_daily 100.00 

y.pos 97.63 

SST_mean 79.54 

SurveyID^14 58.23 

SurveyID^15 54.89 

 

II.1.3 Distributional response 

The partial relationship of distance to turbines on densities of kittiwake demonstrates an inverse 

relationship in that predicted densities decreased from 0 to 20km distance from turbines. The 

relationship reaches an inversion point at approximately 23km, where between 20 and 40km, there 

is a positive relationship between distance to turbine and density (Figure II-2). This suggests that 

turbines could be attracting kittiwake as the highest densities seems to be in areas nearer to 

turbines. However, this could simply be that kittiwake were more abundant around turbines for 

other reasons that we are unable to measure. 

 

Figure II-2: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.1.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) fell 

well within the range of estimates derived from MRSea, sometimes only differing by 2 - 3%. We are 
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therefore confident that the random forests kittiwake model is reliable, particularly in the context of 

the MRSea analysis. 

Populations of kittiwake in the survey area were predicted to increase in all three scenarios due to 

the relationship between distance to turbine and density. The highest population increase was 

predicted for scenario 3, with percent change from baseline varying from -7 to 47% across all 

surveys (Table II-3). 

Table II-3: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 

SurveyID Baseline Scenario 1 (% 

change) 

Scenario 2 (% 

change) 

Scenario 3 (% 

change) 

May 2021 1244 1398 (12.38) 1371 (10.21) 1418 (13.99) 

June 2021 2142 2287 (6.77) 2213 (3.31) 2281 (6.49) 

July 2021 6276 6850 (9.15) 6856 (9.24) 6954 (10.8) 

August 2021 1982 2061 (3.99) 2039 (2.88) 2068 (4.34) 

September 2021 919 853 (-7.18) 848 (-7.73) 854 (-7.07) 

October 2021 614 606 (-1.3) 598 (-2.61) 597 (-2.77) 

November 2021 953 1317 (38.2) 1344 (41.03) 1397 (46.59) 

December 2021 223 230 (3.14) 231 (3.59) 235 (5.38) 

February 2022 215 231 (7.44) 231 (7.44) 234 (8.84) 

March 2022 274 269 (-1.82) 269 (-1.82) 269 (-1.82) 

April 2022 643 636 (-1.09) 631 (-1.87) 631 (-1.87) 

May 2022 3670 3817 (4.01) 3819 (4.06) 3818 (4.03) 

June 2022 5027 5137 (2.19) 5118 (1.81) 5117 (1.79) 

July 2022 5777 6330 (9.57) 6288 (8.85) 6360 (10.09) 

August 2022 1048 1146 (9.35) 1137 (8.49) 1162 (10.88) 

September 2022 346 343 (-0.87) 339 (-2.02) 343 (-0.87) 

October 2022 251 252 (0.4) 252 (0.4) 253 (0.8) 

February 2023 259 289 (11.58) 281 (8.49) 300 (15.83) 

April 2023 650 633 (-2.62) 631 (-2.92) 631 (-2.92) 

II.1.5 Distributions 

The broad distribution of kittiwake in the baseline random forests models were nearly identical to 

those in the MRSea models. For Kittiwake, the models predict the highest densities in the 

southwest part of the survey area. In almost all cases, the densities of kittiwake increase through 

the site in relation to the locations of proposed turbines. This distributional response suggests a 

potential increase in the numbers of birds in the windfarm site (Figures II-3 – II-18). 



  

291 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 
II.1.5.1 Baseline scenarios 

 

Figure II-3: Random forests baseline predictions of Kittiwake from May 2021 to September 2021 
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Figure II-4: Random forests baseline predictions of Kittiwake from October 2021 to March 2022 
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Figure II-5: Random forests baseline predictions of Kittiwake from April 2022 to August 2022 
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Figure II-6: Random forests baseline predictions of Kittiwake from September 2022 to April 2023 
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II.1.5.2 Turbine scenario 1 

 

Figure II-7: Random forests predictions from turbine scenario 1 of Kittiwake from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-8: Random forests predictions from turbine scenario 1 of Kittiwake from October 2021 to March 
2022 with turbines presented as black dots 
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Figure II-9: Random forests predictions from turbine scenario 1 of Kittiwake from April 2022 to August 2022 
with turbines presented as black dots 



  

298 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure II-10: Random forests predictions from turbine scenario 1 of Kittiwake from September 2022 to April 
2023 with turbines presented as black dots 
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II.1.5.3 Turbine scenario 2 

 

Figure II-11: Random forests predictions from turbine scenario 2 of Kittiwake from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-12: Random forests predictions from turbine scenario 2 of Kittiwake from October 2021 to March 
2022 with turbines presented as black dots 
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Figure II-13: Random forests predictions from turbine scenario 2 of Kittiwake from April 2022 to August 
2022 with turbines presented as black dots 
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Figure II-14: Random forests predictions from turbine scenario 2 of Kittiwake from September 2022 to April 
2023 with turbines presented as black dots 
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II.1.5.4 Turbine scenario 3 

 

Figure II-15: Random forests predictions from turbine scenario 3 of Kittiwake from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-16: Random forests predictions from turbine scenario 3 of Kittiwake from October 2021 to March 
2022 with turbines presented as black dots 



  

305 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure II-17: Random forests predictions from turbine scenario 3 of Kittiwake from April 2022 to August 
2022 with turbines presented as black dots 
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Figure II-18: Random forests predictions from turbine scenario 3 of Kittiwake from September 2022 to April 
2023 with turbines presented as black dots 

II.2 Fulmar 

II.2.1 Model assessment 

The top five models had RMSE values between 9.888 and 9.867 with R squared values between 

0.144 and 0.141. These values were similar to those from the MRSea model, which had an R-

squared value of 0.1437. The best model had an mtry value of 8, with a minimum node size of 80 

(Figure II-19, Table II-4). 
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Figure II-19: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-4: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

8 80 9.867 0.1445 

8 90 9.873 0.1425 

7 80 9.874 0.1435 

7 90 9.886 0.1408 

6 80 9.888 0.1405 

 

II.2.2 Variable importance 

The top predictor variables were monthly mean sea surface temperature, northing (y.pos), and 

survey ID. This shows that most of the signal in the data come from variables that represent 

temporal variability (Table II-5). 

Table II-5: The top 5 predictor variables from the random forests model and overall importance 

Variable Overall importance 

y.pos 100.00 

SST_mean 83.20 

SurveyID^18 74.27 

SurveyID^8 74.09 

SurveyID^12 61.67 
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II.2.3 Distributional response 

The partial relationship of distance to turbines on densities of fulmar demonstrates a displacement 

effect with fewer birds expected in areas close to turbines. The relationship reaches a slight 

inflection point at approximately 15km, where the curve begins to flatten (Figure II-20). This does 

not mean that there is a displacement effect out to 15km or more, simply that birds have been 

predicted further away from turbines, which could be driven by other factors.   

 

Figure II-20: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.2.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) fell 

well within the range of estimates derived from MRSea, sometimes only differing by 2 - 3%. We are 

therefore confident that the random forests fulmar model is reliable, particularly in the context of the 

MRSea analysis. 

Populations of fulmar in the survey area were predicted to decrease in all three scenarios due to the 

relationship between distance to turbine and density. The biggest population decrease was 

predicted for scenario 3, with percent change from baseline varying from -1 to -22% across all 

surveys (Table II-6). 

Table II-6: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 
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SurveyID Baseline Scenario 1 (% 

change) 

Scenario 2 (% 

change) 

Scenario 3 (% 

change) 

May 2021 562 542 (-3.56) 539 (-4.09) 535 (-4.8) 

June 2021 675 632 (-6.37) 628 (-6.96) 623 (-7.7) 

July 2021 5121 4974 (-2.87) 4943 (-3.48) 4907 (-4.18) 

August 2021 1723 1740 (0.99) 1732 (0.52) 1738 (0.87) 

September 2021 671 603 (-10.13) 603 (-10.13) 598 (-10.88) 

November 2021 964 793 (-17.74) 774 (-19.71) 766 (-20.54) 

December 2021 1137 919 (-19.17) 906 (-20.32) 885 (-22.16) 

January 2022 409 375 (-8.31) 366 (-10.51) 349 (-14.67) 

February 2022 513 451 (-12.09) 447 (-12.87) 434 (-15.4) 

March 2022 186 193 (3.76) 195 (4.84) 195 (4.84) 

April 2022 396 376 (-5.05) 372 (-6.06) 369 (-6.82) 

May 2022 340 323 (-5) 325 (-4.41) 323 (-5) 

June 2022 1240 1225 (-1.21) 1231 (-0.73) 1215 (-2.02) 

July 2022 9756 9052 (-7.22) 8772 (-10.09) 8596 (-11.89) 

August 2022 716 694 (-3.07) 693 (-3.21) 690 (-3.63) 

September 2022 301 287 (-4.65) 286 (-4.98) 283 (-5.98) 

November 2022 1591 1648 (3.58) 1645 (3.39) 1647 (3.52) 

December 2022 573 506 (-11.69) 503 (-12.22) 496 (-13.44) 

January 2023 330 305 (-7.58) 304 (-7.88) 302 (-8.48) 

February 2023 231 230 (-0.43) 230 (-0.43) 230 (-0.43) 

March 2023 593 538 (-9.27) 535 (-9.78) 515 (-13.15) 

April 2023 257 250 (-2.72) 251 (-2.33) 250 (-2.72) 

II.2.5 Distributions 

The broad distribution of fulmar in the baseline random forests models were nearly identical to 

those in the MRSea models. For fulmar, the models predict the highest densities in the southwest 

part of the survey area for most months. In all cases, the densities of fulmar decrease through the 

site in relation to the locations of proposed turbines. This distributional response suggests a 

potential displacement effect which could push beyond the boundary of the wind farm site (Figures 

II-21 – II-40). 
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II.2.5.1 Baseline scenarios 

 

Figure II-21: Random forests baseline predictions of Fulmar from May 2021 to September 2021 
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Figure II-22: Random forests baseline predictions of Fulmar from November 2021 to March 2022 
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Figure II-23: Random forests baseline predictions of Fulmar from April 2022 to August 2022 
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Figure II-24: Random forests baseline predictions of Fulmar from September 2022 to February 2023 
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Figure II-25: Random forests baseline predictions of Fulmar from March 2023 to April 2023 
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II.2.5.2 Turbine scenario 1 

 

Figure II-26: Random forests predictions from turbine scenario 1 of Fulmar from May 2021 to September 
2021 with turbines presented as black dots 



  

316 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure II-27: Random forests predictions from turbine scenario 1 of Fulmar from November 2021 to March 
2022 with turbines presented as black dots 
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Figure II-28: Random forests predictions from turbine scenario 1 of Fulmar from April 2022 to August 2022 
with turbines presented as black dots 
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Figure II-29: Random forests predictions from turbine scenario 1 of Fulmar from September 2022 to 
February 2023 with turbines presented as black dots 
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Figure II-30: Random forests predictions from turbine scenario 1 of Fulmar from March 2023 to April 2023 
with turbines presented as black dots 
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II.2.5.3 Turbine scenario 2 

 

Figure II-31: Random forests predictions from turbine scenario 2 of Fulmar from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-32: Random forests predictions from turbine scenario 2 of Fulmar from November 2021 to March 
2022 with turbines presented as black dots 
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Figure II-33: Random forests predictions from turbine scenario 2 of Fulmar from April 2022 to August 2022 
with turbines presented as black dots 
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Figure II-34: Random forests predictions from turbine scenario 2 of Fulmar from September 2022 to 
February 2023 with turbines presented as black dots 
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Figure II-35: Random forests predictions from turbine scenario 2 of Fulmar from March 2023 to April 2023 
with turbines presented as black dots 
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II.2.5.4 Turbine scenario 3 

 

Figure II-36: Random forests predictions from turbine scenario 3 of Fulmar from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-37: Random forests predictions from turbine scenario 3 of Fulmar from November 2021 to March 
2022 with turbines presented as black dots 
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Figure II-38: Random forests predictions from turbine scenario 3 of Fulmar from April 2022 to August 2022 
with turbines presented as black dots 
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Figure II-39: Random forests predictions from turbine scenario 3 of Fulmar from September 2022 to 
February 2023 with turbines presented as black dots 
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Figure II-40: Random forests predictions from turbine scenario 3 of Fulmar from March 2023 to April 2023 
with turbines presented as black dots 

II.3 Gannet 

II.3.1 Model assessment 

The top five models had RMSE values that were all around 3.835 with R squared values between 

0.0442 and 0.0448. These R squared values were better than those from the MRSea model, 

which had an R-squared value of 0.0395. The best model had an mtry value of 6, with a minimum 

node size of 80 (Figure II-41, Table II-7). 
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Figure II-41: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-7: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

6 80 3.835 0.0443 

8 100 3.835 0.0448 

7 80 3.835 0.0445 

5 90 3.835 0.0442 

8 90 3.835 0.0442 

 

II.3.2 Variable importance 

The top predictor variables were distance to colony, density of sandeel, northing (y.pos), 

bathymetry and presence of sandeel. This shows that most of the signal in the data come from 

variables that represent ecological parameters related to prey (Table II-8). 

Table II-8: The top 5 predictor variables from the random forests model and overall importance 

Variable Overall importance 

dist2col 100.00 

sandeel_pr_density 93.43 

y.pos 85.49 

Bathymetry 71.91 

sandeel_pr_presence 69.76 
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II.3.3 Distributional response 

The partial relationship of distance to turbines on densities of gannet demonstrates that there was 

an inverse relationship between density and distance to turbine from 0 to approximately 18km 

away from the turbines. After this, the curve has an inflection point where the relationship reverses, 

and more birds are predicted further away. (Figure II-42). The relationship between 0 - 18km only 

contributes to a partial dependence of approximately 0.03 and when comparing to the overall scale 

of the figure of 0.64 to 0.72, it suggests little evidence of a displacement effect. However, this 

relationship could be driven by other environmental covariates that we were unable to measure.  

 

Figure II-42: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.3.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) fell 

well within the range of estimates derived from MRSea, sometimes only differing by 0.6 to 2%. We 

are therefore confident that the random forests gannet model is reliable, particularly in the context 

of the MRSea analysis. 

There was no consistency in population increases or decreases between turbine scenarios vesus 

baseline. However, the largest variations were in scenario 3 (ranging from -9.75% to 19.94%) 

(Table II-9). 

Table II-9: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 
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SurveyID Baseline Scenario 1 (% 

change) 

Scenario 2 (% 

change) 

Scenario 3 (% 

change) 

June 2021 688 761 (10.61) 756 (9.88) 757 (10.03) 

July 2021 293 275 (-6.14) 273 (-6.83) 276 (-5.8) 

August 2021 455 477 (4.84) 470 (3.3) 477 (4.84) 

September 2021 632 739 (16.93) 729 (15.35) 758 (19.94) 

October 2021 790 721 (-8.73) 738 (-6.58) 713 (-9.75) 

May 2022 147 154 (4.76) 152 (3.4) 155 (5.44) 

June 2022 1465 1456 (-0.61) 1440 (-1.71) 1445 (-1.37) 

July 2022 730 767 (5.07) 758 (3.84) 760 (4.11) 

September 2022 655 728 (11.15) 720 (9.92) 727 (10.99) 

October 2022 276 273 (-1.09) 274 (-0.72) 274 (-0.72) 

II.3.5 Distributions 

The broad distribution of gannet in the baseline random forests models were nearly identical to 

those in the MRSea models. For gannet, the models predict the highest densities in the southern 

part of the survey area for most months (with the exception of October 2021). The densities of 

gannet change variably between surveys in relation to the locations of proposed turbines. This 

distributional response suggests a variable displacement effect (Figures II-43 – II-50). 
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II.3.5.1 Baseline scenarios 

 

Figure II-43: Random forests baseline predictions of Gannet from June 2021 to October 2021 
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Figure II-44: Random forests baseline predictions of Gannet from May 2022 to October 2022 
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II.3.5.2 Turbine scenario 1 

 

Figure II-45: Random forests predictions from turbine scenario 1 of Gannet from June 2021 to October 
2021 with turbines presented as black dots 
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Figure II-46: Random forests predictions from turbine scenario 1 of Gannet from May 2022 to October 
2022 with turbines presented as black dots 
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II.3.5.3 Turbine scenario 2 

 

Figure II-47: Random forests predictions from turbine scenario 2 of Gannet from June 2021 to October 
2021 with turbines presented as black dots 
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Figure II-48: Random forests predictions from turbine scenario 2 of Gannet from May 2022 to October 
2022 with turbines presented as black dots 
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II.3.5.4 Turbine scenario 3 

 

Figure II-49: Random forests predictions from turbine scenario 3 of Gannet from June 2021 to October 
2021 with turbines presented as black dots 
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Figure II-50: Random forests predictions from turbine scenario 3 of Gannet from May 2022 to October 
2022 with turbines presented as black dots 

II.4 Puffin 

II.4.1 Model assessment 

The top five models had RMSE values between 3.999 and 4.011 with R squared values between 

0.163 and 0.159. The R squared values were slightly lower than those from the MRSea model, 

which had an R-squared value of 0.1669. The best model had an mtry value of 8, with a minimum 

node size of 80 (Figure II-51, Table II-10). 
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Figure II-51: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-10: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

8 80 3.999 0.1633 

8 90 4.005 0.1606 

7 80 4.007 0.1603 

8 100 4.010 0.1589 

7 90 4.011 0.1587 

 

II.4.2 Variable importance 

The top predictor variables were survey ID, standard deviation of monthly sea surface temperature, 

and monthly mean sea surface temperature. This shows that most of the signal in the data come 

from variables that represent temporal variability (Table II-11). 

Table II-11: The top 5 predictor variables from the random forests model and overall importance 

Variable Overall importance 

SurveyID.Q 100.00 

SST_sd 98.34 

SurveyID^13 79.72 

SST_mean 74.95 

SurveyID^23 70.23 
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II.4.3 Distributional response 

The partial relationship of distance to turbines on densities of puffin demonstrates a displacement 

effect with fewer birds expected in areas close to turbines. The relationship reaches a slight 

inflection point at approximately 20km, where the curve begins to flatten (Figure II-52). This does 

not indicate that there is a displacement effect out to 20km, simply that the model predicts more 

birds further away from the turbines, which could be due to relationships with other covariates.  

 

Figure II-52: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.4.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) fell 

well within the range of estimates derived from MRSea, sometimes only differing by 0.6 - 2%. We 

are therefore confident that the random forests puffin model is reliable, particularly in the context of 

the MRSea analysis. There were notably higher populations in August 2021 and September 2022, 

likely associated with post-breeding dispersal. 

Populations of puffin in the survey area were mostly predicted to decrease in all three scenarios due 

to the relationship between distance to turbine and density, with the exception of the September 

2021, where the population was predicted to increase by 11.69% in scenarios 2 and 3. The 

biggest population change was predicted for scenario 3, with percent change from baseline varying 

from -14% to 11.69% across all surveys (Table II-12). 
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Table II-12: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 

SurveyID Baseline Scenario 1 (% 
change) 

Scenario 2 (% 
change) 

Scenario 3 (% 
change) 

May 2021 633 577 (-8.85) 577 (-8.85) 573 (-9.48) 

June 2021 520 492 (-5.38) 492 (-5.38) 491 (-5.58) 

July 2021 687 601 (-12.52) 593 (-13.68) 591 (-13.97) 

August 2021 4268 4050 (-5.11) 4062 (-4.83) 3932 (-7.87) 

September 2021 154 168 (9.09) 172 (11.69) 172 (11.69) 

October 2021 266 270 (1.5) 270 (1.5) 270 (1.5) 

April 2022 1151 1142 (-0.78) 1148 (-0.26) 1131 (-1.74) 

May 2022 1256 1197 (-4.7) 1196 (-4.78) 1193 (-5.02) 

June 2022 165 159 (-3.64) 160 (-3.03) 160 (-3.03) 

July 2022 238 239 (0.42) 239 (0.42) 238 (0) 

August 2022 858 792 (-7.69) 788 (-8.16) 785 (-8.51) 

September 2022 3096 2927 (-5.46) 2931 (-5.33) 2901 (-6.3) 

II.4.5 Distributions 

The broad distribution of puffin in the baseline random forests models were nearly identical to those 

in the MRSea models. For most surveys, the models predicted the highest densities in the eastern 

and southern parts of the survey area, with the exception of August 2021 and September 2022 

where high densities of birds were identified through the whole region. In all cases, the densities of 

puffin decrease through the site in relation to the locations of proposed turbines. This distributional 

response suggests a potential displacement effect which could push individuals beyond the 

boundary of the wind farm site (Figures II-53 – II-64). 
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II.4.5.1 Baseline scenarios 

 

Figure II-53: Random forests baseline predictions of Puffin from May 2021 to September 2021 
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Figure II-54: Random forests baseline predictions of Puffin from October 2021 to July 2022 
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Figure II-55: Random forests baseline predictions of Puffin from August 2022 to September 2022 



  

347 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 
II.4.5.2 Turbine scenario 1 

 

Figure II-56: Random forests predictions from turbine scenario 1 of Puffin from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-57: Random forests predictions from turbine scenario 1 of Puffin from October 2021 to July 2022 
with turbines presented as black dots 
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Figure II-58: Random forests predictions from turbine scenario 1 of Puffin from August 2022 to September 
2022 with turbines presented as black dots 
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II.4.5.3 Turbine scenario 2 

 

Figure II-59: Random forests predictions from turbine scenario 2 of Puffin from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-60: Random forests predictions from turbine scenario 2 of Puffin from October 2021 to July 2022 
with turbines presented as black dots 
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Figure II-61: Random forests predictions from turbine scenario 2 of Puffin from August 2022 to September 
2022 with turbines presented as black dots 
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II.4.5.4 Turbine scenario 3 

 

Figure II-62: Random forests predictions from turbine scenario 3 of Puffin from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-63: Random forests predictions from turbine scenario 3 of Puffin from October 2021 to July 2022 
with turbines presented as black dots 



  

355 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 

 

Figure II-64: Random forests predictions from turbine scenario 3 of Puffin from August 2022 to September 
2022 with turbines presented as black dots 

II.5 Razorbill 

II.5.1 Model assessment 

The top five models had RMSE values between 4.125 and 4.127 with R squared values between 

0.0892 and 0.0903. The R squared values were higher than those from the MRSea model, which 

had an R-squared value of 0.0776. The best model had an mtry value of 6, with a minimum node 

size of 80 (Figure II-65, Table II-13). 
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Figure II-65: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-13: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

6 80 4.125 0.0903 

8 80 4.126 0.0900 

7 80 4.126 0.0899 

8 90 4.126 0.0897 

7 90 4.127 0.0892 

 

II.5.2 Variable importance 

The top predictor variables were monthly mean sea surface temperature, northing| (y.pos) and 

survey ID. This shows that most of the signal in the data come from variables that represent 

temporal variability (Table II-14). 

Table II-14: The top 5 predictor variables from the random forests model and overall importance 

Variable Overall importance 

SST_mean 100.00 

y.pos 96.52 

SurveyID^4 90.29 

SurveyID^7 89.97 

SurveyID^10 89.24 
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II.5.3 Distributional response 

The partial relationship of distance to turbines on densities of razorbill demonstrates that higher 

densities of birds are predicted in areas close to turbines. The relationship reaches an inflection 

point at approximately 18km (Figure II-66). However, this effect seems quite small overall with the 

relative contribution towards predictions ranging between 1.05 and 1.13 (0.08). This does not 

necessarily mean that razorbill are attracted to turbines, but that they are predicted to be occurring 

at higher densities closer to turbines, which could be due to relationships with other environmental 

features. 

 

Figure II-66: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.5.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) fell 

well within the range of estimates derived from MRSea, sometimes only differing by 1 - 3%. We are 

therefore confident that the random forests razorbill model is reliable, particularly in the context of 

the MRSea analysis. 

Populations of razorbill in the survey area increased and decreased variably in all three scenarios 

due to the relationship between distance to turbine and density. The biggest population change 

was predicted for scenario 3, with percent change from baseline varying from -5% to 46% across 

all surveys (Table II-15). 
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Table II-15: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 

SurveyID Baseline Scenario 1 (% 
change) 

Scenario 2 (% 
change) 

Scenario 3 (% 
change) 

May 2021 1120 1253 (11.88) 1254 (11.96) 1273 (13.66) 

June 2021 1188 1157 (-2.61) 1154 (-2.86) 1155 (-2.78) 

July 2021 1869 1758 (-5.94) 1762 (-5.72) 1764 (-5.62) 

August 2021 709 706 (-0.42) 705 (-0.56) 707 (-0.28) 

September 2021 530 522 (-1.51) 519 (-2.08) 526 (-0.75) 

February 2022 717 719 (0.28) 704 (-1.81) 727 (1.39) 

April 2022 981 1044 (6.42) 1042 (6.22) 1047 (6.73) 

May 2022 2560 2983 (16.52) 2888 (12.81) 3058 (19.45) 

June 2022 226 239 (5.75) 242 (7.08) 243 (7.52) 

July 2022 1257 1215 (-3.34) 1206 (-4.06) 1200 (-4.53) 

August 2022 381 428 (12.34) 431 (13.12) 432 (13.39) 

September 2022 3737 3572 (-4.42) 3660 (-2.06) 3544 (-5.16) 

October 2022 138 193 (39.86) 193 (39.86) 198 (43.48) 

November 2022 217 218 (0.46) 218 (0.46) 218 (0.46) 

February 2023 434 460 (5.99) 458 (5.53) 461 (6.22) 

March 2023 547 569 (4.02) 567 (3.66) 565 (3.29) 

April 2023 552 567 (2.72) 565 (2.36) 565 (2.36) 

II.5.5 Distributions 

The broad distribution of razorbill in the baseline random forests models were nearly identical to 

those in the MRSea models. For most surveys, the models predicted the highest densities in the 

southern parts of the survey area, with the exception of May and July 2022 where high densities of 

birds were identified through the whole region. The distributional response was varied between the 

surveys, but is most extreme in scenario 3 (Figures II-67 – II-82). 
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II.5.5.1 Baseline scenarios 

 

Figure II-67: Random forests baseline predictions of Razorbill from May 2021 to September 2021 
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Figure II-68: Random forests baseline predictions of Razorbill from February 2022 to July 2022 
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Figure II-69: Random forests baseline predictions of Razorbill from August 2022 to February 2023 
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Figure II-70: Random forests baseline predictions of Razorbill from March 2023 to April 2023 
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II.5.5.2 Turbine scenario 1 

 

Figure II-71: Random forests predictions from turbine scenario 1 of Razorbill from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-72: Random forests predictions from turbine scenario 1 of Razorbill from February 2022 to July 
2022 with turbines presented as black dots 
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Figure II-73: Random forests predictions from turbine scenario 1 of Razorbill from August 2022 to February 
2023 with turbines presented as black dots 
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Figure II-74: Random forests predictions from turbine scenario 1 of Razorbill from March 2023 to April 
2023 with turbines presented as black dots 
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II.5.5.3 Turbine scenario 2 

 

Figure II-75: Random forests predictions from turbine scenario 2 of Razorbill from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-76: Random forests predictions from turbine scenario 2 of Razorbill from February 2022 to July 
2022 with turbines presented as black dots 
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Figure II-77: Random forests predictions from turbine scenario 2 of Razorbill from August 2022 to February 
2023 with turbines presented as black dots 
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Figure II-78: Random forests predictions from turbine scenario 2 of Razorbill from March 2023 to April 
2023 with turbines presented as black dots 
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II.5.5.4 Turbine scenario 3 

 

Figure II-79: Random forests predictions from turbine scenario 3 of Razorbill from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-80: Random forests predictions from turbine scenario 3 of Razorbill from February 2022 to July 
2022 with turbines presented as black dots 
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Figure II-81: Random forests predictions from turbine scenario 3 of Razorbill from August 2022 to February 
2023 with turbines presented as black dots 
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Figure II-82: Random forests predictions from turbine scenario 3 of Razorbill from March 2023 to April 
2023 with turbines presented as black dots 

II.6 Guillemot 

II.6.1 Model assessment 

The top five models had RMSE values between 33.386 and 33.095 with R squared values 

between 0.215 and 0.199. The R squared values were higher than those from the MRSea model, 

which had an R-squared value of 0.1843. The best model had an mtry value of 8, with a minimum 

node size of 80 (Figure II-83, Table II-16). 
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Figure II-83: Root mean squared error when varying mtry and min.node.size parameters in random forests 

Table II-16: The top 5 models selected by the random forests analysis showing root mean squared error 
(RMSE) and R-squared values as calculated by 5-fold cross validation 

mtry min.node.size RMSE Rsquared 

8 80 33.095 0.2146 

7 80 33.218 0.2088 

8 90 33.271 0.2048 

6 80 33.378 0.2011 

7 90 33.386 0.1986 

 

II.6.2 Variable importance 

The top predictor variables were northing (y.pos), survey ID, monthly mean sea surface 

temperature, and standard deviation of monthly sea surface temperature. This shows that most of 

the signal in the data come from variables that represent temporal variability (Table II-17). 

Table II-17: The top 5 predictor variables from the random forests model and overall importance 

Variable Overall importance 

y.pos 100.00 

SurveyID^10 71.47 

SST_mean 62.77 

SurveyID^12 62.52 

SST_sd 61.24 
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II.6.3 Distributional response 

The partial relationship of distance to turbines on densities of guillemot demonstrates a slight 

inverse relationship between 0 - 10 km (Figure II-84). The relationship with the partial dependence 

from 0 to 20 km varies between 6.3 and 6.5, whereas the overall scale is from 6.3 to 7.6 which 

indicates that it is not as strong an effect within that x-axis range. If interpreting this as the figure 

depicts, there is relatively no distributional response associated with turbines for guillemot.  

 

Figure II-84: Partial dependence plot of distance to turbine from the random forests model. The red line 
depicts the loess curve 

II.6.4 Population estimates 

Population estimates derived from the random forests baseline scenario (i.e., Existing turbines) 

mostly fell well within the range of estimates derived from MRSea, sometimes only differing by 2 - 

3%. The largested discrepancy was the July 2021 survey which predicted a median population 

estimate 16704 birds, while the random forests analysis predicted 22587 birds. However, this 

estimate of 22587 fell within the confidence limits of the MRSea analysis. We are therefore 

confident that the random forests guillemot model is reliable, particularly in the context of the 

MRSea analysis. 

Populations of guillemot in the survey area were mostly predicted to decrease in all three scenarios 

due to the relationship between distance to turbine and density, with the exception of May 2022, 

where the population was predicted to increase by 26.99%, and December 2022 where the 

population was predicted to increase by 11.94% in scenario 3. The biggest population change was 

predicted for scenario 3, with percent change from baseline varying from -19% to 27% across all 

surveys (Table II-18). 
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Table II-18: Population estimates from the random forests models for the 4km buffer zone plus windfarm 
footprint survey area for the baseline scenario (i.e., based on currently installed turbines) and three potential 
turbine scenarios. Percent change from baseline is calculated for each scenario 

SurveyID Baseline Scenario 1 (% 
change) 

Scenario 2 (% 
change) 

Scenario 3 (% 
change) 

May 2021 13202 13169 (-0.25) 13162 (-0.3) 13158 (-0.33) 

June 2021 8588 8492 (-1.12) 8471 (-1.36) 8481 (-1.25) 

July 2021 22587 21133 (-6.44) 21119 (-6.5) 21132 (-6.44) 

August 2021 3408 3065 (-10.06) 3060 (-10.21) 3054 (-10.39) 

September 2021 6125 5815 (-5.06) 5807 (-5.19) 5805 (-5.22) 

October 2021 2250 2084 (-7.38) 2090 (-7.11) 2077 (-7.69) 

November 2021 2799 2722 (-2.75) 2720 (-2.82) 2697 (-3.64) 

December 2021 1452 1426 (-1.79) 1427 (-1.72) 1425 (-1.86) 

January 2022 751 744 (-0.93) 739 (-1.6) 731 (-2.66) 

February 2022 1980 2095 (5.81) 2095 (5.81) 2076 (4.85) 

March 2022 1114 1120 (0.54) 1122 (0.72) 1116 (0.18) 

April 2022 2952 2752 (-6.78) 2758 (-6.57) 2747 (-6.94) 

May 2022 20986 25207 (20.11) 24726 (17.82) 26650 (26.99) 

June 2022 14410 13994 (-2.89) 13930 (-3.33) 13862 (-3.8) 

July 2022 17230 16888 (-1.98) 16726 (-2.93) 16716 (-2.98) 

August 2022 1142 1098 (-3.85) 1094 (-4.2) 1091 (-4.47) 

September 2022 13217 10686 (-19.15) 10683 (-19.17) 10676 (-19.23) 

October 2022 1100 1086 (-1.27) 1074 (-2.36) 1092 (-0.73) 

November 2022 189 186 (-1.59) 191 (1.06) 192 (1.59) 

December 2022 653 728 (11.49) 726 (11.18) 731 (11.94) 

January 2023 998 986 (-1.2) 988 (-1) 979 (-1.9) 

February 2023 2843 2969 (4.43) 2966 (4.33) 2936 (3.27) 

March 2023 3446 3825 (11) 3843 (11.52) 3847 (11.64) 

April 2023 3182 3120 (-1.95) 3099 (-2.61) 3096 (-2.7) 

II.6.5 Distributions 

The broad distribution of guillemot in the baseline random forests models were nearly identical to 

those in the MRSea models. For most surveys, the models predicted the highest densities in the 

south western parts of the survey area, although the species was mostly ubiquitous throughout the 

site in all surveys. In nearly all cases, the densities of guillemot decrease through the site in relation 

to the locations of proposed turbines. This distributional response suggests a potential 

displacement effect which could push individuals beyond the boundary of the wind farm site 

(Figures II-85 – II-104). 
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II.6.5.1 Baseline scenarios 

 

Figure II-85: Random forests baseline predictions of Guillemot from May 2021 to September 2021 
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Figure II-86: Random forests baseline predictions of Guillemot from October 2021 to February 2022 
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Figure II-87: Random forests baseline predictions of Guillemot from March 2022 to July 2022 
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Figure II-88: Random forests baseline predictions of Guillemot from August 2022 to December 2022 
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Figure II-89: Random forests baseline predictions of Guillemot from January 2023 to April 2023 
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II.6.5.2 Turbine scenario 1 

 

Figure II-90: Random forests predictions from turbine scenario 1 of Guillemot from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-91: Random forests predictions from turbine scenario 1 of Guillemot from October 2021 to 
February 2022 with turbines presented as black dots 
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Figure II-92: Random forests predictions from turbine scenario 1 of Guillemot from March 2022 to July 
2022 with turbines presented as black dots 
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Figure II-93: Random forests predictions from turbine scenario 1 of Guillemot from August 2022 to 
December 2022 with turbines presented as black dots 
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Figure II-94: Random forests predictions from turbine scenario 1 of Guillemot from January 2023 to April 
2023 with turbines presented as black dots 
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II.6.5.3 Turbine scenario 2 

 

Figure II-95: Random forests predictions from turbine scenario 2 of Guillemot from May 2021 to September 
2021 with turbines presented as black dots 
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Figure II-96: Random forests predictions from turbine scenario 2 of Guillemot from October 2021 to 
February 2022 with turbines presented as black dots 
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Figure II-97: Random forests predictions from turbine scenario 2 of Guillemot from March 2022 to July 
2022 with turbines presented as black dots 
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Figure II-98: Random forests predictions from turbine scenario 2 of Guillemot from August 2022 to 
December 2022 with turbines presented as black dots 
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Figure II-99: Random forests predictions from turbine scenario 2 of Guillemot from January 2023 to April 
2023 with turbines presented as black dots 



  

393 

 

Black Bawks Data Science Ltd 

SC557537 

Document: BB00021 – 001v3 

Date: Feb 23, 2024 

 
II.6.5.4 Turbine scenario 3 

 

Figure II-100: Random forests predictions from turbine scenario 3 of Guillemot from May 2021 to 
September 2021 with turbines presented as black dots 
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Figure II-101: Random forests predictions from turbine scenario 3 of Guillemot from October 2021 to 
February 2022 with turbines presented as black dots 
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Figure II-102: Random forests predictions from turbine scenario 3 of Guillemot from March 2022 to July 
2022 with turbines presented as black dots 
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Figure II-103: Random forests predictions from turbine scenario 3 of Guillemot from August 2022 to 
December 2022 with turbines presented as black dots 
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Figure II-104: Random forests predictions from turbine scenario 3 of Guillemot from January 2023 to April 
2023 with turbines presented as black dots 
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III Hot spot analysis 

III.1 Results 

The hot-spot analysis revealed no persistent hot spots across the site for the entire set of density 

surface models. Most of the site was found to have moderate relative densities (see table 2 for a 

definition of the classes). The south-west portion of the site was the only region that had hot spots, 

though they were variable in nature. This is in line with the broad distributional patterns noted in the 

density surface models (Figure III-1).  

 

 

Figure III-1: Classified grid cells from the hot-spot analysis in the Caledonia Offshore wind farm area.  
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Data has the power to change how we 
interact with the natural world; we can 

explore its complexities and nuances then 
make changes for the better 
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