INSTITUTE of ESTUARINE and COASTAL STUDIES

Firth of Forth (Round 3) Offshore Wind Farm Development: Survey Report Benthic Services – Export Cable Route

Report to Seagreen Wind Energy Ltd.

Institute of Estuarine and Coastal Studies University of Hull

12th July 2012

Author(s): T. M. Smith, M. J. Bailey, A. Leighton & S. Thomson

Report: ZBB776-ECR-F-2012

Institute of Estuarine & Coastal Studies (IECS) The University of Hull Cottingham Road Hull

HU6 7RX UK

Tel: ⁺44 (0)1482 464120 Fax: ⁺44 (0)1482 464130

E-mail: iecs@hull.ac.uk

Web site: http://www.hull.ac.uk/iecs

Seagreen Wind Energy Ltd.

Firth of Forth (Round 3) Offshore Wind Farm Development: Survey Report Benthic Services – Export Cable Route

12th July 2012

Reference Number: ZBB776-ECR-F-2012

This report has been prepared by the Institute of Estuarine and Coastal Studies, with all reasonable care, skill and attention to detail as set within the terms of the Contract with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

Printed on 100% recycled paper

TABLE OF CONTENTS

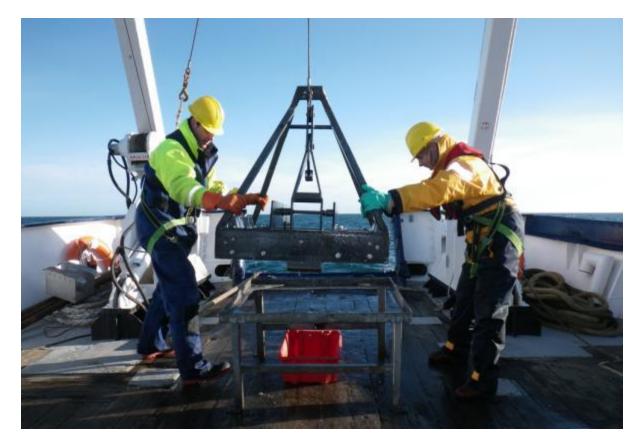
TABLE OF CONTENTS
1. INTRODUCTION1
2. Methods
2.1 Benthic Infaunal Samples2
2.1.1 Sample Collection2
2.1.2 Post Survey Analysis
2.2 Epifaunal Trawls5
2.2.1 Sample Collection5
3. RESULTS
3.1 Survey Summary and Area Map7
3.2 Benthic Infaunal Data10
3.2.1 Infaunal Grab Sampling10
3.2.2 Species and Habitats of Conservation Interest
3.2.3 Proposed and Actual Co-ordinates
3.3 Particle Size Analysis and Organic Content Data
3.4 Sediment Contaminant Data
3.5 Epibenthic Trawl Data14
APPENDIX 1. BENTHIC SURVEY LOG INCLUDING SEDIMENT DESCRIPTION & NOTABLE FEATURES 16
APPENDIX 2. BENTHIC SURVEY LOG INCLUDING SAMPLE VOLUME
APPENDIX 3. BENTHIC SAMPLE COORDINATES (PROPOSED AND ACTUAL)
APPENDIX 4. BENTHIC INFAUNAL SPECIES LIST
APPENDIX 5. VIDEO AND EPIFAUNAL TRAWL LOG
APPENDIX 6. VIDEO AND EPIFAUNAL TRAWL SAMPLE DESCRIPTION
APPENDIX 7. BENTHIC GRAB PHOTOGRAPHS (EXPORT CABLE ROUTE)27
APPENDIX 8. EPIBENTHIC TRAWL PHOTOGRAPHS
APPENDIX 9. EPIBENTHIC TRAWL FISH LENGTH MEASUREMENTS
APPENDIX 10. SEDIMENT CONTAMINANT RESULTS

1. INTRODUCTION

SSE Renewables (SSER) and Fluor (UK) Ltd under the Limited company of Seagreen Wind Energy have been awarded the Firth of Forth Round 3 Zone for offshore wind development. Seagreen aim to deliver a generation capacity of 3.5GW across an area of 2,852km² with the development being undertaken in three phases.

The Institute of Estuarine & Coastal Studies (IECS) was commissioned by Seagreen Wind Energy Limited to undertake an offshore benthic survey. This survey work and associated sample analysis was designed to enable characterisation of the benthic and epibenthic ecology of the area, the physical characteristics of the sample sites and the chemical properties of the sediments sampled.

In order to provide adequate sampling coverage of the proposed development site, Seagreen Wind Energy Ltd, in conjunction with Royal Haskoning, identified 19 benthic sampling sites, 5 contaminant sampling sites, 3 epibenthic trawl sites and 13 video line sites within the export cable route (ECR) area. All survey work was completed during April and June 2011 and the subsequent sample analysis completed by September 2011.


This report documents the survey work completed along the export cable route and the sediment, infaunal and epifaunal results. Analysis of the data is outside the scope of this report.

2. METHODS

2.1 Benthic Infaunal Samples

2.1.1 SAMPLE COLLECTION

The benthic and epibenthic surveys along the proposed cable route were undertaken during two separate deployments, the first in April onboard MV Clupea and the second in June onboard SV Chartwell. A total of 19 benthic stations were identified by Seagreen in the ECR area. A mini Hamon grab was deployed to collect a single replicate sample for infaunal analysis (Plate 1), from which a PSA sample was also taken, as per the specification. A second grab was collected for contaminant analysis. A full survey log was maintained throughout the survey detailing time of sampling, position (DGPS derived), station, water depth, volume of sample, physical characteristics of the sample, digital image number (cross referencing (QA)), presence of *Sabellaria spinulosa* and any other relevant features.

Plate 1. Retrieval of mini hamon grab on board MV Clupea

The infaunal samples were processed on a sequential basis utilising a nested sieving technique. Each acceptable sample was removed from the grab, photographed with an internal label, placed into a hopper and sieved onboard through a nest of 5mm and 1mm sieves. A nested sieve approach was used in order to separate large sediment types and reduce damage to invertebrates. The sieved residue was gently back-washed into a sealable container and borax buffered 4% formo-saline solution containing Rose Bengal vital stain was added as a fixative. Each sample was labelled clearly on the bucket and the internal label placed in the container, noting the client, survey, date and station number.

The PSA and organic carbon samples were stored in separate plastic bags, which were clearly labelled, and frozen onboard the vessel. The samples were kept frozen during transportation back to the IECS laboratory. The IECS methodology followed the protocol given by Rees *et al* (1990)¹ & (1993)², Davies *et al.* (2001)³, Boyd (2002)⁴ and Proudfoot *et al.* (2004)⁵.

Valid Sample Criteria

Samples comprising hard substrata (e.g. broken shell, rocks or gravel) were rejected if a minimum sample volume of 5 litres was not achieved. When samples were within these limits, each sample was photographed (digital image) and subsequently processed. Five attempts were made at each site to collect a valid infaunal sample, however if a sample with a volume of <4 litres was retained the VideoRay was deployed at the site in order to obtain supporting video footage of the seabed.

2.1.2 POST SURVEY ANALYSIS

Benthic infaunal samples

General Requirements

All members of IECS undertaking the sample sorting and taxonomic analysis phases of the laboratory work were qualified marine biologists or ecologists. Those staff carrying out the taxonomic analysis have at least eight years marine biological experience with a wide range of experience in the field of benthic sample analysis and interpretation. The analyses were quality checked by the Senior Benthic Taxonomists who have had more than 10 years experience.

Sample Sorting

The procedure for sieving and sorting benthic core samples was as follows:

¹ Rees, H.L., Moore, D. C., Pearson, T. H., Elliot, M., Service, M., Pomfret, J. and Johnson, D. (1990). *Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites*. Scottish Fisheries Information Pamphlet, No. 18: 78pp

² Rees, H.L. and Service, M.A. (1993). Development of improved strategies for monitoring the epibenthos at sewage sludge disposal sites. In: *Analysis and interpretation of benthic community data at sewage sludge disposal sites*. Aquatic Environmental Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, No. 37: 55-61.

³ Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M. (2001) *Marine Monitoring Handbook*, 405pp. JNCC Peterbrough, UK.

⁴ Boyd, S.E. (2002). *Guidelines for the conduct of benthic studies at aggregate dredging sites*. Department for Transport, Local Government and the Regions (DTLR)/CEFAS: London, UK. 117 pp.

⁵ Proudfoot, R.K, Elliott, M., Dyer, M.F., Barnett, B.E., Allen, J.H., Proctor, N.V., Cutts, N.D., Nikitik, C., Turner, G., Breen, J., Hemingway, K.L. and Mackie, T (1997). Proceedings of the Humber benthic field methods workshop, University of Hull.

Formalin was decanted from the sample through a 212µm sieve using appropriate exposure prevention controls as detailed in the Health & Safety documentation. Material retained on the sieve was washed back into the sample. The sample was then washed through 1mm mesh stainless steel sieve of 20cm diameter, to remove excess preservative as well as fine mud and sand particles. The residue from the 1mm sieve was then gently washed into a white tray. Water was added to the tray and the contents examined by eye using a 1.5x illuminated magnifier. Large specimens were removed and sorted into major phyla. The fauna derived were retained and stored by group in appropriately labelled containers, preserved using 70% IMS and passed on for taxonomic identification. Sieves and trays were washed thoroughly between samples to ensure there was no contamination of subsequent samples. During the sample processing phase a sample proforma was completed to include client, project, area, sample number, date, name of sorter and identifier, description of residue characteristics, notable features, sieve mesh size, whether or not sub-sampling was undertaken and whether any problems were encountered.

Taxonomic Identification

Identification was carried out using Olympus SZX7 and SZ40 zoom microscopes with 10X and 20X eyepieces, giving a maximum magnification of up to 80X. An additional 2X objective was used to increase the potential magnification to 160X. Olympus BX41 compound microscopes were used for further magnification, if necessary, up to 1000X.

Identification of infaunal samples was to the highest possible taxonomic separation (i.e. species). During identification, all individuals were initially separated into families, with part animals being assigned to families where possible. The macrofaunal animals were identified to species level using standard taxonomic keys, low and high power stereoscopic microscopes and dissection when necessary. Incomplete animals without anterior ends were not recorded as individuals to be included in the quantitative dataset. However they were identified where possible and recorded as being present. Similarly, motile and colonial sessile epibenthic taxa and meiofauna were recorded but not included in the main quantitative data set.

IECS follow strict AQC procedures. In addition, regular cross reference identification was carried out by IECS' Senior taxonomists throughout the identification process. As IECS is part of the NMBAQC Scheme, the identification of any difficult specimens can be undertaken following consultation and external verification from David Hall (Unicomarine). However, this service was not required during the processing stages.

The taxonomic literature used is essentially as given in and expanded from Rees *et al.* (1990)⁶ and reporting nomenclature used Howson, C.M. & Picton, B.E., (1997)⁷ and the World Register of Marine Species (WoRMS).

⁶ Rees, H.L., Moore, D. C., Pearson, T. H., Elliot, M., Service, M., Pomfret, J. and Johnson, D. (1990). Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites. *Scottish Fisheries Information Pamphlet,* No. 18: 78pp

⁷ Howson CM and Picton BE (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas.* Ulster museum and the Marine Conservation Society.

Particle Size Analysis (PSA) samples

The particle size analysis was carried out by a combination of dry sieving and laser particle size analysis (for the fraction <1mm) using a Malvern Mastersizer 2000. The sediment samples were then split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment. The <1mm fraction of the sample was then analysed using the Malvern Mastersizer 2000 and the >1mm fraction discarded. The second sub-sample was passed through a nest of sieves, including 1mm, 1.4mm, 2mm, 2.8mm, 5.6mm and 11.2mm. Each fraction, including the <1mm fraction, was then oven dried at 85°C for 24 hours and weighed. Data generated from these methods of analysis was merged and used to derive statistics such as mean grain size, bulk sediment classes (% silt, sand & gravel), skewness and sorting coefficient. These methods are consistent with the procedures identified at the NMBAQC PSA workshop on laboratory methods, which was held at the Cefas Lowestoft laboratory in July 2009.

Organic Carbon Samples

Organic carbon was expressed as loss on ignition (percentage), following combustion at 475°C for four hours. The sample was oven dried at 85°C until the weight stabilised (\pm 0.001g) and the weight recorded. The sample was then placed in a muffle furnace, at 475°C, for four hours. Once the sample had cooled, it was re-weighed and the difference between the two weights was expressed as a percentage of the total sediment.

Sediment contaminant samples

Contaminant samples were collected from the grab samples by scooping sediment directly into the containers. Nitrile gloves were worn to prevent sample contamination. Samples to test for organics were taken in glass containers as hydrocarbons can be lost through plastic. Samples to test for volatiles were collected in smaller containers so there was less headspace for them to be lost in. Samples for inorganics were taken using plastic containers. The containers used for each test were:

- EPH by FID
- GRO by GC-FID
- Metals by iCap-OES
- Organotins
- PAH by GCMS
- PCBs by GCMS

250g glass jar 60g glass jar Plastic container Plastic container 250g glass jar 250g glass jar

2.2 Epifaunal Trawls

2.2.1 SAMPLE COLLECTION

A VideoRay system was deployed at each of the epifaunal trawl stations before sampling took place to verify the absence of any significant amount of habitat of conservation interest (i.e. *Sabellaria* biogenic reef). Full details of the drop down video sampling programme is the subject of a separate report (ZBB776-ECRDDV-D-2011).

Following the deployment of the VideoRay a 2m beam trawl with a 5m long net and 40mm mesh liner inside and 5mm (knot to knot) square mesh cod-end liner was deployed along the same line. The trawl was lowered from the survey vessel to the seabed at the predetermined start point and towed for approximately 10-20 minutes over a path of approximately 500m while maintaining a speed of between 1-1.5 knots. The 2m Beam trawl comprised of two 60mm x 500mm x 500mm steel detachable shoes, with a 2120mm steel tube brace. A tickler chain was attached to the footrope to provide extra weight to ensure valid samples were obtained. The beam trawl was operated from the stern of the survey vessel using a towing line approximately three times the depth of the area. The trawl line was logged using DGPS at the start (lock of the winch) and end of the trawl (engagement of the winch). The 1m cod end with 5mm mesh was hauled aboard with the aid of a lifting rope to ensure the cod end could be lifted independently of the beam. A single tow was carried out at each identified trawl line.

The cod end was opened over a large fish box to contain the whole catch; the net was checked for any remaining epifauna and fish, before the cod end was re-fastened prior to redeployment at the next trawl site. The catch was roughly sorted on board with the fish species separated from the epifaunal invertebrates. A survey log was maintained at all times recording survey date, water depth at the start of the trawl line, time in and out of water, GPS position (using Magellan ProMark3 GPS) and speed of survey vessel during trawling along with weather and sea condition and digital images. IECS experience indicates that the quality of the catch greatly deteriorates under rough sea conditions. As such, IECS operated the beam trawl within a weather window consisting of wave heights less than 1.5m and wind speed of less than F3.

Photographs of all catches were taken after any large debris had been removed. Any large specimens were identified onboard the vessel, recorded, photographed and then returned to the water. The remaining catch was transferred to a clean labelled bucked and fixed using 4% formalin. The fixed epifaunal invertebrates and fish were transferred to the IECS laboratory where they were separated to species level where possible and enumerated with examples of each species retained for a reference collection. The taxonomic literature used is essentially as given in Wheeler (1969⁸, 1978⁹) and Whitehead *et al.* (1984¹⁰). All fish were measured to the millimetre (rounding down) (total length or an appropriate measure in case of species with extreme body shape; i.e. skates and rays). If catches were large, any species present at low density were identified and removed before a subsample was taken for length distribution of the more abundant species. A subsample (ca. 30-50 fish) was measured to enable length frequency analysis. Any other observations from individual trawls (e.g. high amounts of shell, rocks, cobbles, weed and other debris, presence of ray egg cases, whelk eggs etc) were recorded on the survey log.

⁸ Wheeler, A. 1969. *The fishes of the British Isles and North West Europe*. Michigan State University Press, 613pp.

⁹ Wheeler, A. 1977. *Key to the Fishes of Northern Europe*. Frederick Warne, London. 380pp.

¹⁰ Whitehead, P.J.P., Bauchot, M.L., Hureau, J.-C., Nielsen, J. And Tortonese, E. (Eds.) 1984. *Fishes of the North-eastern Atlantic and the Mediterranean*, Vol. 1-3. UNESCO.

3. RESULTS

3.1 Survey Summary and Area Map

The benthic and epibenthic surveys along the proposed cable route were undertaken during two separate deployments, the first in April onboard MV Clupea and the second in June onboard SV Chartwell. In total, 19 infaunal grab sites and 5 sediment contaminant sites were identified along the proposed cable route (Figures 1 & 2). All 5 contaminant samples were collected, however only 16 infaunal, Particle Size Analysis (PSA) and Organic Carbon (OC) samples were collected. All sites for the epibenthic and video trawls were successfully sampled.

Survey logs for both the infaunal and epifaunal sampling programmes are given in Appendices 1-3, 5 and 6 detailing time and position of samples, sediment type, notable features and infaunal sample volumes.

The weather conditions were recorded throughout the survey deployments (Table 1).

Date	Time	Swell (m)	Wind (Beaufort scale)	Comments
19/04/2011	06:25	1.5	2	
19/04/2011	13:05	1.5	0	
19/04/2011	23:43	1	4	
20/04/2011	06:00	0.5	0	Heavy fog, Visibility 100m maximum.
20/04/2011	16:43	1	1	Fog lifted.
20/04/2011	19:30	0.5	1	
21/04/2011	04:53	0.5	2	
21/04/2011	08:06	0.5	2	
27/06/2011	10.30	<0.5	2	
27/06/2011	18:00	0.5+	3	

Table 1. Weather conditions recorded while on site along the proposed export cable route.

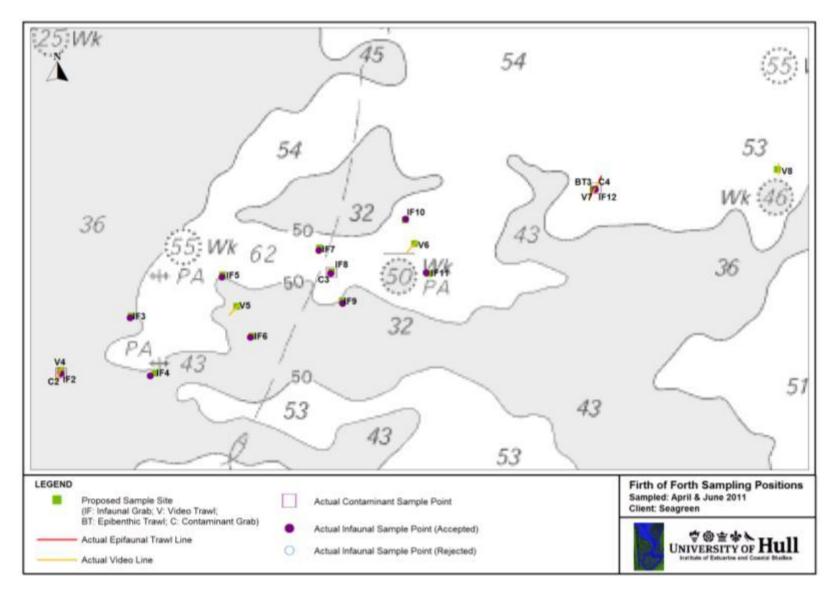


Figure 1 Proposed and completed sampling locations along the export cable route (east section)

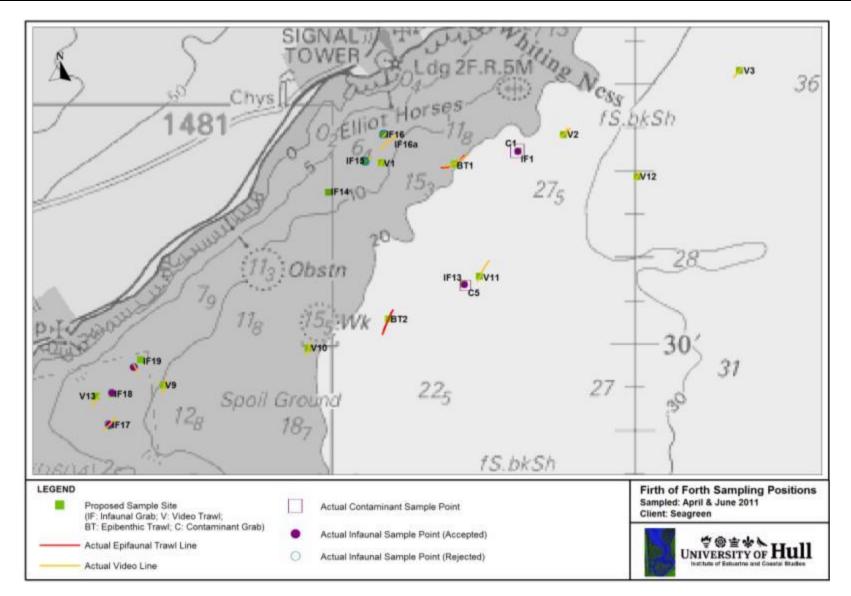


Figure 2 Proposed and completed sampling locations along the export cable route (west section)

3.2 Benthic Infaunal Data

3.2.1 INFAUNAL GRAB SAMPLING

Towards the inshore section of the proposed ERC numerous marker buoys for static fishing gear were observed (Plate 2a & 2b). Close communication was maintained during the survey between the IECS survey team, the Fisheries Liaison Officers (FLO) and Seagreen Ltd. No fishing gear was present within the boundary of the ERC, however sites IF14, IF16, IF17 and IF19 were located outside the ERC boundary and as such it was not possible to survey the proposed sampling locations at sites IF14 and IF19 due to the presence of fishing gear. Where possible, and following communication with Seagreen Ltd, the sites were repositioned closer to the cable route, and away from any fishing gear.

Plate 2a. Numerous marker buoys and flags located along the Arbroath coast

Plate 2b. Marker buoy and flag located near to the proposed export cable route

Plate 2. Static fishing gear encountered within the export cable route

Infaunal samples containing <5 litres of sediment were classed as being undersized. Where necessary 5 attempts were made at each site to collect an infaunal sample of adequate size, however undersized samples were retained at 5 sites (IF2, IF13, IF17, IF18 & IF19) (Appendix 2). Infaunal samples containing 4-5 litres were classed as acceptable, however at 3 sites (IF2, IF17 & IF19) the infaunal samples contained <4 litres. At these sites the VideoRay was deployed in order to gain additional information upon the nature of the seabed and support the information derived from the undersized grabs. Footage collected from Site IF19 confirm the presence of flat expanses of sand with some coarse shell punctuated by outcrops of bedrock and boulders with dense *Alcyonium spp, Asterias rubens* and Hydroids (Plate 3f). Footage from Site IF2 (Plate 3a) showed rippled sand while Site IF17 (Plate 3e) revealed sand and shell similar to that separating the rocky outcrops at the other infaunal grab stations.

No benthic samples were retained from Sites IF15 and IF16 despite 5 attempts to collect samples. The majority of the attempts at these sites did not retain any sediment, with the exception of two attempts at site IF15 where a single cobble was retained during the first attempt and a very small amount of gravel was retained during the fourth attempt (Appendix 2). Therefore, a VideoRay was deployed at sites IF15 & IF16 to confirm the sediment type.

At Site IF16 footage displayed two areas of boulders and cobbles with *Alcyonium spp*, Asteriidae and Hydroids separated by an area of flat sand with some coarse shell (Plate 3c).

Additional video footage was collected starting in the vicinity of site IF16 and travelling towards Site IF14 (Video line No. 16a), in order to provide a cross section of the sediment types across the proposed ECR. The trawl line was positioned to avoid static fishing gear in the area, however the camera became stuck on rocks and was hauled to the surface. Twelve minutes of video footage was recorded which displayed areas of bedrock, boulders and cobbles separated by flat sand with some coarse shell (Plate 3d).

At site IF15 only 3 minutes of video footage was recorded before the camera became caught on bedrock/boulders. The vessel came to an abrupt stop and efforts were made to retrieve the camera, as such the camera was not deployed in this area to gain more footage due to health and safety concerns. However, the footage collected displayed an expanse of bedrock and boulders (Plate 3b).

The difficulties encountered while trying to collect viable grab samples along inshore sections of the ECR, combined with video footage and an abundance of static fishing gear in the area, all suggests the area is dominated by sections of firm ground eg. bedrock and boulders.

A complete survey log was maintained throughout both deployments (Appendices 1-3) and photographs were taken of each sample (Appendix 7). The full infaunal species list for the export cable route is given in Appendix 4.

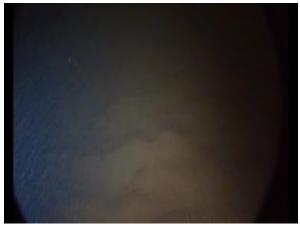


Plate 3a: Still image recorded from site IF2

Plate 3c: Still image recorded from site IF16

Plate 3b: Still image recorded from site IF15

Plate 3d: Still image recorded from site IF16a

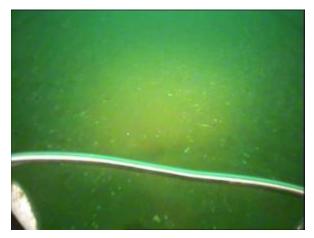


Plate 3e. Still image recorded from site IF17

Plate 3f. Still image recorded from site IF19

Plate 3. Sediment images captured at infaunal sample sites including possible cobble and bedrock reef habitats.

3.2.2 SPECIES AND HABITATS OF CONSERVATION INTEREST

No areas containing Sabellaria reef were identified along the export cable route.

Stony reef habitat was identified at V1 and IF15. Footage from IF15 revealed extensive bedrock and boulders (Plate 3b) before the camera became caught under a large rock. Due to health and safety concerns no further footage was collected from this station and the camera was only dropped down at V1 to confirm the presence of bedrock before being retrieved. V1 was the only video trawl site to contain significant amounts of bedrock.

Further possible stony reef was identified at IF16, IF16a and IF19 (Plate 3c,d and f). These stations contained stretches of sand and shell with patchy, but sometimes extensive, areas of matrix supported cobbles, boulders and bedrock.

3.2.3 PROPOSED AND ACTUAL CO-ORDINATES

Proposed and actual survey coordinates were recorded for each site and the distance between them noted (Appendix 3). All samples were taken within 50m of the proposed sampling position with the exception of three infaunal grab sites (IF4, IF9 & IF19). Site IF4 was positioned in close proximity to a wreck, and Site IF19 was surrounded by static fishing gear, therefore both sites were relocated (115m and 217m respectively). Site IF9 was 51m from the proposed sample location therefore the sample was accepted.

3.3 Particle Size Analysis and Organic Content Data

Summarised statistics for Particle Size Analysis (PSA) and organic content (OC) are given in Table 2.

Site	Tautural Group	Co	mposition	(%)	% OC	Descriptive	Statistics (Fo	lk and Ward I	Method) (µm)	Descriptive Statistics (Folk and Ward Method) (ø						
Site	Textural Group	Gravel	Sand	Mud	% UC	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis			
IF1	Slightly Gravelly Muddy Sand	13.8	89.5	10.3	1.05	275.2	2.307	-0.377	1.686	1.862	1.206	0.377	1.686			
IF2	Slightly Gravelly Muddy Sand	5.1	69.3	30.6	1.69	70.39	2.666	-0.437	1.565	3.828	1.415	0.437	1.565			
IF3	Slightly Gravelly Muddy Sand	0.6	68.5	30.8	1.93	72.26	2.942	-0.357	1.509	3.791	1.557	0.357	1.509			
IF4	Slightly Gravelly Muddy Sand	2.9	68.3	28.8	1.72	102.0	4.395	-0.245	1.146	3.293	2.136	0.245	1.146			
IF5	Slightly Gravelly Muddy Sand	1.7	62.6	35.8	2.21	62.22	3.871	-0.344	1.245	4.006	1.953	0.344	1.245			
IF6	Gravelly Muddy Sand	10.2	77.8	12.0	1.31	364.5	4.232	-0.183	1.768	1.456	2.081	0.183	1.768			
IF7	Slightly Gravelly Muddy Sand	0.2	67.6	32.2	1.97	66.18	3.296	-0.460	1.263	3.917	1.721	0.460	1.263			
IF8	Slightly Gravelly Muddy Sand	1.5	70.2	28.2	1.91	78.87	3.583	-0.436	1.263	3.664	1.841	0.436	1.263			
IF9	Slightly Gravelly Sand	0.6	93.7	5.7	1.13	322.6	1.872	-0.262	1.889	1.632	0.904	0.262	1.889			
IF10	Slightly Gravelly Muddy Sand	2.6	77.0	20.4	1.39	136.1	3.841	-0.475	1.511	2.877	1.942	0.475	1.511			
IF11	Slightly Gravelly Muddy Sand	1.2	73.3	25.5	1.83	83.79	3.815	-0.525	1.323	3.577	1.932	0.525	1.323			
IF12	Slightly Gravelly Sand	1.2	89.7	9.1	1.20	239.0	2.194	-0.341	2.348	2.065	1.133	0.341	2.348			
IF13	Slightly Gravelly Sand	0.2	94.1	5.7	1.13	152.6	1.693	-0.096	1.029	2.712	0.760	0.096	1.029			
IF17	Slightly Gravelly Sand	1.0	93.6	5.4	0.68	198.4	1.807	-0.227	1.808	2.334	0.854	0.227	1.808			
IF18	Slightly Gravelly Sand	1.2	91.7	7.0	0.74	193.6	1.941	-0.261	2.001	2.369	0.957	0.261	2.001			
IF19	Slightly Gravelly Sand	0.1	91.3	8.6	0.90	152.5	1.832	-0.172	1.141	2.713	0.873	0.172	1.141			

Table 2. Export cable route PSA summary and organic carbon

3.4 Sediment Contaminant Data

Sediment contaminant results are given in Appendix 10.

3.5 Epibenthic Trawl Data

An enumerated species list for the epibenthic trawl stations is presented in Table 3. The high total abundance recorded at BT1 was due to large numbers of the common starfish *Asterias rubens.*

Photographs of the epibenthic trawl samples are presented in Appendix 8 and fish length measurements from the epibenthic trawls are given in Appendix 9.

MC	S Code	Taxon	Taxon Qualifier	BT1	BT2	BT3
Y	185	Flustridae		Р		Р
D	597	Alcyonium	Species	Р		Р
D	662	ACTINARIA		4		1
Р	1324	Serpulidae		Р		
S	1377	Pandalus montagui		25	10	4
S	1384	Crangon allmanni			5	161
S	1386	Crangon bispinosus neglecta				3
S	1457	Pagurus bernhardus		1		2
S	1462	Pagurus prideaux				2
S	1471	Galathea dispersa		1		6
S	1474	Galathea nexa				2
S	1532	Macropodia rostrata		8		
S	1566	Cancer pagurus		1		
S	1580	Liocarcinus depurator		12	1	7
S	1581	Liocarcinus holsatus		19		5
S	1589	Necora puber		2		
W	1771	Pecten maximus				1
W	2166	Hiatella arctica		1		
W	2329	Sepiola atlantica			1	1
ZB	26	Astropecten irregularis				6
ZB	83	Henricia oculata		1		
ZB	100	Asterias rubens		1358	88	77
ZB	124	Ophiothrix fragilis		19		2
ZB	147	Ophiopholis aculeata				1
ZB	170	Ophiura ophiura		8	464	
ZB	172	Ophiura sarsi				1
ZB	198	Echinus esculentus		1		
ZD		ASCIDIACEA		Р		Р
ZG	116	Gadus morhua		3		
ZG	123	Merlangius merlangus				1
ZG	265	Eutrigla gurnardus		1		
ZG	281	Myxocephalus scorpius		3		
ZG	291	Agonus cataphractus			4	5
ZG	442	Ammodytes	Species			1
ZG	453	Callionymus maculatus				3
ZG	477/480	Pomatoschistus lozanoi / norvegicus			3	4
ZG	567	Hippoglossoides platessoides			1	4
ZG	572	Limanda limanda		28	41	7
ZG	578	Pleuronectes platessa		12	18	3
		Total Abundance		1508	636	310
		No. Quantitative Taxa		20	11	25
		No. Colonial Taxa		4	0	3
		Total Taxa		24	11	28

 Table 3. Species list for the export cable route epibenthic trawl stations.

APPENDIX 1. BENTHIC SURVEY LOG INCLUDING SEDIMENT DESCRIPTION & NOTABLE FEATURES

ID	Sample type	Sample description	Sand eels present	Sabellaria present	Comments
IF1	Infaunal	Fine sand with a fine shell and a little course shell.	No	No	
C1	Contaminant	Fine sand with a fine shell and a little course shell.	No	No	
IF2	Infaunal	Very fine mud and sand, washing out of grab.	No	No	
C2	Contaminant	Mud and fine sand.	No	No	
IF3	Infaunal	Mud and fine sand with a little coarse shell.	No	No	
IF4	Infaunal	Mud and fine sand.	No	No	Repositioned due to presence of a wreck
IF5	Infaunal	Mud and fine sand with a little coarse shell.	No	No	
IF6	Infaunal	Medium and coarse sand with some coarse shell and a little mud.	No	No	
IF7	Infaunal	Mud and Fine sand with a little coarse shell.	No	No	
IF8	Infaunal	Mud and fine sand.	No	No	
C3	Contaminant	Mud and fine sand.	No	No	
IF9	Infaunal	Fine sand and shell with a little coarse cand and shell.	No	No	
IF10	Infaunal	Mud, fine sand and shell with a little coarse shell.	No	No	
IF11	Infaunal	Mud and Fine sand with a little coarse shell.	No	No	
IF12	Infaunal	Fine sand and shell with some coarse shell.	No	No	
C4	Contaminant	Fine sand and shell with some coarse shell.	No	No	
IF13	Infaunal	Fine sand, fine shell and a little coarse shell.	No	No	
C5	Contaminant	Fine sand, fine shell and a little coarse shell.	No	No	
IF14	Infaunal	No infaunal sample	No	No	
IF15	Infaunal	No infaunal sample	No	No	
IF16	Infaunal	No infaunal sample	No	No	
IF17	Infaunal	Fine sand with fine and course shell.	No	No	
IF18	Infaunal	Fine sand with fine and course shell.	No	No	
IF19	Infaunal	Fine sand with fine and course shell.	No	No	Repositioned due to presence of static fishing gear

ID	Sample Type	Date	Time	Sea bed depth (m)	No. of rejected samples	Volume of Grab (Litres)	PSA sample collected	Undersized infaunal sample accepted	Supporting video footage collected
IF1	Infaunal	27/06/2011	09:44	27	0	5	Yes	No	No
C1	Contaminant	27/06/2011	09:50	27	0	4.5	No	n/a	No
IF2	Infaunal	19/04/2011	15:50	47	4	3.5	Yes	Yes	No
C2	Contaminant	19/04/2011	16:26	47	4	2.3	No	n/a	No
IF3	Infaunal	19/04/2011	15:23	54	0	6.75	Yes	No	No
IF4	Infaunal	19/04/2011	10:10	48	1	9.5	Yes	No	No
IF5	Infaunal	19/04/2011	14:49	64	0	13.25	Yes	No	No
IF6	Infaunal	19/04/2011	14:23	49	1	6	Yes	No	No
IF7	Infaunal	19/04/2011	13:46	63	0	11.6	Yes	No	No
IF8	Infaunal	19/04/2011	13:03	64	0	9.6	Yes	No	No
C3	Contaminant	19/04/2011	13:10	64	0	9.6	No	No	No
IF9	Infaunal	19/04/2011	11:52	50	1	5.25	Yes	No	No
IF10	Infaunal	19/04/2011	10:43	63	3	5.25	Yes	No	No
IF11	Infaunal	19/04/2011	11:19	68	1	8	Yes	No	No
IF12	Infaunal	19/04/2011	09:35	55	1	7.2	Yes	No	No
C4	Contaminant	19/04/2011	09:28	55	0	7.2	No	No	No
IF13	Infaunal	19/04/2011	18:42	25	4	4.25	Yes	Yes	No
C5	Contaminant	19/04/2011	19:46	25	4	2.25	No	No	No
IF14	Infaunal	27/06/2011			Noii	nfaunal sample co	llected		
IF15	Infaunal	27/06/2011			Noii	nfaunal sample co	llected		
IF16	Infaunal	27/06/2011			No i	nfaunal sample co	llected		
IF17	Infaunal	27/06/2011	12:18	11	4	2.8	Yes	Yes	
IF18	Infaunal	27/06/2011	12:01	10.8	4	4.1	Yes	Yes	
IF19	Infaunal	27/06/2011	13:06	10.8	4	3.1	Yes	Yes	

ID	Commiss from a	Proposed grab co	ordinates (WGS 84)	Actual grab coor	dinates (WGS 84)	Distance between estual 8 menored econdinates
ID	Sample type	Lat (N)	Long(W)	Lat(N)	Long(W)	Distance between actual & proposed coordinates
IF1	Infaunal	56.537248	-2.540594	56.537180	-2.540723	11
C1	Contaminant	56.537248	-2.540594	56.537280	-2.540775	12
IF2	Infaunal	56.564721	-2.401945	56.564429	-2.402164	35
C2	Contaminant	56.564722	-2.401936	56.564542	-2.402093	22
IF3	Infaunal	56.575476	-2.377822	56.575099	-2.378126	46
IF4	Infaunal	56.564573	-2.369506	56.564053	-2.371121	Repositioned 115m from site due to presence of a wreck
IF5	Infaunal	56.583299	-2.346020	56.575099	-2.378126	49
IF6	Infaunal	56.571598	-2.336014	56.571381	-2.336477	38
IF7	Infaunal	56.588453	-2.312492	56.588020	-2.312755	51
IF8	Infaunal	56.583901	-2.308316	56.583577	-2.308624	41
C3	Contaminant	56.583901	-2.308316	56.583880	-2.308425	7
IF9	Infaunal	56.578343	-2.304682	56.577899	-2.304457	51
IF10	Infaunal	56.593855	-2.282823	56.593976	-2.282678	16
IF11	Infaunal	56.583610	-2.274776	56.583698	-2.275504	46
IF12	Infaunal	56.599790	-2.217015	56.599665	-2.216896	16
C4	Contaminant	56.599790	-2.217015	56.599889	-2.216729	21
IF13	Infaunal	56.511547	-2.559524	56.511488	-2.559247	19
C5	Contaminant	56.511517	-2.559633	56.511350	-2.558972	41
IF14	Infaunal	56.529335	-2.606597	No infaunal sa	mple collected	n/a
IF15	Infaunal	56.535280	-2.593833	No infaunal sa	mple collected	n/a
IF16	Infaunal	56.540419	-2.587337	No infaunal sa	mple collected	n/a
IF17	Infaunal	56.484362	-2.683135	56.484518	-2.683172	17
IF18	Infaunal	56.490431	-2.682036	56.490590	-2.682092	17
IF19	Infaunal	56.496999	-2.672193	56.495548	-2.674572	Repositioned 217m from site due to static fishing gear

APPENDIX 4. BENTHIC INFAUNAL SPECIES LIST

M	ICS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
D	155	Corymorpha nutans		5															
D	240	Leuckartiara octona														Р			
D	287	Merona cornucopiae													Р				
D	336	Lovenella clausa													Р	Р		Р	Р
D	413	Diphasia																Р	
D	424	Hydrallmania falcata							Р										
D	433	Sertularia	spp.												Р				
D	519	Obelia dichotoma							Р										
D	521	Obelia longissima							Р										
D	597	Alcyonium digitatum							Р										
D	759	Edwarsiidae				1			1				1		2				
F	2	TURBELLARIA								1	1			2	1				
G	1	NEMERTEA		2	4	1	2	1	6	1	4	2	1	4	2		1		1
Ν	28	Thysanocardia procera									2								
Р	19	Aphrodita aculeata					1												
Р	44	Enipo kinbergi					1												
Р	49	Gattyana cirrosa																1	
Р	50	Harmothoe							1									1	
Р	-	Malmgrenia darbouxi				1	2		1		1			2					
Р	-	Pholoe baltica					2		1				1		1				
Р	92	Pholoe inornata							1										
Р	104	Sigalion mathildae														4		5	2
Р	109	Sthenelais limicola			1			1	1		1	2		1		1			
Р	141	Anaitides groenlandica															1		
Р	143	Anaitides longipes					1												
Р	117/118	Eteone flava/ longa															1	1	3
Р	164	Eumida bahusiensis				1													
Р	167	Eumida sanguinea							3										
Р	176	Paranaitis kosteriensis						1											
Р	256	Glycera alba		1					1						1				
Р	260	Glycera lapidum										2							
Р	263/ -	Glycera rouxii/unicornis						1			1								
Р	268	Glycinde nordmanni					1		3										
Р	271	Goniada maculata				2	1		1				1	2	1		1	2	
Р	291	Sphaerodorum gracilis			1														

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	313	Ophiodromus flexuosus					1								1				
Р	319	Podarkeopsis capensis							1		1					1			
Р	380	Eusyllis blomstrandi							1										
Р	434	Autolytus	sp.						1										
Р	475	Nereis longissima					1												1
Р	494	Nephtys	juvenile						4				1					1	1
Р	495	Nephtys assimilis	ŕ												1				1
Р	498	Nephtys cirrosa													4		1		
Р	499	Nephtys hombergii			2	1	2	2		1	2				1	1			1
Р	502	Nephtys kersivalensis					1			2	1		1				1	1	1
Р	-	Lumbrineris cingulata	Prev. L. gracilis						20	1	1				8				1
Р	597	Notocirrus scoticus							1										1
Р	665	Orbinia (Orbinia) sertulata												1					
Р	672	Scoloplos armiger		6		1	1						3	2					1
Р	685	Aricidea (Acmira) cerrutii					-					1	-		1				
Р	693	Levinsenia gracilis					1				1								
Р	699	Paradoneis lyra					1								1				
Р	718	Poecilochaetus serpens						1	2		1	1			1				
Р	733	Laonice bahusiensis							2										
Р	747	Minuspio cirrifera						2											
Р	754	, Dipolydora flava												1					
Р	779	Scolelepis bonnieri		1													1	2	
Р	789	Spio decorata		3													4	6	4
Р	794	Spiophanes bombyx		10		1		1		1	2			4	6	1	18	25	17
Р	796	Spiophanes kroyeri				1		4	1					1	Ŭ				
Р	804	Magelona alleni				1	1		2		3			1					
Р	805	Magelona filiformis					-				-			1		1	2	5	1
Р	-	Magelona johnstoni														2	14	24	30
Р	-	Aphelochaeta	sp. A							1			1						
P	-	Cirratulus caudatus						1		1			<u> </u>						
P	-	Chaetozone christiei		2											2	1	8	3	2
P	831	Chaetozone zetlandica							1					1			-	-	
P	834	Chaetozone setosa				2		1	1					3					
P	846	Tharyx killariensis				-	1		2			2		Ť					
P	878	Diplocirrus glaucus			2	6	1	1	5		2	-	1	8	1				
P	919	Mediomastus fragilis										1		L					
P	920	Notomastus				1		1	2	1		3		1	1			1	
P	925	Peresiella clymenoides		<u> </u>		1	3	3	1				1	3					
P	927	Pseudonotomastus southerni					1	Ť	<u> </u>				1	2					<u> </u>

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	313	Ophiodromus flexuosus					1								1				
Р	319	Podarkeopsis capensis							1		1					1		1	
Р	380	Eusyllis blomstrandi							1										
Р	434	Autolytus	sp.						1										
Р	475	Nereis longissima					1												
Р	494	Nephtys	juvenile						4				1					1	
Р	495	Nephtys assimilis	- i												1				
Р	498	Nephtys cirrosa													4		1		
Р	499	Nephtys hombergii			2	1	2	2		1	2				1	1			1
Р	502	Nephtys kersivalensis					1			2	1		1				1	1	
Р	-	Lumbrineris cingulata	Prev. L. gracilis						20	1	1				8				
Р	597	Notocirrus scoticus							1										
Р	665	Orbinia (Orbinia) sertulata												1				1	
Р	672	Scoloplos armiger		6		1	1						3	2					1
Р	685	Aricidea (Acmira) cerrutii										1			1				
Р	693	Levinsenia gracilis					1				1								
Р	699	Paradoneis lyra					1								1				
Р	718	Poecilochaetus serpens						1	2		1	1			1				
Р	733	Laonice bahusiensis							2										
Р	747	Minuspio cirrifera						2											
Р	754	Dipolydora flava												1					
Р	779	Scolelepis bonnieri		1													1	2	
Р	789	Spio decorata		3													4	6	4
Р	794	Spiophanes bombyx		10		1		1		1	2			4	6	1	18	25	17
Р	796	Spiophanes kroyeri				1		4	1					1					
Р	804	Magelona alleni				1	1		2		3			1					
Р	805	Magelona filiformis												1		1	2	5	1
Р	-	Magelona johnstoni														2	14	24	30
Р	-	Aphelochaeta	sp. A							1			1						
Р	-	Cirratulus caudatus								1									
Р	-	Chaetozone christiei		2											2	1	8	3	2
Р	831	Chaetozone zetlandica							1					1					
Р	834	Chaetozone setosa				2		1	1					3					
Р	846	Tharyx killariensis					1		2			2							
Р	878	Diplocirrus glaucus			2	6	1	1	5		2		1	8	1				
Р	919	Mediomastus fragilis		ĺ		-						1							
Р	920	Notomastus				1		1	2	1		3		1	1			1	
Р	925	Peresiella clymenoides				1	3	3	1				1	3					
Р	927	Pseudonotomastus southerni					1	l	İ				1	2					

M	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
Р	944	Praxillura longissima													1				
Р	953	Clymenella cincta					1												
Р	958	Clymenura johnstoni							1			6			2				
Р	963	Euclymene lumbricoides							2										
Р	964	Euclymene oerstedii				1			1				1						
Р	990	Rhodine gracilior					2		1				1	1					
Р	999	Ophelia borealis										12	2		16				
Р	1014	Ophelina acuminata							1										
Р	1027	Scalibregma inflatum		1															
Р	1093	Galathowenia oculata				3	1		1		3	2	1		1				
Р	1098	Owenia fusiformis		28	3	1	1							2	3			1	
Р	1102	Amphictene auricoma			-	2	2							2					
Р	1107	Lagis koreni		4	1		2					1					1	10	1
Р	1147	Anobothrus gracilis				1			5		1	3		3					
Р	1178	Trichobranchus roseus					2	2	Ŭ	3	3			4					
Р	1195	Lanice conchilega		5				_	1	Ű	Ŭ						1	3	1
P	1215	Phisidia aurea		-					2										· ·
Р	1233	Lysilla loveni					1		_										
Р	1235	Polycirrus	iuv./indet.					1			1			1					
Р	1239	Polycirrus denticulatus	ľ.						1						1				
Р	1241	Polycirrus latidens/medusa										1							
Р	1264	Chone										1							
Р	1334	Hydroides norvegica							1										
Р	1425	Tubificidae					1												
Р	1524	Grania	sp.									1							
Q	44	Anoplodactylus petiolatus													1				
R	2426	Cylindroleberis mariae							1										
S	44	Gastrosaccus spinifer															1	1	1
S	131	Perioculodes longimanus		1													1	-	
S	138	Synchelidium maculatum															1		
S	140	Westwoodilla caecula				1	1		1	1									
S	248	Urothoe elegans		5					2										
S	254	Harpinia antennaria			4	1	3			1	2		1	7		3			
S	257	Harpinia pectinata				2	Ť			1	<u> </u>					Ť			
S	301	Lepidepecreum longicorne							1			1							
S	328	Scopelocheirus hopei							1	1									<u> </u>
S	360	Argissa hamatipes		1							1								<u> </u>
S	427	Ampelisca brevicornis			2					1					2				1
S	440	Ampelisca tenuicornis			1	3	4	2	1	· ·	2			1					<u> </u>

MC	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
S	452	Bathyporeia elegans		1		1							1		1	1	1	2	2
S	459	Bathyporeia tenuipes														1			
S	489	Megaluropus agilis															1		
S	505	Cheirocratus intermedius						1									-		
S	539	Gammaropsis cornuta							1										
S	541	, Gammaropsis maculata							1										
S	583	Autonoe longipes										1							
S	619	Siphonoecetes striatus											1			1			
S	657	, Phtisica marina							1							-			
S	949	Arcturella	sp. indet.				2												
S	1142	Tanaopsis graciloides												1					
S	1208	Eudorella truncatula								2									
S	1210	Eudorellopsis deformis								_						1			
S	1248	Diastylis bradyi															2	1	
S	-	Diastylis goodsiri												1				<u> </u>	
S	1415	Callianassa subterranea					1						1	1					
S	1449	Anapagurus laevis					· ·	1					· ·	·					
S	1457	Pagurus bernhardus							1										
S	1552	Corystes cassivelaunus																1	
S	1580	Liocarcinus depurator							1									<u> </u>	
W	8	Chaetoderma nitidulum			1	2	4		<u> </u>	1	3			2		1			
W	270	Turritella communis			3	2	2	1		- 1	2			2					
W	985	Turbonilla (Pyrgiscus) crenata			Ŭ	-	-				-		3		1				
w	1028	Cylichna cylindracea			1						2		5						
W	1519	Antalis entalis			1						2				1	1			
W	1569	Nucula (Nucula) nitidosa		1	1										- '	12	9	4	5
W	1577	Nuculoma tenuis		-	- 1										1	12	3		
Ŵ	1715	Crenella decussata										1							
W	1827	Myrtea spinifera						1											
W	1829	Lucinoma borealis					1	4			2		2	4		1			
W	1837	Thyasira (Thyasira) flexuosa		1	6	16	20	16	4	11	24			10		2			
W	1898	Devonia perrieri		<u> </u>		10	1				<u></u>		<u> </u>		<u> </u>				<u> </u>
W	1902	Tellimya ferruginosa				1					<u> </u>			1		2	5	<u> </u>	
W	1902	Mysella bidentata		4		2	9						2	19		1	5		
W	1972	Mactra stultorum		1		2	3							13					1
W	1972	Spisula subtruncata			3								1			2			<u>├</u>
W	1978	Lutraria lutraria	juvenile						<u> </u>										1
W	2006	Phaxas pellucidus	Javenne	6			4	1			2			1			6	2	1
W	2000	Fabulina fabula		3			4				<u> </u>					1	29	2 49	32

М	CS code	Taxon	Taxon qualifier	IF1	IF2	IF3	IF4	IF5	IF6	IF7	IF8	IF9	IF10	IF11	IF12	IF13	IF17	IF18	IF19
W	2023	Moerella pygmaea										1							
W	2051	Gari (Psammobia) fervensis			1							2	1		1				
W	2059	Abra alba		6													1	2	2
W	2061	Abra nitida			2	1	3	7		2	3								
W	2062	Abra prismatica		4			1					12	6		11	1			2
W	2072	Arctica islandica		1	1	1					3	1							1
W	2098	Chamelia striatula		2	27	25	6				6	10		1		8	5	6	10
W	2104	Timoclea ovata													1				
W	2130	Dosinia (Asa) exoleta					1				1	4				1		1	1
W	2139	Mysia undata			1			1											
W	2147	Mya (Mya) truncata		8	1	2	1											1	
W	2157	Corbula gibba												1					
W	2229	Thracia convexa				1	1				1			2					
W	2231	Thracia phaseolina			2											1	10	13	6
W	2239	Cochlodesma praetenue		2					1			11	2		2	10			
Y	165	Eucratea loricata							Р					Р					
Y	187	Flustra foliacea													Р				
Y	194	Securiflustra securifrons													Р				
Y	310	Cribrilina punctata													Р				
ZA	3	Phoronis			1	1					1			1		119			
	149	Amphiura	juvenile	5	2											7	1	5	1
ZB	151	Amphiura brachiata														1		1	
ZB	154	Amphiura filiformis		5	3	13	27		2		2		9	2	6	27			
ZB	165	Ophiuridae	juvenile								1								
	167	Ophiocten affinis		8											1				
ZB	168	Ophiura albida		2		2	2		3				1						
ZB	170	Ophiura ophiura			3											1	2		
ZB	212	Echinocyamus pusillus										3			1				
ZB	223	Echinocardium cordatum			1									1		3	1	1	
ZB	292/296	Leptosynapta bergensis/inhaerens				1	1							3					
ZB	279	Leptopentacta elongata				1			1										
ZD	85	Ascidiella scabra							1										
ZD	99	STOLIDOBRANCHIATA	juvenile						1										
ZD	112	Polycarpa fibrosa													1				\vdash
		Total Abundance		135	82	108	134	58	109	32	90	88	49	112	91	221	131	182	131
		Colonial Species		0	0	0	0	0	5	0	0	0	0	1	6	2	0	2	1
	C	Quantitative Species		32	29	39	50	25	56	17	36	27	28	42	38	33	30	32	27
		Total Species		32	29	39	50	25	61	17	36	27	28	43	44	35	30	34	28

APPENDIX 5. VIDEO AND EPIFAUNAL TRAWL LOG

Trawl site	Trawl type	Date	Length (m)	Duration (hh:mm:ss)	Time (hl	n:mm:ss)		tart Position S 84)	Actual Sta (WG	rt Position S 84)	Actual End Position (WGS 84)		
0.10			(,	(Start	End	Long (W)	Lat (N)	Long (W)	Lat (N)	Long (W)	Lat (N)	
V1	Video	27/06/2011	5	00:00:26	18:26:06	18:26:32	-2.588206	56.534993	Within 50m of the proposed start position				
V2	Video	27/06/2011	289	00:09:00	17:44:00	17:53:00	-2.524736	56.540408	-2.522495	56.541652	-2.525928	56.539947	
V3	Video	20/04/2011	289	00:10:30	20:43:55	20:54:25	-2.463455	56.552772	-2.462468	56.553467	-2.465503	56.551485	
V4	Video	20/04/2011	309	00:10:20	20:03:40	20:14:00	-2.402264	56.565079	-2.401755	56.565777	-2.403701	56.563223	
V5	Video	20/04/2011	338	00:11:15	19:09:50	19:21:05	-2.341149	56.577333	-2.340178	56.577852	-2.344002	56.57567	
V6	Video	20/04/2011	327	00:08:25	18:24:50	18:33:15	-2.279503	56.589314	-2.278633	56.589874	-2.28229	56.587736	
V7	Video	20/04/2011	504	00:22:05	16:51:40	17:13:45	-2.217595	56.599676	-2.219264	56.597682	-2.215395	56.60167	
V8	Video	20/04/2011	237	00:12:40	13:18:05	13:30:45	-2.153775	56.603512	-2.153521	56.602537	-2.153386	56.604644	
V9	Video	21/04/2011	333	00:12:10	05:52:50	06:05:00	-2.664148	56.492122	-2.664824	56.490436	-2.663258	56.493263	
V10	Video	21/04/2011	320	00:11:40	06:34:55	06:46:35	-2.613794	56.499247	-2.614398	56.497767	-2.613203	56.500544	
V11	Video	21/04/2011	513	00:17:40	07:24:15	07:41:55	-2.554046	56.513101	-2.55477	56.512152	-2.550746	56.516171	
V12	Video	20/04/2011	238	00:10:35	21:28:20	21:38:55	-2.499096	56.532312	-2.497777	56.533422	-2.49995	56.531658	
V13	Video	27/06/2011	261	00:09:00	15:50:00	15:59:00	-2.687700	56.489929	-2.686602	56.490146	-2.689106	56.488365	
BT1	Epifaunal	27/06/2011	594				-2.562880	56.534804	-2.559547	56.536491	-2.567407	56.534135	
BT2	Epifaunal	21/04/2011	507	00:20:40	09:05:20	09:26:00	-2.585741	56.504908	-2.584196	56.506734	-2.587664	56.502613	
BT3	Epifaunal	20/04/2011	499	00:13:45	17:38:45	17:52:30	-2.217592	56.599676	-2.218921	56.598361	-2.214896	56.602257	

APPENDIX 6. VIDEO AND EPIFAUNAL TRAWL SAMPLE DESCRIPTION

Trawl site	Trawl type	Date	Comments
V1	Video	27/06/2011	Bedrock with Dead men's fingers, Starfish and Hyrdroids
V2	Video	27/06/2011	Mixed sediment, cobbles and muddy sand with Dead men's fingers and Hydroids
V3	Video	20/04/2011	Rippled sand, Starfish, Sand eels.
V4	Video	20/04/2011	Rippled sand, Starfish, boulder >1m, Sunstar.
V5	Video	20/04/2011	Flat sand and shell, Dead men's fingers, hermit crab, 1m rock.
V6	Video	20/04/2011	Rippled sand, some coarse shell, Dead men's fingers, starfish, crab.
V7	Video	20/04/2011	Rippled sand, some coarse shell, Sand eels.
V8	Video	20/04/2011	Rippled sand, poor visability due to suspended sediment, Sand eels.
V9	Video	21/04/2011	Rippled sand, some coarse shell, poor visability due to suspended sediment.
V10	Video	21/04/2011	Rippled muddy sand, very poor visability due to suspended sediment.
V11	Video	21/04/2011	Muddy sand, very poor visability due to suspended sediment
V12	Video	20/04/2011	Rippled sand, Starfish, Dead men's fingers.
V13	Video	27/06/2011	Rippled sand with some coarse shell.
BT1	Video	27/06/2011	Muddy sand changing to boulders, cobbles and muddy sand
BT1	Epifaunal	27/06/2011	Two boulders. Predominantly Dead men's fingers and Starfish with some flatfish and other epifauna
BT2	Video	21/04/2011	Muddy sand, very poor visability
BT2	Epifaunal	21/04/2011	Starfish, Brittlestars and flatfish with some dislodged kelp
BT3	Video	20/04/2011	Mega-ripples. Rippled sand with some coarse shell and Sand eels
BT3	Epifaunal	20/04/2011	Predominantly Flustra and Dead men's fingers with fish and other epifauna

APPENDIX 7. BENTHIC GRAB PHOTOGRAPHS (EXPORT CABLE ROUTE)

Infaunal Grab Sample No. IF1

Infaunal Grab Sample No. IF2

Contamination Grab Sample No. C1

Contamination Grab Sample No. C2

Infaunal Grab Sample No. IF3

Infaunal Grab Sample No. IF4

Infaunal Grab Sample No. IF5

Infaunal Grab Sample No. IF6

Infaunal Grab Sample No. IF7

Infaunal Grab Sample No. IF8

Contaminant Grab Sample No. C3

Infaunal Grab Sample No. IF9

Infaunal Grab Sample No. IF10

Infaunal Grab Sample No. IF11

Infaunal Grab Sample No. IF12

Contaminant Grab Sample No. C4

Infaunal Grab Sample No. IF13

Contaminant Grab Sample No. C5

No sample collected

Infaunal Grab Site No. IF15 (example of rejected infaunal grab attempt)

Infaunal Grab Sample No. IF14

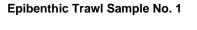
Infaunal Grab Site No. IF15 (example of rejected infaunal grab attempt)

Infaunal Grab Sample No. IF17

No sample collected

Infaunal Grab Sample No. IF16

Infaunal Grab Sample No. IF18


Infaunal Grab Sample No. IF19

APPENDIX 8. EPIBENTHIC TRAWL PHOTOGRAPHS

Epibenthic Trawl Sample No. 2

Epibenthic Trawl Sample No. 3

APPENDIX 9. EPIBENTHIC TRAWL FISH LENGTH MEASUREMENTS

Site	Species	Length (mm)
BT1	Limanda limanda	144
BT1	Limanda limanda	156
BT1	Limanda limanda	36
BT1	Limanda limanda	94
BT1	Limanda limanda	106
BT1	Limanda limanda	97
BT1	Limanda limanda	103
BT1	Limanda limanda	100
BT1	Limanda limanda	96
BT1	Limanda limanda	90
BT1	Limanda limanda	136
BT1	Limanda limanda	106
BT1	Limanda limanda	94
BT1	Limanda limanda	110
BT1	Limanda limanda	95
BT1	Limanda limanda	103
BT1	Limanda limanda	72
BT1	Limanda limanda	148
BT1	Limanda limanda	179
BT1	Limanda limanda	165
BT1	Limanda limanda	224
BT1	Limanda limanda	154
BT1	Limanda limanda	164
BT1	Limanda limanda	144
BT1	Limanda limanda	165
BT1	Limanda limanda	148
BT1	Limanda limanda	145
BT1	Limanda limanda	200
BT1	Myxocephalus scorpius	209
BT1	Myxocephalus scorpius	171
BT1	Myxocephalus scorpius	118
BT1	Pleuronectes platessa	126
BT1	Pleuronectes platessa	130
BT1	Pleuronectes platessa	130
BT1	Pleuronectes platessa	106
BT1	Pleuronectes platessa	139
BT1	Pleuronectes platessa	129
BT1	Pleuronectes platessa	125
BT1	Pleuronectes platessa	167
BT1	Pleuronectes platessa	146
BT1	Pleuronectes platessa	127

Site	Species	Length (mm)
BT1	Pleuronectes platessa	147
BT1	Pleuronectes platessa	166
BT1	Eutrigla gurnardus	124
BT1	Gadus morhua	57
BT1	Gadus morhua	47
BT1	Gadus morhua	50
BT2	Limanda limanda	206
BT2	Limanda limanda	139
BT2	Limanda limanda	179
BT2	Limanda limanda	64
BT2	Limanda limanda	111
BT2	Limanda limanda	127
BT2	Limanda limanda	183
BT2	Limanda limanda	113
BT2	Limanda limanda	127
BT2	Limanda limanda	113
BT2	Limanda limanda	206
BT2	Limanda limanda	67
BT2	Limanda limanda	237
BT2	Limanda limanda	175
BT2	Limanda limanda	118
BT2	Limanda limanda	116
BT2	Limanda limanda	127
BT2	Limanda limanda	73
BT2	Limanda limanda	152
BT2	Limanda limanda	199
BT2	Limanda limanda	121
BT2	Limanda limanda	71
BT2	Limanda limanda	70
BT2	Limanda limanda	129
BT2	Limanda limanda	68
BT2	Limanda limanda	133
BT2	Limanda limanda	126
BT2	Limanda limanda	65
BT2	Limanda limanda	53
BT2	Limanda limanda	65
BT2	Limanda limanda	55
BT2	Limanda limanda	127
BT2	Limanda limanda	115
BT2	Limanda limanda	220
BT2	Limanda limanda	40
BT2	Limanda limanda	115

Site	Species	Length (mm)
BT2	Limanda limanda	68
BT2	Limanda limanda	76
BT2	Limanda limanda	80
BT2	Limanda limanda	62
BT2	Limanda limanda	68
BT2	Hippoglossoides platessoides	225
BT2	Pleuronectes platessa	142
BT2	Pleuronectes platessa	110
BT2	Pleuronectes platessa	100
BT2	Pleuronectes platessa	85
BT2	Pleuronectes platessa	85
BT2	Pleuronectes platessa	93
BT2	Pleuronectes platessa	88
BT2	Pleuronectes platessa	86
BT2	Pleuronectes platessa	86
BT2	Pleuronectes platessa	89
BT2	Pleuronectes platessa	110
BT2	Pleuronectes platessa	126
BT2	Pleuronectes platessa	89
BT2	Pleuronectes platessa	88
BT2	Pleuronectes platessa	87
BT2	Pleuronectes platessa	77
BT2	Pleuronectes platessa	116
BT2	Pleuronectes platessa	90
BT2	Agonus cataphractus	52
BT2	Agonus cataphractus	65
BT2	Agonus cataphractus	56
BT2	Agonus cataphractus	70
BT2	Pomatoschistus norvegicus / lozanoi	48
BT2	Pomatoschistus norvegicus / lozanoi	47
BT2	Pomatoschistus norvegicus / lozanoi	41
BT3	Merlangius merlangus	195
BT3	Hippoglossoides platessoides	192
BT3	Hippoglossoides platessoides	166
BT3	Hippoglossoides platessoides	130
BT3	Hippoglossoides platessoides	97
BT3	Pleuronectes platessa	194
BT3	Pleuronectes platessa	121
BT3	Pleuronectes platessa	254
BT3	Limanda limanda	180
BT3	Limanda limanda	130
BT3	Limanda limanda	117

Site	Species	Length (mm)
BT3	Limanda limanda	135
BT3	Limanda limanda	118
BT3	Limanda limanda	105
BT3	Limanda limanda	72
BT3	Agonus cataphractus	76
BT3	Agonus cataphractus	74
BT3	Agonus cataphractus	79
BT3	Agonus cataphractus	60
BT3	Agonus cataphractus	68
BT3	Callionymus maculatus	90
BT3	Callionymus maculatus	50
BT3	Callionymus maculatus	49
BT3	Ammodytes	126
BT3	Pomatoschistus norvegicus / lozanoi	50
BT3	Pomatoschistus norvegicus / lozanoi	49
BT3	Pomatoschistus norvegicus / lozanoi	44
BT3	Pomatoschistus norvegicus / lozanoi	47

APPENDIX 10. SEDIMENT CONTAMINANT RESULTS

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

Date:	
Customer:	
Sample Delivery Group (SD	G):
Your Reference:	
Location:	
Report No:	

05 August 2011 H_UNIHULL_HUL 110725-52 ZBB776 Firth of Forth - Cable Route 143792

This report has been revised and directly supersedes 142887 in its entirety.

We received 5 samples on Friday July 22, 2011 and 5 of these samples were scheduled for analysis which was completed on Friday August 05, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

CERTIFICATE OF ANALYSIS

Validated

÷					
SDG:	110725-52	Location:	Firth of Forth - Cable Route	Order Number:	FJ023335
Job:	H_UNIHULL_HUL-6	Customer:	University of Hull	Report Number:	143792
Client Reference:	ZBB776	Attention:	Ann Leighton	Superseded Report:	142887

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3948650	C1-ECR			27/06/2011
3948651	C2-ECR			19/04/2011
3948652	C3-ECR			19/04/2011
3948654	C4-ECR			19/04/2011
3948655	C5-ECR			19/04/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	110725-52	Location:	: F	Firth	of Fo	rth -	Cable Route	Order Number:	
Job: Client Reference:	H_UNIHULL_HUL-6 ZBB776	Customer Attention	r: l	Unive	ersity _eigh	of Hu		Report Number: Superseded Report:	
SOLID									
Results Legend	Lab S	ample No(s)	3948650	3948651	3948652	3948654	3948655		
X Test			50	51	52	54	55		
No Determin Possible	ation								
- Possible		ustomer	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR		
	Samp	le Reference	R	CR R	CR	CR	CR		
							_		
	AGS	Reference							
	_								
	D	epth (m)							
			60c	60c 250	60c 250	60c	60 ₀		
	C	ontainer	g Amb	g Amb	VOC (g Ambe	VOC (VOC (
		ontanioi	60g VOC (ALE215) 250g Amber Jar (AL	ALE21 §r Jar (,	ALE21 er Jar (,	ALE21 9r Jar (,	ALE21		
PH by FID	All	NDPs: 0	₽ <u></u> 5	₽5	₽ጛ	₽ឭ	A 5		
		Tests: 5	x	x	x	x	<mark>x</mark>		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 5							
			X	X	X	x	×		
letals by iCap-OES (So	il) Arsenic	NDPs: 0 Tests: 5	x	x	x	x	x		
	Cadmium	NDPs: 0	^	^	<u>^</u>	^	<mark>^</mark>		
		Tests: 5	x	x	<mark>x</mark>	x	<mark>x</mark>		
	Chromium	NDPs: 0 Tests: 5							
			x	x	x	x	×		
	Copper	NDPs: 0 Tests: 5	x	x	<mark>x</mark>	x	×		
	Lead	NDPs: 0	<u>^</u>	<u>^</u>	<u>^</u>	^			
		Tests: 5	x	x	x	x	x		
	Mercury	NDPs: 0 Tests: 5							
	Nickel		x	x	x	x	×		
	Nickel	NDPs: 0 Tests: 5	x	x	<mark>x</mark>	x	×		
	Selenium	NDPs: 0							
		Tests: 5	x	x	x	x	<mark>x</mark>		
	Zinc	NDPs: 0 Tests: 5							
Organotins on soils*	All		x	x	x	x			
Siganouns on SOIIS		NDPs: 0 Tests: 5	x	x	x	x	×		
PAH by GCMS	All	NDPs: 0							
		Tests: 5	x	x	x	x	×		
PCBs by GCMS	All	NDPs: 0 Tests: 5							
ample description			x	x	x	x	×		
mple description	All	NDPs: 0 Tests: 5							

CERTIFICATE OF ANALYSIS

Validated

Sample Descriptions

irain Sizes								
very fine <0.0	063mm fine 0.0	53mm - 0.1mm m	edium 0.1mm	ı - 2mm coai	rse 2mm - 1	0mm very coa	arse >10mm	
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2	
3948650	C1-ECR		Dark Brown	Sand	0.1 - 2 mm	None	None	
3948651	C2-ECR		Dark Brown	Silt 0.063 - 0.1 mm		None	None	
3948652	C3-ECR		Dark Brown	Sand	0.1 - 2 mm	None	None	
3948654	C4-ECR		Dark Brown	Sand	Sand 0.1 - 2 mm		None	
3948655	C5-ECR		Dark Brown	Silt	0.063 - 0.1 mm	None	None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

Bot: 11275-27 UNITED NUMBER Latence Introductor Selection				CER	TI	FICATE OF A	NALYSIS			
	Job:	H_UNIHULL_HU	JL-6	Customer:	Un	iversity of Hull	oute	Report Number:	143792	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fitt Discolved / filtered sample. totunfit Total / unfiltered sample. * Subcontracted test. ** % recovery of the surroga check the efficiency of the results of individual compressibles and corrected if	a. te standard to p method. The ounds within for the recovery	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s)	Soil/Solid 27/06/2011 22/07/2011 110725-52		Soil/Solid 19/04/2011 22/07/2011 110725-52	Soil/Solid 19/04/2011 22/07/2011 110725-52	Soil/Solid 19/04/2011 22/07/2011 110725-52	Soii/Solid 19/04/2011 22/07/2011 110725-52	
$\begin{array}{c cccccr} \hline ccccccr} \\ \hline cccccr} \\ \hline ccccr} \\ \hline cc$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		%	TM061	96.3	м					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TM061	424		86.9	<35	<35	36.2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB congener 28	<3 µg/k	g TM168	<3	54					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB congener 52	<3 µg/k	g TM168	<3		<3	<3	<3	<3	
- $ -$ <td>PCB congener 101</td> <td><3 µg/k</td> <td>g TM168</td> <td><3</td> <td></td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td></td>	PCB congener 101	<3 µg/k	g TM168	<3		<3	<3	<3	<3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PCB congener 118	<3 µg/k	g TM168			<3	<3	<3	<3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	<3 μg/k	g TM168	<3	М					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PCB congener 153	<3 µg/k	g TM168	<3	М	<3 #	М	М		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB congener 180	<3 µg/k	g TM168	<3	М	<3	<3	<3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		µg/kg	TM168	none detected	ł					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<3 µg/k	g TM168	<3	М					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PCB congener 156	<3 µg/k	g TM168	<3	М	<3	М			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Arsenic		TM181	10.3	М					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cadmium		TM181	0.383	М					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chromium	<0.9	TM181	17.6	м					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Copper		TM181	5.86	М					
mg/kg mg/kg <th< td=""><td>Lead</td><td></td><td>TM181</td><td>16.3</td><td>М</td><td></td><td></td><td></td><td></td><td></td></th<>	Lead		TM181	16.3	М					
mg/kg mg/kg <th< td=""><td>Mercury</td><td></td><td>TM181</td><td><0.14</td><td>М</td><td></td><td></td><td>М</td><td>#</td><td></td></th<>	Mercury		TM181	<0.14	М			М	#	
Zinc <1.9 TM181 31.1 47.9 22.5 21.9 23.1		mg/kg			М	#	M	М	#	
	Selenium				#	#	#	#		
Image: series of the series	Zinc		TM181	31.1	Μ					
Image: series of the series										
Image: series of the series										
Image: selection of the										
Image: selection of the										
Image: selection of the										
Image: Constraint of the system Image: Consthe system Image: Constraintowitet<										
Image: Constraint of the state of										

SDG:

110725-52

CERTIFICATE OF ANALYSIS ion: Firth of Forth - Cable Route

Location:

Validated

F.I023335

Order Number:

Job: H_UNIHULL_HUL-6 Customer: University of Hull Report Number: 143792 ZBB776 Superseded Report: 142887 **Client Reference:** Attention: Ann Leighton GRO by GC-FID (S) Customer Sample R C1-ECR C2-ECR C3-ECR C4-ECR C5-ECR ISO17025 accredited mCERTS accredited. # M 8 Non-conforming work Depth (m) Aqueous / settled sample Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Sample Type diss filt 27/06/2011 22/07/2011 19/04/2011 22/07/2011 19/04/2011 22/07/2011 19/04/2011 22/07/2011 tot.unfilt Date Sampled 19/04/2011 22/07/2011 Date Received ... SDG Ref 110725-52 110725-52 110725-52 110725-52 110725-52 3948650 3948651 3948652 3948654 3948655 Lab Sample No.(s) AGS Reference (F) LOD/Units Component Method GRO >C5-C12 TM089 <44 <44 <44 <44 <44 <44 µg/kg Methyl tertiary butyl ether <5 µg/kg TM089 <5 <5 <5 <5 <5 # # # # # (MTBE) Benzene <10 TM089 <10 <10 <10 <10 <10 # µg/kg Μ Μ Μ ± Toluene TM089 <2 <2 <2 <2 <2 <2 µg/kg М # М Μ # TM089 <3 <3 <3 <3 Ethylbenzene <3 <3 µg/kg Μ # Μ Μ # m,p-Xylene TM089 <6 <6 <6 <6 <6 <6 µg/kg # Μ # Μ Μ TM089 <3 <3 <3 <3 o-Xylene <3 µg/kg <3 # # Μ Μ Μ sum of detected mpo µg/kg TM089 none detected none detected none detected none detected none detected xylene by GC sum of detected BTEX by TM089 µg/kg none detected none detected none detected none detected none detected GC

•	Lcontrol Lab	oratories	3	CER	TIFICATE OF A	NALYSIS		[Validated
SDG: Job: Client	н_	10725-52 _UNIHULL_1 3B776	HUL-6	Location: Customer: Attention:	Firth of Forth - Cable R University of Hull Ann Leighton	Route	Order Number: Report Number: Superseded Report:	FJ023335 143792 : 142887	
							· · ·		
# IS M n § N aq A diss.filt D tot.unfilt T * S ** % c (F) T	Results Legend NOT/D25 accredited. SOT/D25 accredited. CERTS accredited. on-conforming work. queous / settled sample. issolved / filtered sample. ubcontracted test. recovery of the surrogate si heck the efficiency of the me usults of individual compound amples aren't corrected fort rigger breach confirmed	ethod. The nds within he recovery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	C1-ECR Soil/Solid 27/06/2011 22/07/2011 110725-52 3948650	C2-ECR Soil/Solid 19/04/2011 22/07/2011 110725-52 3948651	C3-ECR Soii/Solid 19/04/2011 22/07/2011 110725-52 3948652	C4-ECR Soil/Solid 19/04/2011 22/07/2011 110725-52 3948654	C5-ECR Soil/Solid 19/04/2011 22/07/2011 110725-52 3948655	
Compone Tributyl		LOD/U <0.0		<5	<5	<5	<5	<5	
-		µg/k	g						
Tripheny	/l tin*	<0.0 µg/k		<50	<50	<50	<50	<50	
Dibutyl t	in*	<0.0 µg/k		<5	<5	<5	<5	<5	
Tetrabut	tyl tin*	<0.(μg/k)2 SUB	<5	<5	<5	<5	<5	

Validated

I

1

	alones		CER	TI	FICATE OF A	NALYSIS					Validated
	725-52 NIHULL_HUL	-6	Location: Customer:		th of Forth - Cable Ro iversity of Hull	oute		Order Number: Report Number:	FJ023335 143792	5	
Client Reference: ZBB		-0	Attention:		in Leighton			Superseded Repo			
PAH by GCMS Results Legend	Cus	stomer Sample R	C1-ECR		C2-ECR	C3-ECR		C4-ECR	C5-ECR	_	
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stan check the efficiency of the methor results of individual compounds samples aren't corrected for the (F)	dard to .d. The La within La	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference	Soii/Solid 27/06/2011 22/07/2011 110725-52 3948650		Soii/Solid 19/04/2011 22/07/2011 110725-52 3948651	Soil/Solid 19/04/2011 22/07/2011 110725-52 3948652		Soil/Solid 19/04/2011 22/07/2011 110725-52 3948654	Soil/Solid 19/04/2011 22/07/2011 110725-52 3948655		
Component Naphthalene-d8 %	LOD/Units %	Method TM218	92.1		96.1	93.4	_	93.8	94.9	-	
recovery** Acenaphthene-d10 %	%	TM218	91.5		95.4	93.2		92.4	94.2	-	
recovery** Phenanthrene-d10 %	%	TM218	88.2		91.8	89.6		88.8	90.2	_	
recovery** Chrysene-d12 %	%	TM218	83.3		86.7	84.6		83.6	85.1	_	
recovery**										_	
Perylene-d12 % recovery**	%	TM218	83.8		87.3	84		82.8	84.3		
Naphthalene	<9 µg/kg	TM218	<9	М	<9 #	15.1	м	<9 M	<9	#	
Acenaphthylene	<12 µg/kg	TM218	<12	М	<12 #	<12	м	<12 M	<12	#	
Acenaphthene	<8 µg/kg	TM218	<8	М	<8 #	<8	м	<8 M	<8	#	
Fluorene	<10	TM218	<10	M		<10	м	<10	<10	#	
Phenanthrene	μg/kg <15	TM218	24.9		<15	31		M <15	<15		
Anthracene	µg/kg <16	TM218	<16	M	# <16	<16	M	M <16	<16	#	
Fluoranthene	μ <u>g/kg</u> <17	TM218	25.2	Μ	# <17	<17	М	M <17	<17	#	
Pyrene	µg/kg <15	TM218	24.4	Μ	# 23.4	<15	М	M <15	<15	#	
Benz(a)anthracene	µg/kg <14	TM218	<14	Μ	# <14	<14	М	M <14	<14	#	
	µg/kg	TM218	<10	Μ	# 13.5	<10	М	M <10	<10	#	
Chrysene	<10 µg/kg			М	#		М	M		#	
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15	М	23.8 #	<15	М	<15 M	<15	#	
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14	м	<14 #	<14	М	<14 M	<14	#	
Benzo(a)pyrene	<15 µg/kg	TM218	<15	м	<15 #	<15	м	<15 M	<15	#	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18	М	<18 #	<18	м	<18 M	<18	#	
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23	M	<23 #	<23	м	<23 M	<23	#	
Benzo(g,h,i)perylene	<24	TM218	<24	м		<24	м	<24 M	<24	#	
PAH, Total Detected	µg/kg <118	TM218	<118	IVI	# <118	<118	IVI	<118	<118	#	
USEPA 16	µg/kg										
										\neg	
										\neg	
										+	
										-	
							_			+	
							_			-	

Extractable Petroleum Hydrocarbons (EPH) By GC-FID

EPH (DRO) (C10-C40)

Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3981233	C5-ECR		SOLID	36.2	No Identification Possible
3981367	C4-ECR		SOLID	<35.0	No Identification Possible
3981443	C3-ECR		SOLID	<35.0	No Identification Possible
3981493	C2-ECR		SOLID	86.9	No Identification Possible
3981840	C1-ECR		SOLID	424	PAHS

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics) :- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

	ALcontrol Laboratories							
	CERTIFICATE OF ANALYSIS							
SDG:	110725-52	Location:	Firth of Forth - Cable Route	Order Number:	FJ023335			
Job:	H_UNIHULL_HUL-6	Customer:	University of Hull	Report Number:	143792			
Client Reference:	ZBB776	Attention:	Ann Leighton	Superseded Report:	142887			

Table of Results - Appendix

NDP	No Determination	Possible	#	ISO 17025 Accredited		*	Subcontracted Test	м	MCERTS Accred	ited	
NFD	No Fibres Detected		PFD	Possible Fibres Detected		»	Result previously reported (Incremental reports only)	EC	Equivalent Carbo (Aromatics C8-C		
te: Metho	od detection limits a	e not always achievable	due to vario	us circumstances beyond our c	ontrol						
Μ	ethod No		Refer	ence			Description		Wet/Dry Sample ¹	Surrogate Corrected	
	PM001				Preparati	on of San	nples for Metals Analysis				
	PM024	Modified BS 1377					cluding homogenisation, moi Containing Material	sture screens of			
	SUB				Subcontra	acted Tes	st				
	TM061	Method for the Det EPH,Massachuset			Determina GC-FID (xtractable Petroleum Hydroc	arbons by			
	TM089	Modified: US EPA	Methods	8020 & 602			asoline Range Hydrocarbon pounds by Headspace GC-F	()			
	TM168	EPA Method 8082 Gas Chromatograp		rinated Biphenyls by			/HO12 and EC7 Polychlorina MS in Soils	ated Biphenyl			
	TM181	US EPA Method 6	010B		Determina ICP-OES		outine Metals in Soil by iCap	6500 Duo			
	TM218	Microwave extracti	on – EPA	method 3546	Microwav	e extracti	on - EPA method 3546				

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110725-52	Location:	Firth of Forth - Cable Route	Order Number:	FJ023335
Job:	H_UNIHULL_HUL-6	Customer:	University of Hull	Report Number:	143792
Client Reference:	ZBB776	Attention:	Ann Leighton	Superseded Report:	142887

Test Completion Dates

Lab Sample No(s)	3948650	3948651	3948652	3948654	3948655
Customer Sample Ref.	C1-ECR	C2-ECR	C3-ECR	C4-ECR	C5-ECR
AGS Ref.					
Depth					
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
EPH by FID	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011
GRO by GC-FID (S)	30-Jul-2011	30-Jul-2011	30-Jul-2011	30-Jul-2011	01-Aug-2011
Metals by iCap-OES (Soil)	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011
Organotins on soils*	05-Aug-2011	05-Aug-2011	05-Aug-2011	05-Aug-2011	05-Aug-2011
PAH by GCMS	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011	29-Jul-2011
PCBs by GCMS	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011	01-Aug-2011
Sample description	28-Jul-2011	28-Jul-2011	28-Jul-2011	28-Jul-2011	28-Jul-2011

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

For the attention of: Alcontrol Chester (Schedulers)	By email	
	Page:	1 of 2
Flintshire, CH5 3US	Date Issued:	05/08/2011
Hawarden, Deeside	Date Tested:	02/08/2011 to 05/08/2011
Unit7-8, Hawarden Business Park Manor Road (off Manor Lane)	Date Received:	27/07/2011
ALcontrol Hawarden	Report No:	11-23799/1

5 soil samples received from ALcontrol Hawarden (O/N: 179683; Project: 110725-52) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory reference	Client reference	Other reference	tributyltin (low level) ug/kg Sn 56573-85-4	triphenyltin (low level) ug/kg Sn 668-34-8	tetrabutyltin (low level) ug/kg Sn
193196	3955788	n/a	< 5.0	< 50.0	< 5.0
193197	3955821 C2	n/a	< 5.0	< 50.0	< 5.0
193198	3955876	n/a	< 5.0	< 50.0	< 5.0
193199	3955909	n/a	< 5.0	< 50.0	< 5.0
193200	3955951	n/a	< 5.0	< 50.0	< 5.0

Report No:	11-23799/1
Date Received:	27/07/2011
Date Tested:	02/08/2011 to 05/08/2011
Date Issued:	05/08/2011
Page:	2 of 2

Laboratory reference	Client reference	Other reference	dibutyltin (low level) ug/kg Sn 1002-53-5
193196	3955788 C1-ECR	n/a	< 5.0
193197	3955821 C2 ECR	n/a	< 5.0
193198	3955876 C3-ECR	n/a	< 5.0
193199	3955909 C4-ECR	n/a	< 5.0
193200	3955951 C5-ECR	n/a	< 5.0

him.

Robin T R Macdonald Operational Director

CERTIFICATE OF ANALYSIS

SDG:	110725-52	Location:	Firth of Forth - Cable Route	Order Number:	FJ0233
Job:	H_UNIHULL_HUL-6	Customer:	University of Hull	Report Number:	143792
Client Reference:	ZBB776	Attention:	Ann Leighton	Superseded Report:	142887

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

FJ023335 143792 142887

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	ATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MNOL)	D&C	HEXANEACETONE	END OVER END	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GC-MS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(06-040)EZ FLASH	WET	HEXANEACETONE	SHAKER	GCFZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAVER	GCEZ
SEM VOLATILEORGANIC COMFOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHONG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERAL OIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 700NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID'LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLD PHASE EXTRACTION	HPLC
PEST OCP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERES	DOM	LIQUID'LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TFH by INFRARED (IR)	TCE	LIQUID'LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID'LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratorices (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

Asbestos Type

Chrysnile

Amosite

Orodolite

Fibrous Adinoite

Fibrous Anthophylite

Fibra & Trendie

Common Name

White Ashestos

BrownAsbestos

Blue Asbestos

-

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

INSTITUTE of ESTUARINE and COASTAL STUDIES

Firth of Forth (Round 3) Offshore Wind Farm Development: Post Survey Report Benthic Services

Report to Seagreen Wind Energy Ltd.

Institute of Estuarine and Coastal Studies University of Hull

12th July 2012

Author(s): M. J. Bailey, A. Leighton, T. M. Smith & S. Thomson

Report: ZBB776-P1-F-2012

Institute of Estuarine & Coastal Studies (IECS) The University of Hull Cottingham Road Hull HU6 7RX UK

> Tel: ⁺44 (0)1482 464120 Fax: ⁺44 (0)1482 464130

E-mail: iecs@hull.ac.uk

Web site: http://www.hull.ac.uk/iecs

Seagreen Wind Energy Ltd.

Firth of Forth (Round 3) Offshore Wind Farm Development: Post Survey Report Benthic Services

12th July 2012

Reference Number: ZBB776-P1-F-2012

This report has been prepared by the Institute of Estuarine and Coastal Studies, with all reasonable care, skill and attention to detail as set within the terms of the Contract with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This is a confidential report to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such parties rely on the report at their own risk.

Printed on 100% recycled paper

TABLE OF CONTENTS

TABLE OF CONTENTS	. I
1. INTRODUCTION	1
 METHODS	2 2
2.2 Epifaunal Trawl Samples 2.2.1 Sample Collection	5
3. RESULTS	7
3.1 Survey Summary and Area Map	7
3.1.1 Benthic Survey	7
3.1.2 Epibenthic Survey	7
3.1.3 Supporting Video Footage	7
3.2 Benthic Infaunal Data1	0
3.2.1 Species of Conservation Interest1	0
3.3 Epibenthic Trawl Data1	2
3.4 Particle Size Analysis and Organic Content Data1	2
3.5 Sediment Contaminant Data1	2
APPENDIX 1. BENTHIC GRAB PHOTOGRAPHS1	7
APPENDIX 2. EPIBENTHIC TRAWL PHOTOGRAPHS4	7
APPENDIX 3. VIDEO ANALYSIS RECORD SHEETS5	;9
APPENDIX 4. SEDIMENT CONTAMINATION REPORT	'2

1. INTRODUCTION

SSE Renewables (SSER) and Flour (UK) Ltd under the Limited company of Seagreen Wind Energy have been awarded the Firth of Forth Round 3 Zone for offshore wind developments. Seagreen aim to deliver a generation capacity of 3.5GW across an area of 2,852km² with the development being undertaken in three phases.

The Institute of Estuarine & Coastal Studies (IECS) was commissioned by Seagreen Wind Energy Limited to undertake an offshore benthic survey. This survey work and associated sample analysis was designed to enable characterisation of the benthic and epibenthic ecology of the area, the physical characteristics of the sample sites, and the chemical properties of sediments sampled.

In order to provide adequate sampling coverage of the proposed development site Seagreen Wind Energy Ltd., in conjunction with Royal Haskoning, identified 150 benthic sampling sites and 50 video and epibenthic trawl sites within the Phase 1 area, in addition to 3 Met Mast sites across the Phase 1 & 2 areas. All survey work was completed between February and April 2011 and the subsequent sample analysis completed by August 2011.

The following report documents the survey work completed in the Phase 1 area and the sediment, infaunal and epifaunal results. Data analysis was not included within the scope of this report.

2. METHODS

2.1 Benthic Infaunal Samples

2.1.1 SAMPLE COLLECTION

A total of 150 benthic stations were identified by Seagreen in the Phase 1 area as well as three Met Mast sites across Phases 1 and 2. A mini Hamon grab was deployed to collect a single replicate sample for infaunal analysis (Plate 1), from which a PSA sample was also taken, as per the specification. A second grab was collected for contaminant analysis. A full survey log was maintained throughout the survey detailing time of sampling, position (DGPS derived), station, water depth, volume of sample, physical characteristics of the sample, digital image number (cross referencing (QA)), presence of *Sabellaria spinulosa* and any other relevant features.

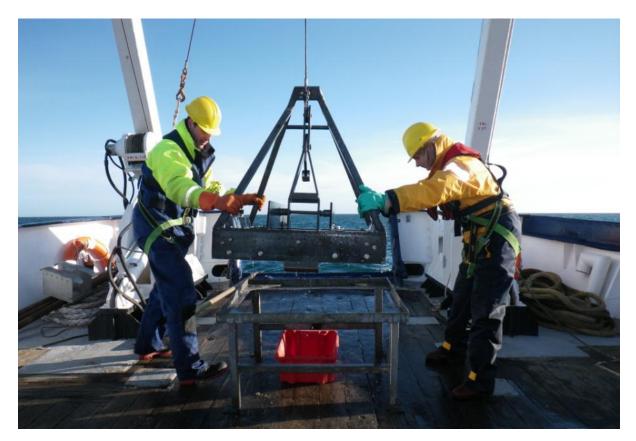


Plate 1. Retrieval of mini hamon grab on board MV Clupea.

The infaunal samples were processed on a sequential basis utilising a nested sieving technique. Each acceptable sample was removed from the grab, photographed with an internal label, placed into a hopper and sieved onboard through a nest of 5mm and 1mm sieves. A nested sieve approach was used in order to separate large sediment types and reduce damage to invertebrates. The sieved residue was gently back-washed into a sealable container and borax buffered 4% formo-saline solution containing Rose Bengal vital stain added as a fixative. Each sample was labelled clearly on the bucket and the internal label placed in the container, noting the client, survey, date and station number.

The PSA and organic carbon samples were stored in separate plastic bags, which were clearly labelled, and frozen onboard the vessel. The samples were kept frozen during transportation back to the IECS laboratory. At the laboratory the samples were stored in the freezer. The IECS methodology followed the protocol given by Rees *et al.* (1990)¹ & (1993)², Davies *et al.* (2001)³, Boyd (2002)⁴ and Proudfoot *et al.* (2004)⁵.

Valid Sample Criteria

Samples comprising hard substrata (e.g. broken shell, rocks or gravel) were rejected if a minimum sample volume of 5 litres was not achieved. When samples were within these limits, each sample was photographed (digital image) and subsequently processed. Five attempts were made at each site to collect a valid infaunal sample, however if a sample with a volume of <4 litres was retained, the VideoRay was deployed at the site in order to obtain supporting video footage of the seabed.

2.1.2 POST SURVEY ANALYSIS

Benthic infaunal samples

General Requirements

All members of IECS undertaking the sample sorting and taxonomic analysis phases of the laboratory work were qualified marine biologists or ecologists. Those staff carrying out the taxonomic analysis had at least eight years marine biological experience with a wide range of expertise in the field of benthic sample analysis and interpretation. The analyses were quality checked by the Senior Benthic Taxonomist who has more than 10 years experience.

Sample Sorting

The procedure for sieving and sorting benthic core samples was as follows:

Formalin was decanted from the sample through a 212µm sieve using appropriate exposure prevention controls as detailed in the Health & Safety documentation. Material retained on the sieve was washed back into the sample. The sample was subsequently washed through

¹ Rees, H.L., Moore, D.C., Pearson, T.H., Elliot, M., Service, M., Pomfret, J. & Johnson, D. (1990). *Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites*. Scottish Fisheries Information Pamphlet, No. 18: 78pp.

² Rees, H.L. & Service, M.A. (1993). Development of improved strategies for monitoring the epibenthos at sewage sludge disposal sites. In: *Analysis and interpretation of benthic community data at sewage sludge disposal sites*. Aquatic Environmental Monitoring Report, MAFF Directorate of Fisheries Research, Lowestoft, No. 37: 55-61.

³ Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M. (2001) *Marine Monitoring Handbook*, 405pp. JNCC Peterborough, UK.

⁴ Boyd, S.E. (2002). *Guidelines for the conduct of benthic studies at aggregate dredging sites*. Department for Transport, Local Government and the Regions (DTLR)/CEFAS: London, UK. 117 pp.

⁵ Proudfoot, R.K, Elliott, M., Dyer, M.F., Barnett, B.E., Allen, J.H., Proctor, N.V., Cutts, N.D., Nikitik, C., Turner, G., Breen, J., Hemingway, K.L. & Mackie, T. (1997). *Proceedings of the Humber benthic field methods workshop*, University of Hull.

a 20cm diameter 1mm mesh stainless steel sieve to remove excess fixative as well as fine mud and sand particles. The residue from the 1mm sieve was then gently washed into a white tray. Water was added to the tray and the contents examined by eye using a 1.5x illuminated magnifier. Large specimens were removed and sorted into major phyla. The fauna derived were retained and stored by group in appropriately labelled containers, preserved using 70% Industrial Methylated Spirits (IMS) and passed on for identification.

Sieves and trays were washed thoroughly between samples to ensure there was no contamination of subsequent samples. During the sample processing phase a sample proforma was completed to include client, project, area, sample number, date, name of sorter and identifier, description of residue characteristics, notable features, sieve mesh size and whether any problems were encountered.

Taxonomic Identification

Identification was undertaken using Olympus SZX7 and SZ40 zoom microscopes with 10x and 20x eyepieces, giving a maximum magnification of up to 80x. An additional 2x objective was used to increase the potential magnification to 160x. Olympus BX41 compound microscopes were used for further magnification if necessary, up to 1000x.

Identification of infaunal samples was to the highest possible taxonomic separation (i.e. species). During identification, all individuals were initially separated into families, with part animals being assigned to families where possible. The macrofaunal animals were identified to species level using standard taxonomic keys, low and high power stereoscopic microscopes and dissection when necessary. Incomplete animals without anterior ends were not recorded as individuals to be included in the quantitative dataset. However, they were identified where possible and recorded as being present. Similarly, motile and colonial sessile epibenthic taxa and meiofauna were recorded but not included in the main quantitative data set.

IECS follow strict AQC procedures. In addition, regular cross reference identification was carried out by IECS' Senior taxonomists throughout the identification process. As IECS is part of the NMBAQC Scheme, the identification of any difficult specimens could have been undertaken following consultation and external verification from David Hall (Thomson Unicomarine). However, this service was not required during the processing stage.

The taxonomic literature used was essentially as given in and expanded from Rees *et al.* $(1990)^6$ and reporting nomenclature used Howson and Picton $(1997)^7$ and the World Register of Marine Species (WoRMS).

⁶ Rees, H.L., Moore, D.C., Pearson, T.H., Elliot, M., Service, M., Pomfret, J. & Johnson, D. (1990). Procedures for the monitoring of marine benthic communities at UK sewage sludge disposal sites. *Scottish Fisheries Information Pamphlet,* No. 18: 78pp.

⁷ Howson, C.M. & Picton, B.E. (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas*. Ulster museum and the Marine Conservation Society.

Particle Size Analysis (PSA) samples

The particle size analysis was carried out using a combination of dry sieving and laser particle size analysis (for the fraction <1mm) using a Malvern Mastersizer 2000. The sediment samples were then split with one sub-sample being passed through a 1mm sieve to remove the larger size classes of sediment. The <1mm fraction of the sample was subsequently analysed using the Malvern Mastersizer 2000 and the >1mm fraction discarded. The second sub-sample was passed through a nest of sieves, including 1mm, 1.4mm, 2mm, 2.8mm, 5.6mm and 11.2mm. Each fraction, including the <1mm fraction, was then oven dried at 85°C for 24 hours and weighed. Data generated from these methods of analysis was merged and used to derive statistics such as mean grain size, bulk sediment classes (% silt, sand & gravel), skewness and sorting coefficient. These methods are consistent with the procedures identified at the NMBAQC PSA workshop on laboratory methods, which was held at the Cefas Lowestoft laboratory in July 2009.

Organic Carbon samples

Organic carbon was expressed as loss on ignition (percentage), following combustion at 475°C for four hours. The sample was oven dried at 85°C until the weight stabilised (\pm 0.001g) and the weight recorded. The sample was then placed in a muffle furnace at 475°C for four hours. Once the sample had cooled, it was re-weighed and the difference between the two weights was expressed as a percentage of the total sediment.

Sediment Contaminant samples

Contaminant samples were collected from the grab samples by scooping sediment directly into the containers. Nitrile gloves were worn to prevent sample contamination. Samples to test for organics were taken in glass containers as hydrocarbons can be lost through plastic. Samples to test for volatiles were collected in smaller containers so there was less headspace for them to be lost in. Samples for inorganics were taken using plastic containers. The containers used for each test were:

- EPH by FID
- GRO by GC-FID
- Metals by iCap-OES
- Organotins
- PAH by GCMS
- PCBs by GCMS

250g glass jar 60g glass jar Plastic container Plastic container 250g glass jar 250g glass jar

2.2 Epifaunal Trawl Samples

2.2.1 SAMPLE COLLECTION

A VideoRay system was deployed at each of the epifaunal trawl stations before sampling took place to verify the absence of any significant amount of habitat of conservation interest (i.e. *Sabellaria* biogenic reef) and provide additional information on the nature of the seabed. Full details of the drop down video sampling programme are the subject of a separate report (ZBB776-DDV-F-2012).

Following the deployment of the VideoRay, a 2m beam trawl with a 5m long net and 40mm mesh liner inside and 5mm (knot to knot) square mesh cod-end liner was deployed in close proximity to the video line. The trawl was lowered from the survey vessel to the seabed at the predetermined start point and towed for approximately 10-20 minutes over a path of approximately 500m while maintaining a speed of between 1 - 1.5 knots. The 2m Beam trawl was comprised of two 60mm x 500mm x 500mm steel detachable shoes, with a 2120mm steel tube brace. A tickler chain was attached to the footrope to provide extra weight to ensure valid samples were obtained.

The beam trawl was operated from the stern of the survey vessel using a towing line approximately three times the depth of the area. The trawl line was logged using DGPS at the start (lock of the winch) and end of the trawl (engagement of the winch). The 1m cod end with 5mm mesh was hauled aboard with the aid of a lifting rope to ensure the cod end could be lifted independently of the beam. A single tow was carried out at each identified trawl line.

The cod end was opened over a large fish box to contain the whole catch; the net was checked for any remaining epifauna and fish, before the cod end was re-fastened prior to redeployment at the next trawl site. The catch was roughly sorted on board with the fish species separated from the epifaunal invertebrates. A survey log was maintained at all times recording survey date, water depth at the start of the trawl line, time in and out of water, DGPS position (using Magellan ProMark3 GPS) and speed of survey vessel during trawling along with weather and sea condition and digital images.

IECS experience indicates that the quality of the catch greatly deteriorates under rough sea conditions. As such, IECS operated the beam trawl within a weather window resulting in wave heights less than 1.5m and wind speed of less than F3.

Photographs of all catches were taken after any large debris had been removed. Any large specimens were identified onboard the vessel, recorded, photographed and then returned to the water. The remaining catch was transferred to a clean labelled bucket and fixed using 4% formo-saline solution.

The fixed epifaunal invertebrates and fish were transferred to the IECS laboratory where they were separated to species level where possible and enumerated with examples of each species retained for a reference collection. The taxonomic literature used is essentially as given in Wheeler (1969⁸, 1978⁹) and Whitehead *et al.* (1984¹⁰). All fish were measured to the millimetre below (total length or an appropriate measure in case of species with extreme body shape; i.e. skates and rays). If catches were large, any species present at low density were identified and removed before a subsample was taken for length distribution of the more abundant species. A subsample (*c.* 30-50 fish) were measured to enable length frequency analysis. Any other observations from individual trawls (e.g. high amounts of shell, rocks, cobbles, weed and other debris, presence of ray egg cases, whelk eggs etc.) were recorded on the survey log.

⁸ Wheeler, A. (1969). *The fishes of the British Isles and North West Europe*. Michigan State University Press, 613pp.

⁹ Wheeler, A. (1977). *Key to the Fishes of Northern Europe*. Frederick Warne, London. 380pp.

¹⁰ Whitehead, P.J.P., Bauchot, M.L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.) (1984). *Fishes of the North-eastern Atlantic and the Mediterranean*, Vol. 1-3. UNESCO.

3. RESULTS

3.1 Survey Summary and Area Map

3.1.1 BENTHIC SURVEY

Over the course of four separate deployments between February and April 2011, the IECS survey team sampled all 153 benthic sites identified as priority sites, including sites G0 to G149 within the Phase 1 area and the three Met Mast sampling locations in Phases 1 and 2 (Figure 1). In total, 147 benthic infaunal and 147 PSA samples were collected, stored appropriately and returned to the IECS laboratory. In addition, 46 contaminant samples were collected.

No infaunal samples were retrieved from 6 sites (G34, G58, G123, G125, G135 and MM2) despite 5 attempts to collect a sample. In addition, no contaminant samples were retrieved from 3 sites (G56, G103 and G123), despite 5 attempts. At all 8 sites only a small amount of sediment was retrieved (<1 litre) due to the presence of either cobbles, boulders or compacted sediments. However, an approximate assessment of the sediment type was recorded and a VideoRay was deployed at each site to collect supporting video footage

At all sites where an infaunal sample was retained with a volume of <4 litres or no infaunal sample was collected, additional video footage was collected. Still images from the video footage and a sediment description are provided (Appendix 3). Edited video footage collected at each site has been provided on DVD.

The position of site G126 was moved approximately 60m from the original site and a benthic infaunal and PSA samples collected, as the original site was located in close proximity to a wreck. As such, both the skipper and survey team agreed that no survey equipment could be deployed at the original site for Health and Safety reasons, as well as the potential risk of damage or loss of survey equipment.

3.1.2 EPIBENTHIC SURVEY

A total of 50 video and epibenthic trawl sites were identified across the Phase 1 area. Video trawls were undertaken at all 50 proposed sites. However, during the video trawls *Sabellaria* was initially identified at sites V3 and V7, therefore no epibenthic trawls were undertaken at these sites (Figure 2).

A complete survey log was maintained throughout all deployments and photographs taken of each sample (Appendix 1 & 2). Survey logs are documented in the Post Survey reports (ZBB776-PSv1-F-2012 to ZBB776-PSv4-F-2012)

3.1.3 SUPPORTING VIDEO FOOTAGE

Infaunal samples containing <5 litres of sediment were classed as being undersized. Where necessary 5 attempts were made at each site to collect an infaunal sample of adequate size, however undersized samples were retained from 24 of the 147 sites where infaunal samples were retained. Infaunal samples containing 4 to 5 litres were classed as acceptable, however at 16 sites the infaunal samples contained <4 litres. At these sites the VideoRay was deployed in order gain additional information on the nature of the sea bed and support the undersized grab samples.

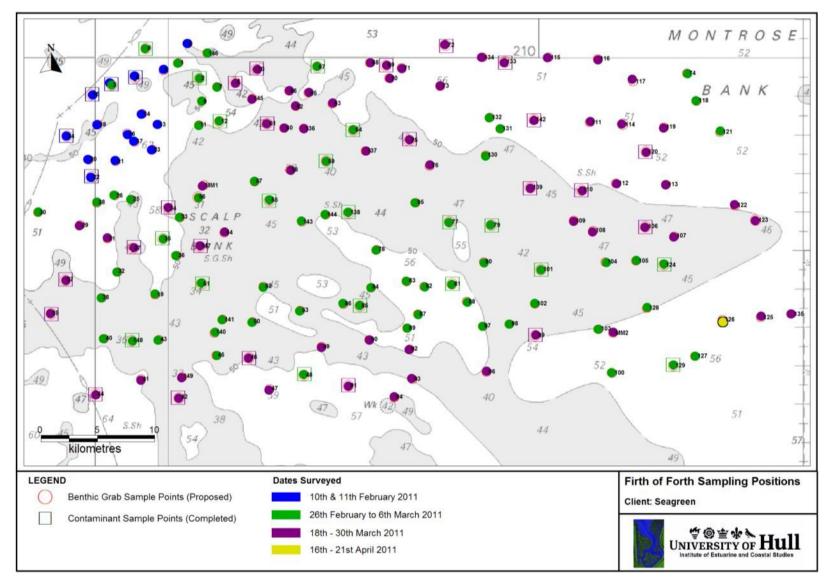


Figure 1. Proposed and actual benthic sample locations.

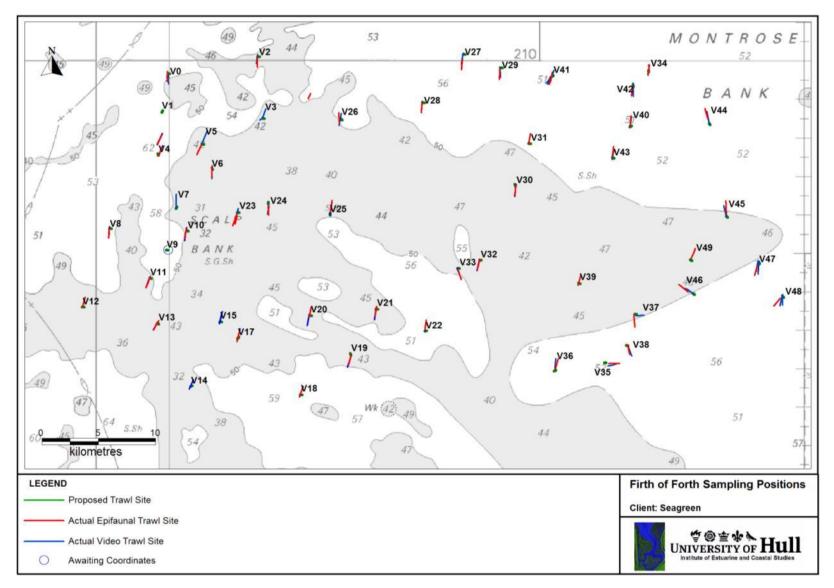


Figure 2. Proposed and actual video and epifaunal trawl locations.

3.2 Benthic Infaunal Data

Species diversity ranged from 11 to 141 species with an average of 54 species per sample. Abundance ranged from 20 to 939 individuals, with an average of 208, though 3 samples had 6,537, 8,560 and 9625 individuals, due to very high numbers of fish larvae and eggs.

The benthic infaunal dataset is not included within the appendix of this report, as it is too extensive. Therefore an electronic copy in excel format has been forwarded to Seagreen Wind Energy Ltd.

Two main community types across are evident across the Phase 1 area. The first, and most common community type recorded is associated with sandy mixed sediments resulting in low abundances and medium to high species diversity. The community is polychaete dominated in terms of abundance and diversity, and shares many species from the more sandy low diversity community. However, the mixed nature of the sediment allows encrusting fauna such as Hydroids, Bryozoans and Ascidians to flourish which also have their own associated fauna. Common species found from this community include the polychaetes *Pholoe spp., Eulalia spp., Eumida sanguinea, Glycera lapidum, Polydora spp., Cirratulus cirratus, Pomatoceros triqueter, Hydroides norvegica, Ampharete lindstroemi, Polycirrus spp.*; the bivalves *Cochlodesma praetenue, Astarte montagui, Timoclea ovata, Dosinia exoleta, Hiatella arctica*; and the ascidian *Ascidiella scabra*.

The second community type is associated with sandy sediments resulting in low abundance and diversity values. Again this community is polychaete dominated though there is a higher proportion of Amphipoda and Bivalves. Common species found from this community include the polychaetes *Ophelia borealis*, *Chaetozone christiei*, *Spiophanes bombyx*, *Spio armata*, *Nephtys cirrosa*, the amphipod *Bathyporeia spp.*, and the bivalves *Abra prismatica*, *Cochlodesma praetenue*, *Moerella pygmaea* and *Spisula* spp. *Ammodytes spp.* is also present in a large number of these samples.

3.2.1 SPECIES OF CONSERVATION INTEREST

Species of conservation importance identified across the Phase 1 area include the reef forming species *Sabellaria spinulosa* and *Modiolus modiolus*, as well as the bivalve *Arctica islandica*. Both *S. Spinulosa* and *A. islandica* were identified in the OSPAR list of Threatened and/or Declining Species and Habitats (Region II - Greater North Sea) and have been identified at sites across the survey area (Figure 3). *A. islandica* was recorded at 22 sites, however only juveniles were found, with a maximum abundance of 4 specimens per 0.1m² grab sample. Abundance values for *S. spinulosa* range from 1 - 488 individuals per grab sample with small aggregations attached to pebbles. *M. modiolus* beds are listed as a habitat of conservation importance in the Priority Marine Features for Scottish territorial waters. However, only a single specimen has been recorded (site 103) and there has been no evidence of *M. modiolus* beds across the survey area.

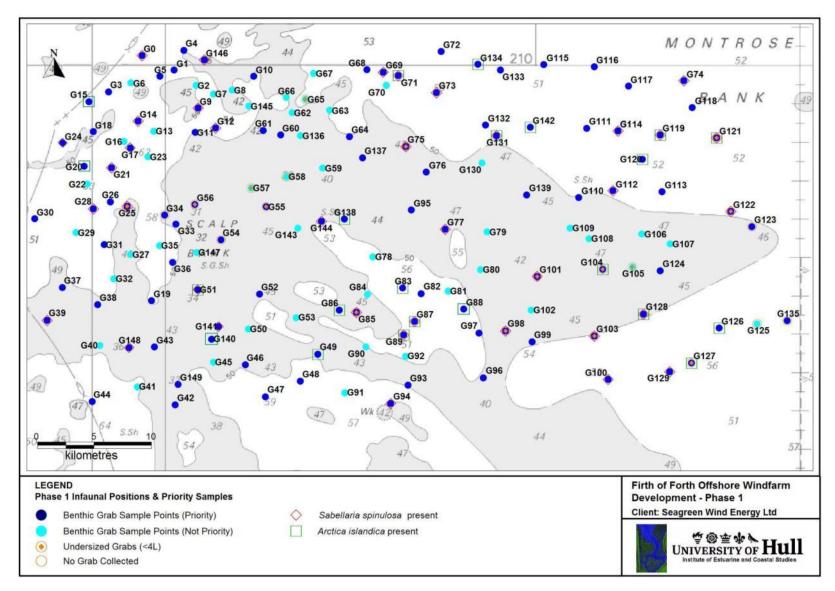


Figure 3. Species of conservation importance in the Phase 1 area.

3.3 Epibenthic Trawl Data

A diverse epifaunal community was recorded across the Phase 1 area with a total of 130 taxa identified within the epifaunal trawl samples. The most abundant taxa recorded included *Crangon allmanni*, *Pandalina brevirostris* and *Pandalus montagui* (shrimp), *Asterias rubens* (common starfish), *Ophiothrix fragilis* (common brittlestar) and *Galathea intermedia* (squat lobster). In terms of fish species the most abundant species were *Ammodytes* spp. (Sand eel), *Agonus cataphractus* (Pogge), *Limanda limanda* (Dab) and *Pomatoschistus lozanoi / norvegicus* (Lozano's goby / Norway goby). The full epibenthic dataset is provided in excel format.

A subsample of all fish species was retained and total length measurements recorded. All length measurements are provided in excel format.

3.4 Particle Size Analysis and Organic Content Data

Summarised statistics for Particle Size Analysis (PSA) and Organic Content (OC) are provided in Table 1. Full PSA data is provided in excel format. The Phase 1 area was dominated by sandy sediments containing varying degrees of gravel. Large boulders were occasionally recorded in sandy areas. The organic content of sediments collected was low, ranging from 0.20% to 2.49% with an average of 0.98%.

3.5 Sediment Contaminant Data

Sediment contaminant results are provided in Appendix 4.

Site	Textural Group	Composition (%)			00 (%)	Descriptive Statistics (Folk and Ward Method) (µm)				Descriptive Statistics (Folk and Ward Method) (ø)			
Site		Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G0	Gravelly Sand	14.6	78.0	7.4	0.81	392.8	4.623	0.265	2.127	1.348	2.209	-0.265	2.127
G1	Slightly Gravelly Sand	0.3	94.6	5.1	0.96	265.2	1.961	-0.191	1.603	1.915	0.972	0.191	1.603
G3	Slightly Gravelly Sand	0.2	90.1	9.7	0.88	185.2	2.099	-0.351	2.184	2.433	1.070	0.351	2.184
G4	Slightly Gravelly Sand	0.6	99.4	0.0	1.09	404.8	1.510	0.025	0.998	1.305	0.595	-0.025	0.998
G5	Slightly Gravelly Sand	1.6	97.1	1.3	1.22	311.7	1.859	0.189	1.228	1.682	0.894	-0.189	1.228
G9	Gravelly Sand	14.8	79.3	5.9	0.64	481.7	3.605	0.243	1.646	1.054	1.850	-0.243	1.646
G10	Gravelly Sand	10.1	89.9	0.0	1.05	469.9	2.367	0.376	1.360	1.090	1.243	-0.376	1.360
G11	Gravelly Sand	5.3	93.5	1.2	0.75	329.4	1.896	0.262	1.689	1.602	0.923	-0.262	1.689
G12	Gravelly Sand	8.3	83.6	8.1	0.72	335.2	3.179	-0.002	2.670	1.577	1.669	0.002	2.670
G14	Gravelly Sand	12.2	81.1	6.7	1.58	376.3	3.977	0.237	2.309	1.410	1.992	-0.237	2.309
G15	Slightly Gravelly Sand	3.1	91.0	5.9	1.31	266.1	2.392	-0.100	1.973	1.910	1.258	0.100	1.973
G17	Slightly Gravelly Sand	0.3	95.6	4.1	1.28	279.1	1.526	-0.064	1.028	1.841	0.610	0.064	1.028
G18	Slightly Gravelly Sand	1.1	98.9	0.0	1.32	332.6	1.480	0.054	1.015	1.588	0.565	-0.054	1.015
G19	Slightly Gravelly Sand	0.8	99.2	0.0	1.58	552.0	1.558	-0.078	0.882	0.857	0.639	0.078	0.882
G20	Slightly Gravelly Sand	0.2	99.8	0.0	1.21	314.6	1.448	0.037	0.977	1.669	0.534	-0.037	0.977
G21	Gravelly Sand	20.2	71.9	8.0	1.41	523.0	5.362	0.236	1.326	0.935	2.423	-0.236	1.326
G24	Gravelly Sand	7.7	89.5	2.8	1.37	314.8	2.328	0.339	1.551	1.667	1.219	-0.339	1.551
G25	Gravelly Sand	22.7	74.3	3.0	1.31	681.6	3.920	0.280	0.940	0.553	1.971	-0.280	0.940
G26	Slightly Gravelly Sand	2.6	91.8	5.6	1.29	303.1	2.138	-0.123	1.959	1.722	1.096	0.123	1.959
G28	Gravelly Muddy Sand	29.1	62.4	8.5	0.94	1083.5	8.681	0.239	1.157	-0.116	3.118	-0.239	1.157
G30	Slightly Gravelly Sand	0.5	99.5	0.0	0.99	344.2	1.521	0.046	0.962	1.539	0.605	-0.046	0.962
G31	Slightly Gravelly Sand	3.5	92.4	4.2	0.99	334.7	1.872	0.161	1.589	1.579	0.904	-0.161	1.589
G33	Slightly Gravelly Sand	0.8	99.2	0.0	1.85	466.9	1.622	-0.015	0.927	1.099	0.697	0.015	0.927
G34	Sandy Gravel	48.3	50.1	1.6	1.19	1999.6	6.726	0.154	0.634	-1.000	2.750	-0.154	0.634
G36	Slightly Gravelly Sand	1.3	97.5	1.3	1.29	337.4	1.682	0.070	1.102	1.567	0.750	-0.070	1.102
G37	Slightly Gravelly Sand	0.8	99.2	0.0	0.71	397.3	1.563	0.066	1.037	1.332	0.644	-0.066	1.037
G38	Gravelly Sand	12.6	87.4	0.0	0.83	459.1	2.897	0.546	2.912	1.123	1.535	-0.546	2.912
G39	Slightly Gravelly Muddy Sand	3.6	86.5	9.9	1.61	329.2	3.076	-0.162	2.101	1.603	1.621	0.162	2.101
G42	Sandy Gravel	41.7	57.1	1.2	0.69	1799.1	5.265	0.432	0.634	-0.847	2.396	-0.432	0.634
G43	Slightly Gravelly Sand	3.3	95.8	0.9	0.63	457.6	1.901	0.153	1.131	1.128	0.927	-0.153	1.131

Table 1. Particle Size Analysis and Organic Content Summary.

Site	Textural Group	Composition (%)			00 (01)	Descriptive	Statistics (Fo	lk and Ward I	Method) (µm)) Descriptive Statistics (Folk and Ward Method) (ø)			
Site		Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G44	Slightly Gravelly Sand	1.8	90.0	8.2	1.04	244.2	2.468	-0.194	1.827	2.034	1.303	0.194	1.827
G46	Slightly Gravelly Sand	2.9	94.1	3.0	0.56	293.3	1.597	0.042	1.132	1.770	0.675	-0.042	1.132
G47	Slightly Gravelly Sand	0.2	94.2	5.6	0.96	203.1	1.796	-0.286	1.912	2.300	0.845	0.286	1.912
G48	Slightly Gravelly Sand	0.3	91.9	7.8	0.94	209.8	1.992	-0.321	2.238	2.253	0.994	0.321	2.238
G49	Slightly Gravelly Sand	0.9	99.1	0.0	0.47	337.2	1.478	0.047	1.000	1.568	0.564	-0.047	1.000
G51	Slightly Gravelly Sand	1.0	99.0	0.0	1.30	395.5	1.561	0.071	1.053	1.338	0.642	-0.071	1.053
G52	Slightly Gravelly Sand	4.3	95.7	0.0	0.61	344.2	1.759	0.245	1.517	1.539	0.815	-0.245	1.517
G54	Sandy Gravel	40.7	54.6	4.7	1.68	1491.6	4.622	-0.017	1.048	-0.577	2.209	0.017	1.048
G55	Sandy Gravel	34.9	65.1	0.0	0.82	1655.4	6.055	0.625	0.642	-0.727	2.598	-0.625	0.642
G56	Sandy Gravel	56.9	39.0	4.1	2.37	2685.9	6.948	-0.127	0.846	-1.425	2.797	0.127	0.846
G60	Slightly Gravelly Sand	1.2	98.8	0.0	0.90	445.5	1.592	0.056	1.016	1.167	0.671	-0.056	1.016
G61	Slightly Gravelly Sand	0.4	99.6	0.0	0.77	419.1	1.448	0.056	0.972	1.255	0.534	-0.056	0.972
G64	Slightly Gravelly Sand	3.3	96.7	0.0	1.32	527.1	1.867	0.385	1.234	0.924	0.901	-0.385	1.234
G68	Slightly Gravelly Sand	1.9	98.1	0.0	0.72	460.6	1.641	0.022	0.973	1.119	0.714	-0.022	0.973
G69	Gravelly Sand	7.9	92.1	0.0	1.21	480.6	2.232	0.423	1.317	1.057	1.159	-0.423	1.317
G71	Slightly Gravelly Sand	2.2	94.3	3.5	0.49	333.2	1.788	0.072	1.231	1.585	0.838	-0.072	1.231
G72	Slightly Gravelly Sand	3.0	97.0	0.0	0.93	369.2	1.775	0.140	1.188	1.438	0.828	-0.140	1.188
G73	Gravelly Sand	9.9	81.9	8.2	1.25	387.0	3.818	0.048	1.874	1.369	1.933	-0.048	1.874
G74	Gravelly Sand	20.9	73.2	5.9	1.13	550.8	5.743	0.413	1.398	0.860	2.522	-0.413	1.398
G75	Sandy Gravel	52.8	46.2	1.1	1.82	3736.9	7.215	0.176	0.528	-1.902	2.851	-0.176	0.528
G76	Slightly Gravelly Sand	1.7	98.3	0.0	0.73	551.9	1.713	0.112	0.996	0.858	0.777	-0.112	0.996
G77	Sandy Gravel	54.0	43.9	2.1	2.49	3484.9	6.487	-0.058	0.604	-1.801	2.698	0.058	0.604
G82	Slightly Gravelly Sand	4.1	95.9	0.0	0.44	303.5	1.792	0.218	1.488	1.720	0.842	-0.218	1.488
G83	Gravelly Sand	25.2	74.8	0.0	0.38	1232.2	6.060	0.631	1.015	-0.301	2.599	-0.631	1.015
G85	Gravelly Sand	6.4	86.6	6.9	0.70	371.9	2.965	-0.049	1.792	1.427	1.568	0.049	1.792
G86	Slightly Gravelly Sand	2.8	97.2	0.0	0.57	393.1	1.605	0.096	1.092	1.347	0.682	-0.096	1.092
G87	Sandy Gravel	49.9	47.6	2.5	0.63	2197.6	7.616	0.062	0.549	-1.136	2.929	-0.062	0.549
G88	Slightly Gravelly Sand	2.9	97.1	0.0	0.24	286.9	1.656	0.227	1.596	1.802	0.728	-0.227	1.596
G89	Slightly Gravelly Sand	0.8	95.9	3.3	0.59	308.2	1.642	-0.010	1.012	1.698	0.715	0.010	1.012
G93	Gravelly Sand	5.1	94.9	0.0	0.20	303.2	1.841	0.284	1.779	1.721	0.881	-0.284	1.779
G94	Gravelly Sand	5.7	94.3	0.0	0.88	411.0	1.965	0.232	1.319	1.283	0.974	-0.232	1.319

Cite	Textural Group	Composition (%)			00 (%)	Descriptive \$	Statistics (Fo	lk and Ward I	Method) (µm)) Descriptive Statistics (Folk and Ward Method) (ø)			
Site		Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G95	Slightly Gravelly Sand	3.4	96.6	0.0	0.67	472.6	1.713	0.081	1.111	1.081	0.777	-0.081	1.111
G96	Slightly Gravelly Sand	2.9	92.1	5.0	0.69	279.2	2.048	0.164	1.638	1.840	1.035	-0.164	1.638
G97	Gravelly Sand	16.2	83.8	0.0	0.68	513.1	3.434	0.588	1.753	0.963	1.780	-0.588	1.753
G98	Slightly Gravelly Sand	0.8	97.5	1.6	0.74	289.7	1.602	0.036	1.018	1.788	0.680	-0.036	1.018
G99	Slightly Gravelly Sand	4.9	95.1	0.0	0.65	290.8	1.883	0.273	1.677	1.782	0.913	-0.273	1.677
G100	Gravelly Sand	5.4	89.2	5.4	0.92	344.8	2.522	-0.001	1.649	1.536	1.335	0.001	1.649
G101	Gravelly Sand	25.7	72.4	1.9	1.62	926.3	3.327	0.151	1.054	0.110	1.734	-0.151	1.054
G103	Sandy Gravel	41.7	56.3	2.0	0.91	1833.6	8.017	0.517	0.534	-0.875	3.003	-0.517	0.534
G104	Gravelly Sand	5.4	94.6	0.0	1.31	605.8	1.888	0.189	1.038	0.723	0.917	-0.189	1.038
G110	Slightly Gravelly Sand	2.1	97.9	0.0	1.01	306.1	1.780	0.177	1.190	1.708	0.832	-0.177	1.190
G111	Slightly Gravelly Sand	3.8	92.5	3.7	0.78	274.4	1.837	0.245	1.756	1.866	0.877	-0.245	1.756
G112	Gravelly Sand	19.8	76.0	4.2	1.25	741.0	4.081	-0.114	1.098	0.432	2.029	0.114	1.098
G113	Gravelly Sand	13.4	82.6	3.9	1.09	474.9	3.120	0.258	0.798	1.074	1.642	-0.258	0.798
G114	Gravelly Sand	19.9	77.3	2.9	1.20	548.1	3.363	0.314	0.748	0.867	1.750	-0.314	0.748
G115	Gravelly Sand	5.8	92.1	2.1	1.03	653.8	2.202	-0.060	0.879	0.613	1.139	0.060	0.879
G116	Slightly Gravelly Sand	4.1	95.9	0.0	0.62	350.5	1.908	0.267	1.411	1.512	0.932	-0.267	1.411
G117	Gravelly Sand	8.0	89.9	2.1	1.21	482.1	2.656	0.176	0.811	1.053	1.409	-0.176	0.811
G118	Slightly Gravelly Sand	0.3	99.7	0.0	0.62	345.1	1.608	0.086	1.008	1.535	0.685	-0.086	1.008
G119	Gravelly Sand	9.9	86.6	3.5	0.75	310.9	2.566	0.434	2.130	1.686	1.359	-0.434	2.130
G120	Slightly Gravelly Sand	1.0	99.0	0.0	0.66	273.2	1.540	0.052	1.025	1.872	0.623	-0.052	1.025
G121	Sandy Gravel	45.2	53.6	1.1	0.74	2068.5	3.611	0.121	1.122	-1.049	1.853	-0.121	1.122
G122	Gravelly Sand	11.9	85.1	3.0	0.85	396.2	3.374	0.551	1.961	1.336	1.755	-0.551	1.961
G123	Sandy Gravel	48.0	48.5	3.4	2.11	1587.2	4.475	-0.145	1.412	-0.666	2.162	0.145	1.412
G124	Gravelly Sand	13.7	86.3	0.0	0.38	501.6	2.914	0.429	0.918	0.995	1.543	-0.429	0.918
G126	Gravelly Sand	8.0	87.1	4.9	0.64	338.6	2.390	0.229	1.972	1.562	1.257	-0.229	1.972
G127	Slightly Gravelly Sand	0.5	99.5	0.0	0.69	255.4	1.545	0.044	0.979	1.969	0.628	-0.044	0.979
G128	Slightly Gravelly Sand	1.9	98.1	0.0	0.53	238.0	1.561	0.097	1.045	2.071	0.643	-0.097	1.045
G129	Gravelly Sand	16.6	79.1	4.3	0.44	721.3	2.932	0.018	1.042	0.471	1.552	-0.018	1.042
G131	Slightly Gravelly Sand	2.3	93.8	4.0	0.80	276.9	1.908	0.122	1.415	1.852	0.932	-0.122	1.415
G132	Gravelly Sand	19.2	80.8	0.0	0.78	626.5	3.603	0.582	1.170	0.675	1.849	-0.582	1.170
G133	Slightly Gravelly Sand	1.9	97.7	0.3	0.65	363.8	1.740	0.154	1.174	1.459	0.799	-0.154	1.174

Site	Textural Group	Composition (%)				Descriptive Statistics (Folk and Ward Method) (μm)				Descriptive Statistics (Folk and Ward Method) (ø)			
		Gravel	Sand	Mud	OC (%)	Mean	Sorting	Skewness	Kurtosis	Mean	Sorting	Skewness	Kurtosis
G134	Slightly Gravelly Sand	3.4	96.6	0.0	0.53	334.0	1.667	0.179	1.304	1.582	0.737	-0.179	1.304
G137	Slightly Gravelly Sand	2.2	97.8	0.0	0.72	466.3	1.606	0.167	1.159	1.101	0.684	-0.167	1.159
G138	Slightly Gravelly Sand	2.4	97.6	0.0	0.44	416.2	1.601	0.165	1.255	1.265	0.679	-0.165	1.255
G139	Slightly Gravelly Sand	4.5	95.5	0.0	0.69	612.4	1.980	0.059	0.975	0.708	0.985	-0.059	0.975
G140	Slightly Gravelly Sand	2.1	97.9	0.0	0.72	340.8	1.658	0.178	1.221	1.553	0.729	-0.178	1.221
G141	Gravelly Sand	9.2	86.3	4.5	1.36	431.7	2.549	0.309	1.453	1.212	1.350	-0.309	1.453
G142	Slightly Gravelly Sand	0.7	99.3	0.0	1.47	376.1	1.635	0.096	1.023	1.411	0.709	-0.096	1.023
G144	Gravelly Sand	9.2	90.8	0.0	1.28	430.8	2.198	0.413	1.635	1.215	1.136	-0.413	1.635
G146	Gravelly Sand	12.1	85.2	2.7	0.85	502.0	3.241	0.467	2.344	0.994	1.696	-0.467	2.344
G148	Muddy Sandy Gravel	52.7	41.8	5.5	1.69	2799.1	9.275	-0.150	0.663	-1.485	3.213	0.150	0.663
G149	Muddy Sandy Gravel	58.6	36.5	5.0	1.98	5218.3	9.269	-0.699	0.604	-2.384	3.212	0.699	0.604

APPENDIX 1. BENTHIC GRAB PHOTOGRAPHS

Infaunal Grab Sample No. 0

Contaminant Grab Sample No. 0

Infaunal Grab Sample No. 1

Contaminant Grab Sample No. 2

Infaunal Grab Sample No. 3

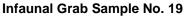
Institute of Estuarine and Coastal Studies

Infaunal Grab Sample No. 7

Contaminant Grab Sample No. 8

Infaunal Grab Sample No. 11

Infaunal Grab Sample No. 12



Contaminant Grab Sample No. 12

PSA Grab Sample No. 25

Infaunal Grab Sample No. 26

Infaunal Grab Sample No. 27

Contaminant Grab Sample No. 27

Infaunal Grab Sample No. 29

Infaunal Grab Sample No. 31

Infaunal Grab Sample No. 32

PSA Grab Sample No. 34

Contaminant Grab Sample No. 34

Contaminant Grab Sample No. 35

Infaunal Grab Sample No. 36

Infaunal Grab Sample No. 37

Infaunal Grab Sample No. 38

Contaminant Grab Sample No. 39

Infaunal Grab Sample No. 40

Contaminant Grab Sample No. 42

Infaunal Grab Sample No. 44

Contaminant Grab Sample No. 44

Contaminant Grab Sample No. 46

Infaunal Grab Sample No. 48

Contaminant Grab Sample No. 48

Infaunal Grab Sample No. 49

Infaunal Grab Sample No. 51

Contaminant Grab Sample No. 51

Infaunal Grab Sample No. 52

Infaunal Grab Sample No. 53

Infaunal Grab Sample No. 55

Infaunal Grab Sample No. 56

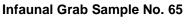
Infaunal Grab Sample No. 59

Contaminant Grab Sample No. 59

Infaunal Grab Sample No. 60

Contaminant Grab Sample No. 61

Infaunal Grab Sample No. 64



Contaminant Grab Sample No. 64

Infaunal Grab Sample No. 66

Contaminant Grab Sample No. 67

Infaunal Grab Sample No. 68

Contaminant Grab Sample No. 69

Infaunal Grab Sample No. 70

Infaunal Grab Sample No. 72

Infaunal Grab Sample No. 73

Infaunal Grab Sample No. 74

Contamination Grab Sample No. 75

Infaunal Grab Sample No. 77

Contaminant Grab Sample No. 77

Infaunal Grab Sample No. 78

Contaminant Grab Sample No. 79

Infaunal Grab Sample No. 81

Contaminant Grab Sample No. 81


Infaunal Grab Sample No. 84

Infaunal Grab Sample No. 85

Contaminant Grab Sample No. 85

Infaunal Grab Sample No. 87

Infaunal Grab Sample No. 88

Infaunal Grab Sample No. 89

Infaunal Grab Sample No. 91

Contaminant Grab Sample No. 91

Infaunal Grab Sample No. 94

Infaunal Grab Sample No. 95

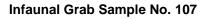
Infaunal Grab Sample No. 96

Contaminant Grab Sample No.99

Infaunal Grab Sample No. 101

Contaminant Grab Sample No. 101

Infaunal Grab Sample No. 104



Infaunal Grab Sample No. 106

Contaminant Grab Sample No. 106

Infaunal Grab Sample No. 109

Contaminant Grab Sample No. 110

Infaunal Grab Sample No. 111

Infaunal Grab Sample No. 112

Infaunal Grab Sample No. 114

Conaminant Grab Sample No. 114

Infaunal Grab Sample No. 115

Infaunal Grab Sample No. 116

Infaunal Grab Sample No. 117

Infaunal Grab Sample No. 119

Contaminant Grab Sample No. 120

Infaunal Grab Sample No. 121

Infaunal Grab Sample No. 124

Contaminant Grab Sample No. 124

Infaunal Grab Sample No. 125

Infaunal Grab Sample No. 126

Infaunal Grab Sample No. 129

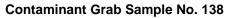
Contaminant Grab Sample No. 129

Infaunal Grab Sample No. 130

Contaminant Grab Sample No. 133

Infaunal Grab Sample No. 134

Infaunal Grab Sample No. 136



Infaunal Grab Sample No. 138

Infaunal Grab Sample No. 139

Contaminant Grab Sample No. 139

Infaunal Grab Sample No. 141

Infaunal Grab Sample No. 142

Infaunal Grab Sample No. 143

Infaunal Grab Sample No.145

Infaunal Grab Sample No. 146

Infaunal Grab Sample No. 147

Infaunal Grab Sample No. 148

Contaminant Grab Sample No. 148

Infaunal Grab Sample No. 149

Infaunal Grab Sample No. MM1

Infaunal Grab Sample No. MM1 Phase 2

APPENDIX 2. EPIBENTHIC TRAWL PHOTOGRAPHS

Epibenthic Trawl Sample No. V0

Epibenthic Trawl Sample No. V2

Epibenthic Trawl Sample No. V5

Epibenthic Trawl Sample No. V6

Epibenthic Trawl Sample No. V10

Epibenthic Trawl Sample No. V12

Epibenthic Trawl Sample No. V13

Epibenthic Trawl Sample No. V15

Epibenthic Trawl Sample No. V17

Epibenthic Trawl Sample No. V19

Epibenthic Trawl Sample No. V20

Epibenthic Trawl Sample No. V21

Epibenthic Trawl Sample No. V22

Epibenthic Trawl Sample No. V24

Epibenthic Trawl Sample No. V24

Epibenthic Trawl Sample No. V25

Epibenthic Trawl Sample No. V27

Epibenthic Trawl Sample No. V25

Epibenthic Trawl Sample No. V27

Epibenthic Trawl Sample No. V27

Epibenthic Trawl Sample No. V28

Epibenthic Trawl Sample No. V30

Epibenthic Trawl Sample No. V30

Epibenthic Trawl Sample No. V31

Epibenthic Trawl Sample No. V32

Epibenthic Trawl Sample No. V33

Epibenthic Trawl Sample No. V33

Epibenthic Trawl Sample No. V34

Epibenthic Trawl Sample No. V36

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V37

Epibenthic Trawl Sample No. V38

Epibenthic Trawl Sample No. V39

Epibenthic Trawl Sample No. V40

Epibenthic Trawl Sample No. V41

Epibenthic Trawl Sample No. V42

Epibenthic Trawl Sample No. V44

Epibenthic Trawl Sample No. V44

Epibenthic Trawl Sample No. V47

Epibenthic Trawl Sample No. V47

Epibenthic Trawl Sample No. V46

Epibenthic Trawl Sample No. V48

APPENDIX 3. VIDEO ANALYSIS RECORD SHEETS

Video analysis record sheets

Infaunal grab drop down video – G25

Video depth	51.3m
Sediment type	Mixed gravel and sand with occasional cobbles
Sediment image	N 56 36.371 Hdg: 004.3 W002 01.766 Speed: 01.6
	08:02:06 03-28-11

Video depth	54.8m
Sediment type	Mixed gravel, sand and occasional cobbles
Sediment image	N 56 36.149 Hdg: 010.5 W002 00.017 Speed: 01.1
	20:22:55 03-27-11

Video depth	Not recorded
Sediment type	Gravel, sand, cobbles and boulders Brittlestar bed
Sediment image	N 56 35 497 Hdg: 023 6 H001 57 393 Speed: 01, 1 OG: 44: 17 03-25-11

Video depth	46.8m
Sediment type	Rippled sand with some coarse shell
Sediment image	N 55 36 288 Hda: 022 0 H001 55 242 Speed: 01 5
	09:59:59 03-28-11

Video depth	35.1m
Sediment type	Matrix supported stony, cobbled sediment View partially obscured by dense brittlestars
Sediment image	N 56 36 437 Hdg: 024 2 H001 58 575 Speed: 01 2 08:33:46 03-28-11

Video depth	45.4m
Sediment type	Mixed sediment. Stony/gravel
Sediment image	N 58 38 702 Hdg: 007.1 H001 55.964 Speed: 00,4
	09:29:05 03-28-11

14 Vido a donth

Infaunal grab drop down video – G58

Video depth	44m
Sediment type	Gravel and occasional cobbles
Sediment image	N 56 37.172 Hdg: 012.3 Speed: 01.0

Video depth	42.9m
Sediment type	Sand, shell and gravel. Boulder with dense brittlestars.
Sediment image	N 56 37.821 Hdg: 012.8 H001 48:655 Speed: 01.2 21:53:37 03-27-11

Video depth	47.4m
Sediment type	Coarse gravel
Sediment image	N 58 33,559 Hda: 027.6 H001 50.957 Spaad: 01.4 10:45:09 03-28-11

Video depth	53.2m
Sediment type	Rippled sand and coarse shell with patchy gravelly sand
Sediment image	N 56 33.069 Hdg: 185.1 Speed: 01.6 01;20;57 03-28-11

Video depth	42.6m
Sediment type	Changes from coarse gravel and pebbles (a) to mixed sand and gravel (b)
Sediment image	N 56 34.325 Hdg: 175.4 WOO1 42.471 Speed: 02.2
	23:49:21 03-27-11 a:
	N 56 34.290 Hdg: 174.0 WOO1 42.465 Speed: 02.3
	23:50:20 03-27-11 b:

Video depth	46.7m
Sediment type	Gravel with sand (a) getting increasingly coarse with some cobbles (b)
Sediment image	N 56 33 081 Hdg: 188 1 W001 39 774 Speed: 01 7
	01 : 57 : 36 03-28-11 a:
	N 56 32 981 Hdg: 170 5 W001 39 764 Speed: 02 0
	02:00:42 03-28-11 b:

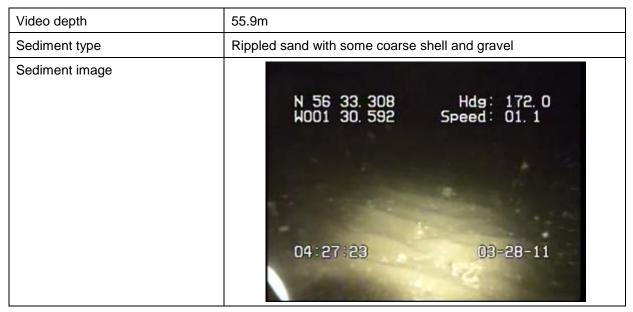
Infaunal grab dro	p down vic	leo – G104
-------------------	------------	------------

Video depth	51m						
Sediment type	Mixed gravel with sand						
Sediment image	N 56 34,802 Hds: 213,8 5peed: 02.6 12:24:36 03-28-11						

Video depth	53.3m
Sediment type	Mixed gravel, coarse shell and sand
Sediment image	N 56 34, 695 Hdg: 027, 4 H001 37, 952 Speed: 02. 2 12:54:37 03-28-11

Video depth	54m						
Sediment type	Mixed gravel, sand and shell						
Sediment image	N 56 38,284 Hdg; 192.8 H001 38,555 Speed; 00.8						
	15:50:41 03-28-11						

Video depth	51.4m
Sediment type	Mixed gravel, sand and shell
Sediment image	N 56 38 138 Hds: 202.6 H001 33 307 Speed: 01.5
	15:10:13 03-28-11


Video depth	56.6m						
Sediment type	Sand, coarse shell and gravel						
Sediment image	N 56 36.189 Hdg: 349.9 Speed: 01.7 05:39:46 03-28-11						

Video depth	49.7m
Sediment type	Mixed sand, gravel and shell (a) with an increasing gravel fraction (b)
Sediment image	N 58 35.771 Has: 032.3 Hoo1 32.299 52001:02.1 13:31:59 03-28-11
	N 58 35, 842 Heat 033, 0 5peed: 01, 3 13:35:07 03-28-11
	b:

Video depth53.7mSediment typeRippled sand with some shell and gravelSediment imageN 56 33.250 Hdg: 054.1
Speed: 02.1N 56 33.250 OddSpeed: 02.1N 001 32.043 Speed: 02.103:45:25 03-28-11

Infaunal grab drop down video – G125

Video depth	57.2m
Sediment type	Rippled sand with some coarse shell and gravel
Sediment image	N 56 32 213 Hdg: 062 3 W001 35 203 Speed: 01.7 03:14:37 09-29-11

Video depth	46.3m						
Sediment type	Coarse gravel and pebbles with some sandier patches						
Sediment image	N 56 32.836 Hdg: 051.8 Speed: 00.8 02:37:36 03-28-11						

APPENDIX 4. SEDIMENT CONTAMINATION REPORT

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU6 7RX

Attention: Ann Leighton

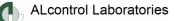
CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 21 March 2011 H_UNIHULL_HUL 110215-30 ZBB 776 Sea Green 121410

We received 5 samples on Tuesday February 15, 2011 and 5 of these samples were scheduled for analysis which was completed on Monday March 21, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.


Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

<u>Sonia McWhan</u> Operations Manager

CERTIFICATE OF ANALYSIS

Validated

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: Customer: Report Number: **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2871958	G15		64.80	10/02/2011
2871954	G22		54.30	11/02/2011
2871955	G24		59.00	11/02/2011
2871956	G3		75.00	10/02/2011
2871957	G6		62.30	10/02/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

ob:	H_UNIHULL_HUL-5	Custome	r: (Unive	ersity	/ of ⊢	lull		SDG: 110215-30 Location: Sea Green Order Number: FJ023335 Job: H_UNIHULL_HUL-5 Customer: University of Hull Report Number: 121410								
Client Reference:	ZBB 776	Attention	1: /	Ann I	Leigl	nton		1	Superseded Report:								
OLID	Lah Carra		28	28	28	28	20										
esults Legend	Lab Samp	le No(s)	2871956	2871957	2871958	2871954	201 102										
X Test			0)	7		4		1									
No Determina	ation																
Possible	Custo				6	0	G										
	Sample Re	ference	G3	G6	G15	G22	G24	2									
	AGS Ref	erence															
			-				-	-									
	Depth	(m)	75.00	62.30	64.80	54.30	09.00										
	Deptil	(111)	8	ő	8	8	2	5									
			22	28	22	28	21										
	Conta		60g 50g Ar	60g 50g Ar	60g 70g Ar	60g 50g Ar	50g Ar										
	Conta	IIIei	60g VOC 250g Amber Jar	voc nber J	voc nber J	nber J	nber J	õ									
			ar	ar	ar	ar	ar										
'H by FID	All	NDPs: 0 Tests: 5						_									
RO by GC-FID (S)	All	NDPs: 0	x	x	x	x	x	_									
.0 by 00-1 ib (0)		Tests: 5	x	x	X	x	.)										
tals by iCap-OES (Soil)) Arsenic	NDPs: 0	^	^	^			• •									
	, 	Tests: 5	X	x	x	x	x	-									
	Cadmium	NDPs: 0					\square	-									
		Tests: 5	x	x	x	x	x	-									
	Chromium	NDPs: 0						-									
		Tests: 5	x	x	x	x	x	-									
	Copper	NDPs: 0 Tests: 5						1									
			x	x	x	x	x										
	Lead	NDPs: 0 Tests: 5															
			x	x	x	x	x										
	Mercury	NDPs: 0 Tests: 5						-									
	Niekol		x	x	x	x	x	_									
	Nickel	NDPs: 0 Tests: 5	v	v	v	V		-									
	Selenium	NDPs: 0	x	x	x	x	x	-									
	Colonian	Tests: 5	x	x	x	x	X	-									
	Zinc	NDPs: 0						-									
		Tests: 5	X	x	x	x	x	-									
ganotins on soils*	All	NDPs: 0						-									
		Tests: 5	x	x	x	x	x	-									
H by GCMS	All	NDPs: 0 Tests: 5						1									
		10515. 3	x	x	x	x	x										
Bs by GCMS	All	NDPs: 0 Tests: 5															
			x	x	x	x	x										
mple description	All	NDPs: 0			L [1 T	1									

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

SDG: 110215-30 Location: Sea Green Order Number: FJ023335 Job: H_UNIHULL_HUL-5 Customer: University of Hull Report Number: 121410 Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:	
--	--

Sample Descriptions

irain Sizes							
very fine <0.	063mm fine (0.063mm - 0.1mm m	edium 0.1mm	- 2mm coa	rse 2mm - 1	0mm very coa	arse >10mr
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
2871956	G3	75.00	Dark Brown	Sand	0.1 - 2 mm	None	None
2871957	G6	62.30	Dark Brown	Sand	0.1 - 2 mm	None	None
2871958	G15	64.80	Dark Brown	Sand	0.1 - 2 mm	None	None
2871954	G22	54.30	Dark Brown	Sand	0.1 - 2 mm	Stones	None
2871955	G24	59.00	Dark Brown	Sand	0.1 - 2 mm	None	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

Image: sector with the sector w									
header stand with weak weak weak weak weak weak weak weak		c	ustomer Sample R	G3	G6	G15	G22	G24	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
minute intermediation intermedi	aq Aqueous / settled sample.								
* stateward interaction constraints of the array of the	tot.unfilt Total / unfiltered sample.		Date Sampled	10/02/2011	10/02/2011	10/02/2011	11/02/2011	11/02/2011	
	** % recovery of the surrogate standar								
Name Note of the series of the									
component EPH SurgogileCODUMN WMenod <th< td=""><td></td><td>d for</td><td>AGS Reference</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		d for	AGS Reference						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LOD/Units	Method						
EPH Range > C10 - C40 <3 TM061 M9.7 53.6 M7.6 38.4 52.4 52.4 PCB congener 28 <3 µg/kg	EPH Surrogate %	%	TM061						
make PCB congener 28rM168 s 3 µg/kgrM168 rM168rM168 s 3 rM168rM168 s 3 rM168rM168 rM			T1 (00) (
PCB congener 28 <3 µg/kg TM168 <3 M	EPH Range >C10 - C40		TM061						
PCB congener 52 $3 \mu \mu \mu$ TM file $3 - \mu$	PCB congener 28		a TM168						
C C			- -	М		М	М	М	
PCB congener 101 $<3 \mu \mu k g$ TM168 $<3 \ M$ <td>PCB congener 52</td> <td><3 µg/kę</td> <td>g TM168</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PCB congener 52	<3 µg/kę	g TM168						
1.00 1.00	BCB congoner 101	<2 110/4/	TM169						
PCB congener 118 $<3 \mu g/kg$ TM168 $<3 \mu$ $>3 d$		>5 µg/kį							
Image: consense 138 $3 \ y g k y_g$ TM168 $3 \ k g k g$ TM168 $3 \ k g k g$ TM168 $3 \ k g k g$ $3 \ k g k g k g$ TM168 $3 \ k g k g k g$ TM168 $3 \ k g k g k g k g k g k g k g k g k g k$	PCB congener 118	<3 µg/kg	g TM168						
-10^{-0} $-10^{$									
PCB congener 153 $<3 \mu g/kg$ TM168 $<3 \dots$ $>3 \dots$ <	PCB congener 138	<3 µg/kę	g TM168						
100 <t< td=""><td>PCB congener 153</td><td><3 110/4</td><td>TM168</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PCB congener 153	<3 110/4	TM168						
PCB congener 180 $<3 \mu g/kg$ TM168 $<3 \dots$ $<3 \dots$ $<3 \dots$ $<3 \dots$ $<3 \dots$ $<3 \dots$ M <td></td> <td>-0 µ9/N</td> <td>9 1101100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-0 µ9/N	9 1101100						
PCBs, Total ICES 7 $<3 \mu g/kg$ TM168 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <t< td=""><td>PCB congener 180</td><td><3 µg/k</td><td>g TM168</td><td><3</td><td><3</td><td><3</td><td><3</td><td><3</td><td></td></t<>	PCB congener 180	<3 µg/k	g TM168	<3	<3	<3	<3	<3	
Image: constraint of the sector of									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PCBs, Total ICES 7	<3 µg/kį	g TM168	<3	<3	<3	<3	<3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB congener 105	<3 µa/ka	7 TM168	<3	<3	<3	<3	<3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·	0 μ9/13	,						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PCB congener 156	<3 µg/kę	g TM168						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Arresta	10.0	TN404						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Arsenic		TM181						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cadmium	T	TM181						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chromium	<0.9	TM181						
ng/qg ng/kg <		1	TN404						
Lead 30.7 mg/kg TM181 5.23 mg/kg 5.33 M 5.96 M 10.5 M 12.2 M M Mercury 40.14 mg/kg TM181 40.14 M	Copper		11/11/81						
$\begin{array}{ c c c c c c c }\hline \begin{tabular}{ c c c c c c c } \hline \end{tabular} & $	Lead	1	TM181						
ng/kgng/kg \cdot <									
Nickel <0.2 mg/kg TM181 5.08 M 12.7 M 16.4 M 5.92 M 7.33 M Selenium <1 mg/kg	Mercury		TM181						
mg/kg mg/kg <th< td=""><td>Nickel</td><td>1</td><td>TM191</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Nickel	1	TM191						
Selenium <1 mg/kg TM181 <1 mg/kg <1 mg/kg <t< td=""><td>Nickel</td><td></td><td>TWITCH</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Nickel		TWITCH						
Zinc <1.9 TM181 20.1 21.8 21.1 18.5 21.7	Selenium		g TM181		<1		<1		
INKQIN	Zinc		TM181						
Indext of the second		mg/kg	+ +	IVI	IVI	IVI	IVI		
InterpretationInterp									
Image: series of the series									
Indext set in the									
Image: series of the series									
Image: book book book book book book book boo									
Image: series of the series									
Image: book book book book book book book boo									
Image: series of the series									
Image: state of the state of									
Image: bound b									
Image: series of the series									
Image: state of the state of									
Image: series of the series									
Image: series of the series									
Image: series of the series									
Image: selection of the									
Image: Second									
Image: series of the									
	L		-		:				

ALcontrol				CER	TI	FICATE O	F A	NALYSIS					
SDG: Job:	110215 H_UNII		IUL-5	Location: Customer:		a Green iversity of Hull			Order Number: Report Number:		J0233 21410		
Client Reference:	ZBB 77			Attention:		n Leighton			Superseded Repo				
RO by GC-FID ((S)												
Results Leg # ISO17025 accredited. M mCERTS accredited. § Non-conforming world			Customer Sample R	G3		G6		G15	G22		G24		
aq Aqueous / settled sar diss.filt Dissolved / filtered sa			Depth (m) Sample Type	75.00 Soil/Solid		62.30 Soil/Solid		64.80 Soil/Solid	54.30 Soil/Solid	Sc	59.00 bil/Solid		
t.unfilt Total / unfiltered sam * subcontracted test.	ple.		Date Sampled Date Received	10/02/2011 15/02/2011		10/02/2011 15/02/2011		10/02/2011 15/02/2011	11/02/2011 15/02/2011		02/201 02/201		
** % recovery of the su check the efficiency			SDG Ref	110215-30		110215-30		110215-30	110215-30	11(0215-30) C	
results of the individu within the samples a		for	Lab Sample No.(s) AGS Reference	2871956		2871957		2871958	2871954	28	871955		
this recovery.													
omponent GRO >C5-C12		LOD/Un <44		<44		<44		<44	<44		<44		
		µq/ka	1										
/lethyl tertiary butyl e MTBE)	ether	<5 µg/	/kg TM089	<5	#	<5	#	<5 #	<5		<5	#	
Benzene		<10	TM089	<10		<10		<10	<10		<10		
oluene		μg/kg <2 μg/		<2	М	<2	М	M <2	M <2		<2	М	
			Ŭ.		М		м	М	М			м	
thylbenzene	Γ	<3 µg/	/kg TM089	<3	М	<3	М	<3 M	<3 M		<3	М	
n,p-Xylene		<6 µg/	/kg TM089	<6		<6		<6	<6		<6		
o-Xylene		<3 µg/	/kg TM089	<3	М	<3	М	M <3	M <3		<3	М	
					М		м	М	М			М	
n,p,o-Xylene		<10 µg/kg		<10		<10		<10	<10		<10		
BTEX, Total		<10	TM089	<10		<10		<10	<10		<10		
		µg/kg	1						+				
									ļ				

					RTIFICATE OF A	NALYSIS			
SDG: Job:		IHULL_F	HUL-5	Location: Customer:	Sea Green University of Hull		Order Number: Report Number:	FJ023335 121410	
Client Reference		76		Attention:	Ann Leighton		Superseded Report	•	
Prganotins on Results	Legend		Customer Sample R	G3	G6	G15	G22	G24	
check the efficien results of the indi	ted. work. I sample. Id sample. sample.	The	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference hits Method	75.00 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871956	62.30 Soil/Solid 10/02/2011 15/02/2011 110215-30 2871957	64.80 Soii/Solid 10/02/2011 15/02/2011 110215-30 2871958	54.30 Soil/Solid 11/02/2011 15/02/2011 110215-30 2871954	59.00 Soii/Solid 11/02/2011 15/02/2011 110215-30 2871955	
ributyl tin*		<0.0	2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	
riphenyl tin*		mg/k <0.0	5 SUB	<0.05	<0.05	<0.05	<0.05	<0.05	
Dibutyl tin*		mg/k <0.0	2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	
etrabutyl tin*		mg/k <0.0		<0.02	<0.02	<0.02	<0.02	<0.02	
-		mg/k	g						
							ļļ		
			_						
							<u> </u>		
							ļ		

ALcontrol Laboratories Validated 0 **CERTIFICATE OF ANALYSIS** 110215-30 Sea Green FJ023335 SDG: Location: Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull Report Number: 121410 **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report: PAH by GCMS Results Legend ISO17025 accredited. mCERTS accredited. MOn-conforming work. Aqueous / sottled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery. Customer Sample R G3 G6 G15 G22 G24 # M 8 75.00 Soil/Solid 62.30 Soil/Solid 64.80 Soil/Solid 54.30 Soil/Solid 59.00 Soil/Solid Depth (m) Sample Type diss.filt tot.unfilt 10/02/2011 15/02/2011 10/02/2011 15/02/2011 10/02/2011 15/02/2011 11/02/2011 15/02/2011 11/02/2011 15/02/2011 Date Sampled Date Received ... 110215-30 2871954 110215-30 2871955 SDG Ref 110215-30 110215-30 110215-30 2871956 2871957 2871958 Lab Sample No.(s) AGS Reference this recovery. LOD/Units Method Component 113 Naphthalene-d8 % TM218 114 113 113 104 % recovery** Acenaphthe -d10 % TM210 114 112 0 recove Phena recove Chrys recove Peryle Napht

TECOVERY								
Acenaphthene-d10 % recovery**	%	TM218	114	112	113	112	102	
Phenanthrene-d10 %	%	TM218	111	109	110	110	99.1	
recovery**								
Chrysene-d12 % recovery**	%	TM218	111	109	109	110	99.2	
Perylene-d12 % recovery**	%	TM218	113	111	110	113	98.9	
Naphthalene	<9 µg/kg	TM218	<9 M	<9 M	<9 M	<9 M	14.6 M	
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	<12 M	<12 M	<12 M	
Acenaphthene	<8 µg/kg	TM218	<8	<8	<8	<8	<8	
Fluorene	<10	TM218	M <10	M <10	<10	M <10	M <10	
Phenanthrene	µg/kg <15	TM218	M <15	M <15	<15	M <15	M <15	
Anthracene	µg/kg <16	TM218	M <16	M <16	<16	M <16	M <16	
Fluoranthene	μ <u>g/kg</u> <17	TM218	M <17	M <17	M <17	M <17	M <17	
Pyrene	µg/kg <15	TM218	M <15	M <15	M <15	M <15	M <15	
-	µg/kg		М	М	М	М	М	
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Chrysene	<10 µg/kg	TM218	<10 M	<10 M	<10 M	<10 M	<10 M	
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Benzo(a)pyrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 M	<18 M	<18 M	<18 M	<18 M	
Dibenzo(a,h)anthracene	<23	TM218	<23 M	<23 M	<23 M	<23 M	<23 M	
Benzo(g,h,i)perylene	μg/kg <24	TM218	<24	<24	<24	<24	<24	
Polyaromatic	µg/kg <118	TM218	M <118	M <118	M <118	M <118	M <118	
hydrocarbons, Total	µg/kg		М	М	М	М	М	

ALcontrol	Laboratories						Validated
		CEF	RTIFICATE OF	ANALYSIS			
SDG:	110215-30	Location:	Sea Green		Order Number:	FJ023335	
Job:	H_UNIHULL_HUL-5	Customer:	University of Hull		Report Number:	121410	
Client Reference:	ZBB 776	Attention:	Ann Leighton		Superseded Report:		
	= -			. (581)			

Extractable Petroleum Hydrocarbons (EPH) By GC-FID

EPH (DRO) (C10-C40)

Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3047439	G15	64.80	SOLID	47.6	No Identification Possible
3091095	G6	62.30	SOLID	53.5	No Identification Possible
3091135	G3	75.00	SOLID	49.7	No Identification Possible
3091146	G24	59.00	SOLID	52.4	PAHS
3091160	G22	54.30	SOLID	38.4	No Identification Possible

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics) :- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds.

Validated **ALcontrol Laboratories CERTIFICATE OF ANALYSIS** FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: Customer: Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Table of Results - Appendix

REPOF	RT KEY		_				Resu	Its expressed as ((e.g.) 1.03E-07 is equivaler	t to 1.03x10-7		
NDP	No Determination	Possible	#	ISO 17025 Accredited	Accredited * Subcontracted Test M			м	MCERTS Accredited			
NFD	No Fibres Detecte		PFD	Possible Fibres Detected		» Result previously reported (Incremental reports only) EC				Equivalent Carbon (Aromatics C8-C35)		
ote: Metho	od detection limits a	re not always achievable	due to vario	us circumstances beyond our c	ontrol							
М	ethod No		Refe	ence			Description		Wet/Dry Sample ¹	Surrogate Corrected		
	PM001				Preparatio	on of San	ples for Metals Analysis					
	PM024	Modified BS 1377			Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material							
	SUB				Subcontra	acted Tes	t					
	TM061	Method for the Det EPH, Massachuset			Determina GC-FID (0		xtractable Petroleum Hydrocarb	ons by				
	TM089	Modified: US EPA	Methods	8020 & 602			asoline Range Hydrocarbons (G npounds by Headspace GC-FID	,				
	TM168	EPA Method 8082 Gas Chromatograp	, <u>,</u>	rinated Biphenyls by	by Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils							
	TM181	US EPA Method 6	010B		Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES							
	TM218	Microwave extracti	on – EPA	method 3546	Microwave extraction - EPA method 3546							

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

FJ023335 SDG: 110215-30 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121410 Job: Customer: Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Test Completion Dates

Lab Sample No(s)	2871956	2871957	2871958	2871954	2871955
Customer Sample Ref.	G3	G6	G15	G22	G24
AGS Ref.					
Depth	75.00	62.30	64.80	54.30	59.00
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
EPH by FID	17-Mar-2011	17-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011
GRO by GC-FID (S)	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011
Metals by iCap-OES (Soil)	11-Mar-2011	11-Mar-2011	11-Mar-2011	11-Mar-2011	11-Mar-2011
Organotins on soils*	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011
PAH by GCMS	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	14-Mar-2011
PCBs by GCMS	12-Mar-2011	13-Mar-2011	13-Mar-2011	12-Mar-2011	12-Mar-2011
Sample description	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

ALcontrol Hawarden	Report No:	11-21714/1
Unit7-8, Hawarden Business Park Manor Road (off Manor Lane)	Date Received:	10/03/2011
Hawarden, Deeside	Date Tested:	14/03/2011 to 18/03/2011
Flintshire, CH5 3US	Date Issued:	18/03/2011
	Page:	1 of 2
For the attention of: Tracy Dykes	By email	

5 soil samples received from ALcontrol Hawarden (O/N: 168049; Project: 110215-30) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory re	eference	184304 3031717 G24-59.00	184305 3031739 G22-54.30	184306 3031810 G3-75.00
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21714/1
Date Received:	10/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	2 of 2

Laboratory r	eference		184307 3031857 G6-62.30	184308 3031889 G15-64.80
dibutyltin	[1002-53-5]	mg/kg Sn	< 0.02	< 0.02
tetrabutyltin	[1461-25-2]	mg/kg Sn	< 0.02	< 0.02
tributyltin	[56573-85-4]	mg/kg Sn	< 0.02	< 0.02
triphenyltin	[668-34-8]	mg/kg Sn	< 0.05	< 0.05

le

Emma Winter Laboratory Manager

CERTIFICATE OF ANALYSIS

SDG:	110215-30	Location:	Sea Green
Job:	H_UNIHULL_HUL-5	Customer:	University of Hull
Client Reference:	ZBB 776	Attention:	Ann Leighton

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: Superseded Report: FJ023335 121410

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	ATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GC-MS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC/MS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GC-MS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GC/MS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	6C-EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONCATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLD PHASE EXTRACTION	HPLC
PEST OCP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT NJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amoste	BrownAsbestos
Orodolite	Blue Asbestos
Fibrous Adindite	-
Florous Anthophylite	÷
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

University of Hull Department of Geography University of Hull Cottingham Road Hull South Yorkshire HU6 7RX

Attention: Ann Leighton

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 22 March 2011 H_UNIHULL_HUL 110309-48 ZBB 776 Sea Green 121539

We received 20 samples on Wednesday March 09, 2011 and 20 of these samples were scheduled for analysis which was completed on Tuesday March 22, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

<u>Sonia McWhan</u> Operations Manager

CERTIFICATE OF ANALYSIS

Validated

		V = 1			
SDG:	110309-48	Location:	Sea Green	Order Number:	FJ023335
Job:	H_UNIHULL_HUL-5	Customer:	University of Hull	Report Number:	121539
Client Reference:	ZBB 776	Attention:	Ann Leighton	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3030228	0		58.00	05/03/2011
3030232	02		52.50	06/03/2011
3030212	101		43.70	26/02/2011
3030233	12		53.10	06/03/2011
3030213	124		55.40	27/02/2011
3030215	129		54.50	27/02/2011
3030220	138		50.40	01/03/2011
3030227	148		40.00	04/03/2011
3030223	34		49.40	03/03/2011
3030224	35		61.90	03/03/2011
3030221	48		62.00	02/03/2011
3030225	51		39.40	04/03/2011
3030219	55		46.20	01/03/2011
3030231	59		42.80	05/03/2011
3030230	64		49.00	05/03/2011
3030234	67		56.70	06/03/2011
3030216	77		49.80	28/02/2011
3030218	79		52.90	28/02/2011
3030217	81		53.50	28/02/2011
3030222	85		46.40	02/03/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	110309-48		Location:		Sea (der I					J023			
Job: Client Reference:	H_UNIHUL ZBB 776	L_HUL-5	Customer Attention		Unive Ann I	-	/ of H nton	ull									iber: I Rep			2153	39		
SOLID				ω	ω	<i>u</i>	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω
Results Legend		Lab Samp	ole No(s)	3030228	3030232	3030233	3030223	3030224	3030221	3030225	3030219	3030231	3030230	3030234	3030216	3030218	3030217	3030222	3030212	3030213	3030215	3030220	3030227
X Test						<u> </u>	, w	4		01	Ű		0	4			7			ω	0		~
No Determir Possible	nation	Custo Sample Ro	-	0	02	21	. 34	35	48	51	55	59	64	67	77	79	81	85	101	124	129	138	148
		AGS Ref	erence																				
		Depth	ı (m)	58.00	52.50	53.10	49.40	61.90	62.00	39.40	46.20	42.80	49.00	56.70	49.80	52.90	53.50	46.40	43.70	55.40	54.50	50.40	40.00
	-	Conta	iner	60g VOC 250g Amber Jar	60g VOC 250g Amber Jar	250g Amber Jar	60g VOC 250g Amber Jar	60g VOC 250q Amber Jar	60g VOC 250g Amber Jar														
EPH by FID		All	NDPs: 0 Tests: 20	x	x	x	x	x	x	x	x	X	x	x	x	x	x	x	x	x	x	x	x
GRO by GC-FID (S)		All	NDPs: 0 Tests: 20	x	x	×	x	x	x	×	×	x	x	x	x	x	×	x	x	x	x	x	×
Metals by iCap-OES (So	il)	Arsenic	NDPs: 0 Tests: 20	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	x	x	x
		Cadmium	NDPs: 0 Tests: 20	x	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	x	x
		Chromium	NDPs: 0 Tests: 20	x	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	x	x
		Copper	NDPs: 0 Tests: 20	x	x	x	x	x	x	×	×	x	x	x	x	x	x	x	x	x	x	x	×
		Lead	NDPs: 0 Tests: 20	x	x	x	x	x	×	×	x	×	x	×	x	x	x	x	x	×	x	×	x
		Mercury	NDPs: 0 Tests: 20	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	x	x	x
	-	Nickel	NDPs: 0 Tests: 20	x	x	x	x	x	x	x	×	x	x	x	x	x	x	x	x	x	x	x	x
		Selenium	NDPs: 0 Tests: 20	x	x	x	x	x	×	×	×	×	x	x	x	x	x	x	x	×	x	x	×
		Zinc	NDPs: 0 Tests: 20	x	x	x	x	x	×	×	×	×	x	x	x	×	×	×	x	×	x	x	×
Organotins on soils*		All	NDPs: 0 Tests: 20	x	x	x	x	x	×	×	×	×	x	x	x	×	x	×	x	×	x	x	×
PAH by GCMS		All	NDPs: 0 Tests: 20	x	x	x	x	x	×	×	×	×	x	x	x	×	x	×	x	×	x	x	×
PCBs by GCMS			NDPs: 0 Tests: 20	x	x	x	x	x	×	×	×	×	x	×	x	x	x	×	x	×	x	x	×
Sample description		All	NDPs: 0 Tests: 20	X	X	x	X	X	X	X	X	X	X	x	X	x	X	X	x	x	x	x	X

Grain Sizes

CERTIFICATE OF ANALYSIS

110309-48 FJ023335 SDG: Location: Sea Green Order Number: Job: H_UNIHULL_HUL-5 Customer: University of Hull Report Number: 121539 **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report:

Sample Descriptions

ery fine <0.0	063mm fine	0.063mm - 0.1mm	medium	0.1mm	- 2mm coa	irse	2mm - 10mm	n very co	arse >10
.ab Sample No(s)	Customer Sample Re	ef. Depth (m)	Co	lour	Description	Grain	size	Inclusions	Inclusions 2
3030228	0	58.00	Dark	Brown	Sandy Clay	0.1 - 2	mm	Stones	None
3030232	02	52.50	Dark	Brown	Sand	0.1 - 2	mm	Stones	None
3030233	12	53.10	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030223	34	49.40	Dark	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030224	35	61.90	Light	Brown	Sand	0.1 - 2	mm	None	None
3030221	48	62.00	Dark	Brown	Sand	0.1 - 2	mm	None	None
3030225	51	39.40	Light	Brown	Sand	0.1 - 2	mm	Stones	None
3030219	55	46.20	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030231	59	42.80	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030230	64	49.00	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030234	67	56.70	Light	Brown	Sand	0.1 - 2	mm	Stones	None
3030216	77	49.80	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030218	79	52.90	Dark	Brown	Sand	0.1 - 2	mm	None	None
3030217	81	53.50	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030222	85	46.40	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030212	101	43.70	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030213	124	55.40	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030215	129	54.50	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A
3030220	138	50.40	Dark	Brown	Sand	0.1 - 2	mm	None	None
3030227	148	40.00	Light	Brown	Sand	0.1 - 2	mm	Stones	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

					-				
# 15	Results Legend SO17025 accredited.	Cı	ustomer Sample R	0	02	12	34	35	48
	nCERTS accredited.								
	Non-conforming work.		Depth (m)	58.00	52.50	53.10	49.40	61.90	62.00
	Aqueous / settled sample. Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
	Fotal / unfiltered sample.		Date Sampled	05/03/2011	06/03/2011	06/03/2011	03/03/2011	03/03/2011	02/03/2011
* s	subcontracted test.		Date Received	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011
	% recovery of the surrogate standard		SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48
	check the efficiency of the method. T results of the individual compounds		Lab Sample No.(s)	3030228	3030232	3030233	3030223	3030224	3030221
v	within the samples are not corrected		AGS Reference						
ti	his recovery.								
Compone	ent	LOD/Units	Method						
EPH Su	Irrogate %	%	TM061	101	110	107	103	103	107
recovery	V**			М	М	М	М	М	М
	ange >C10 - C40	<35	TM061	<35	37.4	<35	38.5	73.1	<35
	lige end end	mg/kg		M	M	M	M	M	M
DOD as			TN44C0			<3		<3	
PCB CO	ngener 28	<3 µg/kg	g TM168	<3	<3		<3		<3
				M	М	M	М	M	M
PCB co	ngener 52	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
				М	М	М	М	М	М
PCB co	ngener 101	<3 µg/kg	1 TM168	<3	<3	<3	<3	<3	<3
	3	100	,	М	М	М	М	М	М
DCP oo	ngonor 119	<2 ug/kg	TM168	<3	<3	<3	<3	<3	<3
	ngener 118	<3 µg/kg	111100						
	100	• •		M	M	M	M	M	M
PCB col	ngener 138	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
				M	M	M	M	M	M
PCB co	ngener 153	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3
	- · ·			M	M	M	Ŭ M	м	M
PCB oo	ngener 180	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3
	ilgener rou	~5 µy/kg							
		<i>c</i>		M	M	M	M	M	M
PCBs, T	Fotal ICES 7	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
PCB co	ngener 105	<3 µg/kg	J TM168	<3	<3	<3	<3	<3	<3
	0	10 0		М	М	М	М	М	М
PCB co	ngener 156	<3 µg/kg	TM168	<3	<3	<3	<3	<3	<3
FUD CO	ligener 150	<5 µg/kg	1111100						-
				M	M	M	M	М	M
Arsenic		<0.6	TM181	8.84	10.5	15.2	11.1	29.9	5.48
		mg/kg		М	М	М	М	М	М
Cadmiu	m	<0.02	TM181	<0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02
		mg/kg		M	M	M	M	M	M
Characteria			T1404			11			
Chromiu	um	<0.9	TM181	16.6	11.3		17.9	13.2	13.7
		mg/kg		M	М	M	M	M	M
Copper		<1.4	TM181	2.66	1.8	1.4	3.49	1.41	<1.4
		mg/kg		М	M	M	M	М	M
Lead		<0.7	TM181	10.7	6.11	7.32	24.5	12.5	4.61
		mg/kg		М	M	M	M	M	M
Maroury		<0.14	TM181	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
Mercury	/		111/101						
		mg/kg		M	M	M	M	M	M
Nickel		<0.2	TM181	9.5	4.32	5.27	8.58	4.7	3.29
		mg/kg		М	М	М	М	М	М
Seleniur	m	<1 mg/kg	7 TM181	<1	<1	<1	<1	<1	<1
		0.0		#	#	#	#	#	#
Zinc		<1.9	TM181	23.6	14.5	13.8	26	17.9	12
ZIIIC			1111101						
		mg/kg	+ +	M	M	M	M	M	M
—			+						
L									
—			+						
			1 1						
1									
			1						
	I								

CERTIFICATE OF ANALYSIS

#	Results Legend ISO17025 accredited.	С	ustomer Sample R	51	55	59	64	67	77
M	mCERTS accredited.								
§ aq	Non-conforming work. Aqueous / settled sample.		Depth (m)	39.40	46.20	42.80	49.00	56.70	49.80
diss.filt	Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
tot.unfilt *	Total / unfiltered sample. subcontracted test.		Date Sampled Date Received	04/03/2011 09/03/2011	01/03/2011 09/03/2011	05/03/2011 09/03/2011	05/03/2011 09/03/2011	06/03/2011 09/03/2011	28/02/2011 09/03/2011
**	% recovery of the surrogate standar		SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48
	check the efficiency of the method. results of the individual compounds		Lab Sample No.(s)	3030225	3030219	3030231	3030230	3030234	3030216
	within the samples are not corrected this recovery.		AGS Reference						
Compo		LOD/Units	Method						
•	Surrogate %	%	TM061	102	104	102	104	105	99.2
recove				М	М	М	М	М	М
EPH F	Range >C10 - C40	<35	TM061	36.6	<35	103	37.8	<35	53.5
		mg/kg	T14400	M	M	M	M	M	M
PCB c	ongener 28	<3 µg/kę	g TM168	<3 M	<3 M	<3 M	<3 M	<3 M	3.1 M
PCB c	ongener 52	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
1.00.0		10 µg/10		M	M	M	M	M	M
PCB c	ongener 101	<3 µg/kę	g TM168	<3	<3	<3	<3	<3	<3
				M	M	M	М	M	M
PCB c	ongener 118	<3 µg/kę	g TM168	<3	<3	<3	<3	<3	<3
DCD ~	ongener 138	<3 U0/4	g TM168	M <3	<3	M <3	M <3	M <3	M <3
	ongener 130	<3 µg/kę		<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
PCB c	ongener 153	<3 µg/k	g TM168	<3	<3	<3	<3	<3	<3
				M	M	M	M	M	M
PCB c	ongener 180	<3 µg/kę	g TM168	<3	<3	<3	<3	<3	<3
F C -	T / 11052 -			M	M	M	M	M	M
PCBs,	Total ICES 7	<3 µg/kę	g TM168	<3	<3	<3	<3	<3	3.1
PCB	ongener 105	<3 µg/k	g TM168	<3	<3	<3	<3	<3	<3
	ongener 100	~0 µg/nį		~5 M	чо М	~5 М	N N	ч о М	M
PCB c	ongener 156	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
	Ũ	10 0		М	М	М	М	М	М
Arseni	с	<0.6	TM181	9.51	10.7	11.4	18.4	18.3	17.1
		mg/kg		M	M	M	М	M	M
Cadm	um	<0.02	TM181	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Chrom	nium	mg/kg <0.9	TM181	M 8.53	M 8.19	M 14.3	M 5.5	M 9.93	<u>M</u> 14.6
Chion	lium	<0.9 mg/kg	111101	0.55 M	0.19 M	14.3 M	5.5 M	9.93 M	14.0 M
Coppe	r	<1.4	TM181	3.17	1.46	8.7	<1.4	<1.4	11.5
		mg/kg		М	М	М	М	М	М
Lead		<0.7	TM181	8.25	4.75	12	7.31	7.5	9.59
		mg/kg	TN404	M	M	M	M	M	M
Mercu	ry	<0.14 mg/kg	TM181	<0.14 M	<0.14 M	<0.14 M	<0.14 M	<0.14 M	<0.14 M
Nickel		<0.2	TM181	5.82	4.17	14.7	7.73	4.58	9.99
i tionoi		mg/kg	imior	M		М	М	M	M
Seleni	um	<1 mg/k	g TM181	<1	<1	<1	<1	<1	<1
				#		#	#	#	#
Zinc		<1.9	TM181	30.1	13.7	25.3	13	14.6	49.1
		mg/kg		M	M	M	M	M	M
—									
—									
<u> </u>									

CERTIFICATE OF ANALYSIS

Validated

SDG:110309-48Location:Sea GreenOrder Number:FJ023335Job:H_UNIHULL_HUL-5Customer:University of HullReport Number:121539Client Reference:ZBB 776Attention:Ann LeightonSuperseded Report:

_									
#	Results Legend ISO17025 accredited.	с	ustomer Sample R	79	81	85	101	124	129
M §	mCERTS accredited. Non-conforming work.								
aq	Aqueous / settled sample.		Depth (m) Sample Type	52.90 Soil/Solid	53.50 Soil/Solid	46.40 Soil/Solid	43.70 Soil/Solid	55.40 Soil/Solid	54.50 Soil/Solid
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Date Sampled	28/02/2011	28/02/2011	02/03/2011	26/02/2011	27/02/2011	27/02/2011
*	subcontracted test.		Date Received	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011	09/03/2011
**	% recovery of the surrogate standar check the efficiency of the method.	The	SDG Ref	110309-48	110309-48	110309-48	110309-48	110309-48	110309-48
	results of the individual compounds	3	Lab Sample No.(s)	3030218	3030217	3030222	3030212	3030213	3030215
	within the samples are not corrected this recovery.	d for	AGS Reference						
Compo	nent	LOD/Units	s Method						
EPH S	urrogate %	%	TM061	100	109	103	90.1	101	102
recove				M	М	M	М	M	M
EPH R	ange >C10 - C40	<35	TM061	<35	<35	<35	1380	89.9	42.7
DCP o	ongener 28	mg/kg <3 µg/kg	g TM168	M <3	<3	M <3	M <3	M <3	M <3
PUBC	ongener zo	<ο μ9/κί	y 11V1100	<3 M	<3 M	<5 M	<3 M	<3 M	<3 M
PCB c	ongener 52	<3 µg/kg	a TM168	<3	<3	<3	<3	<3	<3
1 02 0		10 µg/10	g	M	M	M	M	M	M
PCB c	ongener 101	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
	•			М	М	М	М	М	М
PCB c	ongener 118	<3 µg/k	g TM168	<3	<3	<3	<3	<3	<3
				M	M	M	М	M	M
PCB c	ongener 138	<3 µg/kę	g TM168	<3	<3	<3	<3	<3	<3
				M	M	M	M	M	M
PCB c	ongener 153	<3 µg/kę	g TM168	<3	<3	<3	<3 M	<3	<3
DCP o	ongener 190	<2 110/10	g TM168	M	<3	M <3	M <3	M <3	M <3
PCB C	ongener 180	<3 µg/kį	y 11V1168	<3 M	<3 M	<3 M	<3 M	<3 M	<3 M
PCBs	Total ICES 7	<3 µg/kg	a TM168	<3	<3	<3	<3	<3	<3
1 008,		-υ μy/κί	9 111100	~0	~5	~5	~~	~5	~5
PCB c	ongener 105	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
	gener nee	5	5	M	M	M	M	M	M
PCB c	ongener 156	<3 µg/kg	g TM168	<3	<3	<3	<3	<3	<3
	J.			М	М	М	М	М	М
Arseni	С	<0.6	TM181	8.37	12.9	7.76	9.37	11.2	8.35
		mg/kg		M	M	M	M	M	M
Cadmi	um	<0.02	TM181	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
		mg/kg	_	M	M	M	M	M	M
Chrom	ium	<0.9	TM181	7.09	7.44	10.3	6.07	7.87	12.1
0		mg/kg	TN404	M	M	M	M	M	M
Coppe	r	<1.4	TM181	<1.4 M	1.86 M	3.07 M	1.7 M	<1.4 M	<1.4 M
Lead		mg/kg <0.7	TM181	3.65	4.78	4.58	8.27	4.17	5.25
Leau		mg/kg	11/11/01	3.05 M	4.78 M	4.56 M	0.27 M	4.17 M	5.25 M
Mercu	rv	< 0.14	TM181	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14
	· J	mg/kg		M	M	M	M	M	M
Nickel		<0.2	TM181	2.71	2.91	4.35	3.13	1.46	2.29
		mg/kg		М	M	M	М	M	M
Seleni	um	<1 mg/k	g TM181	<1	<1	<1	<1	<1	<1
				#		#	#	#	#
Zinc		<1.9	TM181	8.51	11.6	13.8	13.8	8.61	10.1
		mg/kg		М	М	M	M	M	M
									
—									
—									
—									
					1	l.			

CERTIFICATE OF ANALYSIS

Results Legend	C	Sustomer Sample R	138	148			
# ISO17025 accredited. M mCERTS accredited.							
Non-conforming work. Aqueous / settled sample.		Depth (m)	50.40	40.00			
diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid 01/03/2011	Soil/Solid 04/03/2011			
tot.unfilt Total / unfiltered sample. * subcontracted test.		Date Sampled Date Received	09/03/2011	09/03/2011			
** % recovery of the surrogate standa check the efficiency of the method.	The	SDG Ref	110309-48	110309-48			
results of the individual compound	s	Lab Sample No.(s)	3030220	3030227			
within the samples are not correcte this recovery.	ed for	AGS Reference					
Component	LOD/Unit	s Method					
EPH Surrogate %	%	TM061	107	105			
recovery**			Μ		М		
EPH Range >C10 - C40	<35	TM061	<35	<35			
	mg/kg		M		М		
PCB congener 28	<3 µg/k	g TM168	<3	<3			
DOD 50	0 "	714400	M		М		
PCB congener 52	<3 µg/k	g TM168	<3 M	<3	м		
PCB congener 101	<3 ug/k	g TM168	<3	<3	IVI		
FCB congenier 101	<3 µg/k	g TIMT00	~3 M		м		
PCB congener 118	<3 µg/k	g TM168	<3	<3	IVI		
	-o µg/k	g	M		м		
PCB congener 138	<3 µg/k	g TM168	<3	<3			
			M		М		
PCB congener 153	<3 µg/k	g TM168	<3	<3			
		-	M		М		
PCB congener 180	<3 µg/k	g TM168	<3	<3			
	ļ		M		М		
PCBs, Total ICES 7	<3 µg/k	g TM168	<3	<3			
			-				
PCB congener 105	<3 µg/k	g TM168	<3	<3	N.4		
DOD services 450	1 2	T TM400	M		М		
PCB congener 156	<3 µg/k	g TM168	<3 M	<3	м		
Arsenic	<0.6	TM181	11.8	4.35	IVI		
Alsenic	<0.0 mg/kg	TIMITOT	M		м		
Cadmium	<0.02	TM181	<0.02	< 0.02	111		
	mg/kg	imitor	M		м		
Chromium	< 0.9	TM181	8.25	8.92			
	mg/kg		M		М		
Copper	<1.4	TM181	<1.4	1.93			
	mg/kg		M		М	 	
Lead	<0.7	TM181	4.69	5.24			
	mg/kg		M		М	 	
Mercury	<0.14	TM181	<0.14	<0.14			
Niskal	mg/kg	TN404	M		М		
Nickel	<0.2 mg/kg	TM181	4.71 M	3.64	м		
Selenium	<1 mg/kg	g TM181	<1	<1	IVI	 	
	- mg/k	.g imioi	#		#		
Zinc	<1.9	TM181	12.5	17.6			
	mg/kg		Μ		М		
				+			
				1		 	
				+		 	

ALcontrol Lab	oratories	6	CER		FICATE OF A	NAI YSIS				Validated	
SDG: 11 Job: H_	0309-48 _UNIHULL_ BB 776		Location: Customer: Attention:	Se Un	a Green niversity of Hull In Leighton		Order Number: Report Number: Superseded Repo	FJ023335 121539 rt:			
GRO by GC-FID (S)											_
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate st check the efficiency of the mel results of the individual comp- within the samples are not cor this recovery.	thod. The ounds	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0 Soil/Solid 05/03/2011 110309-48 3030228		02 52.50 Soii/Solid 06/03/2011 09/03/2011 110309-48 3030232	12 53.10 Soii/Solid 06/03/2011 09/03/2011 110309-48 3030233	34 49.40 Soii/Solid 03/03/2011 09/03/2011 110309-48 3030223	35 61.90 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030224		48 62.00 Soii/Solid 02/03/2011 09/03/2011 110309-48 3030221	
Component	LOD/U	nits Method									
GRO >C5-C12	<4		<44		<44	<44	<44	<44		<44	
Methyl tertiary butyl ether (MTBE)	<u>μ</u> g/k <5 με		<5	#	<5 #	<5 #	<5 #	<5	#	<5	#
Benzene	<1		<10		<10	<10	<10	<10		<10	
Toluene	μ <u>α/k</u> <2 με		<2	M	<2 M	<2 M	M <2	<2	M	<2	M
Ethylbenzene	<3 µç	g/kg TM089	<3	M	<3 M	<3 M	M <3	<3	M	<3	M
m,p-Xylene	<6 µç	g/kg TM089	<6	M	<6 M	<6 M	M <6	<6	M	<6	M
o-Xylene	<3 µç	g/kg TM089	<3	M	<3 M	M <3 M	M <3 M	<3	м	<3	M M
m,p,o-Xylene	<10 µg/k		<10	IVI	<10	<10	<10	<10		<10	IVI
BTEX, Total	<10 41 40 41	0 TM089	<10		<10	<10	<10	<10	+	<10	
	μg/i	9							1		
	_										
	_								\downarrow		
	_										
	_								\downarrow		
	_								\downarrow		\square
	_								\downarrow		
	_										_
	_										\neg
	_										
	_								\square		_
	_										
	_								\downarrow		$ \dashv$
	_								\downarrow		_

•	ALcontrol La	aborat	tories	6		CEF	RTI	FICATE OI	FA	NALYSIS					Validated	
SDG: Job: Client	Reference:	110309 H_UNII ZBB 77	HULL_I	HUL-{	5	Location: Customer: Attention:	Ur	a Green niversity of Hull In Leighton				Order Number: Report Number: Superseded Repor	FJ0233 121539 t:	35		
GRO b	y GC-FID (S)															
M r § M aq A diss.filt [tot.unfilt] * s ** 9	Results Legend SO17025 accredited. nCERTS accredited. Ion-conforming work. Aqueous / settled sample Dissolved / filtered sample Dissolved / filtered sample. Ubcontracted test. & recovery of the surrogi. heck the efficiency of the soults of the individual c	e. le. ate standard ne method. Th compounds	ne	Lat	omer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Sample No.(s)	51 39.40 Soil/Solid 04/03/2011 09/03/2011 110309-48 3030225		55 46.20 Soii/Solid 01/03/2011 09/03/2011 110309-48 3030219		59 42.80 Soii/Soiid 05/03/2011 09/03/2011 110309-48 3030231		64 49.00 Soil/Solid 05/03/2011 09/03/2011 110309-48 3030230	67 56.70 Soii/Solid 06/03/2011 09/03/2011 110309-48 3030234		77 49.80 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030216	
	vithin the samples are no his recovery.	ot corrected f	for		AGS Reference											
Compon			LOD/U		Method	- 4.4		-114		-44	_	-44	-11		-44	
GRO >0			42> µg/k		TM089	<44		<44		<44		<44	<44		<44	
Methyl t (MTBE)	ertiary butyl ethe	er	<5 µg	g/kg	TM089	<5	#	<5	#	<5	#	<5 #	<5	#	<5	#
Benzen			<1(TM089	<10		<10		<10		<10	<10		<10	
Toluene)		μg/k <2 μς		TM089	<2	М	<2	М	<2	М	M <2	<2	М	<2	М
							М		М		М	М		М		М
Ethylbe	nzene		<3 µç	ј/кд	TM089	<3	М	<3	М	<3	М	<3 M	<3	м	<3	м
m,p-Xyl	ene		<6 µç	g/kg	TM089	<6	М	<6	м	<6	м	<6 M	<6	м	<6	м
o-Xylen	e		<3 µç	g/kg	TM089	<3		<3		<3		<3	<3		<3	
m,p,o-X	vlene		<1(0	TM089	<10	Μ	<10	М	<10	Μ	M <10	<10	М	<10	М
			µg/k	g												
BTEX, ⁻	Iotal		<10 µg/k		TM089	<10		<10		<10		<10	<10		<10	
																_
											_					
											_					
				_							_					
																_
				_							_					
											_					_
											_					
																_
											_					
											_					
											_					
											-					
											_					

CERTIFICATE OF ANALYSIS

				CEF	RTIF		FA	NALYSIS				
SDG: Job: Clien	t Reference:	110309-48 H_UNIHULL_I ZBB 776	HUL-5	Location: Customer: Attention:	Univ	Green ersity of Hull Leighton				Order Number: Report Number: Superseded Repor	FJ023335 121539 t:	
	by GC-FID (S)			Attontion	7 4111	Loighton					•	
# M § aq diss.filt tot.unfilt * **	Results Legend ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / sottled sample Dissolved / filtered sample. subcontracted test. % recovery of the surrog check the efficiency of th results of the individual c within the samples are no this recovery.	le. ate standard to e method. The compounds ot corrected for	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	79 52.90 Soii/Solid 28/02/2011 09/03/2011 110309-48 3030218		81 53.50 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030217		85 46.40 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030222		101 43.70 Soii/Solid 26/02/2011 09/03/2011 110309-48 3030212	124 55.40 Soii/Solid 27/02/2011 09/03/2011 110309-48 3030213	129 54.50 Soli/Solid 27/02/2011 09/03/2011 110309-48 3030215
Compor GRO >	nent ·C5-C12	LOD/U <44 µg/k	4 TM089	<44		<44	_	<44		<44	<44	<44
Methyl (MTBE	tertiary butyl ethe			<5	#	<5	#	<5	#	<5 #	<5 #	<5 #
Benzer		<1(µg/k		<10	м	<10	M	<10	M	<10 M	<10 M	<10 M
Toluen	e	μα/κ <2 με		<2	м	<2	M	<2	M	<2 M	<2 M	<2 M
Ethylbe	enzene	<3 µg	g/kg TM089	<3	м	<3	M	<3	M	<3 M	<3 M	<3 M
m,p-Xy	lene	<6 µg	g/kg TM089	<6		<6		<6		<6	<6	<6
o-Xyler	ne	<3 µg	g/kg TM089	<3	M	<3	M M	<3	M	<3 M		<3 M
m,p,o-X	Xylene	<1(µg/k		<10		<10	IVI	<10	M	M <10	M <10	M <10
BTEX,	Total	μg/κ <1(μg/k	0 TM089	<10		<10		<10	_	<10	<10	<10
			_									
			_									
					T							

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 110309-48 Location: Sea Green FJ023335 SDG: Order Number: H_UNIHULL_HUL-5 Job: Customer: University of Hull Report Number: 121539 Attention: Ann Leighton Superseded Report: **Client Reference:** GRO by GC-FID (S) Customer Sample R 138 148 ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample. # M 8 40.00 Soil/Solid Depth (m) 50.40 Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for this recovery. Soil/Solid Sample Type diss.filt tot.unfilt 01/03/2011 09/03/2011 Date Sampled 04/03/2011 Date Received 09/03/2011 ... 110309-48 3030220 110309-48 3030227 SDG Ref Lab Sample No.(s) AGS Reference this recovery. LOD/Units Method Component GRO >C5-C12 TM089 <44 <44 <44 µg/kg Methyl tertiary butyl ether <5 µg/kg TM089 <5 <5 # # (MTBE) TM089 Benzene <10 <10 <10 Μ µg/kg Μ Toluene <2 µg/kg TM089 <2 <2 М Μ Ethylbenzene TM089 <3 <3 µg/kg <3 Μ Μ m,p-Xylene <6 µg/kg TM089 <6 <6 Μ Μ TM089 <3 <3 o-Xylene <3 µg/kg Μ Μ m,p,o-Xylene <10 TM089 <10 <10 µg/kg BTEX, Total TM089 <10 <10 <10 µg/kg

SDG:	110309-48		Location:	Sea Green		Order Number:	FJ023335	
Job: Client Reference:	H_UNIHULL_ ZBB 776	HUL-5	Customer: Attention:	University of Hull Ann Leighton		Report Number: Superseded Report:	121539	
ganotins on so	ils*							
Results Lege # ISO17025 accredited.	nd	Customer Sample R	0	02	12	34	35	48
M mCERTS accredited. \$ Non-conforming work. a Aqueous / settied sam ss.fit Dissolved / fittered sam * subcontracted test. * % recovery of the surror check the efficiency of results of the individue within the samples are this recovery.	ple. nple. le. ogate standard to the method. The al compounds not corrected for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	58.00 Soil/Solid 05/03/2011 110309-48 3030228	52.50 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030232	53.10 Soli/Solid 06/03/2011 09/03/2011 110309-48 3030233	49.40 Soii/Solid 03/03/2011 09/03/2011 110309-48 3030223	61.90 Soil/Solid 03/03/2011 09/03/2011 110309-48 3030224	62.00 Soil/Solid 02/03/2011 110309-48 3030221
omponent ributyl tin*	LOD/L <0.		<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
riphenyl tin*		'kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	mg/	′kg						
ibutyl tin*	<0. mg/	'kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
etrabutyl tin*	<0. mg/		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
						+ +		
						+		
						+		
						+		
						+ +		
						+ +		
					1			1

	ALcontrol Labor	atories	6	CER		NALYSIS			Validated
SDG: Job: Clien		NIHULL_I	HUL-5	Location: Customer: Attention:	Sea Green University of Hull Ann Leighton		Order Number: Report Number: Superseded Report	FJ023335 121539	
		110		Auchtion.			Cuporocucu Roport	•	
# M	Results Legend ISO17025 accredited. mCERTS accredited.		Customer Sample R	51	55	59	64	67	77
tot.unfilt * **	Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate stands check the efficiency of the method results of the individual compound within the samples are not correct this recovery.	. The Is ed for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	39.40 Soil/Solid 04/03/2011 09/03/2011 110309-48 3030225	46.20 Soil/Solid 01/03/2011 09/03/2011 110309-48 3030219	42.80 Soil/Solid 05//03/2011 09/03/2011 110309-48 3030231	49.00 Soii/Solid 05/03/2011 09/03/2011 110309-48 3030230	56.70 Soil/Solid 06/03/2011 09/03/2011 110309-48 3030234	49.80 Soii/Solid 28/02/2011 09/03/2011 110309-48 3030216
Compo Tributy		LOD/U <0.0)2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Triphe	nyl tin*	mg/k <0.0)5 SUB	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibuty	l tin*	mg/k <0.0)2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Tetrab	utyl tin*	mg/k <0.0 mg/k)2 SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

ALcontrol		103		CER		NALYSIS		L	Validated
SDG: Job: Client Reference:	110309-48 H_UNIHUL ZBB 776		5	Location: Customer: Attention:	Sea Green University of Hull Ann Leighton		Order Number: Report Number: Superseded Report:	FJ023335 121539	
rganotins on so	ils*								
Results Log # ISO17025 accredited. M mCERTS accredited. S non-conforming work useous / settled sam saturation itss.fit Dissolved / filtered sam subcontracted test. * * recovery of the sum check the efficiency or results of the individu within the samples are this recovery.	end piple. piple. piple. loc. loc. rogate standard to f the method. The ial compounds e not corrected for	Lai	tomer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref b Sample No.(s) AGS Reference	79 52.90 Soli/Solid 28/02/2011 09/03/2011 110309-48 3030218	81 53.50 Soil/Solid 28/02/2011 09/03/2011 110309-48 3030217	85 46.40 Soil/Solid 02/03/2011 09/03/2011 110309-48 3030222	101 43.70 Soil/Solid 26/02/2011 09/03/2011 110309-48 3030212	124 55.40 Soli/Solid 27/02/2011 09/03/2011 110309-48 3030213	129 54.50 Soil/Solid 27/02/2011 09/03/2011 110309-48 3030215
omponent ributyl tin*		D/Units	Method SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
riphenyl tin*	n	ng/kg <0.05	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibutyl tin*	n	ng/kg <0.02	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
	n	ng/kg							
etrabutyl tin*		<0.02 ng/kg	SUB	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

				TIFICATE OF A				
SDG: Job:	110309-48 H_UNIHULL_	_HUL-5	Location: Customer:	Sea Green University of Hull		Order Number: Report Number:	FJ023335 121539	
Client Reference:	ZBB 776		Attention:	Ann Leighton		Superseded Report:		
rganotins on so Results Le	OIIS [*] egend	Customer Sample R	138	148	T	1		
 # ISO17025 accredited mCERTS accredited Mon-conforming wo aq Aqueous / settlod sz diss.filt Dissolved / filtered sa subcontracted test. ** % recovery of the si check the efficiency results of the indivic within the samples this recovery. 	i. rk. ample. sample. mple. urrogate standard to r of the method. The dual compounds	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	50.40 Soli/Solid 01/03/2011 09/03/2011 110309-48 3030220	40.00 Soil/Soild 04/03/2011 09/03/2011 110309-48 3030227				
Component	LOD/U <0.		<0.02	<0.02				
Tributyl tin*	mg/	'kg						
Triphenyl tin*	<0. mg/		<0.05	<0.05				
Dibutyl tin*	<0. mg/	02 SUB	<0.02	<0.02				
Tetrabutyl tin*	<0.	02 SUB	<0.02	<0.02				
	mg/	kg						
					+			
					ļļ			
					++			
					↓			
					ļ ļ			
					+			
					───			
					ļļ			
					+			
					↓			

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 110309-48 F.I023335 SDG: Location: Sea Green Order Number: Report Number: Job: H UNIHULL HUL-5 Customer: University of Hull 121539 **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report: PAH by GCMS Customer Sample R 35 48 s Lene 0 02 12 34 ISO17025 accredited mCERTS accredited Non-conforming work Depth (m) 58.00 52.50 53.10 49.40 61.90 62.00 Aqueous / settled sample diss filt Dissolved / filtered sample Total / unfiltered sample. Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid tot.un Date Sampled 05/03/2011 06/03/2011 06/03/2011 03/03/2011 03/03/2011 02/03/2011 subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds 09/03/2011 09/03/2011 09/03/2011 09/03/2011 Date Received 09/03/2011 09/03/2011 ... SDG Ret 110309-48 110309-48 110309-48 110309-48 110309-48 110309-48 3030224 3030228 3030232 3030233 3030223 3030221 Lab Sample No.(s) AGS Reference within the samples are not corrected for this recovery. LOD/Units Component Method 104 96.5 100 99.7 99 1 104 Naphthalene-d8 % TM218 % recovery** Acenaphthene-d10 % % TM218 105 95.5 100 98.8 97.4 104 recovery** % Phenanthrene-d10 % TM218 103 93.6 99.3 974 94 5 102 recovery** Chrysene-d12 % % TM218 116 96.5 101 98.3 92.9 111 recovery** % TM218 101 104 88.7 123 Perylene-d12 % recovery** 130 111 Naphthalene TM218 <9 <9 <9 <9 <9 <9 <9 µg/kg Μ Μ Μ Μ Μ Μ TM218 <12 <12 <12 <12 <12 <12 Acenaphthylene <12 Μ Μ µg/kg Μ Μ Μ Μ Acenaphthene TM218 <8 <8 <8 <8 <8 <8 <8 µg/kg Μ Μ Μ Μ Μ Μ Fluorene TM218 <10 <10 <10 <10 <10 <10 <10 µq/kq Μ Μ Μ Μ Μ Μ Phenanthrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ Μ Μ Μ ua/ka TM218 Anthracene <16 <16 <16 <16 <16 <16 <16 µg/kg Μ Μ Μ Μ Μ Μ Fluoranthene <17 TM218 <17 <17 <17 <17 <17 <17 ua/ka Μ Μ Μ Μ Μ Μ Pyrene TM218 <15 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benz(a)anthracene <14 TM218 <14 <14 <14 <14 <14 <14 µg/kg Μ Μ Μ Μ Μ Μ TM218 <10 <10 <10 <10 <10 <10 Chrysene <10 Μ Μ Μ Μ Μ µg/kg Μ Benzo(b)fluoranthene <15 TM218 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benzo(k)fluoranthene TM218 <14 <14 <14 <14 <14 <14 <14 Μ Μ Μ µg/kg M Μ Μ Benzo(a)pyrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ М Μ Μ µq/kq Indeno(1,2,3-cd)pyrene TM218 <18 <18 <18 <18 <18 <18 <18 Μ Μ Μ Μ µg/kg M Μ Dibenzo(a,h)anthracene <23 TM218 <23 <23 <23 <23 <23 <23 Μ Μ µg/kg Μ Μ Μ Μ TM218 <24 <24 <24 <24 <24 <24 Benzo(g,h,i)perylene <24 µg/kg Μ Μ Μ Μ Μ Μ Polyaromatic <118 TM218 <118 <118 <118 <118 <118 <118 Μ Μ hydrocarbons, Total µq/kq Μ Μ Μ Μ

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 110309-48 F.I023335 SDG: Location: Sea Green Order Number: Report Number: Job: H UNIHULL HUL-5 Customer: University of Hull 121539 **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report: PAH by GCMS Customer Sample R 59 77 s I ene 51 55 64 67 ISO17025 accredited mCERTS accredited Non-conforming work Depth (m) 39.40 46.20 42.80 49.00 56.70 49.80 Aqueous / settled sample Soil/Solid diss filt Dissolved / filtered sample Total / unfiltered sample. Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid tot.un Date Sampled 04/03/2011 01/03/2011 05/03/2011 05/03/2011 06/03/2011 28/02/2011 subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds 09/03/2011 09/03/2011 09/03/2011 09/03/2011 Date Received 09/03/2011 09/03/2011 ... SDG Ret 110309-48 110309-48 110309-48 110309-48 110309-48 110309-48 3030234 3030225 3030219 3030231 3030230 3030216 Lab Sample No.(s) AGS Reference within the samples are not corrected for this recovery. LOD/Units Component Method 97 7 115 100 91.8 105 107 Naphthalene-d8 % TM218 % recovery** Acenaphthene-d10 % % TM218 97.6 114 99.6 89.7 103 109 recovery** % Phenanthrene-d10 % TM218 93.2 112 96.5 86 1 99.9 107 recovery** Chrysene-d12 % % TM218 91.6 114 91.6 82.2 99.1 107 recovery** % TM218 95.8 95.5 Perylene-d12 % recovery** 88.5 123 81.4 117 Naphthalene TM218 <9 <9 <9 <9 <9 <9 <9 µg/kg Μ Μ Μ Μ Μ Μ TM218 <12 <12 <12 <12 <12 <12 Acenaphthylene <12 Μ Μ µg/kg Μ Μ Μ Μ Acenaphthene TM218 <8 <8 <8 <8 <8 <8 <8 µg/kg Μ Μ Μ Μ Μ Μ Fluorene TM218 <10 <10 <10 <10 <10 <10 <10 µq/kq Μ Μ Μ Μ Μ Μ Phenanthrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ Μ Μ Μ ua/ka TM218 Anthracene <16 <16 <16 <16 <16 <16 <16 µg/kg Μ Μ Μ Μ Μ Μ Fluoranthene <17 TM218 <17 <17 <17 <17 <17 <17 µg/kg Μ Μ Μ Μ Μ Μ Pyrene TM218 <15 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benz(a)anthracene <14 TM218 <14 <14 <14 <14 <14 <14 µg/kg Μ Μ Μ Μ Μ Μ TM218 <10 <10 <10 <10 <10 <10 Chrysene <10 Μ Μ Μ Μ Μ µg/kg Μ Benzo(b)fluoranthene <15 TM218 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benzo(k)fluoranthene TM218 <14 <14 <14 <14 <14 <14 <14 Μ Μ Μ µg/kg M Μ Μ Benzo(a)pyrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ Μ Μ Μ µq/kq Indeno(1,2,3-cd)pyrene TM218 <18 <18 <18 <18 <18 <18 <18 Μ Μ Μ Μ µg/kg M Μ Dibenzo(a,h)anthracene <23 TM218 <23 <23 <23 <23 <23 <23 Μ Μ µg/kg Μ Μ Μ Μ TM218 <24 <24 <24 <24 <24 <24 Benzo(g,h,i)perylene <24 µg/kg Μ Μ Μ Μ Μ Μ Polyaromatic <118 TM218 <118 <118 <118 <118 <118 <118 Μ Μ hydrocarbons, Total µq/kq Μ Μ Μ Μ

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 110309-48 F.I023335 SDG: Location: Sea Green Order Number: Report Number: Job: H UNIHULL HUL-5 Customer: University of Hull 121539 **Client Reference:** ZBB 776 Attention: Ann Leighton Superseded Report: PAH by GCMS Customer Sample R 124 129 s I ene 79 81 85 101 ISO17025 accredited mCERTS accredited. Non-conforming work Depth (m) 52.90 53.50 46.40 43.70 55.40 54.50 Aqueous / settled sample diss filt Dissolved / filtered sample Total / unfiltered sample. Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid tot.un Date Sampled 28/02/2011 28/02/2011 02/03/2011 26/02/2011 27/02/2011 27/02/2011 subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds 09/03/2011 09/03/2011 09/03/2011 09/03/2011 09/03/2011 Date Received 09/03/2011 ... SDG Ret 110309-48 110309-48 110309-48 110309-48 110309-48 110309-48 3030218 3030217 3030212 3030213 3030215 Lab Sample No.(s) 3030222 AGS Reference within the samples are not corrected for this recovery. LOD/Units Component Method TM218 99 9 106 98.1 103 110 104 Naphthalene-d8 % % recovery** Acenaphthene-d10 % % TM218 100 105 97.9 100 108 103 recovery** % Phenanthrene-d10 % TM218 99 1 101 95 7 98.4 105 100 recovery** Chrysene-d12 % % TM218 99.6 100 98 93.6 102 96.9 recovery** % TM218 97.7 97.9 106 100 Perylene-d12 % recovery** 104 103 Naphthalene TM218 <9 <9 <9 17.9 15.5 11.5 <9 µg/kg Μ Μ Μ Μ Μ Μ TM218 <12 <12 <12 <12 <12 <12 Acenaphthylene <12 Μ Μ µg/kg Μ Μ Μ Μ Acenaphthene TM218 <8 <8 <8 10.7 <8 <8 <8 µg/kg Μ Μ Μ Μ Μ Μ Fluorene TM218 <10 <10 <10 <10 <10 <10 <10 µq/kq Μ Μ Μ Μ Μ Μ Phenanthrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ Μ Μ Μ ua/ka TM218 Anthracene <16 <16 <16 <16 <16 <16 <16 µg/kg Μ Μ Μ Μ Μ Μ Fluoranthene <17 TM218 <17 <17 <17 <17 <17 <17 µg/kg Μ Μ Μ Μ Μ Μ Pyrene TM218 <15 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benz(a)anthracene <14 TM218 <14 <14 <14 <14 <14 <14 µg/kg Μ Μ Μ Μ Μ Μ TM218 <10 <10 <10 <10 <10 <10 Chrysene <10 Μ Μ Μ Μ Μ µg/kg Μ Benzo(b)fluoranthene <15 TM218 <15 <15 <15 <15 <15 <15 µg/kg Μ Μ Μ Μ Μ Μ Benzo(k)fluoranthene TM218 <14 <14 <14 <14 <14 <14 <14 Μ Μ µg/kg M Μ Μ Μ Benzo(a)pyrene <15 TM218 <15 <15 <15 <15 <15 <15 Μ Μ Μ Μ Μ Μ µq/kq Indeno(1,2,3-cd)pyrene TM218 <18 <18 <18 <18 <18 <18 <18 Μ Μ Μ Μ µg/kg M Μ Dibenzo(a,h)anthracene <23 TM218 <23 <23 <23 <23 <23 <23 Μ Μ µg/kg Μ Μ Μ Μ TM218 <24 <24 <24 <24 <24 <24 Benzo(g,h,i)perylene <24 µg/kg Μ Μ Μ Μ Μ Μ Polyaromatic <118 TM218 <118 <118 <118 <118 <118 <118 Μ Μ hydrocarbons, Total µq/kq Μ Μ Μ Μ

ALcontrol L	aboratorie:	S						Validated
SDG:	110309-48		Location:	Sea Green		Order Number:	FJ023335	
Job: Client Reference:	H_UNIHULL_ ZBB 776	HUL-5	Customer: Attention:	University of Hull Ann Leighton		Report Number: Superseded Report:	121539	
	200770		Attention.	Ann Leighton		Superseded Report	•	
AH by GCMS Results Leger	nd	Customer Sample R	138	148				
# ISO17025 accredited. M mCERTS accredited.			130	140				
§ Non-conforming work.		Depth (m)	50.40	40.00				
aq Aqueous / settled samp iss.filt Dissolved / filtered samp	ple.	Sample Type	Soil/Solid	Soil/Solid				
t.unfilt Total / unfiltered sample * subcontracted test.	ə.	Date Sampled Date Received		04/03/201				
** % recovery of the surroy check the efficiency of t		SDG Ret	f 110309-48	110309-48				
results of the individual	compounds	Lab Sample No.(s) AGS Reference		3030227				
within the samples are r this recovery.	not corrected for	AGS Reference						
omponent	LOD/U							
Japhthalene-d8 %	%	5 TM218	101	117				
ecovery** Acenaphthene-d10 %	%	5 TM218	101	119				
ecovery**	/	1 11/12 10	101	119				
Phenanthrene-d10 % ecovery**	%	5 TM218	95.6	117				
Chrysene-d12 % ecovery**	%	5 TM218	93.6	114				
Perylene-d12 % recove			86.2	128				
Naphthalene	<9 µį		<9	<9 M	м			
	1> µg/k	<u>(q</u>	<12	<12 M	м			
cenaphthene	×8 لبز 1<		<8	<8 M <10	м			
henanthrene	μg/k <1	<u>(q</u>	<10	M <10	м			
Inthracene	μg/k <1	g	<15	M <10	м			
luoranthene	μ <u>g</u> /k <1	(g	<17	M <17	м			
Pyrene	µg/k <1	<u>(q</u>	<15	M <15	M			
Benz(a)anthracene	µg/k <1		<14	M <14	M			
Chrysene	µg/k 1>	0 TM218	<10	M <10	M			
Benzo(b)fluoranthene	µg/k <1	5 TM218	<15	M <15	M			
Benzo(k)fluoranthene	µg/k <1	4 TM218	<14	M <14	<u>м</u>			
Benzo(a)pyrene	µg/k <1	5 TM218	<15	M <15				
ndeno(1,2,3-cd)pyrene	µg/k e <1	8 TM218	<18	M <18	M			
Dibenzo(a,h)anthracen		3 TM218	<23	M <23	M			
enzo(g,h,i)perylene	μg/k <2	4 TM218	<24	M <24	<u>м</u> м			
Polyaromatic ydrocarbons, Total	μg/k <11	18 TM218	<118	M <118 M	M			_
yurucarduris, Total	µg/⊧	<u> </u>						

CERTIFICATE OF ANALYSIS

Validated

SDG : 1	10309-48	Location:	Sea Green	Order Number:	FJ023335			
Job: ⊦	1_UNIHULL_HUL-5	Customer:	University of Hull	Report Number:	121539			
Client Reference: Z	ZBB 776	Attention:	Ann Leighton	Superseded Report:				

Extractable Petroleum Hydrocarbons (EPH) By GC-FID

EPH (DRO) (C10-C40)

		•	, , ,		
Sample No	Customer Sample Ref.	Depth	Matrix (mg/kg)	EPH	Interpretation
3048141	129	54.50	SOLID	42.7	No Identification Possible
3048321	101	43.70	SOLID	1380	PAHS
3050062	51	39.40	SOLID	36.6	No Identification Possible
3050175	67	56.70	SOLID	<35.0	No Identification Possible
3051644	35	61.90	SOLID	73.1	PAHS
3054618	79	52.90	SOLID	<35.0	No Identification Possible
3054630	138	50.40	SOLID	<35.0	No Identification Possible
3054648	48	62.00	SOLID	<35.0	No Identification Possible
3054676	0	58.00	SOLID	<35.0	No Identification Possible
3054729	02	52.50	SOLID	37.4	No Identification Possible
3056569	85	46.40	SOLID	<35.0	No Identification Possible
3056753	55	46.20	SOLID	<35.0	No Identification Possible
3056797	12	53.10	SOLID	<35.0	No Identification Possible
3056835	148	40.00	SOLID	<35.0	No Identification Possible
3056900	81	53.50	SOLID	<35.0	No Identification Possible
3056934	77	49.80	SOLID	53.5	No Identification Possible
3056964	34	49.40	SOLID	38.5	No Identification Possible
3060035	64	49.00	SOLID	37.8	No Identification Possible
3091083	59	42.80	SOLID	103	PAHS
3091103	124	55.40	SOLID	89.9	PAHS

Extractable Petroleum Hydrocarbons (formally Diesel Range Organics) :- Any compound extractable in n-hexane within the carbon range C10-C40, includes Aliphatic (Min Oil), Aromatic (PAHs) and naturally occurring compounds. 0 ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** FJ023335 SDG: 110309-48 Location: Sea Green Order Number: H_UNIHULL_HUL-5 University of Hull 121539 Job: Customer: Report Number: Client Reference: ZBB 776 Attention: Ann Leighton Superseded Report:

Table of Results - Appendix

REPOF	RT KEY		_			_	Res	ults expressed as (e	.g.) 1.03E-07 is equivale	nt to 1.03x10-7
NDP	No Determination	Possible	#	ISO 17025 Accredited		*	Subcontracted Test	м	MCERTS Accred	ited
NFD	No Fibres Detecte		PFD	Possible Fibres Detected		»	Result previously reported (Incremental reports only)	EC	Equivalent Carbo (Aromatics C8-0	
ote: Metho	od detection limits a	re not always achievable	due to vario	us circumstances beyond our co	ontrol					
м	ethod No		Refer	ence	Description				Wet/Dry Sample ¹	Surrogate Corrected
	PM001				Preparation	on of San	ples for Metals Analysis			
	PM024	Modified BS 1377				Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material				
	SUB				Subcontra	acted Tes	t			
	TM061	Method for the Det EPH, Massachuset			Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)					
	TM089	Modified: US EPA	Methods	8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)					
	TM168	EPA Method 8082 Gas Chromatograp		rinated Biphenyls by	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils					
	TM181	US EPA Method 6	010B		Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES					
	TM218	Microwave extracti	on – EPA	method 3546	Microwav	e extracti	on - EPA method 3546			

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICA	TE OF	ΑΝΑΙ	YSIS
		/	

Validated

SDG:	110309-48	Location:	Sea Green	Order Number:	FJ023335
Job:	H_UNIHULL_HUL-5	Customer:	University of Hull	Report Number:	121539
Client Reference:	ZBB 776	Attention:	Ann Leighton	Superseded Report:	

Test Completion Dates

3030228	3030232	3030233	3030223	3030224	3030221	3030225	3030219	3030231	3030230
0	02	12	34	35	48	51	55	59	64
58.00	52.50	53.10	49.40	61.90	62.00	39.40	46.20	42.80	49.00
SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	17-Mar-2011	16-Mar-2011
16-Mar-2011	22-Mar-2011	16-Mar-2011	16-Mar-2011	22-Mar-2011	16-Mar-2011	17-Mar-2011	17-Mar-2011	22-Mar-2011	16-Mar-2011
15-Mar-2011	15-Mar-2011	15-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011
21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011	21-Mar-2011
14-Mar-2011	16-Mar-2011	16-Mar-2011	16-Mar-2011	15-Mar-2011	14-Mar-2011	15-Mar-2011	16-Mar-2011	12-Mar-2011	12-Mar-2011
13-Mar-2011	13-Mar-2011	14-Mar-2011	14-Mar-2011	13-Mar-2011	13-Mar-2011	13-Mar-2011	14-Mar-2011	13-Mar-2011	13-Mar-2011
09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011	09-Mar-2011
	09-Mar-2011 3030216	09-Mar-2011 3030218	09-Mar-2011 3030217	09-Mar-2011 3030222	09-Mar-2011 3030212	09-Mar-2011 3030213	09-Mar-2011 3030215	09-Mar-2011 3030220	09-Mar-2011 3030227
3030234	3030216	3030218	3030217	3030222	3030212	3030213	3030215	3030220	3030227
3030234	3030216	3030218	3030217	3030222	3030212	3030213	3030215	3030220	3030227
3030234 ⁶⁷	3030216 77	3030218 ⁷⁹	3030217 ⁸¹	3030222 ⁸⁵	3030212 101	3030213 ¹²⁴	3030215 ¹²⁹	3030220 ¹³⁸	3030227 ¹⁴⁸
3030234 ⁶⁷ 56.70	3030216 77 49.80	3030218 ⁷⁹ 52.90	3030217 ⁸¹ 53.50	3030222 ⁸⁵ 46.40	3030212 ¹⁰¹ 43.70	3030213 ¹²⁴ 55.40	3030215 ¹²⁹ 54.50	3030220 ¹³⁸ 50.40	3030227 ¹⁴⁸ 40.00
3030234 ⁶⁷ 56.70 SOLID	3030216 77 49.80 SOLID	3030218 ⁷⁹ 52.90 SOLID	3030217 ⁸¹ 53.50 SOLID	3030222 ⁸⁵ 46.40 SOLID	3030212 ¹⁰¹ 43.70 SOLID	3030213 ¹²⁴ 55.40 SOLID	3030215 129 54.50 SOLID	3030220 ¹³⁸ 50.40 SOLID	3030227 ¹⁴⁸ 40.00 SOLID
3030234 67 56.70 SOLID 16-Mar-2011	3030216 77 49.80 SOLID 16-Mar-2011	3030218 ⁷⁹ 52.90 SOLID 16-Mar-2011	3030217 81 53.50 SOLID 16-Mar-2011	3030222 85 46.40 SOLID 16-Mar-2011	3030212 ¹⁰¹ 43.70 SOLID 17-Mar-2011	3030213 124 55.40 SOLID 17-Mar-2011	3030215 129 54.50 SOLID 16-Mar-2011	3030220 ¹³⁸ 50.40 SOLID 16-Mar-2011	3030227 ¹⁴⁸ 40.00 SOLID 16-Mar-2011
3030234 67 56.70 SOLID 16-Mar-2011 16-Mar-2011	3030216 77 49.80 SOLID 16-Mar-2011 16-Mar-2011	3030218 79 52.90 SOLID 16-Mar-2011 17-Mar-2011	3030217 81 53.50 SOLID 16-Mar-2011 22-Mar-2011	3030222 85 46.40 SOLID 16-Mar-2011 16-Mar-2011	3030212 101 43.70 SOLID 17-Mar-2011 17-Mar-2011	3030213 124 55.40 SOLID 17-Mar-2011 17-Mar-2011	3030215 129 54.50 SOLID 16-Mar-2011 16-Mar-2011	3030220 ¹³⁸ 50.40 SOLID 16-Mar-2011 22-Mar-2011	3030227 ¹⁴⁸ 40.00 SOLID 16-Mar-2011 17-Mar-2011
3030234 67 56.70 SOLID 16-Mar-2011 16-Mar-2011 14-Mar-2011	3030216 77 49.80 SOLID 16-Mar-2011 16-Mar-2011 15-Mar-2011	3030218 79 52.90 SOLID 16-Mar-2011 17-Mar-2011 15-Mar-2011	3030217 81 53.50 SOLID 16-Mar-2011 22-Mar-2011 15-Mar-2011	3030222 85 46.40 SOLID 16-Mar-2011 16-Mar-2011 15-Mar-2011	3030212 101 43.70 SOLID 17-Mar-2011 17-Mar-2011 14-Mar-2011	3030213 124 55.40 SOLID 17-Mar-2011 17-Mar-2011 14-Mar-2011	3030215 129 54.50 SOLID 16-Mar-2011 16-Mar-2011 11-Mar-2011	3030220 138 50.40 SOLID 16-Mar-2011 22-Mar-2011 15-Mar-2011	3030227 ¹⁴⁸ 40.00 SOLID 16-Mar-2011 17-Mar-2011 15-Mar-2011
3030234 67 56.70 SOLID 16-Mar-2011 16-Mar-2011 14-Mar-2011 21-Mar-2011	3030216 77 49.80 SOLID 16-Mar-2011 16-Mar-2011 15-Mar-2011 21-Mar-2011	3030218 79 52.90 SOLID 16-Mar-2011 17-Mar-2011 15-Mar-2011 21-Mar-2011	3030217 81 53.50 SOLID 16-Mar-2011 22-Mar-2011 15-Mar-2011 21-Mar-2011	3030222 85 46.40 SOLID 16-Mar-2011 16-Mar-2011 15-Mar-2011 21-Mar-2011	3030212 101 43.70 SOLID 17-Mar-2011 17-Mar-2011 14-Mar-2011 21-Mar-2011	3030213 124 55.40 SOLID 17-Mar-2011 17-Mar-2011 14-Mar-2011 21-Mar-2011	3030215 129 54.50 SOLID 16-Mar-2011 16-Mar-2011 11-Mar-2011 21-Mar-2011	3030220 ¹³⁸ 50.40 SOLID 16-Mar-2011 22-Mar-2011 15-Mar-2011 21-Mar-2011	3030227 148 40.00 SOLID 16-Mar-2011 17-Mar-2011 15-Mar-2011 21-Mar-2011
	0 58.00 SOLID 16-Mar-2011 16-Mar-2011 15-Mar-2011 21-Mar-2011 14-Mar-2011	0 02 0 02 58.00 52.50 SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 22-Mar-2011 15-Mar-2011 15-Mar-2011 21-Mar-2011 21-Mar-2011 14-Mar-2011 16-Mar-2011	0 02 12 0 02 12 12 12 12 58.00 52.50 53.10 SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 22-Mar-2011 16-Mar-2011 15-Mar-2011 15-Mar-2011 15-Mar-2011 21-Mar-2011 21-Mar-2011 21-Mar-2011 14-Mar-2011 16-Mar-2011 16-Mar-2011	0 02 12 34 0 02 12 34 12 12 34 58.00 52.50 53.10 49.40 SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 22-Mar-2011 16-Mar-2011 16-Mar-2011 15-Mar-2011 15-Mar-2011 15-Mar-2011 15-Mar-2011 21-Mar-2011 21-Mar-2011 21-Mar-2011 21-Mar-2011 14-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011	0 02 12 34 35 0 02 12 34 35 12 34 35 12 34 35 12 34 35 12 34 35 12 34 35 12 34 35 12 34 35 15 52.50 53.10 49.40 16-Mar.2011 SOLID SOLID SOLID 16-Mar.2011 16-Mar.2011 16-Mar.2011 16-Mar.2011 16-Mar.2011 16-Mar.2011 16-Mar.2011 16-Mar.2011 15-Mar.2011 15-Mar.2011 15-Mar.2011 14-Mar.2011 14-Mar.2011 16-Mar.2011 16-Mar.2011 21-Mar.2011 14-Mar.2011 16-Mar.2011 16-Mar.2011 15-Mar.2011	0 02 12 34 35 48 0 02 12 34 35 48 12 34 35 48 12 34 35 48 12 34 35 48 12 34 35 48 12 34 35 48 12 34 35 48 12 34 35 48 12 34 61.90 62.00 58.00 52.50 53.10 49.40 61.90 62.00 SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 15-Mar-2011 15-Mar-2011 15-Mar-2011 14-Mar-2011 14-Mar-2011 14-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 14-Mar-2011 14-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 14-Mar-2011 <th>0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 12 34 35 48 51 0 52.50 53.10 49.40 61.90 62.00 39.40 SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 116-Mar-2011 15-Mar-2011 15-Mar-2011 14-Mar-2011 14-Mar-2011 14-Mar-2011 12-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011</th> <th>0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 02 02 02 02 02 02 02 02 0 02</th> <th>0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 52.50 53.10 49.40 61.90 62.00 39.40 46.20 42.80 SOLID SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 17-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 17-Mar-2011 22-Mar-2011 15-Mar-2011 15-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011</th>	0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 34 35 48 51 0 02 12 12 34 35 48 51 0 52.50 53.10 49.40 61.90 62.00 39.40 SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 116-Mar-2011 15-Mar-2011 15-Mar-2011 14-Mar-2011 14-Mar-2011 14-Mar-2011 12-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011	0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 12 34 35 48 51 55 0 02 02 02 02 02 02 02 02 02 0 02	0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 12 34 35 48 51 55 59 0 02 52.50 53.10 49.40 61.90 62.00 39.40 46.20 42.80 SOLID SOLID SOLID SOLID SOLID 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 17-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 17-Mar-2011 17-Mar-2011 22-Mar-2011 15-Mar-2011 15-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011 16-Mar-2011

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

ALcontrol Hawarden	Report No:	11-21745/1
Unit7-8, Hawarden Business Park Manor Road (off Manor Lane)	Date Received:	11/03/2011
Hawarden, Deeside	Date Tested:	14/03/2011 to 18/03/2011
Flintshire, CH5 3US	Date Issued:	18/03/2011
	Page:	1 of 7
For the attention of: Tracy Dykes	By email	

20 soil samples received from ALcontrol Hawarden (O/N: 168084; Project: 110309-48) in 100ml amber glass jars were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory re	eference	184472 3034633 64-49.0	184473 3034707 59-42.80	184474 3035777 101-43.70
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	[56573-85-4] mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1
Date Received:	11/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	2 of 7

Laboratory re	ference	184475 3035810 124-55.40	184476 3035986 129-54.50	184477 3036035 35-61.90
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	<i>[1461-25-2]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1
Date Received:	11/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	3 of 7

Laboratory re	ference	184478 3036066 51-39.40	184479 3036068 0-58.00	184480 3036090 77-49.80
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	<i>[1461-25-2]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1
Date Received:	11/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	4 of 7

Laboratory re	ference	184481 3036108 48-62.00	184482 3036118 67-56.70	184483 3036119 81-53-50
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	<i>[1461-25-2]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1
Date Received:	11/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	5 of 7

Laboratory re	ference	184484 3036150 55-46.20	184485 3036181 85-46.40	184486 3036217 34-49.90
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	<i>[1461-25-2]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1
Date Received:	11/03/2011
Date Tested:	14/03/2011 to 18/03/2011
Date Issued:	18/03/2011
Page:	6 of 7

Laboratory re	eference	184487 3036242 148-40.0	184488 3036268 12-53.10	184489 3036355 138-50.40
dibutyltin	<i>[1002-53-5]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tetrabutyltin	<i>[1461-25-2]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05	< 0.05

Report No:	11-21745/1	
Date Received:	11/03/2011	
Date Tested:	14/03/2011 to 18/03/2011	
Date Issued:	18/03/2011	
Page:	7 of 7	,

Laboratory r	eference	184490 3036464 79-52.90	184491 3036554 02-52.50
dibutyltin	[1002-53-5] mg/kg Sn	< 0.02	< 0.02
tetrabutyltin	[1461-25-2] mg/kg Sn	< 0.02	< 0.02
tributyltin	<i>[56573-85-4]</i> mg/kg Sn	< 0.02	< 0.02
triphenyltin	<i>[668-34-8]</i> mg/kg Sn	< 0.05	< 0.05

le

Emma Winter Laboratory Manager

CERTIFICATE OF ANALYSIS

SDG:	110309-48	Location:	Sea Green
Job:	H_UNIHULL_HUL-5	Customer:	University of Hull
Client Reference:	ZBB 776	Attention:	Ann Leighton

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: Superseded Report: FJ023335 121539

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	ATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GC-MS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC/MS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CWG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GC-MS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GC/MS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAKER	6C-EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONCATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLD PHASE EXTRACTION	HPLC
PEST OCP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT NJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Croddlite	Blue Asbestos
Fibrous Adindite	-
Florous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.