
≡≋envirocentre

Scapa Flow Deep Water Quay Coastal Hydrodynamic Modelling Study

August 2023

≡≋envirocentre

CONTROL SHEET

Client:	Orkney Islands Council Harbour Authority
Project Title:	Scapa Flow Deep Water Quay
Report Title:	Coastal Hydrodynamic Modelling Study
Document number:	13384
Project number:	677674

Issue Record

Issue	Status	Author	Reviewer	Approver	Issue Date
1	Issue	K Lucey	M Nichols	K MacDougall	27/06/2023
2	Final	K Lucey	M Nichols	K MacDougall	17/08/2023

EnviroCentre Limited Office Locations:

Glasgow	Edinburgh	Inverness	Banchory
Registered Office	: Craighall Business Park 8 Ea	agle Street Glasgow G4 9XA	L.
Tel 0141 341 504	0 info@envirocentre.co.uk w	ww.envirocentre.co.uk	

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Orkney Islands Council Harbour Authority ("the Client"). EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be altered without the prior written approval of EnviroCentre Limited.

EnviroCentre Limited is registered in Scotland under no. SC161777.

VAT no. GB 348 6770 57.

Contents

1	Intro	oduction	. 1
	1.1	Terms of Reference	. 1
	1.2	Scope of Report	. 1
	1.3	Report Usage	. 1
2	Bas	eline Conditions	. 2
	2.1	Site Location, Existing Condition and Proposed Development	. 2
	2.2	Topography and Bathymetry	. 2
	2.3	Tidal Water Levels	. 2
	2.4	Morphology and Geology	. 6
3	Hyd	rodynamic Model Development	. 7
	3.1	MIKE 21 Flow Model FM – Hydrodynamic (HD) Module	. 7
	3.2	Model Extent	. 7
	3.3	Input Data	. 9
	3.4	Model Mesh	11
	3.5	Model Setup	14
	3.6	Model Outputs	14
	3.7	Model Simulations	18
	3.8	Model Validation	18
4	Hyd	rodynamic Model Results	19
	4.1	Existing (Baseline) Conditions	19
	4.2	Post-Development Conditions	31
5	Dre	dge Plume Dispersal Model	40
	5.1	Context	40
	5.2	Dredge Dispersal Model Development	40
	5.3	Dredge Dispersal Model Results	14
6	Con	clusions	57

Appendices

- A Proposed Development Layout
- B Tabulated Model Results
- C Model Results Graphical Comparisons

Figures

3
ł
5
3
)
)
I
2
2
3
3
3
7
)
I
2

Figure 4-4: FM HD 16 current speed predictions at points 4, 16 and 22 for spring and neap cycle	
Figure 4-5: FM HD 16 current speed predictions for points 4, 16, 22 for spring tide	
Figure 4-6: FM HD 16 current speed (A) mid-flood spring (B) mid-ebb spring (C) mid-flood neap (D)	
mid-ebb neap tide	
Figure 4-7: FM HD 16 Deepdale Bay and surrounds current speed mid-flood spring tide	
Figure 4-8: FM HD 16 Deepdale Bay and surrounds current speed mid-ebb spring tide	
Figure 4-9: FM HD 16 Deepdale Bay and surrounds current speed mid-flood neap tide	
Figure 4-10: FM HD 16 Deepdale Bay and surrounds current speed mid-ebb neap tide	
Figure 4-11: FM HD 16 spring tide residual current speed (mid-ebb minus mid-flood)	
Figure 4-12: FM HD 16 bed shear stress at locations 2, 4, 6, 7, 9 and 10 through spring and neap tide cycle	
Figure 4-13: FM HD 16 bed shear stress and current speed at location 4	.29
Figure 4-14: Wind rose plot – CREA6 model data (January 2018)	. 30
Figure 4-15: FM HD 16 and FM HD 17 current speed at location 16	
Figure 4-16: FM HD 19 water surface elevation predictions at points 4 and 16 for spring and neap tic cycle	dal
Figure 4-17: Comparison of FM HD 16 & FM HD 19 water surface elevation predictions at point 4	
Figure 4-18: FM HD 19 current speed predictions at points 4, 16 and 22 for spring and neap tides	
Figure 4-19: FM HD 19 current speed predictions for points 4, 16, 22 for spring tide	
Figure 4-20: FM HD 19 current speed at Deepdale Bay during mid-flood spring tide	
Figure 4-21: FM HD 19 current speed at Deepdale Bay during mid-ebb spring tide	
Figure 4-22: Baseline (FM HD 16) versus Post-development (FM HD 19) current speed differential –	
spring flood tide	
Figure 4-23: Baseline (FM HD 16) versus Post-development (FM HD 19) current speed differential –	
spring ebb tide	
Figure 4-24: FM HD 19 bed shear stress at locations 2, 4, 6, 7, 9 and 10 through spring and neap tide	
Figure 4-25: FM HD 19 bed shear stress and current speed at location 4	
Figure 4-26: FM HD 19 and FM HD 20 current speed at location 16	
Figure 4-27: FM HD 19 and FM HD 20 current speed at location 4	
Figure 5-1: Assumed dredger path (red line with arrows) through dredge pockets for whole of dredg	-
campaign	
Figure 5-2: MT module point output locations	
Figure 5-3: FM HD MT Dredge 2 – plume TSS following 8 days of dredge	
Figure 5-4: FM HD MT Dredge 2 – deposition thickness following 8 days of dredge	
Figure 5-5: FM HD MT Dredge 2 – total net deposition accumulation following 8 days of dredge	
Figure 5-6: FM HD MT Dredge 3 – plume TSS at end of dredge campaign	
Figure 5-7: FM HD MT Dredge 3 – plume TSS at end of simulation	
Figure 5-8: FM HD MT Dredge 3 – time-series TSS concentration (kg/m ³) at locations 1, 5 & 12	
Figure 5-9: FM HD MT Dredge 3 – statistical maximum plume TSS (full dredge campaign)	
Figure 5-10: FM HD MT Dredge 3 – statistical maximum plume TSS (full dredge campaign zoom view	
Westerbister Fish Farm (red polygons))	
Figure 5-11: FM HD MT Dredge 3 – statistical mean plume TSS (full dredge campaign)	. 50
Figure 5-12: FM HD MT Dredge 3 – deposition thickness at end of simulation	
Figure 5-13: FM HD MT Dredge 3 – total net deposition accumulation at end of simulation	.51
Figure 5-14: Wind rose plot – CREA6 model data for full duration of Scapa FM HD MT Dredge 4	. 52
Figure 5-15: Wind rose plot – CREA6 model data for final 50 hours of Scapa FM HD MT Dredge 4	. 53
Figure 5-16: FM HD MT Dredge 4 – plume TSS following 8 days of dredge with wind forcing (wider	
view)	. 54
Figure 5-17: FM HD MT Dredge 4 – plume TSS following 8 days of dredge with wind forcing (zoom	
view Westerbister Fish Farm (red polygons))	. 55
Figure 5-18: FM HD MT Dredge 4 – time-series TSS concentration (kg/m ³) at locations 1, 5 & 12	. 55

Figure 5-19: FM HD MT Dredge 4 – deposition following 8 days of dredge with wind forcing	6
Figure 5-20: FM HD MT Dredge 4 – total net deposition accumulation following 8 days of dredge with	
wind forcing	6

Tables

Table 2-1: Tidal water levels at St Mary's Scapa Flow	2
Table 3-1: Baseline HD mesh characteristics	11
Table 3-2: HD Model point output locations	15
Table 3-3: HD model simulations	18
Table 5-1: Summary of dredge budget particle size data	40
Table 5-2: General settings applied to MIKE 21 MT module	41
Table 5-3: Assumed parameters of dredge applied to MIKE 21 MT module	41
Table 5-4: MT module point output locations	43
Table 5-5: MIKE 21 FM HD MT model simulations	44

1 INTRODUCTION

1.1 Terms of Reference

EnviroCentre Ltd has been appointed by Orkney Islands Council Harbour Authority (OICHA) to undertake a Coastal Hydrodynamic Modelling Study in support of the Environmental Impact Assessment (EIA) of the proposed new deep water quay at Deepdale Bay, Scapa Flow, Orkney.

1.2 Scope of Report

This study aims to develop a coastal hydrodynamic (HD) model of Scapa Flow, to include Deepdale Bay as well as approaches and surrounding coastal waters. The model will enable simulation and characterisation of tidal flow under pre-development (baseline) and post-development conditions. This report will present details of the baseline coastal conditions at the development site, outline the HD model development, and describe the model simulations and results.

The study will also assess the potential dispersal of sediment plumes from the proposed capital dredging programme. The dredge plume dispersal assessment will involve the use of coupled HD and sediment transport modelling techniques.

1.3 Report Usage

The information and recommendations contained within this report have been prepared in the specific context stated above and should not be utilised in any other context without prior written permission from EnviroCentre Limited.

If this report is to be submitted for regulatory approval more than 12 months following the report date, it is recommended that it is referred to EnviroCentre Limited for review to ensure that any relevant changes in data, best practice, guidance or legislation in the intervening period are integrated into an updated version of the report.

Whilst the Client has a right to use the information as appropriate, EnviroCentre Limited retains ownership of the intellectual content of this report. Any distribution of this report should be managed to avoid compromising the validity of the information or legal responsibilities held by both the Client and EnviroCentre Limited. EnviroCentre Limited does not accept liability to any third party for the contents of this report unless written agreement is secured in advance, stating the intended use of the information.

EnviroCentre Limited accepts no liability for use of the report for purposes other than those for which it was originally provided, or where EnviroCentre Limited has confirmed it is appropriate for the new context.

2 BASELINE CONDITIONS

2.1 Site Location, Existing Condition and Proposed Development

The proposed development site is located at Deepdale Bay, within Scapa Flow, to the south of Kirkwall, Orkney Mainland, as shown in Figure 2-1 and Figure 2-2 below.

The present-day site is undeveloped. The shoreline at the site consists of a rocky intertidal area with stretches of shingle along the upper beach. It lies below steep vegetated slopes, with short sections of vertical rocky cliffs, all less than 15 m high. Beyond the shoreline to the east is a mix of moorland and agricultural fields.

The development of Scapa Deep Water Quay comprises approx. 597m long main quayside berth with general -15m CD water depth, incorporating a 135m quayside pocket with -20m CD water depth. Further north tug (3No.) and pilot boat (2No.) berth approx. 180m long with depths between -6 and -9m CD. Laydown area directly behind quay face approx. 22.85 Hectares. There will also be an access road from the A961 to the site. The main purpose of this facility would be to undertake industrial activities that require both deep-water berthing and a large laydown area.

The proposed development layout is shown in Appendix A.

2.2 Topography and Bathymetry

Topographic and bathymetric survey data is available for the site and surrounds. Bathymetric levels slope from around +3.3 metres relative to Chart Datum (mCD) at the shoreline to around -11mCD at the western boundary of the proposed quay, and -40mCD further out in the centre of Scapa Flow. Bathymetric levels within the modelled extent of the Pentland Firth reach depths below -90mCD. Further information on wider bathymetry and data sources utilised within this modelling study is presented in section 3.3.1 of this report.

2.3 Tidal Water Levels

Tidal water levels at St Mary's, Scapa Flow as presented within the Admiralty tide tables are shown in Table 2-1¹. The mean tidal range at St Mary's is 2.7m for spring tides and 1.7m for neap tides.

Chart Datum (mCD) **Ordnance Datum (mOD)** Highest Astronomical Tide (HAT) 3.8 2.15 Mean High Water Springs (MHWS) 3.3 1.65 Mean High Water Neap (MHWN) 2.6 0.95 0.25 Mean Sea Level (MSL) 1.9 Mean Low Water Neap (MLWN) 1.4 -0.25 Mean Low Water Springs (MLWS) 0.6 -1.05 Lowest Astronomical Tide (LAT) -0.1 -1.75

Table 2-1: Tidal water levels at St Mary's Scapa Flow

*Chart datum correction for Ordnance Datum is -1.65 (relative to OD at Newlyn)

¹ UK Hydrographic Office, 2023 (Admiralty Tide Tables – Volume 1B)

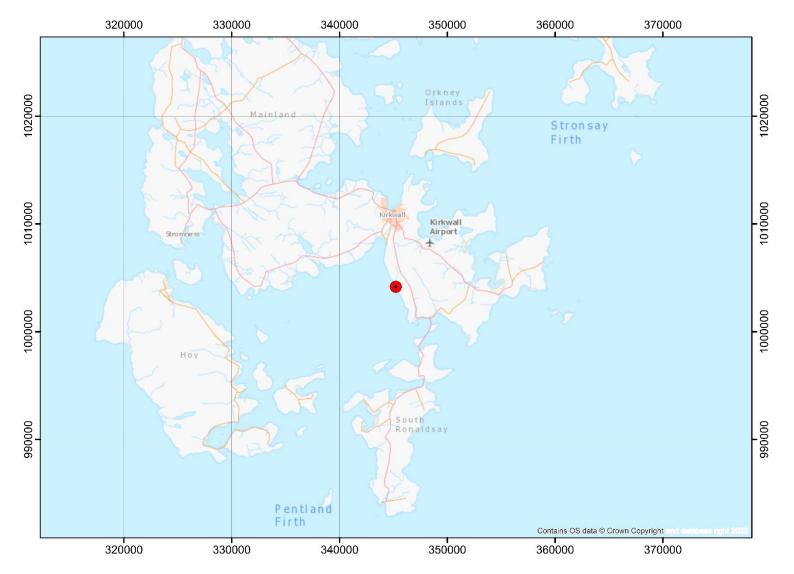


Figure 2-1: Site location shown by red dot

Figure 2-2: Site location within Scapa Flow shown by red dot

Figure 2-3: Satellite imagery of Deepdale Bay (2021)

2.4 Morphology and Geology

Tidal Currents are highest at the southern and western entrances to Scapa Flow, and rapidly dissipate into Scapa Flow, with currents generally weak, particularly so near to Deepdale bay. The relatively narrow openings to Scapa Flow restrict the penetration of swell and waves into Scapa Flow. The wave climate within Scapa Flow is therefore dominated by locally generated wind-waves².

Much of the coastline near to Deepdale Bay is fronted by shingle and sand beaches. The European Nature Information System (EUNIS) seabed habitat map shows the dominant seabed habitat around Deepdale Bay to be infralittoral mud and rock with biogenic reef³. Rock substrate is shown immediately west of the proposed development location, with gravelly muddy sand substrate located further into Scapa flow ⁴. Sediment input to Scapa Flow is limited, with the Churchill Barriers preventing any sediment connectivity from the east. Due to the lack of sediment input, and weak tidal currents, there is therefore little littoral transport other than erosion of existing glacial deposits during extreme events⁵.

Analysis of historical coastline alignments show that there have been no major changes to the coastline since 1890 and no significant erosion observed⁶.

² Ramsay and Brampton, 2000. Coastal Cells in Scotland: Cell 10 – Orkney.

³ EUNIS 2017 (<u>https://emodnet.eu/en</u>).

⁴ Marine Scotland (https://marinescotland.atkinsgeospatial.com/nmpi/)

⁵ Ramsay and Brampton, 2000. Coastal Cells in Scotland: Cell 10 – Orkney.

⁶ Dynamic coast online map available at: <u>http://www.dynamiccoast.com/webmap.html</u>

3 HYDRODYNAMIC MODEL DEVELOPMENT

3.1 MIKE 21 Flow Model FM – Hydrodynamic (HD) Module

MIKE 21 Flow Model FM is a modelling package based on a flexible mesh (FM) structure, developed by the Danish Hydraulic Institute (DHI). The modelling system has been developed for applications within oceanographic, coastal and estuarine environments. The Hydrodynamic Module (HD) is the central computational component of the package, solving 2D shallow water equations. The module simulates unsteady flow taking account of bathymetry, sources and external forcing, it consists of continuity, momentum, temperature, salinity and density equations. The latest version of the software, MIKE 2023, has been used within this assessment.

3.2 Model Extent

A HD model has been developed, for which the model extent comprises the coastal waters of Scapa Flow, Hoy Sound, Hoy Mouth, the Sound of Hoxa, the Pentland Firth and North Atlantic as shown in Figure 3-1 below.

Initially the model extent included only the central channel of the Pentland Firth between Orkney and mainland Scotland. However, during the model validation process it was found that this did not sufficiently represent the complex inflow mechanisms into Scapa Flow through the Hoy Sound and the Sound of Hoxa. Expanding the model extents further to the west and east improved the accuracy of the model.

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

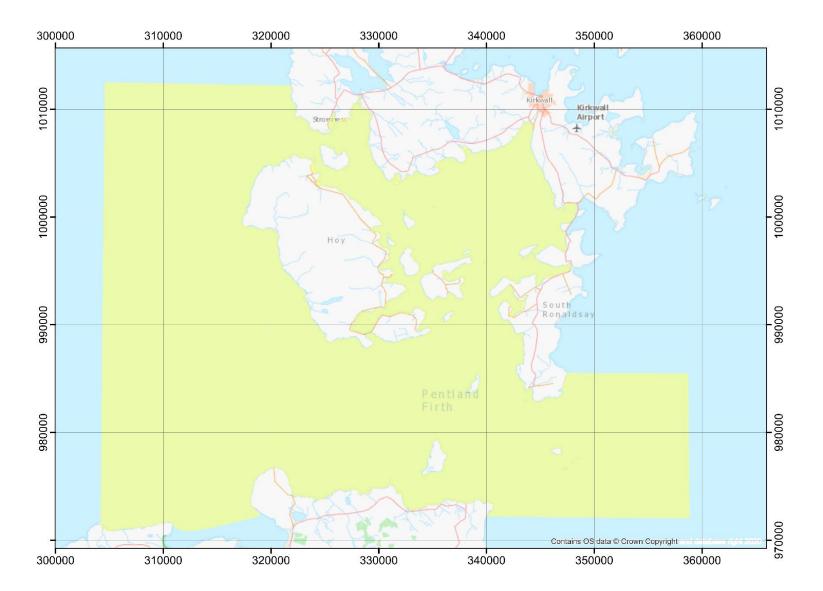
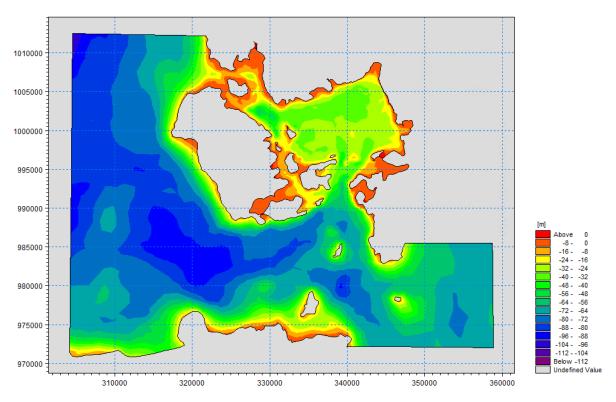
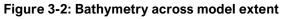


Figure 3-1: MIKE HD model extent (yellow polygon)


3.3 Input Data


3.3.1 Bathymetry

The following bathymetric data has been used within the modelling study:

- UK Hydrographic Office (UKHO) Bathymetric Survey⁷
 - Approaches to Lyness (2007);
 - Flotta (2022);
 - Longhope (2009 2010);
 - Scapa Bay 05 (2000 2006);
 - Scapa Bay 06 (2000 2006);
 - Scapa Flow Area 2a, 2m resolution (2009 2010);
 - Scapa Flow Area 2a, 4m resolution (2009 2010);
 - Scapa Flow Deepdale (2020 2021);
 - Scapa Flow Main Burra, 2m resolution (2009 2010).
- European Marine Observation and Data Network (EMODnet) Digital Bathymetry (DTM) 2020⁸

The datasets have been used to create a combined Digital Terrain Model (DTM) for use within the hydrodynamic model. Snapshots of the DTM with bathymetry displayed relative to Chart Datum are presented in Figure 3-2 and Figure 3-3 below.

⁷ Admiralty Maritime Data Solutions: Seabed Mapping Service (https://seabed.admiralty.co.uk/?x=-331303.94&y=8185863.95&z=10.08)

⁸ European Marine Observation and Data Network (EMODnet) Bathymetry (<u>https://emodnet.ec.europa.eu/en/bathymetry</u>)

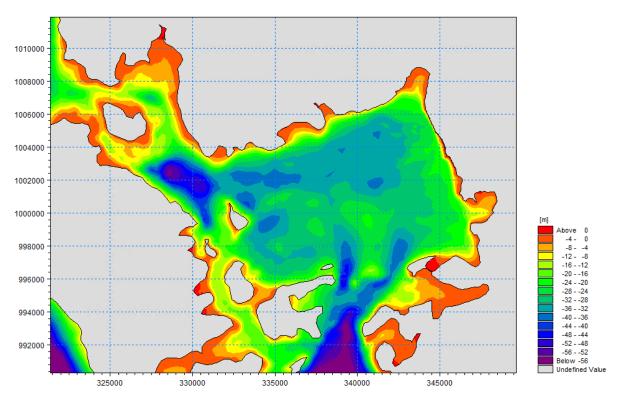


Figure 3-3: Bathymetry within Scapa Flow

3.3.2 Tidal Boundary Conditions

There are five tidal boundaries within the model extent. Two are in the west and north west which extend from the Orkney Mainland to the Scottish Mainland west of Thurso, and three are in the south east, linking the Orkney Mainland to the Scottish Mainland just south of John O'Groats, as shown in Figure 3-4.

Tidal boundary conditions for the HD model have been extracted from the DHI MIKE 21 Global Tide Model. This provides 0.125 x 0.125 degree resolution, 15 minute interval, tidal level data along the open model boundaries.

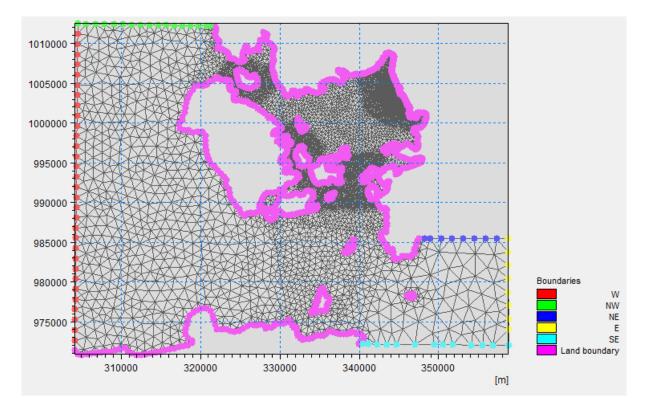


Figure 3-4: HD model boundaries

3.4 Model Mesh

The model utilises a flexible mesh to represent the offshore and coastal areas. The flexible mesh is composed of triangles of varying size and can therefore represent complex coastal alignments or bathymetry accurately.

The baseline model mesh extent and bathymetry are shown in Figure 3-5 below. The mesh has been generated using the bathymetric data described in section 3.3.1. The mesh has progressive refinement in resolution towards Deepdale Bay, becoming finer in the area of interest, as shown in Figure 3-6 and Figure 3-7. Finer mesh regions have also been used to represent areas near the Hoy Sound and Sound of Hoxa, where narrow channels and small islands influence coastal inflows into Scapa Flow. Key characteristics of the baseline mesh are summarised in Table 3-1.

Mesh Characteristic	Value	
Number of elements	46,424	
Number of nodes	23,990	
Min. Z level (mCD)	-100.59	
Max. Z level (mCD)	+2.04	
Max triangular area at Deepdale	75m ² (approx. 8.5m resolution)	

Table 3-1: Baseline HD mesh characteristics

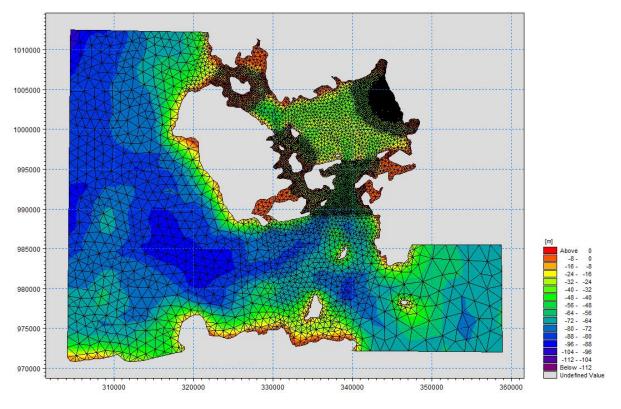


Figure 3-5: Baseline HD model mesh full extent

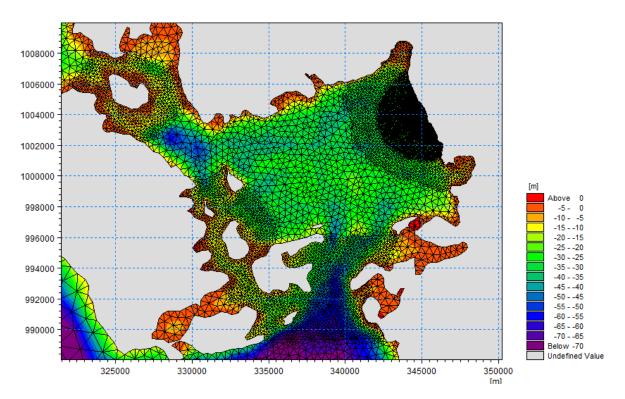


Figure 3-6: Baseline HD model mesh Scapa Flow

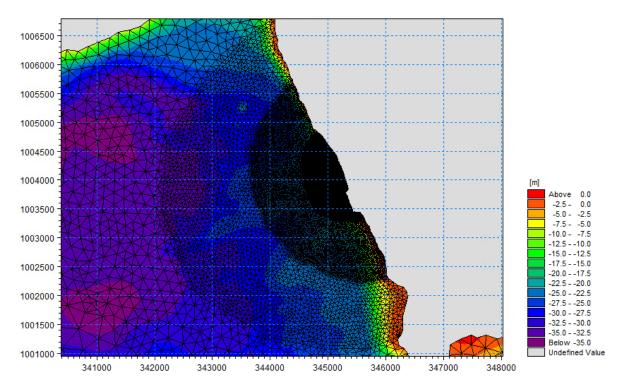


Figure 3-7: Baseline HD model mesh Deepdale Bay

A post-development version of the HD model mesh has been generated to include the proposed development footprint, as shown in Figure 3-8. The bathymetry for the post-development mesh was also updated to include the proposed dredge pockets. The proposed development layout is shown in Appendix A.

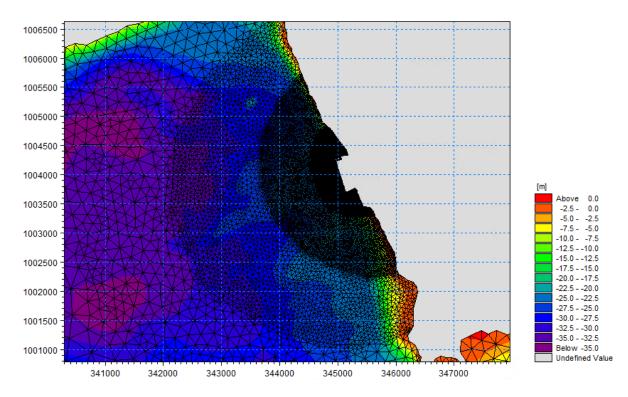


Figure 3-8: Post-development HD model mesh Deepdale Bay

3.5 Model Setup

Further details of the MIKE 21 FM HD model setup are provided below:

- For each model simulation the modelled extent includes the entire mesh as described in section 3.4;
- Open boundary time-varying tidal water level conditions have been derived from the DHI MIKE 21 Global Tide Model as described in section 3.3.2;
- Further model parameters are detailed below:
 - Simulation time-step interval: 300s
 - Model solution technique: Higher order shallow water equations
 - Model solution time-step: Minimum (0.01s) Maximum (30s)
 - o Drying depth: 0.02m
 - Wetting depth: 0.1m
 - Bed resistance: 28.8m^(1/3)/s

A wind forcing sensitivity simulations were undertaken using wind data extracted from the COSMO Reanalysis 6km (CREA6) nonhydrostatic limited-area atmospheric prediction model via the DHI Metocean data portal⁹. For the sensitivity simulations the wind forcing data was applied as varying in time and constant across the model domain.

The modelling has been undertaken with the following computing specification:

- Dell Precision 5820 Tower:
 - o 64GB RAM;
 - Utilising 14 Cores Intel Xeon CPU (2.5GHz);
 - Windows 10 Pro 64-bit operating system.

3.6 Model Outputs

The MIKE 21 FM HD model simulations have been setup to produce results as both point and area outputs. The outputs include the following key parameters:

- Water surface elevation;
- Current speed;
- Current direction; and
- Bed shear stress

The area outputs are generated for the whole model extent, whilst point outputs have been generated at 20 identified locations within the model extent as detailed in Table 3-2. The locations of point outputs are situated within the immediate vicinity of Deepdale bay and the proposed development including the capital dredge pockets. Points are also situated out into the wider Scapa flow Area with a point at St Marys Bay to provide reference with Admiralty tide predictions. Point output locations are shown in Figure 3-9 and Figure 3-10.

⁹ https://www.metocean-on-demand.com/metadata/waterdata-dataset-Europe CREA6 V2

Point Output Location	Easting	Northing
Point 1	345014	1003771
Point 2	345123	1003631
Point 3	345064	1003833
Point 4	345013	1004005
Point 5	344962	1004173
Point 6	344925	1004296
Point 7	344949	1003980
Point 8	344896	1004149
Point 9	344859	1004287
Point 10	345065	1003566
Point 11	345154	1003560
Point 12	345248	1003594
Point 13	344914	1004381
Point 14	345028	1004417
Point 15	345180	1003110
Point 16	344363	1003771
Point 17	344586	1004687
Point 21	343093	1005047
Point 22	344343	1002099
Point 23	347449	1000234

Table 3-2: HD Model point output locations

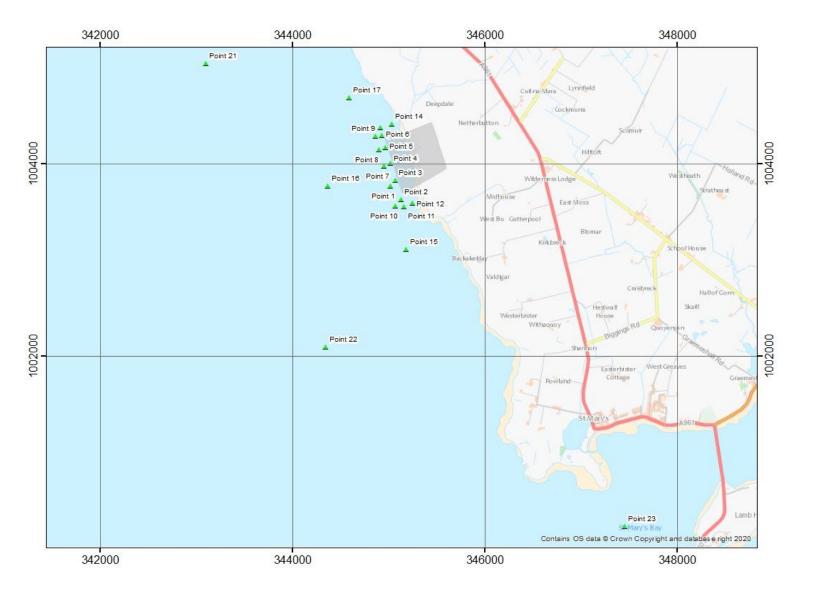


Figure 3-9: HD model point output locations

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

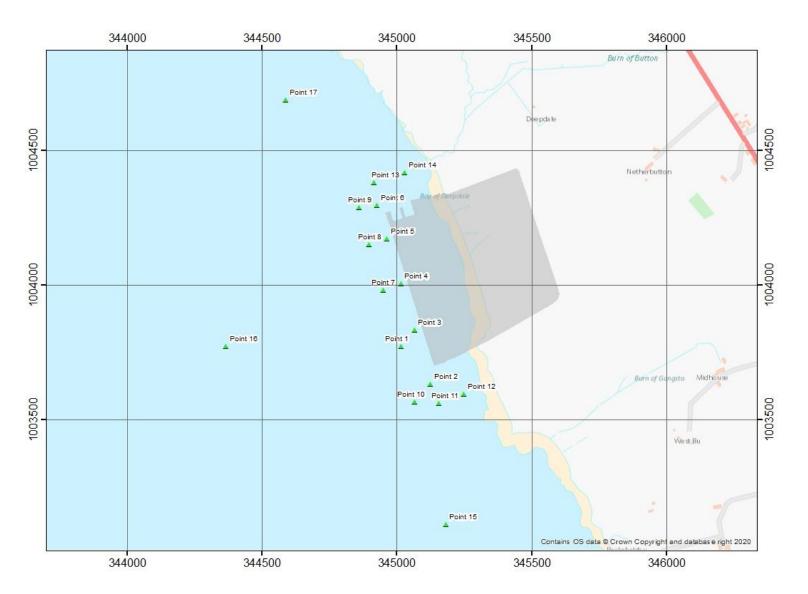


Figure 3-10: HD model point output locations local to development site

3.7 Model Simulations

The key model simulations undertaken using the MIKE 21 FM HD model are presented in Table 3-3.

Table 3-3: HD model simulations		
HD Model Simulation	Description	
Scapa FM HD 16	Baseline HD model simulating existing (pre-development) conditions.	
	Run for January 2022 tidal cycle, including spring and neap tides.	
Scapa FM HD 17	Baseline HD model with wind forcing simulating existing (pre-	
	development) conditions. Run for January 2022 tidal cycle, including	
	spring and neap tides.	
Scapa FM HD 19	Post-development HD model simulating conditions with proposed	
	development in place. Run for January 2022 tidal cycle, including spring	
	and neap tides.	
Scapa FM HD 20	Post-development HD model with wind forcing simulating conditions with	
	proposed development in place. Run for January 2022 tidal cycle,	
	including spring and neap tides.	

Table 3-3: HD model simulations

3.8 Model Validation

Validation of the model has been undertaken through comparison of baseline modelled tidal levels with Admiralty tide predictions (UKHO, 2022) for the same tide, at St Mary's. This comparison highlights that the model predicts levels within 0.05m of the Admiralty predicted levels.

Additionally, tidal current speeds predicted by the baseline model have been compared to annotated tidal stream speeds on UKHO hydrographic charts for Scapa Flow and surrounds, with model peak current speed predictions lying within the published range of current speed.

Given the results of the above validation exercise the model is therefore considered to perform well.

4 HYDRODYNAMIC MODEL RESULTS

A summary of the results from the existing (baseline) model run (FM HD 16) are presented in Section 4.1, whilst a summary of results from the post-development model run (FM HD 18) are presented in Section 4.2, along with comparative analysis versus the baseline model results. Appendix B contains tabulated model results under existing and post-development conditions for key tidal states, with relative change between both scenarios also tabulated. Appendix C contains graphical comparisons between existing and post-development results for the point output locations identified in Figure 3-9.

4.1 Existing (Baseline) Conditions

Model run FM HD 16 simulates existing (baseline) tidal conditions within Scapa Flow including at Deepdale Bay and surrounds from 1 January 2022 until 17 January 2022, capturing a full spring and neap tide cycle. The following sub-sections present the results of this simulation split by key outputs, tidal water surface elevation, tidal currents, and bed shear stress. Tabulated results are presented in Appendix B.

4.1.1 Tidal Water Surface Elevation

Tidal water surface elevation predictions relative to chart datum at point output locations 4 and 16 (see Figure 3-10) are presented in Figure 4-1 for the full FM HD 16 run duration. Review of these figures highlights that the same levels are predicted at both point output locations. The figures show a semidiurnal tidal curve, with two high tides and two low tides each day, as is the case around the UK.

The highest predicted tidal elevation is +3.55mCD during a spring tide on 4th January 2022, with a lowest tidal elevation prediction of +0.42mCD on the same day. These values are within 0.05m and 0.02m of the corresponding Admiralty Tide Tables¹⁰ predictions respectively for the same tide. Neap tides are also present within the simulated tidal curve. A neap high tide elevation of +2.54mCD is predicted on 11th January 2022, with a corresponding low tide elevation of +1.39mCD. Therefore the largest simulated spring tidal range at Deepdale Bay is 3.13m and with a simulated neap tidal range of 1.15m. Comparison with the mean tidal ranges for St Mary's outlined in section 2.3, highlights that the simulated tidal curve includes spring tides larger, and neap tides smaller, than the mean spring and neap tides.

Figure 4-2 presents spatial plots of predicted tidal water surface elevation across the HD model extent for key phases of a spring tide, whilst Figure 4-3 presents the corresponding plots for a neap tide. Review of these figures shows the spatial variation across the model extent, highlighting the progression of the tidal wave approximately from north-west to south-east during the flood tide, and in reverse during the ebb tide.

¹⁰ UK Hydrographic Office, 2022 (Admiralty Tide Tables – Volume 1B)

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

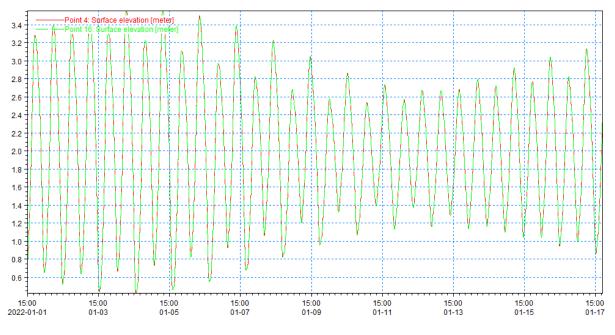


Figure 4-1: FM HD 16 water surface elevation predictions at points 4 and 16 for run duration.

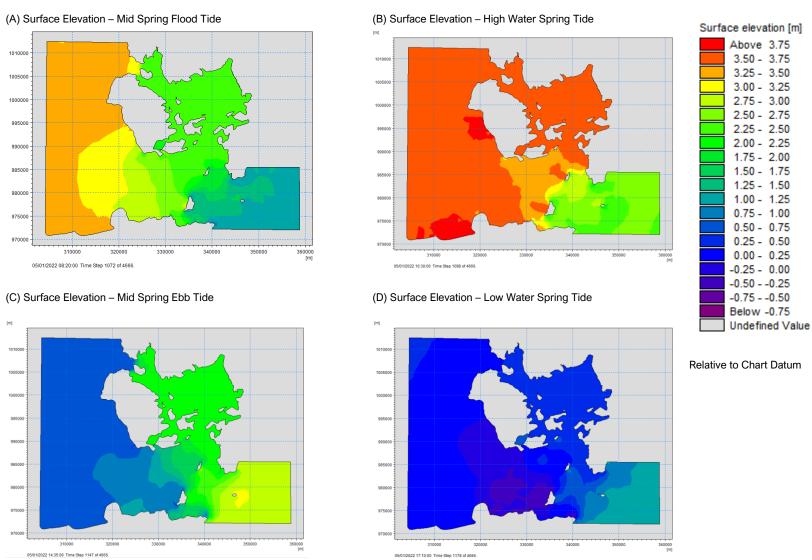
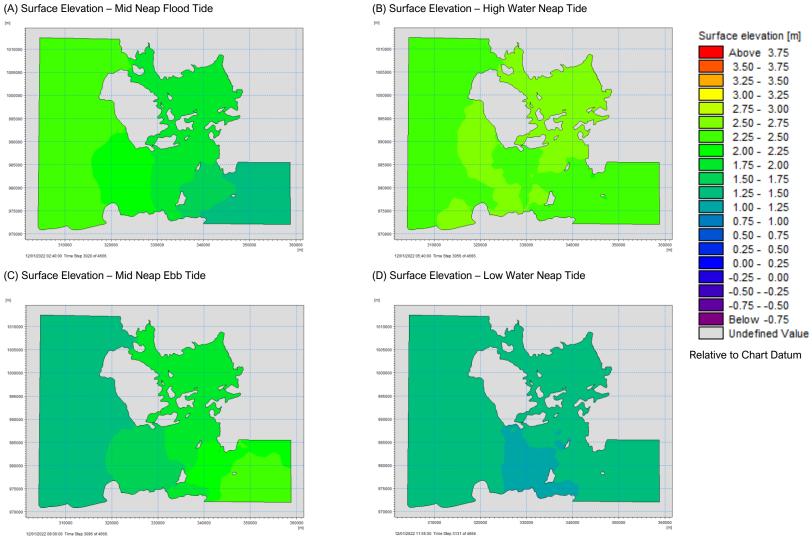



Figure 4-2: FM HD 16 water surface elevation (A) mid-flood (B) high (C) mid-ebb (D) low spring tide

(A) Surface Elevation – Mid Neap Flood Tide

Figure 4-3: FM HD 16 water surface elevation (A) mid-flood (B) high (C) mid-ebb (D) low neap tide

4.1.2 Tidal Currents

Tidal current speed predictions for point output locations 4, 16 and 22 are presented in Figure 4-4 for the full FM HD 16 run duration including the spring and neap tide cycle, and in Figure 4-5 for a selected spring tidal cycle. Review of these figures highlights the relatively weak currents (<0.03m/s) present in throughout locations in Scapa Flow during spring tides.

Figure 4-5 shows the spring tidal current predictions at locations 4, 16 and 22. Review of this figure illustrates the complex and irregular phasing of tidal currents at Deepdale Bay. Whilst all currents are relatively weak, the strongest currents at these particular locations correlate with the incoming peak flood tides, whilst there is not such a clear correlation between tidal phase and current speed during the subsequent ebb tides. In other locations a stronger correlation is observed with the ebb tide. It is considered that due to the complex structure of Scapa Flow, with numerous bays and islands, that local flow patterns and eddies influence the position and speed of currents within Deepdale Bay.

Figure 4-6 presents model extent plots of tidal current speed for mid-flood and ebb conditions, during both spring and neap tides. Review of this figure highlights the spatial variation across the model extent, with the dominant tidal stream within the Pentland Firth travelling north-west to south-east through the model extent, and other focused tidal streams through the narrow channels between islands, for example at the Hoy Sound. Weakest currents are observed to occur the sheltered regions of Scapa Flow, including in the vicinity of the proposed development location of Deepdale Bay.

Figure 4-7 to Figure 4-10 present similar plots focussed on Deepdale Bay and surrounds, with current vector arrows shown to indicate tidal stream direction. Current vectors highlight the direction of the flood tide, circulating generally from north-west to south-east through Scapa Flow and parallel to the shore in the vicinity of Deepdale Bay, and the ebb tide circulating in the opposite direction. The figures further highlight the low current speeds within Scapa Flow, with slightly higher currents observed further out into the bay than at the nearshore locations. Figure 4-11 presents a residual current speed plot comparison between mid-ebb and mid-flood spring tidal currents in the vicinity of Deepdale Bay. Review of this figure highlights the marginal dominance of ebb currents, with the exception of the nearshore area where there is little difference observed.

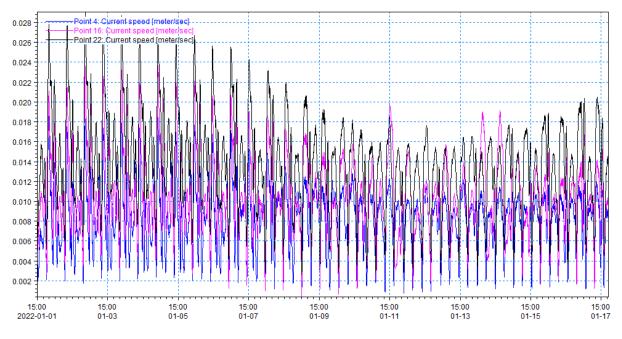


Figure 4-4: FM HD 16 current speed predictions at points 4, 16 and 22 for spring and neap cycle

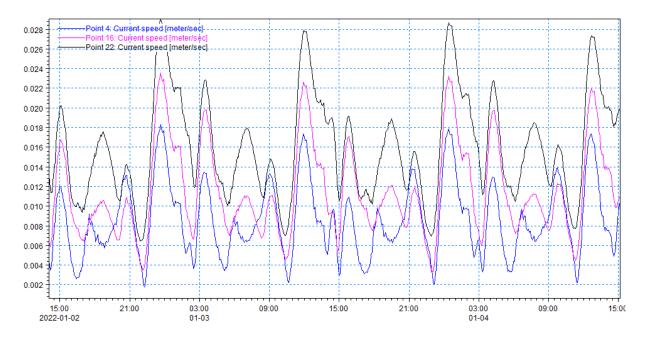


Figure 4-5: FM HD 16 current speed predictions for points 4, 16, 22 for spring tide

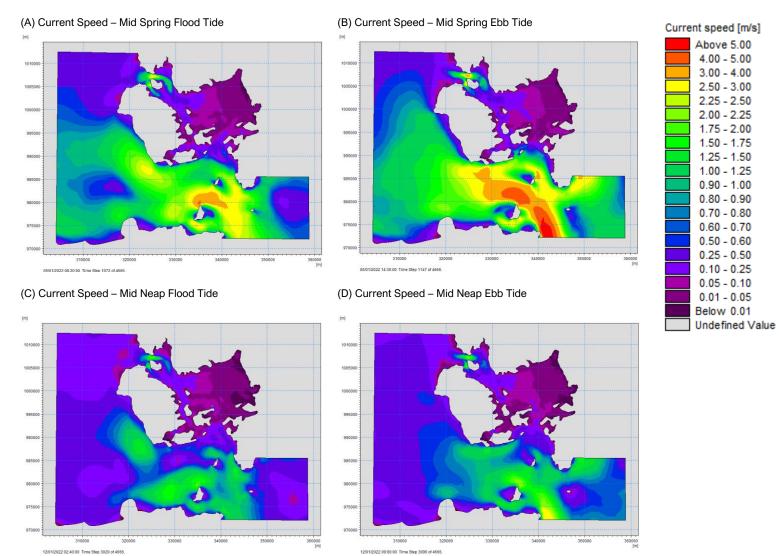


Figure 4-6: FM HD 16 current speed (A) mid-flood spring (B) mid-ebb spring (C) mid-flood neap (D) mid-ebb neap tide

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

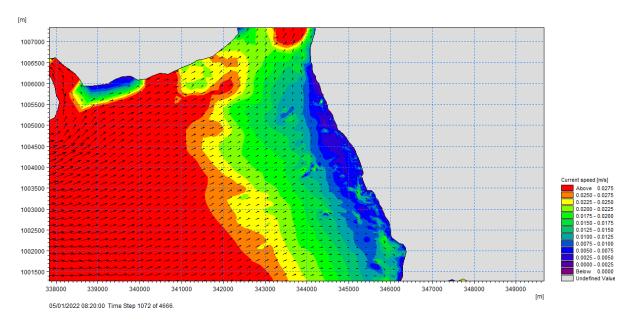


Figure 4-7: FM HD 16 Deepdale Bay and surrounds current speed mid-flood spring tide

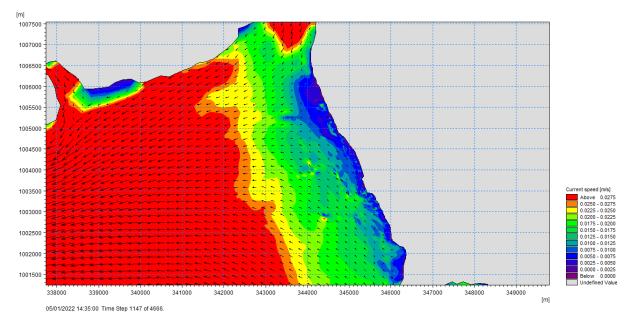


Figure 4-8: FM HD 16 Deepdale Bay and surrounds current speed mid-ebb spring tide

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

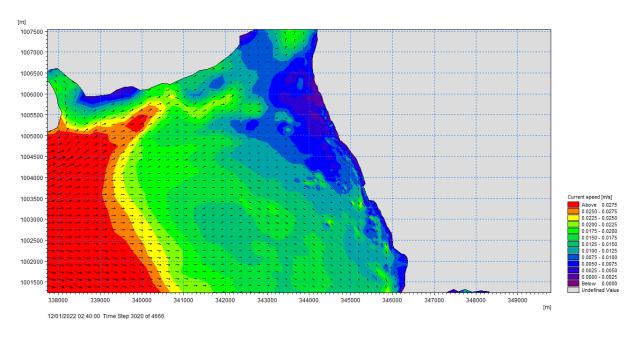


Figure 4-9: FM HD 16 Deepdale Bay and surrounds current speed mid-flood neap tide

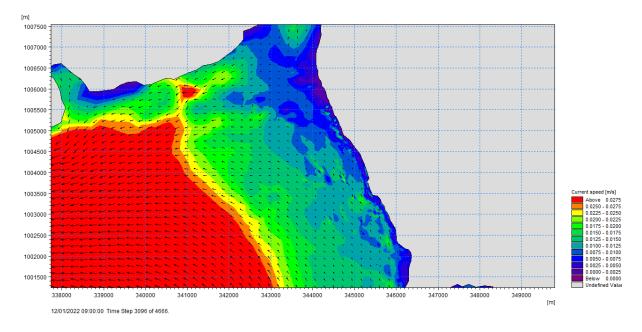


Figure 4-10: FM HD 16 Deepdale Bay and surrounds current speed mid-ebb neap tide

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

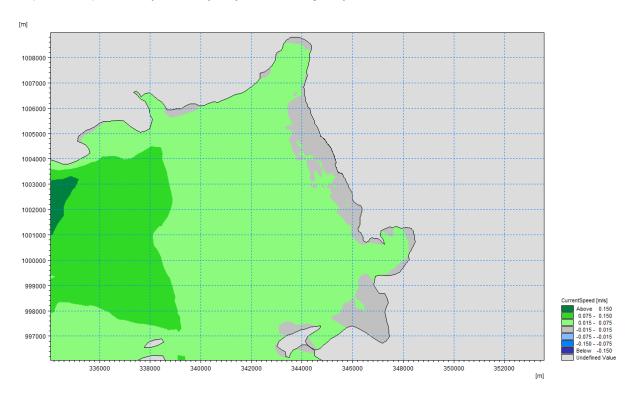


Figure 4-11: FM HD 16 spring tide residual current speed (mid-ebb minus mid-flood)

4.1.3 Bed Shear Stress

Figure 4-12 presents model predictions of bed shear stress during the spring and neap tidal cycle for point output locations 2, 4, 6, 7, 9 and 10 around the proposed development and Deepdale Bay. All locations show generally low bed shear stress, as would be anticipated with the weak tidal currents observed. Peak bed shear stress predictions are around 0.003 N/m² during spring tides.

Figure 4-13 shows bed shear stress alongside current speed for location 4. Review of this figure highlights that bed shear stress is correlated with tidal current speed, with peak shear stress occurring with peak current speeds. The low current speeds and corresponding low bed shear stresses are considered indicative of a low energy environment, given this and the absence of significant sediment inputs, no significant sediment transport by tidal currents predicted in the vicinity of Deepdale Bay.

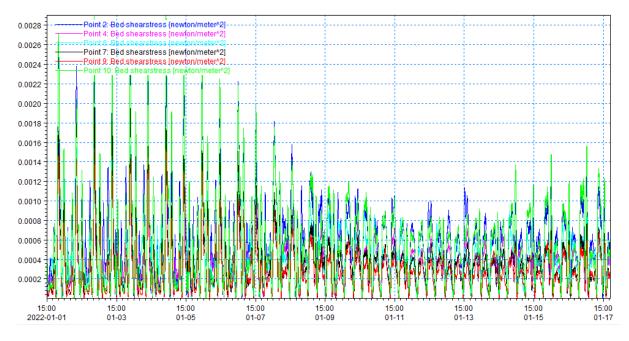


Figure 4-12: FM HD 16 bed shear stress at locations 2, 4, 6, 7, 9 and 10 through spring and neap tidal cycle

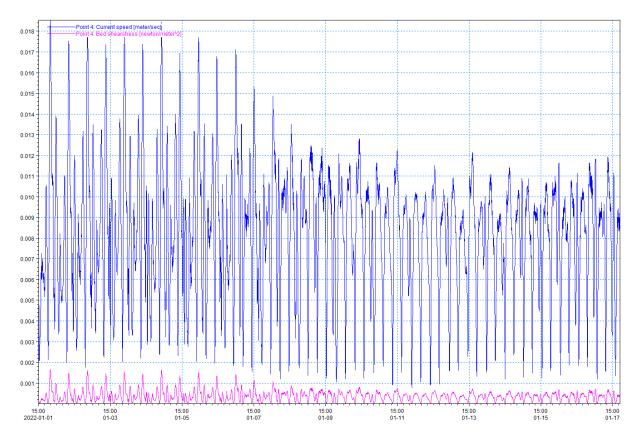


Figure 4-13: FM HD 16 bed shear stress and current speed at location 4

4.1.4 Wind Forcing Sensitivity

Given the low energy environment at Deepdale Bay and within the wider Scapa Flow area, it is considered that wind forcing could have a greater relative influence on current speeds and coastal processes than in more dynamic settings. A wind forcing sensitivity simulation was undertaken using wind data extracted from the COSMO Reanalysis 6km (CREA6) nonhydrostatic limited-area atmospheric prediction model via the DHI Metocean data portal¹¹. The wind data used covered the period of January 2018, but is considered representative of general wind conditions in Scapa Flow during that time of year. A rose plot of the data showing wind speed and directional frequency is presented in Figure 4-14. The wind forcing data was applied as varying in time and constant across the model domain. Due to the unpredictability of wind forcing in terms of force, duration and direction, this scenario is only used to assess the model sensitivity to wind forcing. The wind forcing scenario has therefore not been adopted as the baseline case in later assessments.

Figure 4-14: Wind rose plot - CREA6 model data (January 2018)

¹¹ <u>https://www.metocean-on-demand.com/metadata/waterdata-dataset-Europe_CREA6_V2</u>

Orkney Islands Council Harbour Authority Scapa Flow Deep Water Quay; Coastal Hydrodynamic Modelling Study

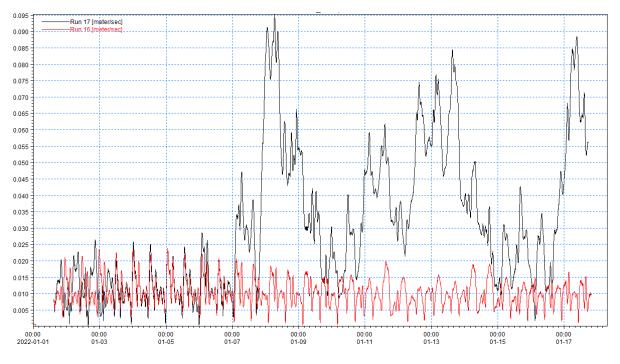


Figure 4-15: FM HD 16 and FM HD 17 current speed at location 16

Figure 4-15 illustrates the predicted current speeds at location 16 for the spring and neap tide cycle, both with (FM HD 17) and without (FM HD 16) wind forcing. The results show how the wind forcing has the potential to both increase and decrease current speeds within Scapa Flow, with peak modelled current speeds increasing from 0.025 m/s to 0.095 m/s. While such predicted relative increases are significant, current speeds within Scapa flow remain generally low in both scenarios, and it should be noted that wind forcing can also impact current direction.

4.2 Post-Development Conditions

Model run FM HD 19 simulates post-development (see Appendix A for proposed development layout) tidal conditions at Deepdale Bay and surrounds. The following sub-sections present the results of this simulation split by key outputs, tidal water surface elevation, tidal currents, and bed shear stress. Comparative analysis versus existing conditions (FM HD 16) is also presented through these sections. Tabulated results and comparisons are presented in Appendix B, whilst result comparisons are presented in graphical form in Appendix C.

4.2.1 Tidal Water Surface Elevation

Tidal water surface elevation predictions relative to chart datum at point output locations 4 and 16 (see Figure 3-9) are presented in Figure 4-16 for the spring and neap tidal cycle. Review of these figures highlights that the same levels are predicted at both point output locations, as per the results for FM HD 16 under existing conditions.

Figure 4-17 presents a comparison of the full model run tidal curves for existing (FM HD 16) and postdevelopment (FM HD 19) conditions at point output location 4. This highlights that no significant change is observed in surface elevation predictions between the two model runs. Further comparative analysis presented in Table 2, Appendix B, and within figures in Appendix C, confirms this to be the case across the study area.

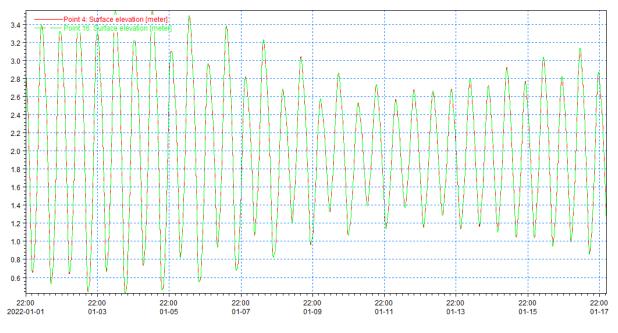


Figure 4-16: FM HD 19 water surface elevation predictions at points 4 and 16 for spring and neap tidal cycle

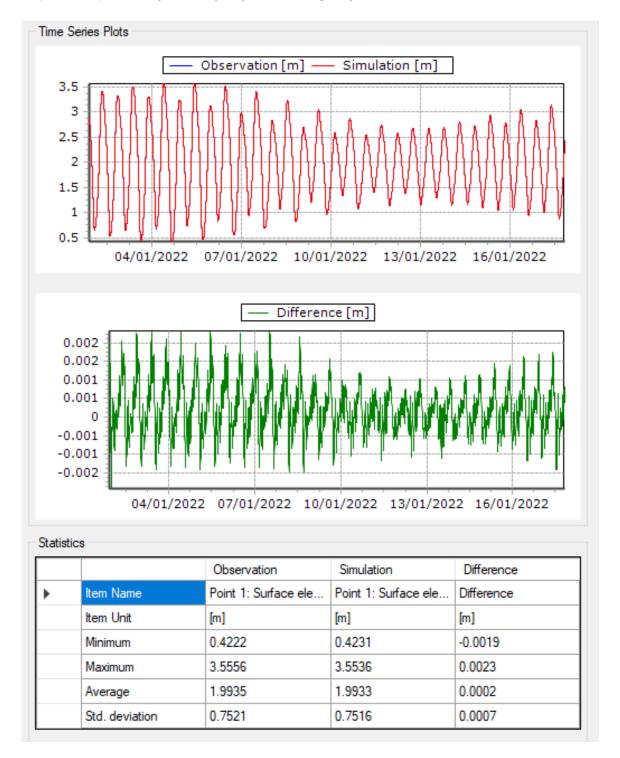


Figure 4-17: Comparison of FM HD 16 & FM HD 19 water surface elevation predictions at point 4

4.2.2 Tidal Currents

Tidal current speed predictions for point output locations 4, 16 and 22 are presented in Figure 4-18 for the spring and neap tidal cycle and in Figure 4-19 for the spring tide cycle. Review of these figures highlights the relatively weak currents (<0.32 m/s) present throughout locations in Scapa Flow.

Whilst there is an identifiable increase in current speed at location 4 adjacent to the proposed development when compared with the existing conditions, the change is not considered significant in the local context, and values remain generally low. Comparison of post-development results with baseline values (Figure 4-4) shows increase in current speed at location 4 both on the spring and the neap tide, with peak current speed during the neap tide cycle increasing from approximately 0.012 m/s to 0.032 m/s. Point 4 is located in close proximity to the new quay, and within the dredging envelop, and it is predicted that the proposed development is locally influencing the position of tidal currents at this location.

Comparative analysis of predicted current speeds across the point output locations is presented in Table 2, Appendix B, and in graphical form in Appendix C. Review of this analysis highlights that minor changes in peak current speed are predicted at point output locations in the immediate vicinity of the proposed development (<0.02 m/s change), with no change observed in the wider surrounds.

Figure 4-20 and Figure 4-21 present plots of predicted post-development current speed at Deepdale Bay during mid-flood and mid-ebb spring tides respectively. These plots show interpolated current vectors highlighting the direction of tidal flow during these tidal states. Review of these plots highlights the localised impact on current direction resulting from the new deep water quay construction. Marginally higher current speeds and associated eddies are noted forming around the proposed dredge pocket, as highlighted by review of the time series data from point 4.

Figure 4-22 and Figure 4-23 present plots of current speed differential between existing (FM HD 16) conditions and post-development (FM HD 19) conditions, for mid-flood and mid-ebb spring tides respectively. Review of these figures highlights the localised spatial pattern of development impact on tidal current speed during each tidal state. Negative values equate to current speed increases in these plots, and a minor increase in current speed post-development is observed in close proximity to the quay face, particularly within the -20mCD dredge pocket, during both flood and ebb tides. During the ebb tide the area of increase extends slightly further north in the direction of flow, along the quay. It is considered that the proposed development concentrates and re-directs flows resulting in the slight increase observed. No significant impact on current speeds is predicted within the wider surrounds.

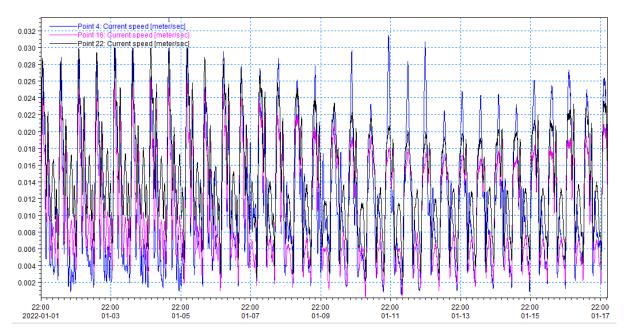


Figure 4-18: FM HD 19 current speed predictions at points 4, 16 and 22 for spring and neap tides

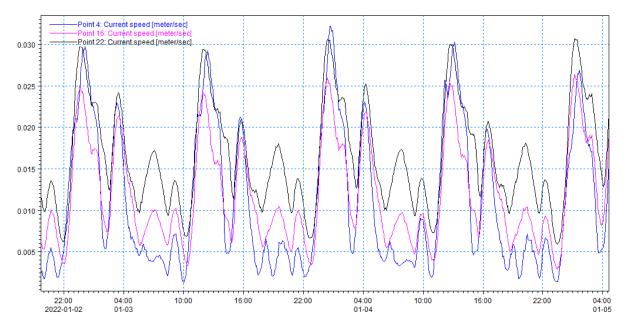


Figure 4-19: FM HD 19 current speed predictions for points 4, 16, 22 for spring tide

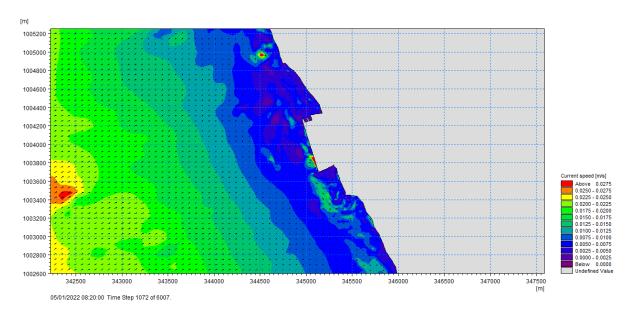


Figure 4-20: FM HD 19 current speed at Deepdale Bay during mid-flood spring tide

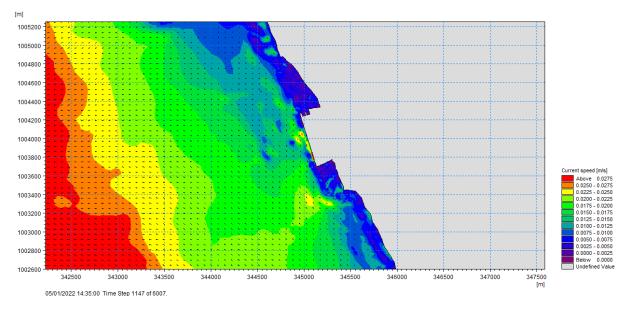


Figure 4-21: FM HD 19 current speed at Deepdale Bay during mid-ebb spring tide

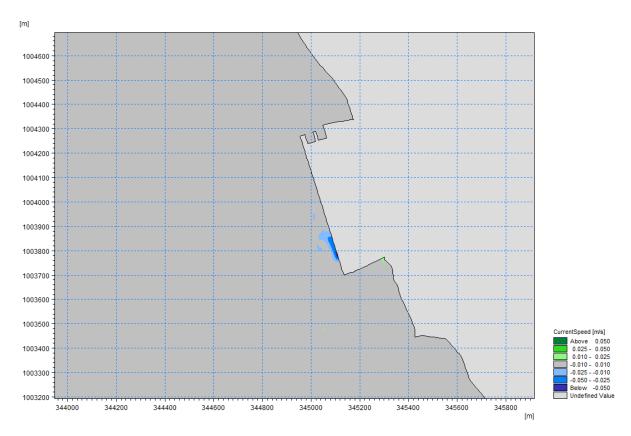
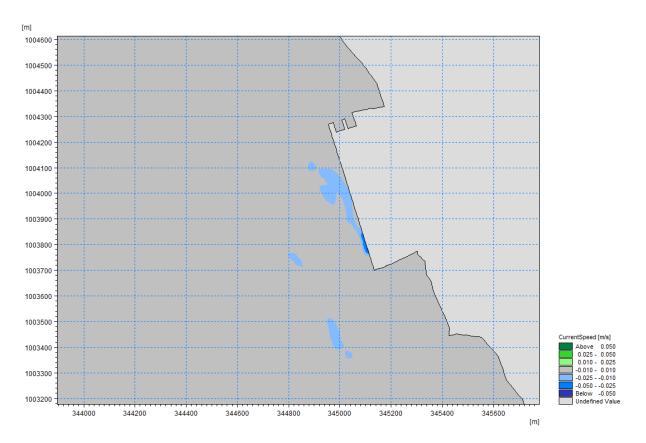



Figure 4-22: Baseline (FM HD 16) versus Post-development (FM HD 19) current speed differential – spring flood tide

Figure 4-23: Baseline (FM HD 16) versus Post-development (FM HD 19) current speed differential – spring ebb tide

4.2.3 Bed Shear Stress

Figure 4-24 presents post-development model predictions of bed shear stress during the spring and neap tidal cycle for point output locations 2, 4, 6, 7, 9 and 10 around the proposed development and Deepdale Bay. As per existing conditions, all locations show generally low bed shear stress, as would be anticipated with the weak tidal currents observed. Peak bed shear stress predictions are around 0.005 N/m² during spring tides.

Whilst there is an identifiable increase in bed shear stress for locations adjacent to the proposed development when compared with the existing conditions, the change is not considered significant in the local context, and values remain generally low. The localised changes are visible when reviewing outputs for points 4 and 7. Figure 4-25 shows bed shear stress alongside current speed for location 4. Review of this figure shows that bed shear stress remains correlated with tidal current speeds despite local increases in shear stress post-development.

Despite local increases, in the post-development scenario it remains the case that the low current speeds and corresponding low bed shear stresses observed are considered comparable in magnitude to pre-development character, and indicative of a low energy environment.

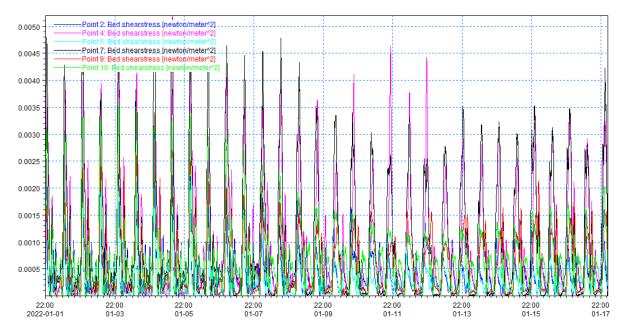


Figure 4-24: FM HD 19 bed shear stress at locations 2, 4, 6, 7, 9 and 10 through spring and neap tidal cycle

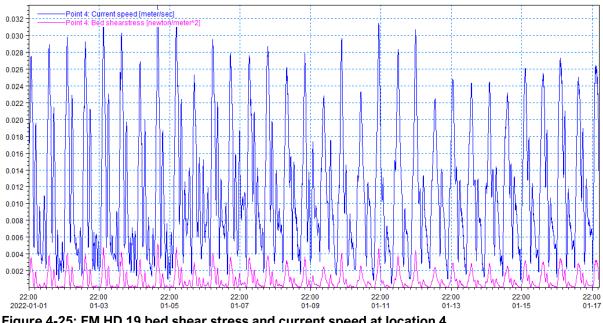


Figure 4-25: FM HD 19 bed shear stress and current speed at location 4

4.2.4 Wind Forcing Sensitivity

A wind forcing sensitivity simulation was undertaken using the post-development model and wind data as described in section 4.1.4. The wind forcing data was again applied as varying in time and constant across the model domain.

Figure 4-26 illustrates the post development current speeds at location 16 for the spring and neap tide cycle, both with and without wind forcing. Figure 4-27 shows the outputs for the same simulations at location 4, adjacent to the proposed development and dredging pocket. As is the case in the existing

scenario, the results show how the wind forcing has the potential to increase current speeds within Scapa Flow, with peak current spends increasing from approximately 0.03 m/s to 0.095 m/s. While the relative increase is significant, current speeds within Scapa flow remain generally low.

Due to the unpredictability of wind forcing in terms of force, duration and direction, this scenario is only used to assess the model sensitivity to wind forcing. The wind forcing scenario has not been adopted as the design case in assessments and comparisons.

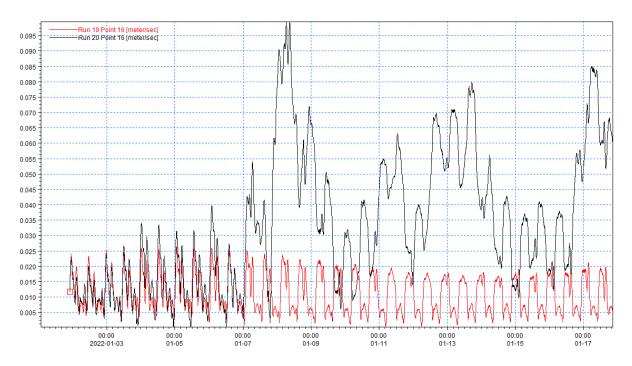


Figure 4-26: FM HD 19 and FM HD 20 current speed at location 16

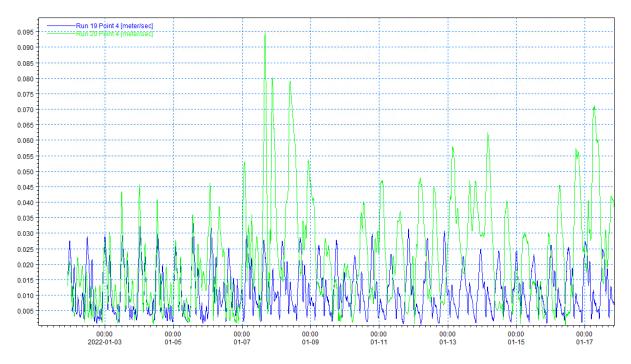


Figure 4-27: FM HD 19 and FM HD 20 current speed at location 4

5 DREDGE PLUME DISPERSAL MODEL

5.1 Context

5.1.1 Proposed Development Dredge

Dredging is required to facilitate the development of Scapa Deep Water Quay. The proposed harbour facility will include approx. 597m long main quayside berth with general -15m CD water depth, incorporating a 135m quayside pocket with -20m CD water depth. Further north tug (3No.) and pilot boat (2No.) berth approx. 180m long with depths between -6 and -9m CD. The proposed dredge budget is estimated at a total of 174,000m³ across all three phase areas. The proposed dredge campaign would be undertaken by back-hoe dredger, with 24/7 operation over an estimated duration of just over 14 weeks. Dredging would take place following construction of the proposed quay walls. The dredge arisings are to be re-used predominantly as infill material within the proposed development footprint.

The proposed development layout, including dredge pocket locations and extents, are detailed in Appendix A.

5.1.2 Dredge Budget Character

The dredge budget has been assessed through site investigation, including borehole and washprobe sampling, to consist predominantly of sand with silt and gravel content. The average proportion of the dredge budget classified within the various identified particle sizes is presented in Table 5-1 below.

Sediment Type (Grain Size)	Percentage of Dredge Budget
Silt and Clay (<0.063mm)	23.3%
Sand (> 0.063mm and <2mm)	59.7%
Gravel (>2mm)	17.0%

Table 5-1: Summary of dredge budget particle size data

5.2 Dredge Dispersal Model Development

5.2.1 MIKE 21 Mud Transport (MT) Module

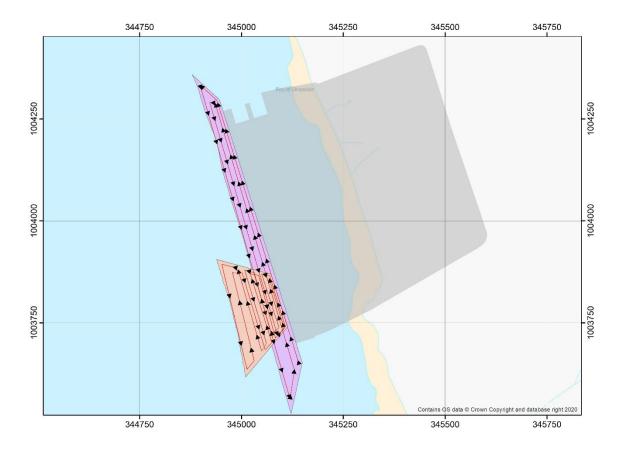
To simulate sediment plume dispersal from the proposed dredge campaign, the MIKE 21 Mud Transport (MT) module has been utilised. The mud transport module simulates the erosion and deposition of mud or sand/mud mixtures. It can be coupled with the MIKE 21 HD module, as described in section 3.1, to assess the dispersion of spilled sediment from a dredger by tidal forcing.

Amongst the key features of the MIKE 21 MT module are:

- Multiple sediment fractions;
- Multiple bed layers;
- Flocculation;
- Hindered settling;
- Inclusion of non-cohesive sediments;

- Consolidation; and
- Capability to simulate morphological update of the seabed.

As MIKE 21 is a two-dimensional (depth-averaged) flow model, the simulation of the transport of material is averaged over depth.


5.2.2 MT Module Settings

A summary of the configuration of the general settings within the MT module for the dredge dispersal simulations is presented in Table 5-2 below. The assumed parameters of the dredge applied within the MT simulations are outlined in Table 5-3.

Setting	Description/Value		
Number of fractions	3 fractions:		
	1. Clay and silt		
	2. Sand		
	3. Gravel		
Number of bed layers	1		
Hydrodynamic conditions	2-dimensional flow from HD mode	el (see chapters 3 and 4)	
Solution technique	Higher order		
Simulation period	105 days		
Output time interval	15 minutes		
Settling velocity	Fraction 1: Clay and silt	0.0007m/s	
	Fraction 2: Sand	0.0395m/s	
	Fraction 3: Gravel	0.0933m/s	
Critical shear stress	Fraction 1: Clay and silt	0.136N/m ²	
	Fraction 2: Sand	0.211N/m ²	
	Fraction 3: Gravel	0.360N/m ²	
Flocculation	Calculations included		
Wave forcing	Not included		
Dispersion	Scaled eddy viscosity formulation		
Initial conditions	Layer 1: No bed thickness		
Morphological update	Not included		

Table 5-2: General settings applied to MIKE 21 MT module

Variable	Quantity	Comments
Total dredge volume	174,000m ³	All 3 dredge phases
Dredger type	Backhoe	Nordic Giant or similar
Dredge campaign duration	102 days	24 hours operation
Dredge rate	1,694m³/day	Assumed constant
Dredge sediment composition	Fraction 1 – 23.3%	Clay and silt
	Fraction 2 – 59.7%	Sand
	Fraction 3 – 17.0%	Gravel
Density of material	1,800kg/m ³	Assumed constant
Spill rate	5%	The proportion of dredged
		material lost to water column
Dredger path	-	As per Figure 5-1

Figure 5-1: Assumed dredger path (red line with arrows) through dredge pockets for whole of dredge campaign

5.2.3 HD Module Settings

The HD module has been setup as described in Chapter 3, and specifically Section 3.5. A new version of the model mesh has been generated combining the post-development model mesh with the baseline bathymetry. This is considered reflective of the likely conditions at the commencement of the dredge campaign, and a conservative setup for assessing dredge plume dispersal.

5.2.4 Model Outputs

The MIKE 21 FM HD MT model simulations have been setup to produce results as both point and area outputs. The HD module outputs are as per those described in Section 3.6. The MT module outputs include the following key parameters:

- Total suspended solids (TSS);
- Bed thickness change; and
- Total net deposition accumulation.

The area outputs are generated for the whole model extent, whilst point outputs have been generated at 12 identified locations within the model extent as detailed in Table 5-4 and shown in Figure 5-2. The locations of point outputs are situated within the immediate vicinity of Deepdale Bay and the proposed development including one within the capital dredge pocket (Point 5), and one within the Westerbister fish farm extent (Point 12).

Point Output Location	Easting	Northing
Point 1	344500	1004600
Point 2	344000	1004200
Point 3	344500	1003400
Point 4	345000	1003000
Point 5	345000	1003800
Point 6	344342	1002099
Point 7	345000	1001200
Point 8	342000	1003000
Point 9	342000	1005500
Point 10	344000	1006000
Point 11	346000	1002000
Point 12	345237	1002729

 Table 5-4: MT module point output locations



Figure 5-2: MT module point output locations

5.2.5 Model Simulations

The key MIKE 21 FM HD MT model simulations are described in Table 5-5. Simulations 2 and 4 have been run utilising the computing hardware specified in Section 3.6. Due to the length of required simulation, and the associated computational effort required, simulation 3 has been run utilising the DHI cloud simulation facility, with a PC including 64 CPU.

Simulation	Description
Scapa FM HD MT Dredge 2	Initial 8 days of dredge campaign, model mesh includes pre-
	dredge bathymetry with development footprint. Run for January
	2022 tidal cycle, with no wind forcing.
Scapa FM HD MT Dredge 3	Full dredge campaign, model mesh includes pre-dredge
	bathymetry with development footprint. Run for January to April
	2022 tidal cycle, with no wind forcing.
Scapa FM HD MT Dredge 4	Wind forcing sensitivity scenario. Initial 8 days of dredge
	campaign, model mesh includes pre-dredge bathymetry with
	development footprint. Run for January 2022 tidal cycle, with wind
	forcing.

Table 5-5: MIKE 21 FM HD MT model simulations

5.3 Dredge Dispersal Model Results

5.3.1 Dredge Plume Dispersal – Initial Days of Campaign

As outlined in Table 5-5, simulation Scapa FM HD MT Dredge 2 includes the first 8 days of the proposed dredge campaign, simulated with a January 2022 tidal cycle, and no consideration of wind forcing on hydrodynamics.

Due to the low current speeds present within the vicinity of the dredge, only clay and silt particles from the finest fraction (1) enter suspension to form a plume, whilst sands and gravel fractions immediately fall out of suspension to deposit within the dredge extent. Figure 5-3 presents the total suspended solids concentrations within the dredge plume following 8 days of the dredge campaign. Review of this figure highlights that the highest concentrations (0.0075 – 0.002 kg/m³) of TSS occur within, and immediately adjacent to, the dredge pockets. TSS concentrations can be seen to rapidly reduce away from the dredge extents. The spatial extent of the plume is relatively restricted, however fingers of lower concentration TSS observed extending to the north-west along shore, highlight the marginal residual dominance of the ebb tide in that direction.

Figure 5-4 presents the total deposition thickness following 8 days of the dredge campaign. Review of this figure highlights that measurable thickness of deposition is limited to the immediate dredge footprint, primarily consisting of sands and gravels, with maximum deposit thickness of 0.015m. Figure 5-5 presents the total net deposition accumulation following 8 days of the dredge campaign. Review of this figure highlights that deposition accumulation primarily occurs within the immediate dredge extent (maximum accumulation ~8,000g/m²), with accumulation rapidly decreasing away from this area.

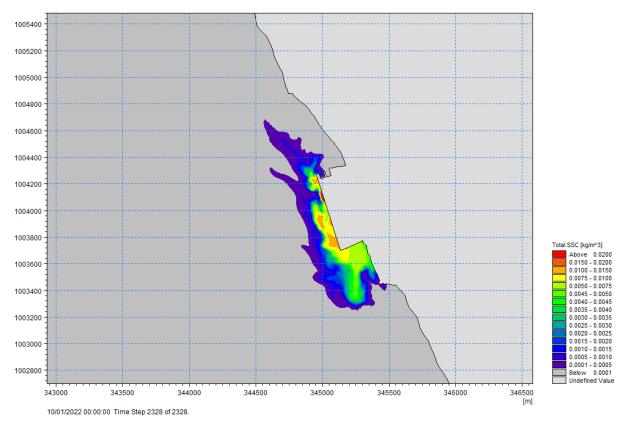


Figure 5-3: FM HD MT Dredge 2 – plume TSS following 8 days of dredge

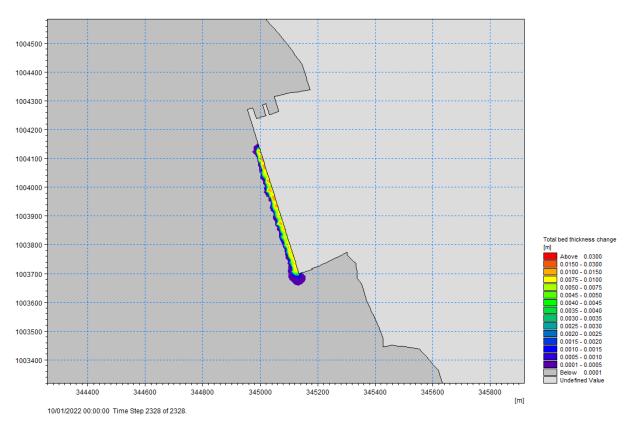


Figure 5-4: FM HD MT Dredge 2 – deposition thickness following 8 days of dredge

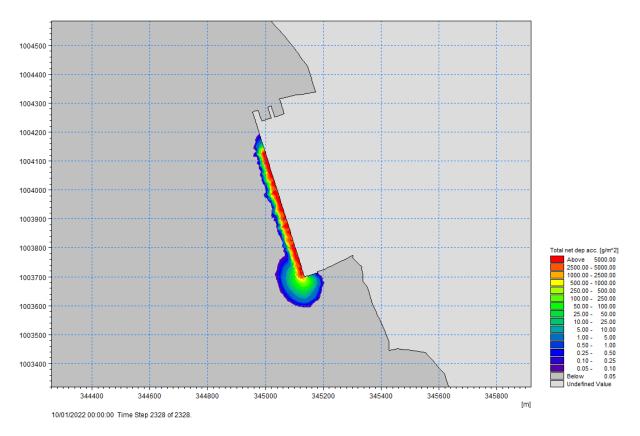


Figure 5-5: FM HD MT Dredge 2 – total net deposition accumulation following 8 days of dredge

5.3.2 Dredge Plume Dispersal – Full Campaign Duration

As outlined in Table 5-5, simulation Scapa FM HD MT Dredge 3 includes the full duration of the proposed dredge campaign, simulated with a January to April 2022 tidal cycle, and no consideration of wind forcing on hydrodynamics.

As described in section 5.3.1, due to the low current speeds present within the vicinity of the dredge, only clay and silt particles from the finest fraction (1) enter suspension to form a plume, whilst sands and gravel fractions immediately fall out of suspension to deposit within the dredge extent. Figure 5-6 presents the total suspended solids concentrations within the dredge plume at the end of the dredge campaign. Review of this figure highlights that the highest concentrations (0.0075 – 0.002 kg/m³) of TSS occur within, and immediately adjacent to, the dredge pockets. TSS concentrations can be seen to rapidly reduce away from the dredge extents. The spatial extent of the plume, extending to the north-west along shore, highlights the marginal residual dominance of the ebb tide in that direction. Further westwards nearshore spread of very low concentration plume (<0.0005 kg/m³) is also observed.

Figure 5-7 presents the total suspended solids concentrations within the dredge plume at the end of the simulation, 3 days after completion of dredging. Review of this figure versus Figure 5-6 highlights the reduction in plume extent, and reduction in observed TSS concentrations, over the 3 days since completion of dredging. Figure 5-8 presents a time-series of TSS concentrations at point output locations 1 (north of dredge zone), 5 (within dredge zone) and 12 (within Westerbister fish farm). Review of this figure highlights that point 5 exhibits higher relative TSS concentrations than point 1, and also generally longer duration of higher TSS concentrations throughout the dredge campaign. Point 12 within the fish farm does not return any significant TSS concentrations throughout the dredge campaign duration.

Figure 5-9 presents the statistical maximum TSS concentration across the full simulation. A similar pattern is observed to those described above, with highest TSS concentrations present within the dredge extent, and immediate surrounds, rapidly decreasing with distance away from the dredge zone. The dredge plume can again be observed to extend north-west along shore, with weaker concentrations of TSS observed extending further west into Scapa Flow within the nearshore zone.

Figure 5-11 presents the statistical mean TSS concentration across the full simulation. Review of this figure again highlights a similar pattern of plume dispersal as observed in previous figures. Highest mean TSS values within the dredge extent are <0.015 kg/m³, whilst plume extents and concentrations are generally reduced in comparison to previous figures.

Figure 5-12 presents the total deposition thickness at the end of the simulation, following completion of the dredge campaign. Review of this figure highlights that measurable thickness of deposition is limited to the immediate dredge footprint, primarily consisting of sands and gravels, with maximum deposit thickness of 0.03m. Figure 5-13 presents the total net deposition accumulation at the end of the simulation, following completion of the dredge campaign. Review of this figure highlights that deposition accumulation primarily occurs within the immediate dredge extent (maximum accumulation \sim 30,000 g/m²), with accumulation rapidly decreasing away from this area.

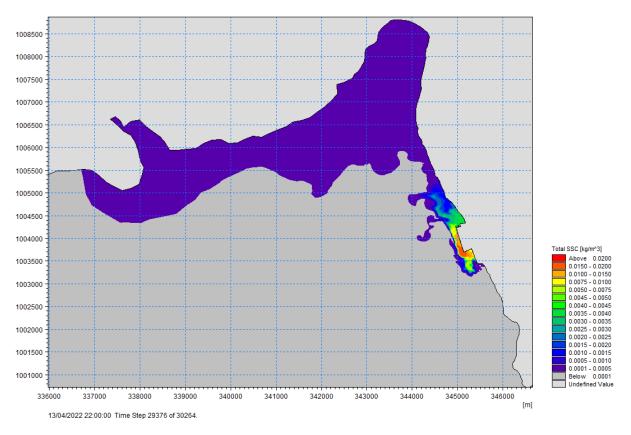
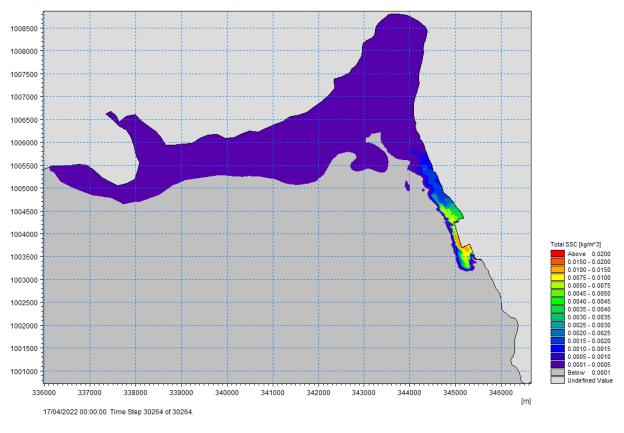
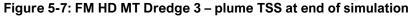




Figure 5-6: FM HD MT Dredge 3 – plume TSS at end of dredge campaign

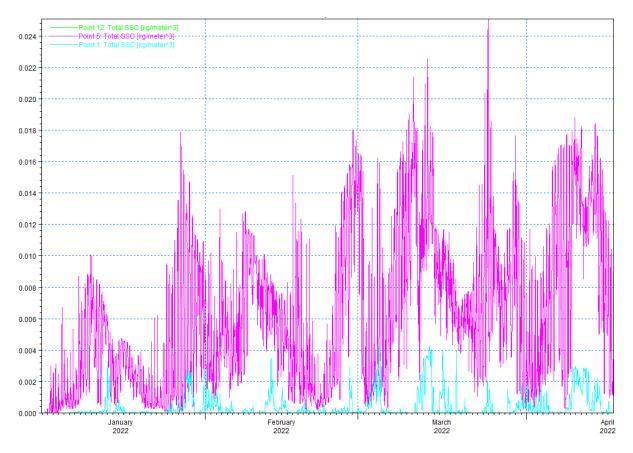


Figure 5-8: FM HD MT Dredge 3 – time-series TSS concentration (kg/m³) at locations 1, 5 & 12

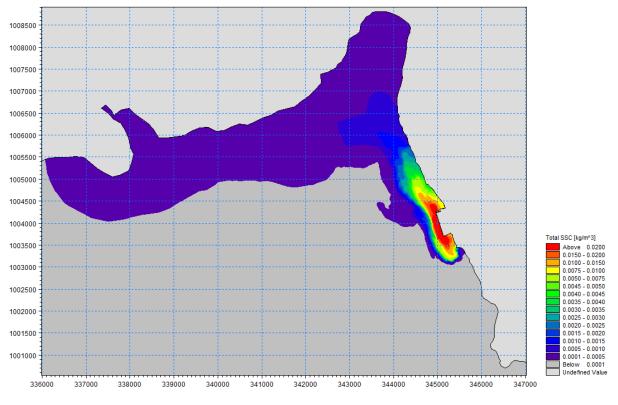


Figure 5-9: FM HD MT Dredge 3 – statistical maximum plume TSS (full dredge campaign)

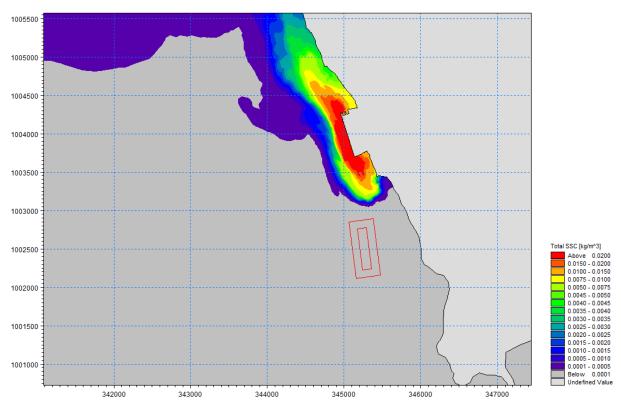


Figure 5-10: FM HD MT Dredge 3 – statistical maximum plume TSS (full dredge campaign zoom view Westerbister Fish Farm (red polygons))

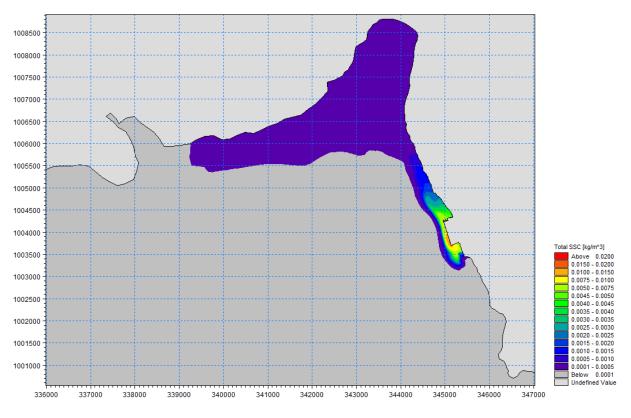


Figure 5-11: FM HD MT Dredge 3 – statistical mean plume TSS (full dredge campaign)

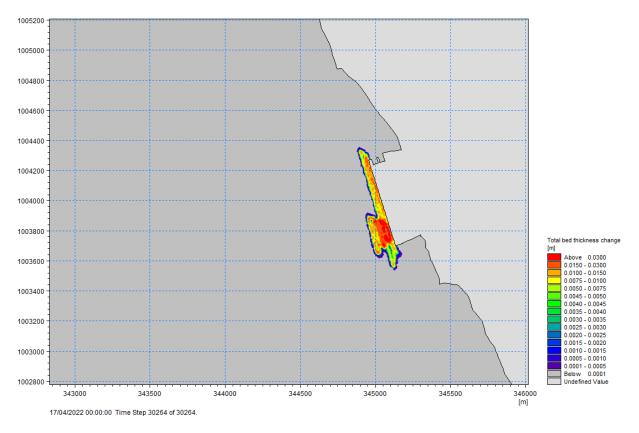


Figure 5-12: FM HD MT Dredge 3 – deposition thickness at end of simulation

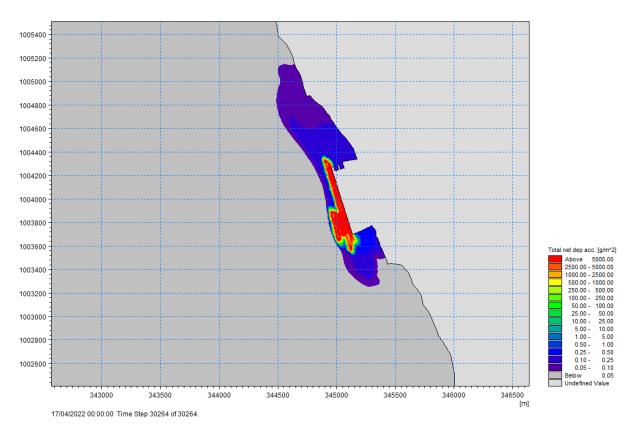


Figure 5-13: FM HD MT Dredge 3 – total net deposition accumulation at end of simulation

5.3.3 Wind Forcing Sensitivity

As outlined in Table 5-5, simulation Scapa FM HD MT Dredge 4 includes the first 8 days of the proposed dredge campaign, simulated with a January 2022 tidal cycle, and including consideration of wind forcing on hydrodynamics, as a model sensitivity scenario. The wind forcing applied in this simulation is constant across the model domain, but varying in time, as described in section 4.1.4. A rose plot showing input wind speed and directional frequency during the simulation period is presented in Figure 5-14, and during the final 50 hours of the simulation in Figure 5-15. Due to the unpredictability of wind forcing in terms of force, duration and direction, this scenario is only used to assess the model sensitivity to wind forcing.

Figure 5-17 and Figure 5-16 present the total suspended solids concentrations within the dredge plume following 8 days of the dredge campaign, with wind forcing included. Comparison of these figures with the results presented in Figure 5-3 highlights the impact of wind forcing on plume extents and placement, as well as observed TSS concentrations. The wind forcing effect on tidal currents acts to reduce the north-western dispersal of the dredge plume, driving the plume towards shore in the east, and extending further along shore to the south-east. Observed TSS concentrations are generally lower than those presented in Figure 5-3, with lower TSS within the dredge pocket, and with values reducing rapidly away from this area.

Figure 5-18 presents a time-series of TSS concentrations at point output locations 1 (north of the dredge zone), 5 (within the dredge zone) and 12 (within the Westerbister fish farm). Review of this figure highlights that point location 5 exhibits the most frequent relative elevations in TSS, and generally highest levels. Point 1 shows less frequent occurrence of elevated TSS, occurring later in the simulation, whilst point 12 shows relatively low (<0.0002 kg/m³) elevated concentrations of TSS only towards the end of the simulation. The elevation in TSS levels at point 12 is concurrent with prevalence of wind from the north-west and north (Figure 5-15).

Figure 5-19 presents the total deposition thickness following 8 days of the dredge campaign. Review of this figure highlights that, as per simulation FM HD MT Dredge 2, measurable thickness of deposition is limited to the immediate dredge footprint, primarily consisting of sands and gravels, with maximum deposit thickness of 0.015m. Figure 5-20 presents the total net deposition accumulation following 8 days of the dredge campaign. Review of this figure highlights that deposition accumulation primarily occurs within the immediate dredge extent (maximum accumulation ~10,000 g/m²), with accumulation rapidly decreasing away from this area.

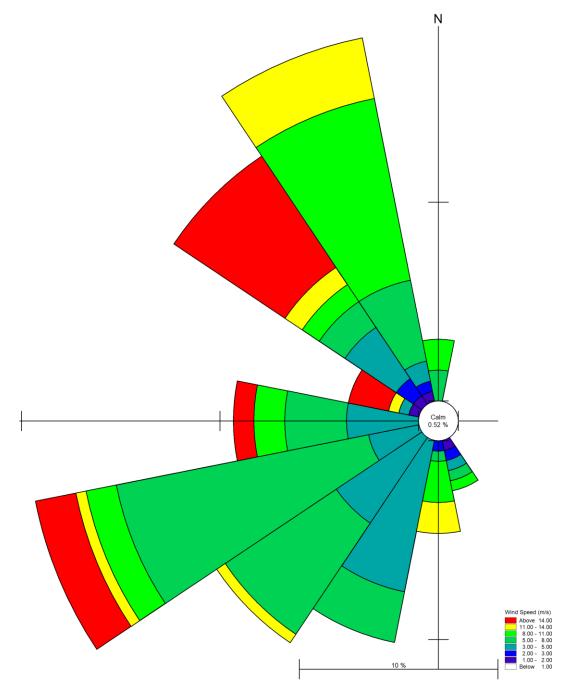


Figure 5-14: Wind rose plot – CREA6 model data for full duration of Scapa FM HD MT Dredge 4

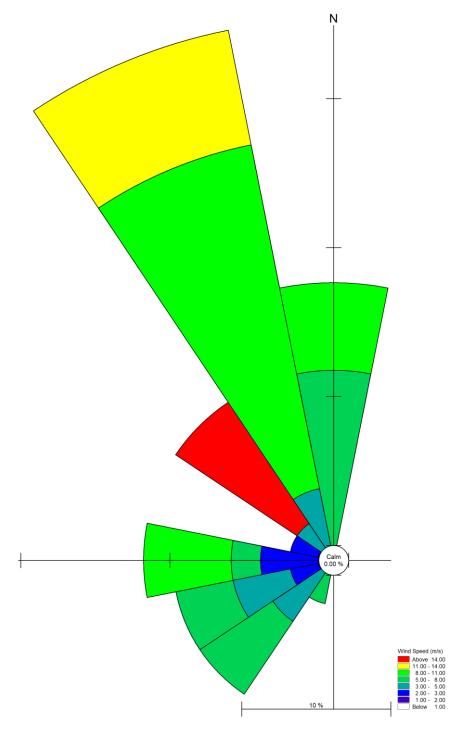


Figure 5-15: Wind rose plot – CREA6 model data for final 50 hours of Scapa FM HD MT Dredge 4

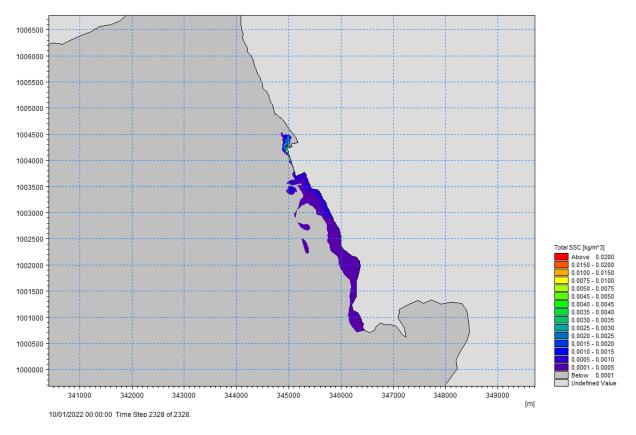


Figure 5-16: FM HD MT Dredge 4 – plume TSS following 8 days of dredge with wind forcing (wider view)

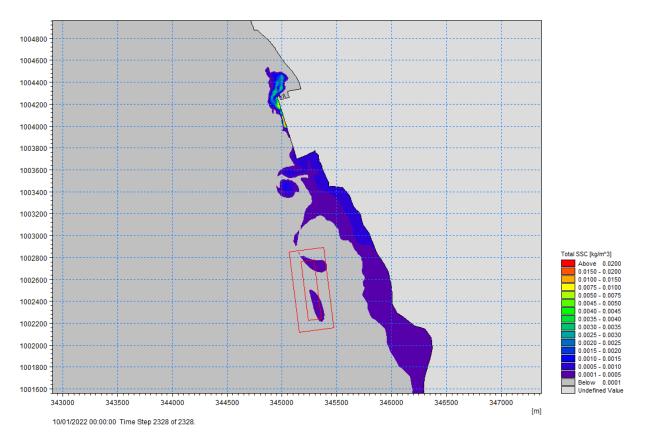


Figure 5-17: FM HD MT Dredge 4 – plume TSS following 8 days of dredge with wind forcing (zoom view Westerbister Fish Farm (red polygons))

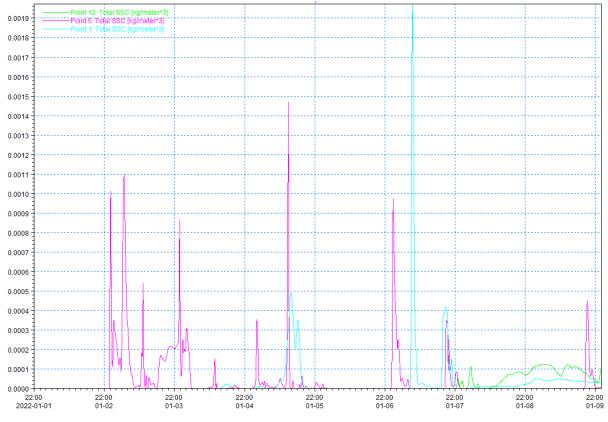


Figure 5-18: FM HD MT Dredge 4 – time-series TSS concentration (kg/m³) at locations 1, 5 & 12



Figure 5-19: FM HD MT Dredge 4 – deposition following 8 days of dredge with wind forcing

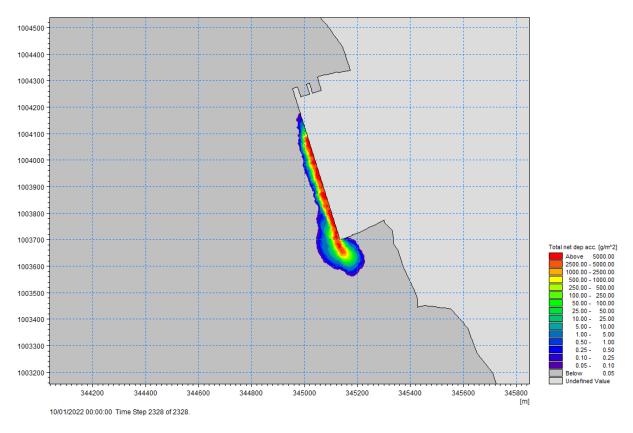


Figure 5-20: FM HD MT Dredge 4 – total net deposition accumulation following 8 days of dredge with wind forcing

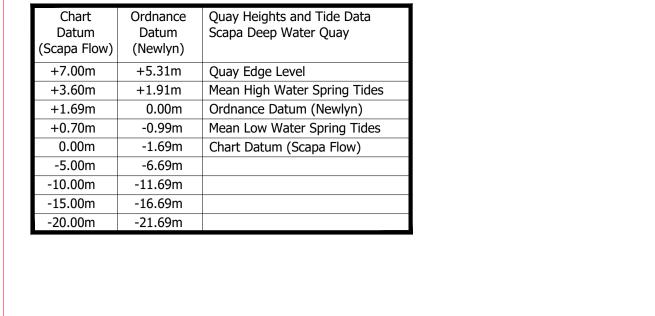
6 CONCLUSIONS

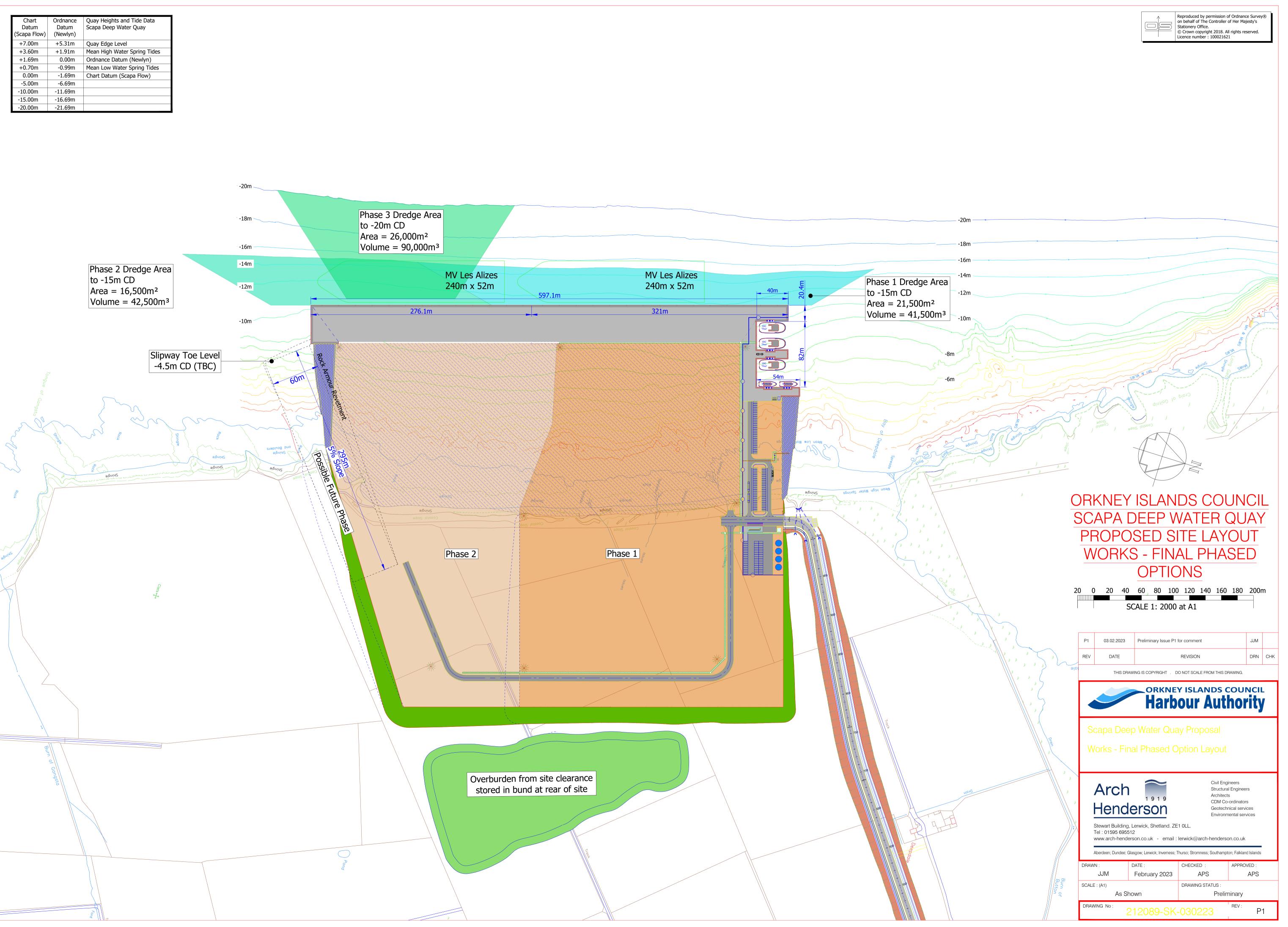
A coastal hydrodynamic model has been developed utilising the MIKE by DHI software platform, specifically the MIKE 21 FM HD module. The model extent comprises the coastal waters of Scapa Flow, Scapa Bay, the Hoy Sound, Hoy Mouth, the Sound of Hoxa, the Pentland Firth and North Atlantic.

There are five tidal boundaries within the model extent, with boundary conditions extracted from the DHI MIKE 21 Global Tide Model. UKHO and EMODnet bathymetric survey data have been combined to create a Digital Terrain Model (DTM) for use within the hydrodynamic model. The model utilises a flexible mesh to represent the offshore and coastal areas. The mesh has progressive refinement in resolution towards Deepdale Bay, becoming finer in the area of interest. The mesh has also been refined in locations where complex flow paths influence predictions within Scapa Flow, including around islands, and across the Sound of Hoxa and Hoy Sound. A post-development version of the HD model mesh has been generated to include the proposed development footprint, and associated capital dredge pockets. The model has been run for both existing and post-development conditions, simulating the January 2022 spring and neap tidal cycle. Additional model sensitivity simulations including wind forcing have also been run for both existing and post-development conditions. Validation of the model has been undertaken through comparison of baseline modelled tidal levels with Admiralty tide predictions, and tidal current speeds predicted by the baseline model have been compared to annotated tidal stream speeds on UKHO hydrographic charts. The results of the validation exercise indicate that the model performs well.

The results from the existing (baseline) model run (FM HD 16) and the post-development model run (FM HD 19) have been presented and analysed. Both models predict a semi-diurnal tidal curve, with two high tides and two low tides each day, as is the case around the UK. Tidal elevation predictions are within 0.05m of the corresponding Admiralty Tide Tables predictions for the same tide. The models predict low current speeds and corresponding low bed shear stresses in the vicinity of Deepdale Bay, considered indicative of a low energy environment, with no significant sediment transport by tidal currents predicted.

Comparison of existing and post-development results highlights that no significant change is observed in surface elevation predictions between the two model runs. Comparative analysis of predicted current speeds across the point output locations highlights that minor changes in peak current speed are predicted at point output locations in the immediate vicinity of the proposed development (<0.02m/s change), with no change observed in the wider surrounds. Review of current speed plots highlights that the predicted development impact on tidal current speed is greatest in the vicinity of the -20mCD dredge pocket. Whilst the modelling results presented indicate that the proposed development will produce localised changes in tidal current speeds, it is considered that these variations are insignificant in terms of the wider hydrodynamic regime in and around Deepdale Bay, with predicted changes of very minor scale, and post development speeds of a very similar nature to those observed under existing conditions.


This hydrodynamic modelling study concludes that there will be no significant impact from the proposed development on tidal levels or current speeds.


Additionally, to simulate sediment plume dispersal from the proposed dredge campaign, the MIKE 21 Mud Transport (MT) module has been utilised, in combination with the HD model. Model results show that due to the low current speeds present within the vicinity of the dredge, only clay and silt particles from the finest fraction (1) enter suspension to form a plume, whilst sands and gravel fractions immediately fall out of suspension to deposit within the dredge extent. Highest modelled TSS

concentrations are present within the dredge extent, and immediate surrounds, rapidly decreasing with distance away from the dredge zone. The main dredge plume is predicted to extend north-west along shore, with weaker concentrations of TSS predicted to extend further west into Scapa Flow, within the nearshore zone. Model sensitivity scenarios highlight that wind forcing can impact tidal currents and dredge plume dispersal in the vicinity of the proposed development. Wind direction and magnitude will impact the scale and spatial extent of any impact arising from wind forcing.

APPENDICES

A PROPOSED DEVELOPMENT LAYOUT

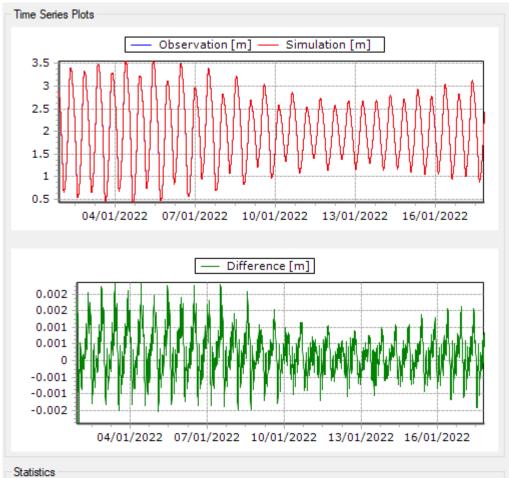
B TABULATED MODEL RESULTS

Table 1: FM HD 16 and FM HD 19 selected point output results for key tidal states

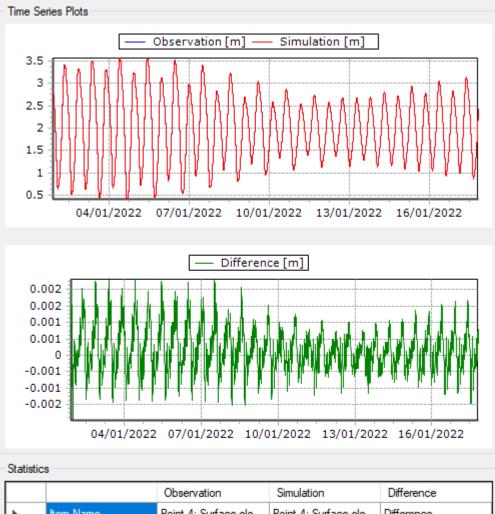
HD	Tidal State	Output	Surface	Current	Current	Bed Shear
Run	(Timestep)	Location	Elevation	Speed (m/s)	Direction	Stress
10	[Date Time]	<u> </u>	(mCD)		(Radian)	(N/m ²)
16	Mid-Flood	Point 2	2.329	0.006	2.153	0.0002
	Spring	Point 4	2.329	0.007	1.968	0.0002
	(TS 1072)	Point 6	2.329	0.005	2.135	0.0001
	[05/01/22 08:20]	Point 7	2.329	0.005	1.765	0.0001
	08:20]	Point 9	2.329	0.004	1.735	0.0001
		Point 10	2.329	0.004	2.057	0.0001
		Point 15	2.329	0.007	1.917	0.0002
		Point 16	2.329	0.011	1.187	0.0005
		Point 17	2.329	0.003	1.462	0.0000
		Point 22	2.329	0.018	1.437	0.0013
		Point 23	2.327	0.038	0.948	0.0079
	High Spring	Point 2	3.556	0.016	2.838	0.0012
	(TS 1098)	Point 4	3.556	0.014	2.647	0.0009
	[05/01/22	Point 6	3.556	0.013	2.780	0.0009
	10:30]	Point 7	3.556	0.012	2.729	0.0007
		Point 9	3.556	0.011	2.636	0.0005
		Point 10	3.556	0.016	2.811	0.0010
		Point 15	3.555	0.015	2.575	0.0009
		Point 16	3.556	0.012	2.557	0.0006
		Point 17	3.556	0.010	2.703	0.0004
		Point 22	3.555	0.017	2.639	0.0011
		Point 23	3.555	0.005	5.270	0.0002
	Mid-Ebb	Point 2	2.126	0.011	5.736	0.0006
	Spring	Point 4	2.126	0.008	5.363	0.0003
	(TS 1147)	Point 6	2.126	0.009	5.197	0.0004
	[05/01/22	Point 7	2.126	0.009	5.519	0.0004
	14:35]	Point 9	2.126	0.009	5.482	0.0003
		Point 10	2.126	0.014	5.673	0.0008
		Point 15	2.126	0.015	5.297	0.0010
		Point 16	2.126	0.014	5.284	0.0008
		Point 17	2.126	0.008	5.337	0.0002
		Point 22	2.126	0.020	5.123	0.0015
		Point 23	2.122	0.032	4.294	0.0060
	Low Spring	Point 2	0.461	0.013	6.079	0.0009
	(TS 1178)	Point 4	0.461	0.010	5.860	0.0005
	[05/01/22	Point 6	0.461	0.009	5.876	0.0004
	17:10]	Point 7	0.461	0.010	5.940	0.0005
		Point 9	0.461	0.010	5.870	0.0004
		Point 10	0.461	0.016	5.972	0.0012
		Point 15	0.461	0.016	5.625	0.0010
		Point 16	0.461	0.016	5.875	0.0010
		Point 17	0.461	0.009	5.768	0.0003

HD Run	Tidal State (Timestep)	Output Location	Surface Elevation	Current Speed (m/s)	Current Direction	Bed Shear Stress
	[Date Time]		(mCD)		(Radian)	(N/m²)
		Point 22	0.461	0.017	5.875	0.0012
		Point 23	0.462	0.006	1.890	0.0002
19	Mid-Flood	Point 2	2.328	0.008	1.899	0.0003
	Spring	Point 4	2.328	0.003	3.494	0.0000
	(TS 988)	Point 6	2.328	0.004	1.764	0.0001
	[05/01/22	Point 7	2.328	0.009	5.088	0.0003
	08:20]	Point 9	2.328	0.006	5.517	0.0002
		Point 10	2.328	0.009	1.925	0.0004
		Point 15	2.328	0.007	1.502	0.0002
		Point 16	2.328	0.009	0.915	0.0003
		Point 17	2.328	0.005	6.236	0.0001
		Point 22	2.328	0.017	1.274	0.0011
		Point 23	2.327	0.039	1.067	0.0089
	High Spring	Point 2	3.554	0.011	2.528	0.0006
	(TS 1014)	Point 4	3.554	0.007	2.639	0.0002
	[05/01/22	Point 6	3.554	0.011	3.405	0.0006
	10:30]	Point 7	3.554	0.014	3.850	0.0009
		Point 9	3.554	0.009	3.372	0.0004
		Point 10	3.554	0.014	2.340	0.0008
		Point 15	3.554	0.011	2.415	0.0005
		Point 16	3.554	0.009	2.614	0.0003
		Point 17	3.554	0.004	2.698	0.0001
		Point 22	3.553	0.014	2.684	0.0007
		Point 23	3.554	0.006	0.601	0.0002
	Mid-Ebb	Point 2	2.128	0.005	5.276	0.0001
	Spring	Point 4	2.128	0.023	5.917	0.0025
	(TS 1063)	Point 6	2.128	0.005	4.499	0.0002
	[05/01/22	Point 7	2.128	0.021	6.138	0.0019
	14:35]	Point 9	2.128	0.015	5.466	0.0010
		Point 10	2.128	0.015	5.637	0.0010
		Point 15	2.128	0.018	5.402	0.0013
		Point 16	2.128	0.017	5.384	0.0012
		Point 17	2.128	0.014	5.443	0.0008
		Point 22	2.127	0.022	5.225	0.0020
		Point 23	2.124	0.034	4.373	0.0067
	Low Spring	Point 2	0.462	0.008	5.637	0.0003
	(TS 1094)	Point 4	0.462	0.019	5.928	0.0017
	[05/01/22	Point 6	0.462	0.014	6.257	0.0010
	17:10]	Point 7	0.462	0.018	6.102	0.0015
		Point 9	0.462	0.016	5.735	0.0011
		Point 10	0.462	0.013	5.922	0.0008
		Point 15	0.462	0.017	5.644	0.0012
		Point 16	0.462	0.019	5.822	0.0014
		Point 17	0.462	0.015	5.713	0.0010
		Point 22	0.462	0.020	5.882	0.0017
		Point 23	0.463	0.008	3.777	0.0005

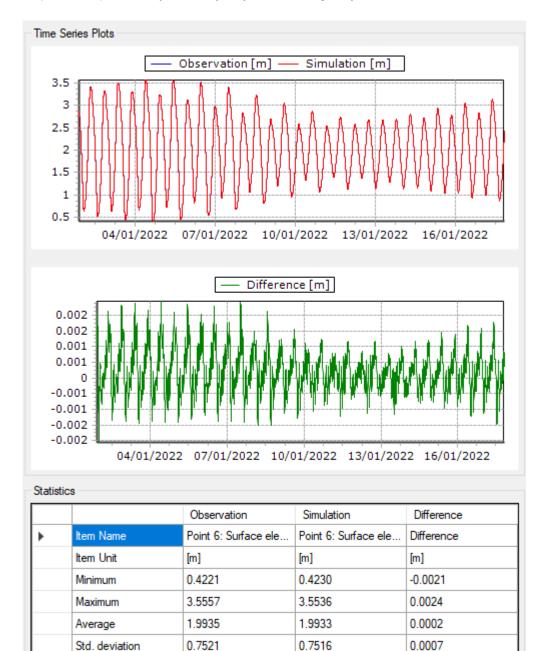
HD Run Comp.	Tidal State [Date Time]	Output Location	Surface Elevation Difference (m)	Current Speed Difference (m/s)	Bed Shear Stress Difference (N/m ²)
FMHD16	Mid-Flood	Point 2	0.00	0.00	-0.0001
minus	Spring	Point 4	0.00	0.00	0.0002
FMHD17	[05/01/22	Point 6	0.00	0.00	0.0000
	08:20]	Point 7	0.00	0.00	-0.0002
		Point 9	0.00	0.00	-0.0001
		Point 10	0.00	-0.01	-0.0003
		Point 15	0.00	0.00	0.0000
		Point 16	0.00	0.00	0.0001
		Point 17	0.00	0.00	-0.0001
		Point 22	0.00	0.00	0.0002
		Point 23	0.00	0.00	-0.0009
	High Spring	Point 2	0.00	0.00	0.0007
	[05/01/22	Point 4	0.00	0.01	0.0007
	10:30]	Point 6	0.00	0.00	0.0003
		Point 7	0.00	0.00	-0.0002
		Point 9	0.00	0.00	0.0000
		Point 10	0.00	0.00	0.0002
		Point 15	0.00	0.00	0.0004
		Point 16	0.00	0.00	0.0003
		Point 17	0.00	0.01	0.0003
		Point 22	0.00	0.00	0.0004
		Point 23	0.00	0.00	-0.0001
	Mid-Ebb Spring	Point 2	0.00	0.01	0.0005
	[05/01/22	Point 4	0.00	-0.02	-0.0022
	14:35]	Point 6	0.00	0.00	0.0002
		Point 7	0.00	-0.01	-0.0015
		Point 9	0.00	-0.01	-0.0007
		Point 10	0.00	0.00	-0.0001
		Point 15	0.00	0.00	-0.0003
		Point 16	0.00	0.00	-0.0004
		Point 17	0.00	-0.01	-0.0005
		Point 22	0.00	0.00	-0.0005
		Point 23	0.00	0.00	-0.0007
	Low Spring	Point 2	0.00	0.01	0.0006
	[05/01/22	Point 4	0.00	-0.01	-0.0012
	17:10]	Point 6	0.00	-0.01	-0.0006
		Point 7	0.00	-0.01	-0.0010
		Point 9	0.00	-0.01	-0.0007
		Point 10	0.00	0.00	0.0004
		Point 15	0.00	0.00	-0.0002
		Point 16	0.00	0.00	-0.0004
		Point 17	0.00	-0.01	-0.0006
		Point 22	0.00	0.00	-0.0005
		Point 23	0.00	0.00	-0.0002

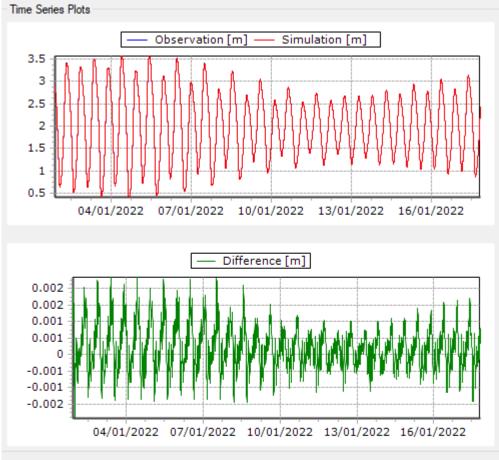

Table 2: Comparison of FM HD 16 and FM HD 19 selected point output results for key tidal states

August 2023

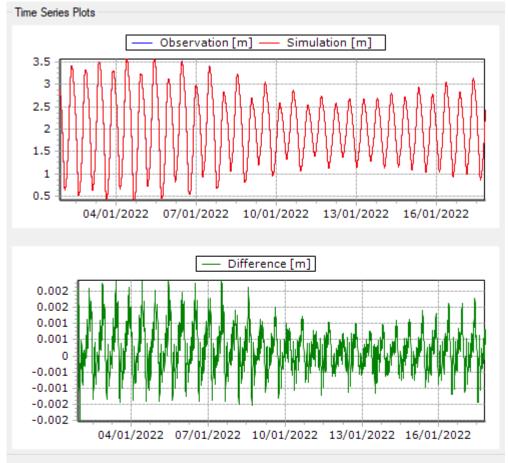

C MODEL RESULTS - GRAPHICAL COMPARISONS

Note: Observation = baseline model [FM HD 16] and Simulation = post-development model [FM HD 19]

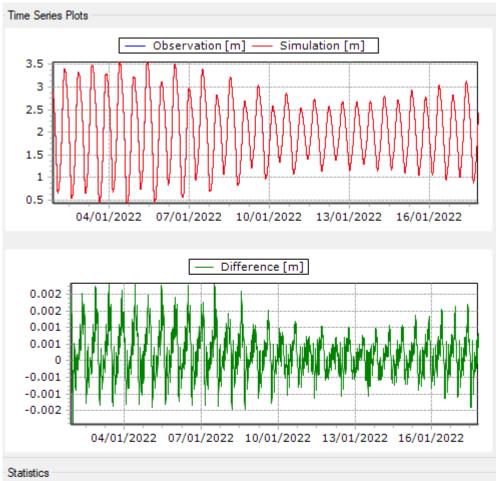

Water Surface Elevation

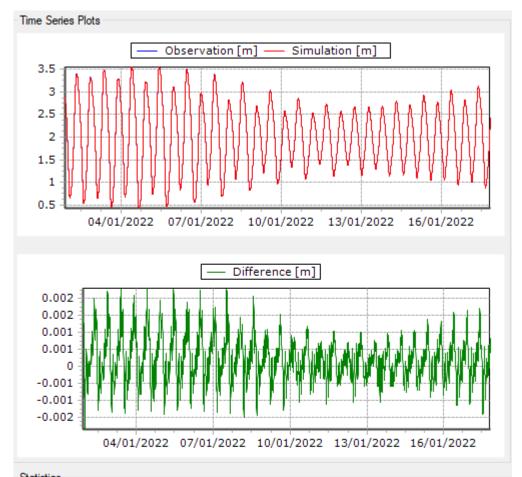


		Observation	Simulation	Difference
•	Item Name	Point 2: Surface ele	Point 2: Surface ele	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4223	0.4231	-0.0019
	Maximum	3.5555	3.5536	0.0024
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7517	0.0007

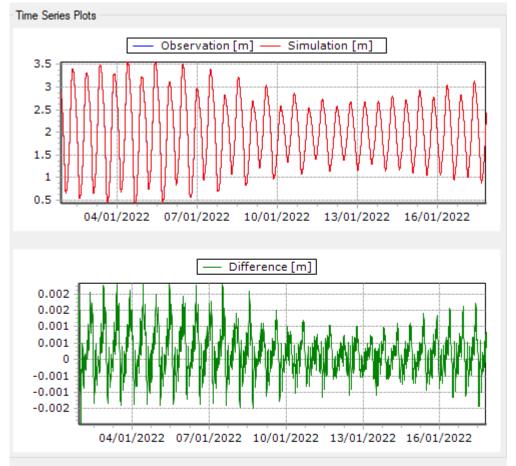

		Observation	Simulation	Difference
•	Item Name	Point 4: Surface ele	Point 4: Surface ele	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4222	0.4231	-0.0020
	Maximum	3.5556	3.5537	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7516	0.0007

<u>-</u>					
St	а	115	গা	IC:	s
~	-		~	~	~

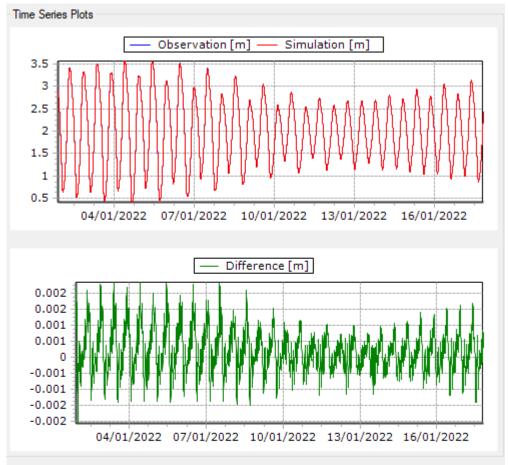

		Observation	Simulation	Difference
•	Item Name	Point 7: Surface ele	Point 7: Surface ele	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4222	0.4231	-0.0019
	Maximum	3.5556	3.5536	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7516	0.0007


C C	-	ieti	ics	
0	a	15U	Co	

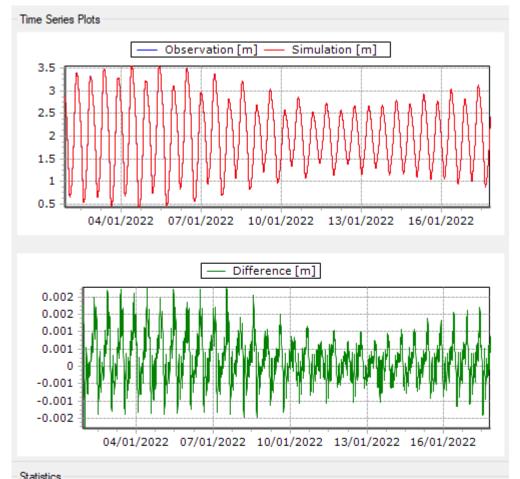
		Observation	Simulation	Difference
•	Item Name	Point 9: Surface ele	Point 9: Surface ele	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4221	0.4230	-0.0020
	Maximum	3.5556	3.5537	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7516	0.0007



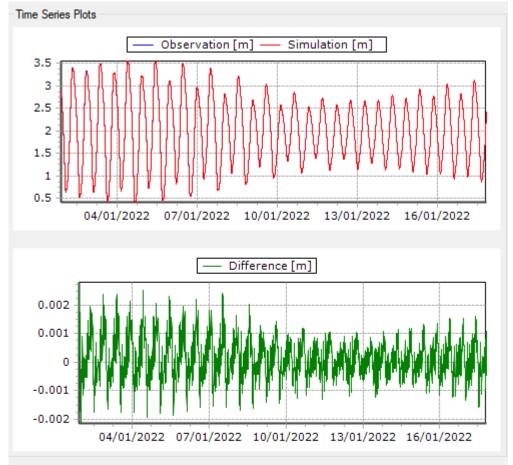
		Observation	Simulation	Difference
•	Item Name	Point 10: Surface el	Point 10: Surface el	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4223	0.4232	-0.0019
	Maximum	3.5555	3.5536	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7517	0.0007



		Observation	Simulation	Difference	
•	Item Name	Point 15: Surface el	Point 15: Surface el	Difference	
	Item Unit	[m]	[m]	[m]	
	Minimum	0.4224	0.4233	-0.0019	
	Maximum	3.5554	3.5536	0.0023	
	Average	1.9935	1.9933	0.0002	
	Std. deviation	0.7522	0.7517	0.0007	

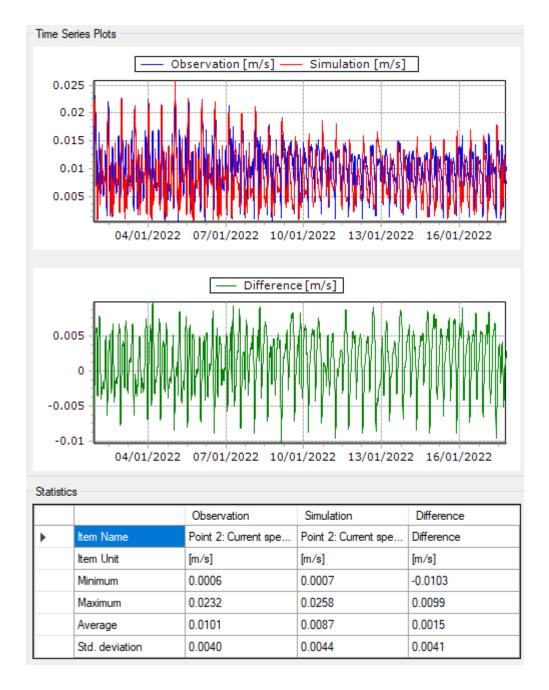

- 0-				
- 54	at	101	ic	-
- 01				-

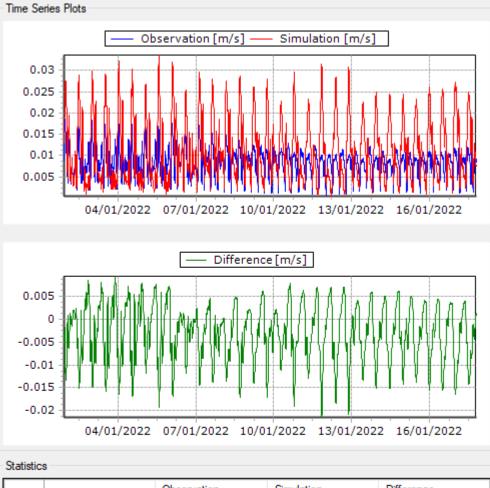
		Observation	Simulation	Difference
►	Item Name	Point 16: Surface el	Point 16: Surface el	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4222	0.4231	-0.0020
	Maximum	3.5556	3.5536	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7520	0.7516	0.0007



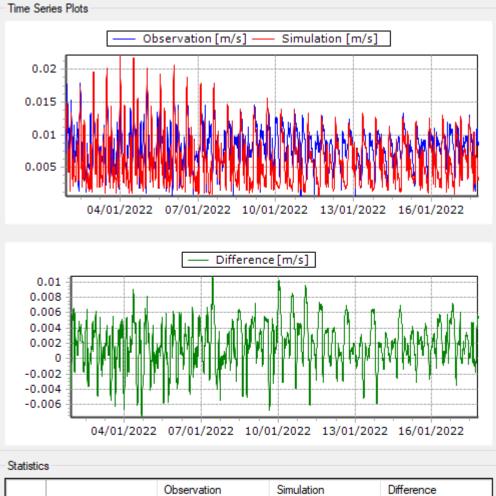
0				
-51	at	19	tu	CS
0	-	10		60

		Observation	Simulation	Difference
•	Item Name	Point 17: Surface el	Point 17: Surface el	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4220	0.4229	-0.0021
	Maximum	3.5557	3.5537	0.0024
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7520	0.7516	0.0007

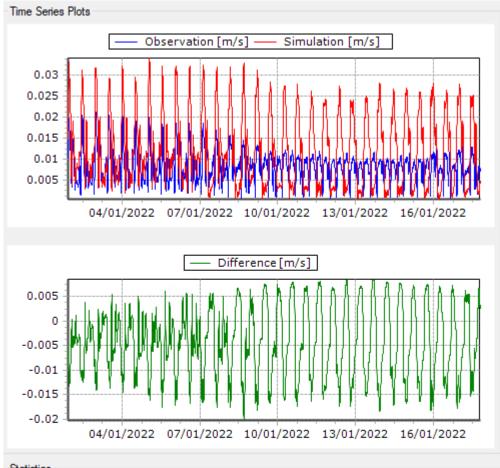

		Observation	Simulation	Difference
•	Item Name	Point 22: Surface el	Point 22: Surface el	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4227	0.4235	-0.0018
	Maximum	3.5552	3.5534	0.0023
	Average	1.9935	1.9933	0.0002
	Std. deviation	0.7521	0.7517	0.0007



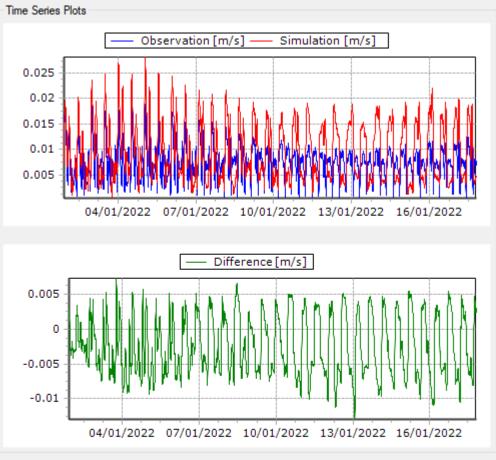
<u>-</u>						
St	а	ħ	st	k	CS	Ľ
~	-		~		~~	


		Observation	Simulation	Difference
•	Item Name	Point 23: Surface el	Point 23: Surface el	Difference
	Item Unit	[m]	[m]	[m]
	Minimum	0.4219	0.4230	-0.0022
	Maximum	3.5550	3.5537	0.0028
	Average	1.9934	1.9933	0.0001
	Std. deviation	0.7528	0.7524	0.0007

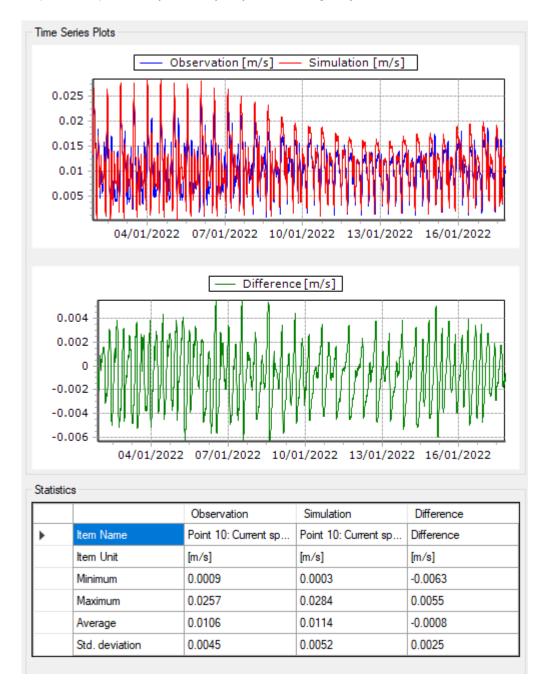
Current Speed

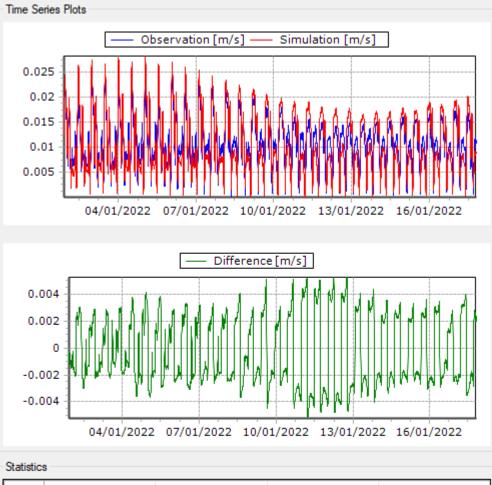


		Observation	Simulation	Difference
•	Item Name	Point 4: Current spe	Point 4: Current spe	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0008	0.0004	-0.0215
	Maximum	0.0185	0.0336	0.0095
	Average	0.0082	0.0114	-0.0032
	Std. deviation	0.0031	0.0074	0.0062



		Observation	Simulation	Difference
•	Item Name	Point 6: Current spe	Point 6: Current spe	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0006	0.0007	-0.0076
	Maximum	0.0186	0.0221	0.0107
	Average	0.0081	0.0063	0.0018
	Std. deviation	0.0031	0.0038	0.0029


Statistics	s	

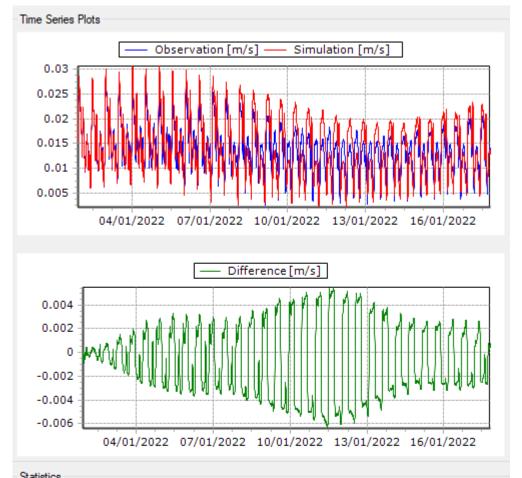

		Observation	Simulation	Difference
•	Item Name	Point 7: Current spe	Point 7: Current spe	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0005	0.0003	-0.0202
	Maximum	0.0212	0.0342	0.0085
	Average	0.0080	0.0124	-0.0044
	Std. deviation	0.0035	0.0087	0.0073

<u>-</u>					
St	a	hi	et	10	20
0	-		9		20

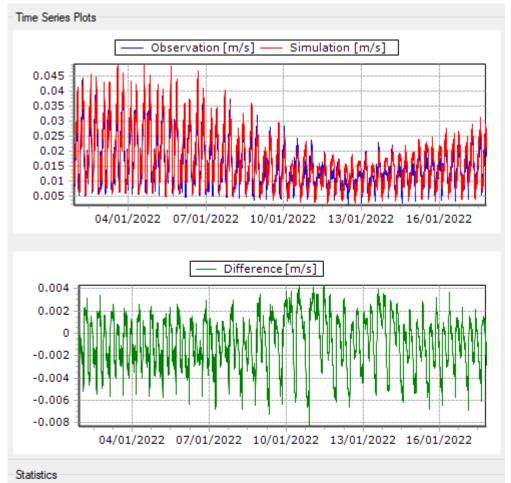
		Observation	Simulation	Difference
•	Item Name	Point 9: Current spe	Point 9: Current spe	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0005	0.0004	-0.0130
	Maximum	0.0187	0.0280	0.0074
	Average	0.0073	0.0097	-0.0024
	Std. deviation	0.0032	0.0056	0.0044



		Observation	Simulation	Difference
•	Item Name	Point 15: Current sp	Point 15: Current sp	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0003	0.0001	-0.0053
	Maximum	0.0258	0.0281	0.0053
	Average	0.0109	0.0111	-0.0002
	Std. deviation	0.0047	0.0059	0.0026



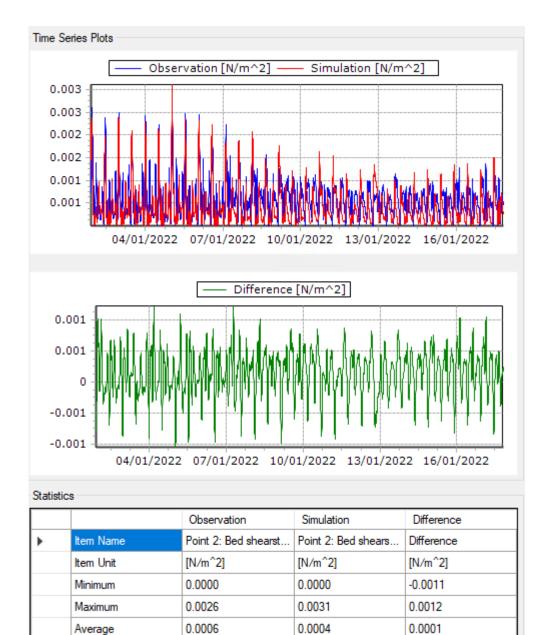
Judia	uca			
		Observation	Simulation	Difference
•	Item Name	Point 16: Current sp	Point 16: Current sp	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0004	0.0001	-0.0130
	Maximum	0.0237	0.0264	0.0145
	Average	0.0105	0.0111	-0.0006
	Std. deviation	0.0040	0.0061	0.0053



0			
-	ati	et i	CS
ູ	au	อน	60

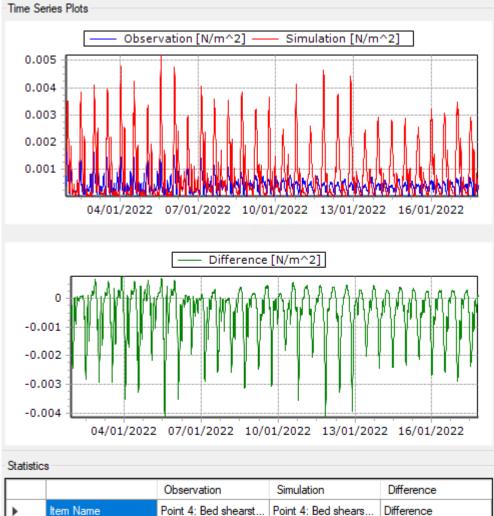
		Observation	Simulation	Difference
•	Item Name	Point 17: Current sp	Point 17: Current sp	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0006	0.0005	-0.0127
	Maximum	0.0158	0.0216	0.0120
	Average	0.0069	0.0084	-0.0015
	Std. deviation	0.0029	0.0054	0.0057

		Observation	Simulation	Difference
►	Item Name	Point 22: Current sp	Point 22: Current sp	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0026	0.0021	-0.0064
	Maximum	0.0291	0.0307	0.0055
	Average	0.0139	0.0145	-0.0006
	Std. deviation	0.0047	0.0059	0.0030

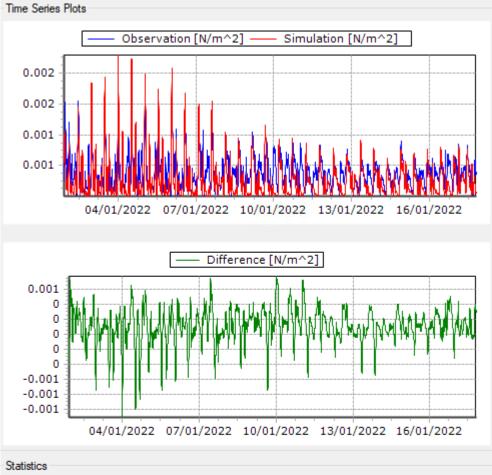

		Observation	Simulation	Difference
•	Item Name	Point 23: Current sp	Point 23: Current sp	Difference
	Item Unit	[m/s]	[m/s]	[m/s]
	Minimum	0.0021	0.0026	-0.0083
	Maximum	0.0478	0.0491	0.0043
	Average	0.0158	0.0166	-0.0008
	Std. deviation	0.0086	0.0090	0.0024

Bed Shear Stress

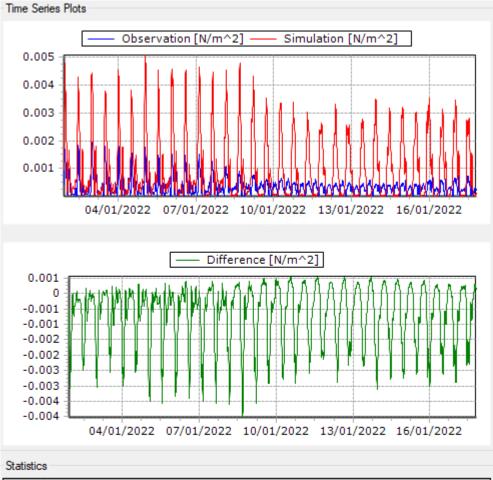
Average


Std. deviation

0.0004

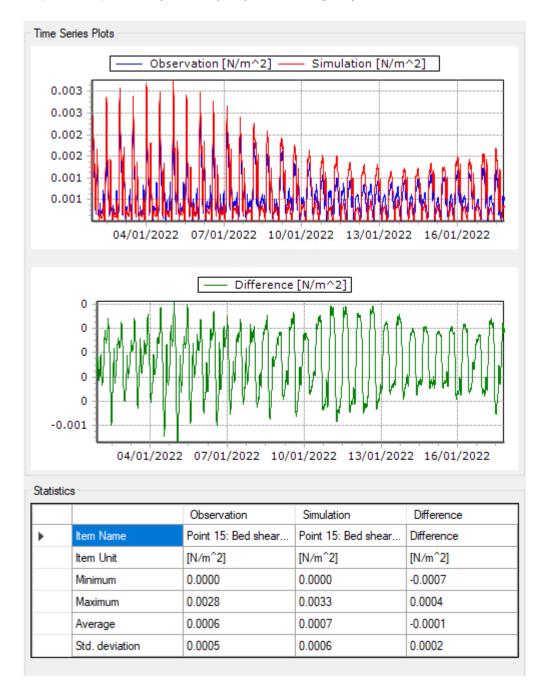


0.0004

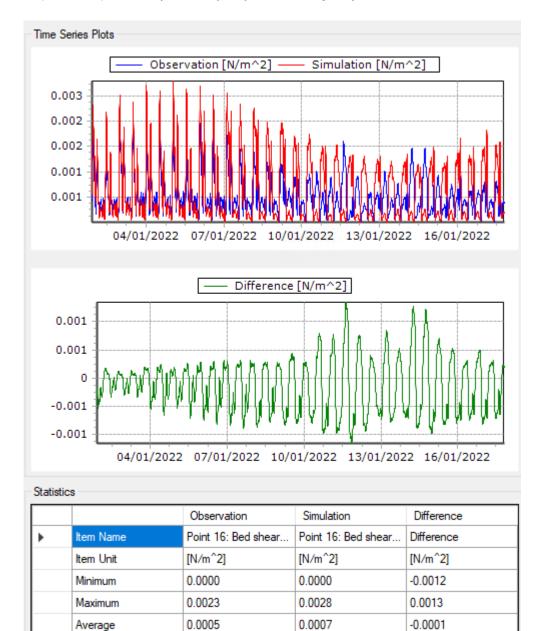

0.0004

		Observation	Simulation	Difference
•	Item Name	Point 4: Bed shearst	Point 4: Bed shears	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0041
	Maximum	0.0017	0.0052	0.0008
	Average	0.0004	0.0009	-0.0005
	Std. deviation	0.0003	0.0010	0.0009

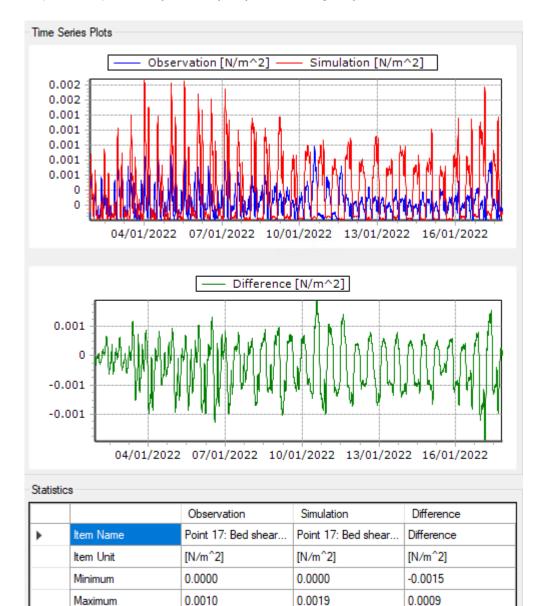
		Observation	Simulation	Difference
•	Item Name	Point 6: Bed shearst	Point 6: Bed shears	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0011
	Maximum	0.0017	0.0023	0.0008
	Average	0.0004	0.0003	0.0001
	Std. deviation	0.0003	0.0003	0.0002


		Observation	Simulation	Difference
•	Item Name	Point 7: Bed shearst	Point 7: Bed shears	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0040
	Maximum	0.0020	0.0051	0.0006
	Average	0.0003	0.0010	-0.0007
	Std. deviation	0.0003	0.0012	0.0010

		Observation	Simulation	Difference
•	Item Name	Point 9: Bed shearst	Point 9: Bed shears	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0019
	Maximum	0.0015	0.0034	0.0004
	Average	0.0003	0.0006	-0.0003
	Std. deviation	0.0002	0.0006	0.0004



		Observation	Simulation	Difference
•	Item Name	Point 10: Bed shear	Point 10: Bed shear	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0010
	Maximum	0.0029	0.0035	0.0006
	Average	0.0006	0.0007	-0.0001
	Std. deviation	0.0005	0.0006	0.0003


Average Std. deviation

0.0004

0.0006

0.0005

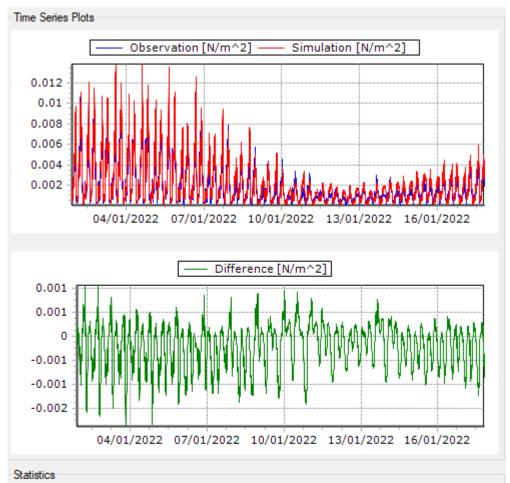
0.0004

0.0004

-0.0002

0.0004

0.0002


0.0002

Average

Std. deviation

		Observation	Simulation	Difference
•	Item Name	Point 22: Bed shear	Point 22: Bed shear	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0009
	Maximum	0.0033	0.0037	0.0006
	Average	0.0009	0.0010	-0.0001
	Std. deviation	0.0006	0.0007	0.0003

		Observation	Simulation	Difference
•	Item Name	Point 23: Bed shear	Point 23: Bed shear	Difference
	Item Unit	[N/m^2]	[N/m^2]	[N/m^2]
	Minimum	0.0000	0.0000	-0.0019
	Maximum	0.0135	0.0139	0.0011
	Average	0.0019	0.0021	-0.0002
	Std. deviation	0.0021	0.0023	0.0005