

Ardersier Port Dredging Best Practicable Environmental Option Information

May 2023

CONTROL SHEET

Client: Ardersier Port (Scotland) Ltd.

Project Title: Ardersier Port

Report Title: Dredging Best Practicable Environmental Option Information

Document number: 13378
Project number: 676693

Issue Record

Issue	Status	Author	Reviewer	Approver	Issue Date
1	Final	CCAS	GD	CGF	17/05/2023
2					

EnviroCentre Limited Office Locations:

Glasgow Edinburgh Inverness Banchory

Registered Office: Craighall Business Park 8 Eagle Street Glasgow G4 9XA Tel 0141 341 5040 info@envirocentre.co.uk www.envirocentre.co.uk

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Ardersier Port (Scotland) Ltd. ("the Client"). EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be altered without the prior written approval of EnviroCentre Limited.

EnviroCentre Limited is registered in Scotland under no. SC161777.

VAT no. GB 348 6770 57.

Contents

Tables

1
1
1
2
2
2
2
5
5
5
5
5
7

1 INTRODUCTION

EnviroCentre Ltd. were appointed by Ardersier Port to undertake a Best Practicable Environmental Options appraisal (BPEO) in support of the dredge licence for capital dredging to help develop a deeper berth at Ardersier Port. The harbour is currently being dredged under licence to -6.5m below Chart Datum (bCD). The proposed deepening would take the final depth to -12.9m below CD. The purpose of the deepening is to allow deeper draft vessels to access the quayside which is yet to be constructed. Review of pertinent geological and historic dredging information shows that the proposed dredged material comprises predominately undisturbed sands and gravels. The material is proposed to be pumped ashore for stockpiling and reuse as aggregate for future construction projects.

As part of the licensing process applicants are required to undertake a Best Practicable Environmental Option (BPEO) assessment for the disposal routes for the prospective dredge material in conjunction with the assessment of the chemical and physical properties of the same material to ensure that quality of the material is suitable for the identified disposal route(s). In this instance, the dredged material is to be beneficially reused in the same manner as the material currently being dredged, so the focus of this report will relate to sediment quality and potential risks to the water environment.

1.1 Scope of Report

The purpose of this report is to review the available information and assess potential contamination risks associated with the proposed dredging works.

1.2 Report Usage

The information and recommendations contained within this report have been prepared in the specific context stated above and should not be utilised in any other context without prior written permission from EnviroCentre Limited.

If this report is to be submitted for regulatory approval more than 12 months following the report date, it is recommended that it is referred to EnviroCentre Limited for review to ensure that any relevant changes in data, best practice, guidance or legislation in the intervening period are integrated into an updated version of the report.

Whilst the Client has a right to use the information as appropriate, EnviroCentre Limited retains ownership of the intellectual content of this report. Any distribution of this report should be managed to avoid compromising the validity of the information or legal responsibilities held by both the Client and EnviroCentre Limited. EnviroCentre Limited does not accept liability to any third party for the contents of this report unless written agreement is secured in advance, stating the intended use of the information.

EnviroCentre Limited accepts no liability for use of the report for purposes other than those for which it was originally provided, or where EnviroCentre Limited has confirmed it is appropriate for the new context.

2 SAMPLING AND ANALYSIS

As per the sample plan submitted in February 2023, 30 boreholes were to be progressed to proposed dredge depth with samples to be collected from the base of the currently licensed dredge depth of - 6.5m bCD, the middle and samples representative of the base the dredge at 12.9m bCD.

The proposed dredge areas and volumes are detailed in Table 2-1 below with the dredge areas presented and sample locations provided in drawing G676693-GIS001 in Appendix A.

Table 2-1: Proposed Dredge Areas and Approximate Dredge Volumes

Dredge Area	Approximate Total Dredge Volume (m³)	Target Dredge Depth (m below Chart Datum)	Dredge Thickness (m)*
Ardersier Port	Up to 2,000,000	-12.9 m	6.4 m

2.1 Sediment Sampling and Nature of Marine Sediments on Site

Samples from the proposed dredge area were collected in March and April 2023 and submitted for analysis in line with Marine Scotland's guidance and the agreed sampling plan. The sample logs are provided in Appendix B with Laboratory certificates and data summary tables in Appendix C.

Sediment type across all dredge areas was predominately sand with varying gravel and silt content.

The following sections details the exceedances of the Revised Action Levels (RALs) with further consideration of these exceedances undertaken in in Section 3.

2.2 Deviations from Sampling Plan

All samples were collected from their proposed positions with the exception of the following exceptions:

- S28 and S29 due to water depth/shallow dredge depth at these locations the only material present was for the base of the borehole with samples recovered from 12.5-13.0m below chart datum; and
- S30 was not drilled as the seabed is below the target dredge depth.

As a result of this, total samples were reduced from 90 planned to 83 collected and tested.

2.2.1 Metals

Exceedances of the RALs for metals can be summarised as follows:

- Arsenic –0 of 83 samples recorded arsenic levels above RAL1. The maximum concentration recorded was 9.9mg/kg.
- Cadmium –0 of 83 samples recorded cadmium levels above RAL1. The maximum concentration recorded was 0.39 mg/kg.
- Copper 1 of 83 samples recorded copper levels above RAL1. The maximum concentration recorded was 31.2 mg/kg.

- Chromium 1 of 83 samples recorded chromium levels above RAL1. The maximum concentration recorded was 90.9 mg/kg.
- Lead 0 of 83 samples recorded lead levels above RAL1. The maximum concentration recorded was 19.2 mg/kg.
- Mercury 3 of 83 samples recorded mercury levels above RAL1. The maximum concentration recorded was 0.35 mg/kg.
- Nickel 1 of 83 samples recorded nickel levels above RAL1. The maximum concentration recorded was 63.5 mg/kg.
- Zinc 3 of 83 samples recorded zinc levels above RAL1. The maximum concentration recorded was 212 mg/kg.

There were no exceedances of RAL2 for metals recorded within any of the 83 samples collected.

2.2.2 Tributyl Tin (TBT)

The majority of samples were recorded below the laboratory limit of detection (LOD) and all samples recorded below RAL1.

2.2.3 Polyaromatic Hydrocarbons (PAHs)

2 of 83 samples recorded individual PAH concentrations above RAL1.

2.2.4 Polychlorinated Biphenyls (PCBs)

All samples recorded individual PCB congeners below RAL1. The highest recorded total ICES 7 concentration was 0.0029 mg/kg.

2.2.5 Total Hydrocarbons (THC)

0 of 83 samples recorded hydrocarbons above RAL1. The maximum recorded is 67.7 mg/kg.

3 DISCUSSION OF AVAILABLE DISPOSAL OPTIONS

The BPEO process is geared towards identifying a preferred overall strategy from the perspective of the environment as a whole, as opposed to detailed optimisation of any one selected scheme.

In this instance as outlined above, the dredged material, will be stockpiled for beneficial reuse so no further screening of options, or cost assessments are presented. This beneficial reuse option has already been established for the current dredging activity.

4 FURTHER ASSESSMENT

4.1 Chemical Quality

Nine samples from 87 in total recorded Action Level 1 for metals and one sample recorded a marginal exceedance of Total Petroleum Hydrocarbons (TPH).

Further consideration is given to this result using the Canadian Council Ministers of the Environment (CCME) Canadian Sediment Quality Guidelines for the Protection of Aquatic Life considering both the Effects Range Low (ERL) and Probable Effects Level (PEL). This is summarised in the table below.

Table 4-1: Further Assessment Summary

Contaminant	Number of RAL1 Exceedances of 83 samples	Number of ERL Exceedances of 83 samples	Number of PEL Exceedances of 83 samples
Copper	1	0	0
Chromium	1	1	0
Nickle	1	N/A	N/A
Zinc	3	3	0
Pyrene	1	0	0
Dibenz(ah)anthracene	1	N/A	N/A

In summary, there are no exceedances of Probable Effect Levels or RAL2 where one is available for review.

4.2 Water Framework Directive Assessment

A WFD assessment has not been undertaken for these works as the proposed works are considered to be a continuation of the currently licensed works with all relevant supporting information and assessments contained within the existing Environmental Impact Assessment Report and other supporting documentation for the site.

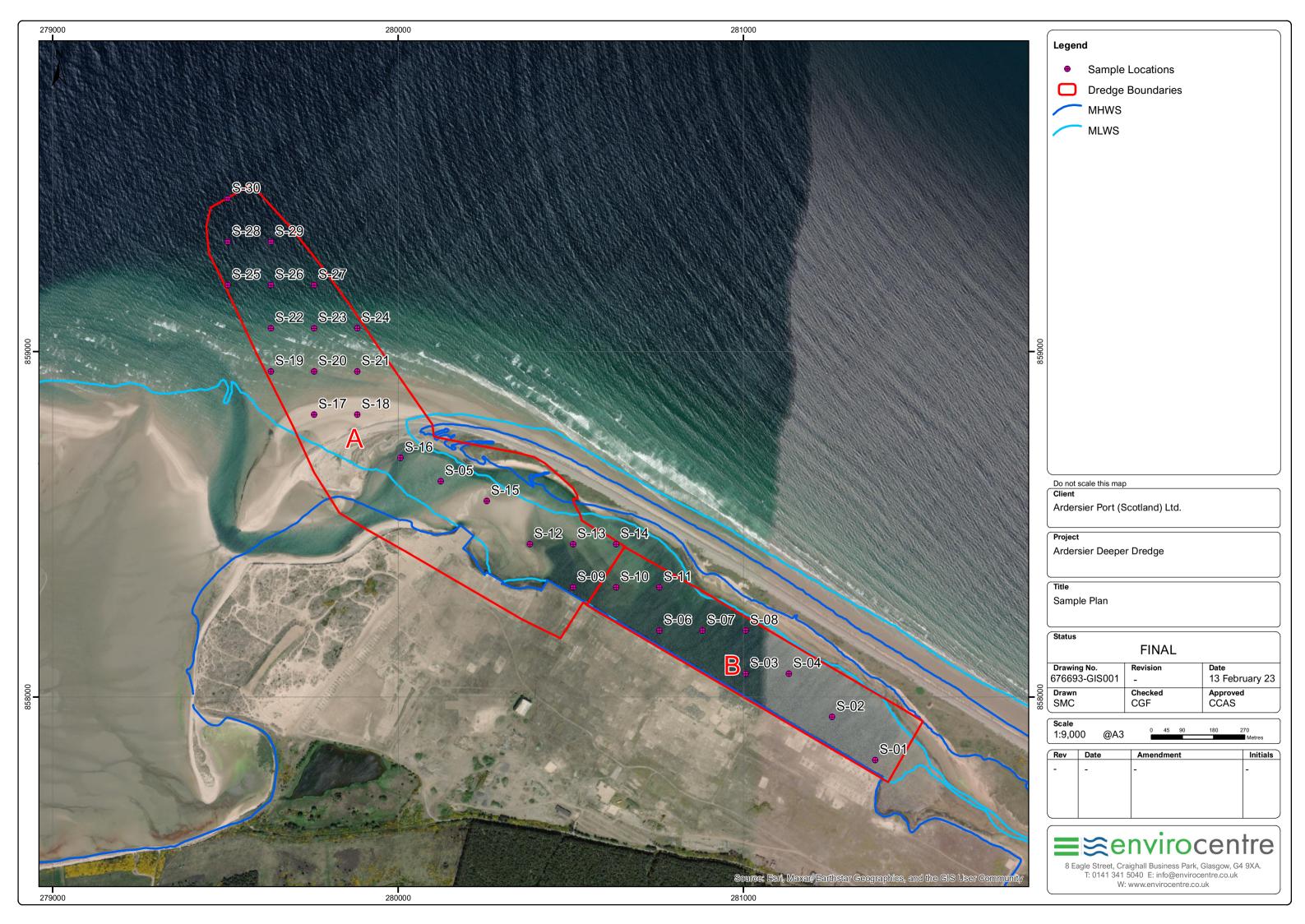
4.3 Potential Risk to Water Quality and Marine Life

The key risks from dredging activities, as with all dredging projects are the risks associated with suspended solids. There is no sea disposal associated with the proposed dredge works, so all of the material will continue to be pumped ashore as per the current licensed works. Associated water from the dredging process will continue to be directed through settlement ponds to help reduce the suspended solid content prior to discharge of the water back into the harbour as per the current operations.

4.4 Conclusions

Review of available chemical quality information has low level/frequency exceedances for a copper, nickel, chromium, zinc and PAHs.

The contaminants of concern levels recorded in the sediment are not considered likely to have a significant adverse impact on surrounding water quality during the works due to the very low levels of contamination associated with the dredged material.


The proposed deeper dredge works are essentially an extension of the currently licensed works, albeit to a greater depth. So, in conclusion, dredging of deeper sands and gravels with storage on land for beneficial use is considered to present a very low level of risk to the environment.

REFERENCES

Marine Scotland (2017). Pre-Dredge Sampling Guidance Version 2: Scottish Government. Marine Scotland (2015). Guidance for Marine Licence Applicants Version 2: Scottish Government.

APPENDICES

A FIGURES

B BOREHOLE LOGS

			arm Road	T .							Scale 1:12	5 Sheet 1 of 1		
	SOLMI	EK TS18 3N 01642 6	n on Tees JA 507083 olmek.com	Borehole 1	Log					S-01				
Contrac		S23023	2	Site: Marine Scotland Boreholes, Ardersier, Inverness	Star Ende	t used: ted:	Bainbr Dando 06/03/ 06/03/	2023 2023	ers Ltd		GL (mCD): Easting: Northing: Logged: Status:	281382		
/ ion	-	_							Sampl	les and Ins	itu Testing			
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	h (m)	Туре	Re	esults		
		6.50	-2.50 -3.30 -7.50		is fine t	o medium		11 11 12 12 13 13 14 14 15 15 16 16 16 17 17 18 18 18 19 19 19 20 20	.50 .00 .50 .00 .50 .00 .50 .00 .50 .00 .50 .00 .50 .00	ES E				
Hole D	iamete-	Cache	Donthe	Complements						Cround III	ater			
Depth	Diameter Diameter	Depth Base	Depths Diameter	General Remarks Drilled overwater - no handdug pit undertaken.	From (m)	Chiselling To (m)	Time (hr)	Depth Strike	Depth Casing	Ground W	Time Elapsed	Water Level (m		
Base (m) 21.70	(mm) 150	(m) 21.50	(mm) 150		rrom (m)	10 (m)	ime (hr)	(m)	(m)	(m)	(min)	water Level (m		

		arm Road						Scale 1:125	Sheet 1 of 1	
SOL	MEK TS18 31 01642 6			Borehole Log						
					Driller:	Bainbr	idge Brothers Ltd	GL (mCD):	2.39m	
Contract no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando 2000		Easting:	281257	
					Started:	07/03/	2023	Northing:	857941	
Client:	Ardersi	er Port			Ended:	07/03/	2023	Logged:	SD	
Method:	Cable P	ercussive			Backfilled:	07/03/	2023	Status:	DRAFT	
Hon tion	_	- ô					Samples and In	situ Testing		

Client:		Ardersi			07/03/				Logged:	SD		
Metho	d: 	Cable P	ercussive		Back	dilled:	07/03/	(2023			Status:	DRAFT
Backfill / Installation	ᄝ	£ (- <u>-</u> 0						Sampl	es and Ins	situ Testing	
stalla	Legend	Depth (m)	Level (m CD)	Stratum Description				Dont	h (m)	Trmo	D	esults
# <u>E</u>								рерс	п (ш)	Туре	N	esuits
				WATER								
												4
								Ē				
			-					E				
								Ē				1
			-									1
								E				
												1
												4
								E				
			-					E				
								Ē				1
		7.30	-4.91					E				릨
	x × ×	Ē		Dark greyish black silty SAND. Sand is fine to medium grained				Ē				
		8.10	-5.71	Grey SAND. Sand is fine to coarse grained with occasional shells.								1
								8.	89	ES		4
								9.	39	ES		=
			-					9.	89	ES		4
								E	.39	ES		
			-					E	.89	ES		
								E	.39 .89	ES ES		
		12.40	-10.01					E	.39	ES		1
	$\hat{x} \times \hat{x}$	12.10	10.01	Grey silty SAND. Sand is fine to medium grained.					.89	ES		1
	$\begin{bmatrix} \times & \times \\ & \times \end{bmatrix}$							E	.39	ES		
	$\begin{bmatrix} \times & \times \end{bmatrix}$		-					13	.89	ES		4
	××								.39	ES		
	×××		-					E	.89	ES		
	×、×							E	.39	ES		
	\times \times							E	.89 .39	ES ES		1
	× ×							F	.89	ES		
	× ×							E	.39	ES		1
	$\times \times \times$							17	.89	ES		4
	× × ×							E	.39	ES		1
	x × ×		-					E	.89	ES		
		19.40	-17.01	End of Borehole at 19.400m				19	.39	ES		1
								F				
								E				
								Ē				
								<u>E</u>				4
			-					E				를
								Ė				1
			-					F				1
Hole D	ameter	Cacin~	Depths	General Remarks		Chiselling				Ground W	ater	
Depth	Diameter	Depth Base	Diameter	Drilled every setan, no handdur nit undertaken	From (m)	To (m)	Time (hr)	Depth Strike		Depth Sealed	Time Elapsed	Water Level (m)
Base (m) 19.40	(mm) 150	(m) 19.40	(mm) 150	-	7		. ,,	(m)	(m)	(m)	(min)	
						1	I	ı	<u> </u>			

♣ S	SOLME	Stockton TS18 3N 01642 6			Borehole	Log				Scale 1:125	Sheet 1 of 1
						Driller:	Bainbr	idge Brothers Ltd		GL (mCD):	2.32m
Contrac	t no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	: Dando 2000			Easting:	281007
						Started:	08/03/	2023		Northing:	858066
Client:	Client: Ardersier Port			•		Ended:	08/03/2023			Logged:	SD
Method	l:	Cable P	ercussive			Backfilled: 08/03/2023				Status:	DRAFT
			ы <u>(</u>)					Sampl	es and Ins	itu Testing	
Backfill / Installation Legend Depth (m) Level (m CD)		Lev (m C		Stratum Description			Depth (m)	Туре	Res	sults	
WATER				WATER							

Method	d:	Cable P	ercussive		08/03/		Status: DRAFT					
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	Sampl	les and Ins	situ Testing	esults
u u		9.10	-5.88	Dark greyish black silty SAND. Sand is fine to medium grained. Grey SAND. Sand is fine to coarse grained with occasional shells. End of Borehole at 19.400m				8. 9. 10 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	82 32 82 .32 .82 .32 .82 .32 .82 .32 .82 .32 .82 .32 .82 .32 .82 .32 .82 .32 .82	ES E		
	iameter	Casing		General Remarks	ı	Chiselling	T		T	Ground W		
Depth Base (m)	Diameter (mm)	Depth Base (m) 19.40	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	om (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)

Hole Di	iameter	Casing	Depths	General Remarks		Chiselling				Ground Water		
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
19.40	150	19.40	150									

Column C				arm Road								Scale 1:125	Sheet 1 of 1
Control 1		SOLMI	EK TS18 3N	VΑ	Borehole	Log						S-	-04
Marriary Sample													
Mathematical Math										ners Ltd		1	
Martin M	Contrac	ct no:	\$23023	2	Site: Marine Scotland Boreholes, Ardersier, Inverness							1	
Martin Part	Cliana		A	Dt									
Part		4.										1	
No.		u. 	Cable F	l		Dati	ашец:	07/03/	2023				
No.	itio	ᅙ	£ _							Samp	les and Ins	itu Testing	
No.	ackf	-ege	Dep.	Lev (m C	Stratum Description				D	11. (.)			. 1.
1.48	8 E	_							рер	in (m)	туре	Re	esuus
Note 10.00 1.00					WATER								
Note 10.00 1.00			<u> </u>						Ē				
Note 10.00 1.00			Ē						Ē				
Note 10.00 1.00			<u>E</u>	-									-
Note 10.00 1.00			Ē										
Note 10.00 1.00			E										
Note 10.00 1.00			Ē										
Note 10.00 1.00			E										
Note 10.00 1.00													
Note 10.00 1.00			F										
Note 10.00 1.00			<u>E</u>						Ē				
Note 10.00 1.00									E				
Note 10.00 1.00									Ē				
Note 10.00 1.00			Ē						Ē				
Note 10.00 1.00			<u>E</u>	-					Ė				-
Second S			Ē						Ē				
Second S													-
Second S		t XPE AT	9.60	-4.62	Dark gravich black cilty CAND. Sand is fine to madium grained				Ē				
Second S		× × ×	E 10 40	F 40	Dark greysh black sing SAND. Sand is the to medium gramed.				Ė				=
Second S			10.40	-5.42	Grey SAND. Sand is fine to coarse grained with occasional shells.				Ē				
Second S			Ē	1					11	10	EC		
Second S			E						E				
Second S			Ē						E				
Second S									E				
			Ė						13	3.48	ES		
									13	3.98	ES		
			Ė							1.48	ES		
			E E	1					E 14	.98	ES		
			Ė						F				
									F				
			Ē						F				
			Ē						E				1
			Ē						E				
			E						E				
				-					-		ES		4
			Ė						19	0.48	ES		
			E	-					-				=
			Ė						F				
			Ē						-				
			61.00	17.00					E				=
			E 21.98	-17.00	End of Borehole at 21.980m				E 21	.98	ES		-
			Ĺ						Ĺ				
			Ė						Ė				
			E						E				_
Company Com			Ė						Ē				
Beeth Base (m) Diameter (mm) Depth Base (mm) Depth Base (mm) Diameter (m			E						<u> </u>				
Base (m) (mm) (m) (mm) (m) (mm) (min) (min) (min)	Hole Di	ameter		Depths			Chiselling						
	Depth Base (m)				Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)			Time Elapsed (min)	Water Level (m)
									·	.,	 		

A :	SOLMI	Stockto TS18 3N 01642 6				Borehole	Log					Sheet 1 of
Contrac	t no:	S23023 Ardersi		Site:	Marine Scotland Boreh	oles, Ardersier, Inverness	Driller: Plant used: Started: Ended:	Bainbri Dando 09/03/ 09/03/	2023		GL(mCD): Easting: Northing: Logged:	280124
Metho	l:		ercussive				Backfilled:	09/03/			Status:	DRAFT
III /	рı	£ _	- G				·		Samp	oles and In	situ Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)		S	tratum Description			Depth (m)	Туре	Re	esults
		7.30	-2.10	Dark Grey SAI	ND. Sand is fine to mediun	n grained.						

7.30	-2.10	Dark Grey SAND. Sand is fine to medium grained. Grey SAND. Sand is fine to medium grained with broken shell fragment of the same of the s	ents.			12	.70 .20 .70 .70 .20 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7	ES E	
Hole Diameter Casing Depth Diameter Depth Base Base (m) (mm) (m)		General Remarks Drilled overwater - no handdug pit undertaken.	From (m)	Chiselling To (m)	Time (hr)	Depth Strike	Depth Casing (m)	Ground W Depth Sealed (m)	Water Level (m)

Hole Di	ameter	Casing	Depths	General Remarks		Chiselling				Ground W	ater	
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
21.20	150	21.00	150									

S	OLME	01642 60	on Tees		Borehole 1	Log			Scale 1:12	Sheet 1 of 1
Contract	t no:	S230232	!	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Bainbr Dando 13/03/	2000	GL (mCD) Easting: Northing:	280757
Client:		Ardersie	r Port			Ended:	13/03/	2023	Logged:	SD
Method	:	Cable Pe	rcussive			Backfilled:	13/03/	2023	Status:	DRAFT
_						-		C	T	

Method	d:	Cable P	ercussive		aea: ckfilled:	13/03/				Status:	DRAFT
		Cable I	Cicussive	ID:	caincu.	13/03/	2020				
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Dept	Sampl h (m)	es and Ins	situ Testing Re	esults
Backf Installs Installs		7.80	-2.77	WATER Black silty SAND with occasional wood fragments. Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to n rounded to rounded of sandstone with occasional shell fragments. End of Borehole at 19.500m	nedium grain	ned, sub-	8. 9. 10 11 12 12 13 13 14 14 15 16 16 17 17 18 18 18 18	93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43 93 43	ES E	R	esults
Hole Di	ameter	Casing	Depths	General Remarks	Chiselling				Ground W	ater	111111111111111111111111111111111111111
Depth Base (m) 19.33	Diameter (mm) 150	Depth Base (m) 19.00	Diameter (mm)	Drilled overwater - no handdug pit undertaken. From (m	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)

			arm Road						Scale 1:12:	Sheet 1 of 1
	SOLMI	EK TS18 3N 01642 6	n on Tees VA 307083 olmek.com	Borehole	Log				S-	-07
Contrac		S23023 Ardersi	2 er Port	Site: Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started: Ended:	Dando 08/03 08/03	/2023 /2023	Ltd	GL (mCD): Easting: Northing: Logged:	280882 858191 SD
Method	d:	Cable P	ercussive	T	Backfilled:	08/03	/2023		Status:	DRAFT
tion :	<u> </u>	ے	- 6					Samples and In	situ Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Depth (m	туре	Re	sults
Hole Di		7.80 8.40	-3.50		Chiselli	ing.	10.80 11.30 12.30 12.80 13.30 14.80 15.30 16.30 16.30 17.30 17.80 18.30 19.30 19.30 19.30 20.30 20.80 21.30	ES E	ater	
	Diameter	Casing Depth Base	Depths Diameter				Depth Strike Depth	h Casing Depth Sealed		
Depth Base (m) 21.30	Diameter (mm)	Depth Base (m) 21.00	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m) To (m)	Time (hr)	Depth Strike Depth (m)	h Casing Depth Sealed (m) (m)	Time Elapsed (min)	Water Level (m)

SC	DLMEK	12-16 Yaz Stockton TS18 3NA 01642 60 info@sol	on Tees A 07083		Borehole :	Log				25 Sheet 1 of 1
Contract 1	10:	S230232	!	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Bainbr Dando 08/03/		GL (mCD Easting: Northing	281007 \$ 858191
Client:		Ardersie	r Port	•		Ended:	08/03/	2023	Logged:	SD
Method:		Cable Pe	rcussive			Backfilled:	08/03/	2023	Status:	DRAFT

Client:		Ardersi			Ende		08/03/				Logged:	SD
Method	d:	Cable P	ercussive		Back	fi lled:	08/03/	2023			Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description							situ Testing	
Ba	¥		- =					Dept	h (m)	Туре	Re	esults
				WATER								
			-									
												4
			-									4
								-				
								Ė				4
								Ē				=
			-					E E				4
			1					Ē				7
												4
	X:	10.60	-5.62									
	. × . × × × .			Dark greyish black silty SAND. Sand is fine to medium grained.								
	. × . × × × .							F	.48	ES		
	. × . × × × .							F	.98 .48	ES ES		
	. × . × × × ×							-	.98	ES		4
	.x. x	13.60	-8.62					E	.48	ES		
				Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to rounded to rounded of sandstone with broken shell fragments.	o med	lium grain	ed, sub-	F	.98	ES		
				, and the second				E	.48	ES		
								E	.98 .48	ES ES		
								-	.98	ES		
								16	.48	ES		
		17.00	-12.02	Grey SAND. Sand is fine to coarse grained.				E	.98	ES		
								-	.48 .98	ES ES		=
								F	.98 .48	ES		7
								-	.98	ES		4
								Ė	.48	ES		
			=					-	.98 .48	ES ES		1
								-	.48 .98	ES ES		
								-	.48	ES		
		22.00	-17.02	End of Borehole at 22.000m				21	.98	ES		4
												4
	iameter		Depths	General Remarks		Chiselling		D4b Ct 2	D	Ground W		
Depth Base (m) 22.00	Diameter (mm)	Depth Base (m) 22.00	Diameter (mm)	Drilled overwater - no handdug pit undertaken. From	n (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
۵۵.UU	130	22.00	150									

SOLME	12-16 Yarm Road Stockton on Tees K TS18 3NA 01642 607083 info@solmek.com		Borehole 1	Log			Scale 1:125 S -	Sheet 1 of 1
Contract no:	S230232	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	22/03/2023	E	L(mCD): Casting: Northing:	280507
Client:	Ardersier Port	•		Ended:	22/03/2023	I	ogged:	
Method:				Backfilled:	22/03/2023	s	tatus:	DRAFT

Backfill / Installation Legend	:	Depth (m)	Level (m CD)	Stratum Description					Sampl	es and Ins	situ Testing	
Backfil Installat Legend		Depti (m)	Level m CD	Stratum Description							1	
)					Dept	h (m)	Туре	Re	esults
				WATER								
			-									1
												4
	F											1
			=									4
	milinimalinimalinimalinimalinimalinim		=									1
			=									4
	F											1
42		7.70	-2.12	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to	o mediur	m graine	d, sub-					4
				rounded to rounded of sandstone with occasional shell fragments.								
												1
			=									4
												1
			=					12	nφ	ES		4
								12		ES		
			=					13	.08	ES		
								13 14		ES ES		
								14		ES ES		1
			=					15		ES		
								15		ES ES		
								16 16		ES		
			7					17		ES		
								17		ES		
								18 18		ES ES		
			-					19		ES		
								19 20		ES ES		
								20 20		ES ES		muhummlummulammahammlummulamm
								21		ES		1
			=					21 22		ES ES		4
	2	22.60	-17.02	End of Borehole at 22.600m				22		ES		
				End of Bolehole at 22.600m								1
			=									4
	E											
	Ë											
Hole Diameter		Casing I	Diameter	General Remarks Drilled overwater - no handdug pit undertaken.		iselling	Time (I)	Depth Strike	Depth Casing	Ground W	Time Elapsed	Weter Levil
Base (m) (mm) 22.60 150	n)	(m) 22.60	(mm) 150	Drined Overwater - no handdug pit undertaken.	1 (m) 1	To (m)	Time (hr)	(m)	(m)	(m)	(min)	Water Level (m)

A :	SOLMI	Stockton TS18 3N 01642 6		Boreho	le Log					Sheet 1 of :
Contrac	t no:	S23023		Site: Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Dando 200 13/03/202	3		GL (mCD): Easting: Northing:	280632 858316
Client:		Ardersie			Ended:	13/03/202			Logged:	SD
Metho	ı:	Cable P	ercussive		Backfilled:	13/03/202		lan amd 7 :	Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Depth (m)	Type		sults
		5.20	-1.54	Black silty SAND with occasional wood fragments.						

<u> </u>	_							Бері	h (m)	Туре	К	esults
				WATER								
								Ē				
								E				
		Ē						E				
		Ē.						E				
								Ē				
		Ē						Ē				
		Ē						Ē				
								Ē				
		Ē						Ē				
	×: ····································	5.20	-1.54	Black silty SAND with occasional wood fragments.				Ē				
-	×××,	Ē		back sucy samb with occasional wood fragments.				Ē				
	×××	F	1 1					F				
	×××							Ē				
	×: × ×		1					Ē				
	x × ,	7.80	-4.14					Ē				
-		- 7.00		Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine rounded to rounded of sandstone with occasional shell fragments.	e to med	dium grain	ed, sub-	Ē				
		Ē		rounded to rounded of sandstone with occasional shell fragments.				Ē				
		Ė	1 1					Ē				
		Ė						Ē				
Ī		F	=					10	.16	ES		
ŀ		E						H	.66	ES		
ŀ		<u> </u>	1 -					H	.16	ES		
		Ē						L	.66	ES		
-			1 -					F	.16	ES		
Ī		Ē						H-	.66	ES		
ŀ		<u> </u>	1 -					H	.16	ES		
ŀ		Ē						L	.66	ES		
								F	.16	ES		
ŀ								H-	.66	ES		
		<u> </u>	-					-	.16	ES		
İ								H	.66	ES		
ŀ		Ē	4					F				
ŀ		Ē						F	.16	ES		
		Ē.	1 4					-	.66	ES		
-		Ē						H	.16	ES		
		<u>E</u>						F	.66	ES		
ŀ		Ē						F	.16	ES		
ŀ		Ė.	1 4					-	.66	ES		
-		Ė						-	.16	ES		
								F	.66	ES		
-								F	.16	ES		
ſ		20.70	-17.04	End of Borehole at 20.700m				E 20	.66	ES		
		Ė						Ē				
			1 - 1					E				
		Ē						ŧ				
			_					Ē.				
		Ē						Ē				
		E						E				
		Ē						Ē				
		<u> </u>										
e Di	ameter	Cacina	Depths	General Remarks		Chiselling				Ground W	ater	
th	Diameter	Depth Base	Diameter	Daille de commente de la base de conductation de la	From (m)	To (m)	Time (hr)	Depth Strike	Depth Casing	Depth Sealed	Time Elapsed	Water Level (1
(m)	(mm) 150	(m) 20.50	(mm) 150		TOM (III)	ro (ni)	rane (III)	(m)	(m)	(m)	(min)	vvater never (f

meter	Casing 1	Depths	General Remarks		Chiselling				Ground Wa	ater	
Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
150	20.50	150									
-	Diameter (mm)	Diameter Depth Base (mm) (m)	Diameter Depth Base Diameter (mm) (mm) (mm)	Diameter (mm) Diameter (mm) Drilled overwater - no handdug pit undertaken.	Diameter (mm) Depth Base (mm) Drilled overwater - no handdug pit undertaken. From (m)	Diameter (mm) Diameter (mm) Diameter (mm) Drilled overwater - no handdug pit undertaken. From (m) To (m)	Diameter (mm) Diameter (mm) Diameter (mm) Drilled overwater - no handdug pit undertaken. From (m) To (m) Time (hr)	Diameter (mm) Diameter (mm) Diameter (mm) Diameter (mm) Drilled overwater - no handdug pit undertaken. From (m) To (m) Time (hr) Depth Strike (m)	Diameter (mm) Di	Diameter (mm) Di	Diameter (mm) Di

		arm Road							Scale 1:125	Sheet 1 of 1
SOL	MEK TS18 31 01642	on on Tees NA 607083 olmek.com		Borehole	Log				S-	11
					Driller:	Bainbr	idge Brothers Ltd		GL (mCD):	2.93m
Contract no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000		Easting:	280757
					Started:	16/03/	/2023		Northing:	858316
Client:	Ardersi	er Port			Ended:	16/03/	/2023		Logged:	SD
Method:	Cable P	ercussive			Backfilled:	16/03/	/2023		Status:	DRAFT
kfill / llation gend	m)	vel CD)					Sampl	es and Ins	situ Testing	
 	. ⊢ ∺ ⊱	1 5 0	1	Stratum Description					1	

Client: Method	·	Ardersie	ercussive		ided: ackfilled:	16/03 16/03				Logged: Status:	SD DRAFT
					ickineu.	10/03	12023	Samp		itu Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Dept	h (m)	Туре		esults
ed sul		7.20	-4.27	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to rounded to rounded of sandstone with occasional shell fragments.	nedium gra	ined, sub-	9. 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	43 93 .43 .93 .43 .93 .43 .93 .43 .93 .43 .93 .43 .93 .43 .93 .43 .93 .43	ES E	Ro	
-		20.00	-17.07				F	.43	ES ES		
			-17.07	End of Borehole at 20.000m							
			=				E				
Hole Dia		Casing		General Remarks Drillod grammater, we haveled us nit understaken	Chisellin		Dord C. 1	Don't C .	Ground W		
Depth Base (m) 19.80	Diameter (mm)	Depth Base (m) 19.50	Diameter (mm) 150	Drilled overwater - no handdug pit undertaken. From (r) To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
13.00	130	13.00	130								

	SOLMI	Stockto EK TS18 3N 01642 6	arm Road n on Tees VA 607083 olmek.com	Borehole 1			5 Sheet 1 of 1 -12					
Contrac	ct no:	S23023 Ardersi	2	Site: Marine Scotland Boreholes, Ardersier, Inverness	Drill Plan Star Ende	t used: ted:	Bainbr Dando 10/03/ 10/03/	/2023	ers Ltd		GL(mCD): Easting: Northing: Logged:	280382
Metho	d:	Cable P	ercussive		Back	filled:	10/03/	/2023			Status:	DRAFT
/ I		_	_ 6						Sampl	es and Ins	s itu Tes ting	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	h (m)	Туре	Re	esults
Hole Di		4.90	-2.77_	General Remarks Grey SAND. Sand is fine to coarse grained with occasional shell fragme	ents.	Chicelling		9. 10 11 12 12 12 13 13 14 14 15 16 16 17 17 18 18 18 18	63 13 63 .13 .63 .13 .63 .13 .63 .13 .63 .13 .63 .13 .63 .13	ES	ater	
	Diameter		Depths	General Remarks Drilled overvator, no handdug pit undertaken		Chiselling		Danth Ct	Donth Carter	Depth Souled		
Depth Base (m) 19.50	Diameter (mm) 150	Depth Base (m) 19.50	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)

			arm Road								Scale 1:12	5 Sheet 1 of 1
	SOLMI	EK TS18 3N 01642 6	607083	Borehole 1	Log						S	-13
Contrac Client: Metho		S23023 Ardersid		Site: Marine Scotland Boreholes, Ardersier, Inverness	Star Ende	t used: ted:	Bainbr Dando 20/03/ 20/03/	/2023 /2023	ners Ltd		GL (mCD): Easting: Northing: Logged: Status:	280507
/ no	-	_			·				Sampl	les and Ins	itu Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	h (m)	Туре	Re	esults
		6.70	-17.02		e to me	dium grain	ned, sub-	11 12 12 13 13 14 14 15 16 16 17 17 18 18 19 19 20 20 20	.88 .38 .88 .38 .88 .38 .88 .38 .88 .38 .88 .38 .88 .38 .88 .38 .88 .38	ES E		
Hole D	iameter	Casing	Depths	General Remarks		Chiselling				Ground W	ater	
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Daille de comunidade en la condidade distributado de la condicionada d	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)			Water Level (n
21.40	150	21.40	150									

SOLM	12-16 Yarm Road Stockton on Tees EK TS18 3NA 01642 607083 info@solmek.com		Borehole	Log			Scale 1:125	Sheet 1 of 1
Contract no:	S230232	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Bainbr Dando 20/03/		GL (mCD): Easting: Northing:	3.78m 280632 858441
Client:	Ardersier Port	•		Ended:	20/03/	2023	Logged:	SD
Method:	Cable Percussive			Backfilled:			Status:	DRAFT
_ =					_	Samples and	Insitu Testing	

Client: Method	1.	Ardersi	er Port ercussive		Ende		20/03/	2023			Logged: Status:	SD
	ı. 	Cable P	ercussive		Dack	fi lled:						DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				D4	Sampl h (m)		situ Testing	esults
# <u>E</u>		-		WATER				Берс	п (ш)	Туре	N	esuits
				WAIER								
			-									
			-									4
			-									
			-									4
			_									
		5.20	-1.42	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to	med	lium grain	ed, sub-					
			-	rounded to rounded of sandstone with occasional shell fragments.								4
			_									1
			-									
			-									4
			-					-	.28	ES		1
			-					—	.78 .28	ES ES		
								E	.78	ES		
			-					-	.28	ES		
			-					_	.78 .28	ES ES		4
			_					E	.78	ES		
								-	.28	ES		
			-					_	.78 .28	ES ES		4
			_					_	.78	ES		4
								-	.28 .78	ES ES		
			-					_	.28	ES		
			-					_	.78 .28	ES		4
								-	.28 .78	ES ES		
			-					E	.28	ES		
			-					_	.78 .28	ES ES		4
		20.80	-17.02	End of Borehole at 20.800m				E	.78	ES		
			-									4
			-									4
			-									7
		<u> </u>										
	ameter		Depths	General Remarks	1	Chiselling		B 41000	n 40.	Ground W		
Depth Base (m) 20.80	Diameter (mm)	Depth Base (m) 20.80	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	(m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
20.00		20.00										

	SOLMI	Stockton EK TS18 3N 01642 6			Borehole	Log				Scale 1:125	5 Sheet 1 of 1
Contrac	ct no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started: Ended:	Bainbr Dando 17/03/ 17/03/	/2023		GL (mCD): Easting: Northing: Logged:	280257
Method	d:		ercussive			Backfilled:	17/03/			Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)		Stratum Description			Samp Depth (m)	situ Testing Re	esults	
				WATER							

, ह _					Depth (m)	Туре	Kesults
	Ē	Ξ.	WATER				
	Ē						
	-	=			_		
	Ē						
		-					
	Ē						
	Ē.						
	E						
	Ē	=			<u></u>		
	Ē	=					
	F	1 =			_		
	Ē.	-					
	Ē						
	Ē.						
	7.40	-3.20					
	Į '. .	3.20	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine rounded to rounded of sandstone with occasional shell fragments.	e to medium grained, sub-			
	₽	=	rounded to rounded of sandstone with occasional shell fragments.		<u></u>		
	ŧ						
	F	=			<u> </u>		
17.	[
	E	-			<u> </u>		
	Ē						
	€				10.70	ES	
	E				11.20	ES	
	Ē				11.70	ES	
	Ē	=			12.20	ES	
	€				12.70	ES	
	₽	-			13.20	ES	
	Ē				13.70	ES	
	1	-				1	
	ŧ	=			14.20	ES	
	E				14.70	ES	
	Ē				15.20	ES	
	Ē				15.70	ES	
		=			16.20	ES	
	[16.70	ES	
	ŧ	=			17.20	ES	
	ŧ				17.70	ES	
	₽	-			-	1	
	[18.20	ES	
	Ē.] =			18.70	ES	
	ŧ				19.20	ES	
	E] .			19.70 20.20	ES	
	ŧ				20.20	ES	
	Ē				20.70	ES	
3.250	21.20	-17.00	End of Borehole at 21.200m		21.20	ES	
	E		End of Dorentie at 21.20011		Ē		
	Ē	1 1			<u>-</u> E		
	Ē				Ē		
	F	-			<u> </u>		
	Ē						
	E	=			<u> </u>		
	Ē				<u> </u>		
	Ē						
				Ol t Fr			L
e Diameter th Diameter			General Remarks Drilled everywater, no banddug nit undertaken	Chiselling	Depth Strike Depth Casing	Ground Wa	Time Flores d
pth Diameter (mm)	(m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m) To (m) Time (hr)	(m) Depth Casing (m)	(m)	(min) Water Level (

			=									=
Hole Di	iameter	Casing	Depths	General Remarks		Chiselling				Ground Wa	<i>N</i> ater	
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
21.00	150	21.00	150									

A 5	SOLMI	Stockto EK TS18 3N 01642 6	arm Road n on Tees VA 607083 olmek.com	Borehole Log Driller: Bainbridge Brothers Ltd								5 Sheet 1 of 1
Contrac	et no:	S23023		Site: Marine Scotland Boreholes, Ardersier, Inverness	Plan Star	t used: ted:	Dando 09/03	2000 /2023	ners Ltd		GL (mCD) Easting: Northing	280007 : 858691
Client: Method	l:	Ardersie Cable P	er Port ercussive		End Bacl	ea: kfilled:	09/03/ 09/03/				Logged: Status:	SD DRAFT
_ uo	_		_		<u> </u>				Samp	les and In	situ Testing	3
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	th (m)	Туре	R	esults
		4.80	-2.02	Grey SAND. Sand is fine to coarse grained with occasional shell fragme	ents.			9. 10 10 11 12 12 13 13 14 15 16 16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	28 78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .28 .78 .78 .28 .78 .78 .78 .78 .78 .78 .78 .7	ES E		
Hole Di	ameter	Casing	Depths	General Remarks		Chiselling				Ground W		
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drillad avanuatar, no handdug nit undartakan	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)		Time Elapsed (min)	Water Level (m)
19.70	150	19.50	150						. 7	. , ,		

			arm Road on on Tees										Scale 1:12	Sheet 1 of 1
	SOLMI	EK TS18 31 01642 0	NΑ			Borehole	Log						S.	-17
			olmek.com				D. 41	I	D. 1. I.	· 1 D (1	T I			
Contrac	t no	S23023	2	Site:	Marine Scotland Boreholes, A	Ardersier Inverness	Drill Plan	er: ıt used:	Dando	idge Broth 2000	iers Lta		GL(mCD): Easting:	3.02m 279757
Continu	t no.	520020	~~	Jac.	Marine Scotlana Borenoies, 1	nucisiei, niverness	Star		27/03/				Northing:	
Client:		Ardersi	er Port				End		27/03/				Logged:	SD
Method	d:	Cable P	ercussive				Bacl	kfilled:	27/03/	/2023			Status:	DRAFT
~ E	_	_									Samp	les and Ins	itu Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)		Stratun	n Description								
Ba	د ا		- =							Dept	th (m)	Туре	Re	esults
				Brown SAND. Sa	and is fine to medium grained	with occasional shell fi	agments.							
	×.×.	0.70	2.32	Dark greyish bla	nck slightly gravelly silty SAND.	Sand is fine to medium	n grained	. Gravel is	fine to	Ē				
	× × -	Ē		medium graine	d, sub-rounded to rounded of	sandstone and broken	shell fragi	ments.		Ē				
	× × -	<u> </u>								E				
	× × -	Ē								Ē				
	××-	[Ē				1
	×× .	1												4
	× × -									Ē				
	××.	-								Ē				1
	×.×.	Ł								Ē				
	×.×.	Ė								Ē				
	×.×.	E								Ē.				- 4
	××.									Ē				
	×.									F				
	×.									Ē.				
	×.×.									9.	.52	ES		
	×.×.	1									.02	ES		
	× × -	1									.52	ES		
	××.	Ē								F	.02	ES ES		
	× ^.	[E	.52 .02	ES		4
	× -	E								F	.52	ES		
	× -									13	3.02	ES		
	×÷.	ŧ								L-	.52	ES		3
	<u> </u>									F	.02 .52	ES ES		
	<u> </u>	<u> </u>	-							E	.02	ES		
	×	Ē								E	.52	ES		
	×	<u> </u>								E	.02	ES		4
	<u> </u>	Ē								F	5.52	ES		
										E	.02 .52	ES ES		
	; x -	1								E	3.02	ES		4
	- X	1								F	3.52	ES		
		F								F	.02	ES		4
		90 10	-17.08							E	.52 .02	ES ES		
		20.10	-17.08		End of Bore	ehole at 20.100m				Ē ~				=
										E				<u> </u>
										Ē				
										Ē				1
										E				4
		E								E				
		E	=							E				4
	<u> </u>	É	<u></u>							<u> </u>				
Hole Di	ameter	Casing	Depths	General Remarks Chiselling								Ground W	ater	
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)						Depth Strike (m)	Depth Casing (m)		ealed Time Elapsed Water Level (m)		
19.20	(mm) 150	(m) 19.00	(mm) 150							(111)	(111)	(111)	(mm)	

	SOLM	Stockto EK TS18 3N 01642 6	arm Road n on Tees JA 507083 olmek.com	Borehole Log								5 Sheet 1 of 1
Contrac		S23023 Ardersi	2 er Port	Site: Marine Scotland Boreholes, Ardersier, Inverness	Star End	it used: ted: ed:	Dando 15/03/ 15/03/	/2023 /2023	ners Ltd		GL (mCD): Easting: Northing: Logged:	279882 858816 SD
Method		Cable P	ercussive		Bacl	kfilled:	15/03/	2023			Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	Sampl	les and Ins Type	situ Testing Re	esults
		2.50	-17.08	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fin rounded to rounded of sandstone with occasional shell fragments.	ne to me	dium grain	ned, sub-	9. 10 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	12 62 .12 .62 .12 .62 .12 .62 .12 .62 .12 .62 .12 .62 .12 .62 .12 .62 .12 .62	ES		
	iameter		Depths	General Remarks Chiselling					1	Ground W		
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
19.50	150	19.50	150									

	12-16 Yarm Road						Scale 1:1	25 Sheet 1 of 1		
SOLM			Borehole Log							
	01642 607083 info@solmek.com									
				Driller:	Bainbr	idge Brothers Ltd	GL (mCD): 2.61m		
Contract no:	S230232	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000	Easting:	279632		
				Started:	14/03/	2023	Northing	\$ 858941		
Client:	Ardersier Port			Ended:	14/03/	2023	Logged:	SD		
Method: Cable Percussive		9		Backfilled: 14/03/2023			Status:	DRAFT		
_ =						Samples a	nd Insitu Testir			

Client:		Ardersi			Ended		14/03/				Logged:	SD
Method	d:	Cable P	ercussive		Backf	illed:	14/03/	2023			Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description					Sampl	es and Ins	itu Testing	
Ba	<u> </u>	Δ	E					Dept	h (m)	Туре	Re	esults
				WATER								
			-									
		<u> </u>										1
												4
												4
		8.60	-5.99	Grev slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to	o medi	ium grain	ed. sub-					
				Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to rounded to rounded of sandstone with occasional shell fragments.			,	_	11	ES		
								E	61 .11	ES ES		
								E	.61	ES		
		<u> </u>	-						.11	ES		
								E	.61	ES		
								E	.11	ES		7
									.61 .11	ES ES		4
								E	.61	ES		րայում և արդարականում և արդարականում և արդարականում և արդարականում և արդարականում և արդարականում և արդարականու
		<u> </u>						14	.11	ES		
									.61	ES		
								E	.11 .61	ES ES		
								E	.11	ES		
								16	.61	ES		
								E	.11	ES		
								Ė	.61 .11	ES ES		4
								E	.61	ES		
		<u> </u>	-					E	.11	ES		
		19.70	-17.09	End of Borehole at 19.700m				19	.61	ES		
								Ē				1
												4
												4
								Ē				
		<u>E</u>						E E				=
								Ē				1
W 1 -						al · · ·				0 17		
Depth	Diameter	Casing Depth Base	Diameter	General Remarks Drilled overwater - no handdug pit undertaken. From		Chiselling To (m)	Time (hr)	Depth Strike		Ground W Depth Sealed	Time Elapsed	Water Level (m)
Base (m) 19.50	(mm) 150	(m) 19.50	(mm) 150	roll.	,,	()	(ai)	(m)	(m)	(m)	(min)	ac. (m)

	12-16 Yarm Road						Scale 1:125	Sheet 1 of 1	
SOLME	Stockton on Tees TS18 3NA 01642 607083 info@solmek.com	Borehole Log							
				Driller:	Bainbri	dge Brothers Ltd	GL (mCD):	2.49m	
Contract no:	S230232	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000	Easting:	279757	
				Started:	14/03/2	2023	Northing:	858941	
Client:	Ardersier Port			Ended: 14/03/2023			Logged:	SD	
Method: Cable Percuss				Backfilled:	14/03/2	2023	Status:	DRAFT	
_ uo						Samples and Ins	itu Testing		

Client: Method	ļ.	Ardersie	ercussive		ded: ckfilled:	14/03 14/03				Logged: Status:	SD DRAFT
				120	ckineu.	14/03	2023	Sampl		s itu Tes ting	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description		Dept	h (m)	Туре		esults	
B In		9.10	-6.61	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to n rounded to rounded of sandstone with occasional shell fragments.	nedium grai	ned, sub-	8. 9. 100 111 122 12 13 13 14 14 15 15 16 16 17 17 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	99 49 99 .49 .99 .49 .99 .49 .99 .49 .99 .49 .99 .49 .99	ES E		
		19.50	-17.01	End of Borehole at 19.500m			19	.49	ES		
							E				
Hole Dia		Casing	Denthe	General Remarks	Chiselling				Ground W	ater	
Depth Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken. From (m)		Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)		Water Level (m)
19.40	(mm) 150	(m) 19.40	(mm) 150				(m)	(m)	(m)	(111111)	

So	OLME	Stockton TS18 3N 01642 6		Borehole Log								
						Driller:	Bainbr	idge Brothers Ltd		GL (mCD):	3.64m	
Contract	Contract no:		S230232		Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000		Easting:	279882	
						Started: 14/0		/2023		Northing:	858941	
Client:		Ardersie	er Port			/2023		Logged:	SD			
Method:		Cable P	ercussive			Backfilled:	14/03/	/2023		Status:	DRAFT	
ackfill / tallation egend		ŧ.	vel CD)				Sampl	es and Ins	itu Testing			
g gc	egend	Jepth (m)	β E		Stratum Description							

Method	d:	Cable P	ercussive	End Rac	kfilled:	14/03/				Status:	DRAFT
		Capie P	cicussive	Bac	mucu.	14/03/	۵۵۵۵				
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Dept	Sampl h (m)	es and Ins	situ Testing R	esults
		7.20	-3.56	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to me rounded to rounded of sandstone with occasional shell fragments. End of Borehole at 20.700m	dium grain	ned, sub-	10 11 12 12 13 13 14 14 15 16 16 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	.14 .64 .14 .64 .14 .64 .14 .64 .14 .64 .14 .64 .14 .64	ES E		
Hole Di Depth Base (m) 20.50	Diameter (mm)	Casing Depth Base (m) 20.50	Depths Diameter (mm) 150	General Remarks Drilled overwater - no handdug pit undertaken. From (m)	Chiselling To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Ground W Depth Sealed (m)		Water Level (m)

	SOLMI	Stockto TS18 3N 01642 6		Borehole	Log						Scale 1:12	25 Sheet 1 of 1	
Chant	ct no:	S23023		Site: Marine Scotland Boreholes, Ardersier, Inverness		nt used: rted:	Dando 21/03	/2023	hers Ltd	GL (mCD) Easting: Northing Logged:	279632		
Client: Method	ł:	Ardersie Cable P	ercussive			ea: kfilled:	21/03 21/03				Status: DRAFT		
→ ioi	-	_	_ =						Samp	les and In	s itu Tes ting	3	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dep	th (m)	Туре	R	esults	
		22.50	-17.05		ine to me	edium grain	ned, sub-	13 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1.95 2.45 2.95 3.45 3.95 4.45 4.95 5.45 5.95 6.45 6.95 7.45 7.95 8.45 9.95 0.45 0.95 1.45 1.95	ES E			
		<u>E</u>		End of Borehole at 22.500m				Ē					
								Ē					
		_								<u> </u>			
Depth	ameter Diameter	Casing Depth Base	Depths Diameter	General Remarks Drilled overwater - no handdug pit undertaken.	E	Chiselling	The C	Depth Strike	Depth Casing	Ground W Depth Sealed	Time Elapsed	W-4. T	
Base (m) 20.50	(mm) 150	(m) 20.50	(mm) 150		From (m)	To (m)	Time (hr)	· (m)	(m)	(m)	(min)	Water Level (m)	

A :	SOLME	Stockto TS18 3N 01642 6	arm Road n on Tees IA 607083 olmek.com			Boreh	ole Log						Sheet 1 o
ontrac lient: Iethoc		S23023 Ardersic Cable P		Site:	Marine Scotland Bo	oreholes, Ardersier, Invernes	Start Ende	t used: ted:	Bainbri Dando 21/03/ 21/03/	2023 2023		GL(mCD): Easting: Northing: Logged: Status:	3.49m 279757 859066 SD DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)			Stratum Description				Samp Depth (m)	oles and In	situ Testing Re	sults
		2.70	0.79	Grey sligh rounded t	tly gravelly SAND. Sand is to rounded of sandstone w	fine to coarse grained. Gravith occasional shell fragme	el is fine to med	dium grain	ied, sub-	9.99 10.49 10.99 11.49 11.99 12.49	ES ES ES ES ES		

(m) (mm) 60 150) (m)	(mm)	DI MEU OVEL WALEE - 110 HAILUUUR PIL UHUELTAKEH.	From (m)	To (m)	Time (hr)	(m)	(m)	(m)	Time Elapsed (min)	Water Level (
th Diameter			General Remarks Drilled overwater - no handdug pit undertaken.		Chiselling		Denth Strike	Denth Casing	Ground W		
	<u> </u>										
	Ē										
	É						E				
	Ē	1					F				
	E						Ē				
	E						E				
	Ē						E				
			End of Borehole at 20.500m	1			E	-			
	20.50	-17.01	End of Dorot-II at 20 500				E	.49	ES		
							-).49).99	ES ES		
							E	3.99	ES		
							E	3.49	ES		
							17	.99	ES		
							E	5.99 7.49	ES ES		
							-	5.49	ES		
							-	5.99	ES		
								5.49	ES		
							E	l.49 l.99	ES ES		
							13	3.99	ES		
							13	3.49	ES		
							12	2.99	ES		
1.7							19	2.49	ES		
18.25	~ · · · -	_					E 11	.99	ES	1	

	soi Mi		arm Road n on Tees JA		Borehole	Tod							5 Sheet 1 of 1
Contra		01642 6	olmek.com	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Dril Plar	ler: nt used: ted:	Bainbr Dando 23/03/		hers Ltd		GL (mCD): Easting: Northing:	279882
Client:		Ardersie	er Port			End	ed:	23/03/				Logged:	SD
Metho	d:	Cable P	ercussive			Bac	kfilled:	23/03/	2023			Status:	DRAFT
fill / ation	pu	t (- G		a					Samp	les and Ins	situ Testing	:
Backfill / Installation	Legend	Depth (m)	Level (m CD)		Stratum Description				Dep	th (m)	Туре	Re	esults
Hole D	iameter is a second of the sec	4.50	-0.62	General Re		fine to me	dium grair		10	0.38 0.88 1.38 1.38 2.38 2.38 2.38 3.38 3.38 3.38 3.38 3	ES E	ater	
Depth Base (m)	Diameter	Depth Base (m)	Diameter (mm)		water - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	1		Water Level (m)
21.00	(mm) 150	(m) 21.00	(mm) 150	1		<u> </u>	<u> </u>	<u> </u>	(III)	(m)	(m)	(mm)	

		arm Road n on Tees						Scale 1:125	Sheet 1 of 1
SOLM	MEK TS18 3N 01642 6	JA		Borehole	Log			S-	25
					Driller:	Bainbr	idge Brothers Ltd	GL (mCD):	3.46m
Contract no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000	Easting:	279507
					Started:	16/03/	2023	Northing:	859191
Client:	Ardersi	er Port			Ended:	16/03/	2023	Logged:	SD
Method:	Cable P	ercussive			Backfilled:	16/03/	2023	Status:	DRAFT
Hion tion		- 6					Samples and I	nsitu Testing	

Client:		Ardersie		Er	nded:	16/03	/2023			Logged:	SD
Metho	d:	Cable P	ercussive	Ba	ackfilled:	16/03	/2023			Status:	DRAFT
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description					es and Ins	situ Testing	
3 4				WATER				h (m)	Туре	Au	esults
		7.50	-4.04	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to n rounded to rounded of sandstone with occasional shell fragments.	nedium gra	nined, sub-		96	ES		րում երաստիսուսակուսում անձական արդարակուսում հասարակուսում անձական արդարակուսում անձական արդարակուսում կուսակ
							10 10 11 11 11 12 12 12 13	.46 .96 .46 .96 .46 .96 .46	ES		
							14 15 15 16 16 17 17	.96 .46 .96 .46 .96 .46 .96 .46	ES		_
		20.50	-17.04	End of Borehole at 20.500m			19	.46 .96 .45	ES ES ES		
17 7 7	\Box		D41	CInIn	(1) · H-				C		
Hole D Depth	Diameter	Casing Depth Base		General Remarks Drilled overwater - no handdug pit undertaken. From (m	Chisellin		Depth Strike	Depth Casing	Ground W Depth Sealed		
Base (m)	(mm) 150	(m) 20.30	(mm)	From (m	To (m)	Time (hr)	(m)	(m)	(m)	(min)	Water Level (m)
20.30	130	20.30	130								

A S	SOLME	Stocktor TS18 3N 01642 6			Borehole I	og			Scale	1:125	Sheet 1 of 1 26
Contrac	t no:	S230232	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Bainbri Dando 16/03/		GL (n Eastir Nortl	ng:	2.67m 279632 859191
Client:		Ardersie	er Port	•		Ended:	16/03/	2023	Logge	ed:	SD
Method	l:	Cable Pe	ercussive			Backfilled:	16/03/	2023	Statu	s:	DRAFT

Client: Method	:	Ardersie Cable Pe	ercussive		ided: ickfilled:	16/03 16/03				Logged: Status:	SD DRAFT
				, Del	icaincu.	10/03/	.0	Samp		situ Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description			Dept	h (m)	Туре	R	esults
		19.70	-17.03	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to n rounded to rounded of sandstone with occasional shell fragments. End of Borehole at 19.700m	nedium grai	ned, sub-	9. 10 10 11 11 12 12 13 13 13 14 14 14 15 15 16 16 16 17 17 18 18 18 19	17 67 .17 .667 .17 .667 .17 .667 .17 .667 .17 .667 .17 .667 .17 .667 .17	ES		
Hole Dia	meter	Casing	Depths	General Remarks	Chiselling	l.			Ground W	ater	
Base (m)	Diameter (mm)	Depth Base (m)	Diameter (mm)	Drilled overwater - no handdug pit undertaken.) To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
19.50	150	19.50	150								

SOLM	MEK TS18 31 01642 0	'arm Road on on Tees NA 807083 olmek.com			Borehole	Log					Sheet 1 o
Contract no: Client: Method:	S23023 Ardersi	2	Site:	Marine Scotland Bore	holes, Ardersier, Inverness	Driller: Plant used: Started: Ended: Backfilled:	Bainbrid Dando 2 15/03/2 15/03/2 15/03/2	023 023		GL (mCD): Easting: Northing: Logged: Status:	3.10m 279757 859191 SD DRAFT
		Creassive				Duckineu.	10/03/2		alos and In	situ Testing	
Backfill / Installation Legend	Depth (m)	Level (m CD)			Stratum Description			Depth (m)	Туре		sults
	առումիուսահատումիարակարակարակարակարակարակարակարակարակարա	-3.70	rounded to rour	ided of sandstone with	e to coarse grained. Gravel is n occasional shell fragments.	fine to medium grain	red, sub-	9.60 10.10 10.60 11.10 11.60 12.10 12.60 13.10 13.60 14.10 14.60 15.10 16.60 17.10 17.60 18.10 18.60 19.10 19.60 20.10	ES E		

Hole Diameter

Depth Base (m) Diameter (mm)

150

20.00

Casing Depths

Diameter (mm)

Depth Base (m)

19.50

General Remarks

Drilled overwater - no handdug pit undertaken.

Chiselling

To (m)

Time (hr)

From (m)

Ground Water

Water Level (m)

Depth Strike (m) Depth Casing (m) Depth Sealed (min) Time Elapsed (min)

SO	LMEK	Stockton TS18 3N 01642 60			Borehole	Log				Scale 1:125	Sheet 1 of 1
						Driller:	Bainbr	idge Brothers Ltd		GL (mCD):	2.34m
Contract n	10:	S230232	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000		Easting:	279507
						Started:	23/03/	/2023		Northing:	859316
Client:		Ardersie	er Port			Ended:	23/03/	2023		Logged:	SD
Method:		Cable Pe	ercussive			Backfilled:	23/03/	2023		Status:	DRAFT
ckfill /	egend	lepth (m)	cD)		Stratum Description			Sampl	es and Ins	itu Testing	
호표	80	ا خ ۾	βÉ		Stratum Description						

Client: Method	d:	Ardersie Cable P	er Port ercussive		End Raci	ed: cfilled:	23/03 23/03				Logged: Status:	SD DRAFT
					Duc	incu.	20/00	2020	Samp		situ Testing	
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	h (m)	Туре		esults
_				WATER								
												4
												ուկաստակառուդիաստակաստակաստակաստակաստակաստակաստակաստա
												4
												4
		13.70										
		13.70	-11.36	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fi rounded to rounded of sandstone with occasional shell fragments.	ne to me	dium grain	ed, sub-	H	.84	ES		
				rounded to rounded of sandstone with occasional shell flagments.				-	.34 .84	ES ES		
								L	.34 .84	ES ES		
								H	.34	ES		
								-	.84	ES ES		
								-	.84	ES		
								F	.34 .84	ES ES		
		19.40	-17.06	End of Borehole at 19.400m				F	.34	ES		
			_									4
								E				1
	iameter		Depths	General Remarks		Chiselling	1		1	Ground W		
Depth Base (m)	Diameter (mm)	Depth Base (m) 19.40	Diameter (mm)	Drilled overwater - no handdug pit undertaken.	From (m)	To (m)	Time (hr)	Depth Strike (m)	Depth Casing (m)	Depth Sealed (m)	Time Elapsed (min)	Water Level (m)
20.20		-5.10										

SO	DLME	Stockton	A		Borehole	Log			Scale 1:125	Sheet 1 of 1
Contract n	10:	info@so	lmek.com	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Driller: Plant used: Started:	Bainbr Dando 22/03/		GL (mCD): Easting: Northing:	279632
Client:		Ardersie	er Port			Ended:	22/03/	2023	Logged:	SD
Method:		Cable Pe	ercussive			Backfilled:	22/03/	/2023	Status:	DRAFT
fill / ation	and	th (r	rel CD)		State Develop			Samples and I	nsitu Testing	

12.70	Client: Method:		Ardersie			Ende		22/03/				Logged: Status:	SD DRAFT
12.70			Cable r	ercussive		Dacki	meu:	22/03/	2023				
12.70	Backfill / stallation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dent				
12.70	=		:	=	WATER				=		31		
12.70					W.A.L.								
12.70				The state of the s									
12.70													
12.70													
12.70			_	- Trans									
12.70													
12.70													
12.70				-									
12.70									Ē				
12.70									Ē				
12.70			_						<u> </u>				-
12.70									Ē				
12.70									Ē				
12.70				I									-
12.70									Ē				
12.70													
12.70									Ē				-
Follower Park Par													
Follower Park Par			_	_									
13.50 ES	7		12.70	-10.30	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine	to med	ium grain	ed, sub-	12	.90	ES		4
14.40 ES 14.90 ES 14.90 ES 14.90 ES 14.90 ES 15.40 ES 16.40 ES 16.					rounded to rounded of sandstone with occasional shell fragments.				E				
14.90 ES 15.40 ES 16.40 ES 17.40 ES 17.40 ES 17.40 ES 18.40 ES ES 18.40 ES ES ES ES ES ES ES E			_	-					E				-
19.50									E				
19.50									E		1		
19.50									H		1		=
19.50									E				
19.50									F				_
19.50									E				
Hole Jepto Bone Remarks Casing Depth Sing Remarks South South	<u> </u>		19.50	-17.10	End of Rarehole at 10 500m				=				
The				-	End of potentie at 13.500m				<u>E</u>				-
Hole Diameter Casing Depths General Remarks Chiselling Community (mm) Community (Ē				
Hole Diameter Casing Depths General Remarks Chiselling Community (mm) Community (
The				-									
The									Ē				
The				1									
The									E				
The													
Depth Base (m) Diameter (mm) Depth Base (m) Diameter (mm) Depth Base (m) Diameter (mm)	II-l. P		_	D4l	Consul Domesto		CL:H*				C 1***		-
		iameter	Depth Base	Diameter	Drilled evenueter, no handdug nit undertaken			Time (hr)	Depth Strike		Depth Sealed	Time Elapsed	Water Level (m)
						. /	` '	- ()	(m)	(m)	(m)	(min)	

S	OLME	Stockton TS18 3N 01642 6			Borehole	Log				Scale 1:125	Sheet 1 of 1
						Driller:	Bainbr	idge Brothers Ltd		GL (mCD):	4.66m
Contract	t no:	S23023	2	Site:	Marine Scotland Boreholes, Ardersier, Inverness	Plant used:	Dando	2000		Easting:	279507
						Started:	22/03/	2023		Northing:	859441
Client:		Ardersie	er Port			Ended:	22/03/	2023		Logged:	SD
Method	:	Cable P	ercussive			Backfilled:	22/03/	2023		Status:	DRAFT
ackfill / stallation	ē	£ _	rel CD)					Sampl	es and Ins	itu Testing	
ackf	regend	Depth (m)	Leve (m C		Stratum Description			Donath (m)	TL	D	

Method	d:	Cable P	ercussive]	Backfil	lled:	22/03/	2023			Status:	DRAFT
ill /	pu	th)	el D)	-					Sampl	es and Ins	situ Testing	3
Backfill / Installation	Legend	Depth (m)	Level (m CD)	Stratum Description				Dept	h (m)	Туре	R	esults
				WATER								
												ılı ı
		duuu										7
		uliuu										4
								Ē				
								E				
												4
												4
								Ē				7
												7
												The state of the s
												7
		ııılııı										릨
												1
		21.60	-16.94	G KILL BOND S V. S	-		, .	91	.66	ES		
		22.00	-17.34	Grey slightly gravelly SAND. Sand is fine to coarse grained. Gravel is fine to rounded to rounded of sandstone with occasional shell fragments.	mediu	ım grain	ed, sub- /	<u> </u>				
				End of Borehole at 22.000m								шП
								Ē				
												=======================================
			=					<u> </u>				
Hole Di	ameter Diameter	Casing Depth Base		General Remarks Drilled overwater - no handdug pit undertaken. From		hiselling	m (1)	Depth Strike	Depth Casing	Ground W Depth Sealed		
Base (m) 22.00	(mm)	(m) 22.00	(mm)	Drimed Overwater - no nanddug pit undertaken. From ((m)	To (m)	Time (hr)	(m)	(m)	(m)	(min)	Water Level (m)

C DATA SUMMARY TABLES AND LAB CERTIFICATES

Ardersier -12.9m Dredge Sampling Results Incorporated with BPEO Assessment (mg/kg)

	AL1 (Marine	AL1 (Marine	BAC	ERL	PEL	S01 - 1 - 6 50	- S01 - 7 - 9.50-	S01 - 13 -	S02 - 1 - 6.50-	S02 - 7 - 9 50-	S02 - 13 -	S03 - 1 - 6 50	- S03 - 7 - 9.50	S03 - 13 -	S04 - 1 - 6.50-	S04 - 7 - 9 50-	S04 - 13 -	S05 ES1 6.50	- S05 ES7 9.50-	S05 ES13	S06 FS1 6 50-	S06 ES7 9.50	S06 ES13	S07 - 1 - 6.50-	S07 - 7 - 9 50	- S07 - 13 -	S08 - 1 - 6.50-	S08 - 7 - 9 50-	S08 - 13 -	S09 ES1 6.50-	S09 ES7 9.50-
Source	,	Scotland)	(CSEMP)	(CSEMP)	(Canada)	7.00m	10.00m	12.50-13.00m		10.00m	12.50-13.00m		10.00m	15.50-13.00m	7.00m	1.00m	12.50-13.00m		10.00m	12.50-13.00m	7.00	10.00	12.50-13.00	7.00m	10.00m	12.50-13.00m	7.00m	10.00m	12.50-13.00m		10.00
Arsenic	20	70	25		41.6	1.1	1.7	1.2	1.4	1.2	2.2	2.5	2.4	3.3	6.2	2.4	2.2	3.7	2.9	4.1	1.9	1.8	3.5	2.3	3.2	2.5	9.9	5.2	4	4.4	3.6
Cadmium	0.4	4	0.31	1.2	4.2	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.12	0.04	0.1	0.13	0.14	0.18	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Chromium	50	370	81	81	160	10	5.5	13.6	4.4	4.4	6.8	6.9	16.4	18.3	27.6	11.9	15.4	20.4	17.1	19.8	15.4	16	18	14.8	16.3	18	27.9	17.7	23.1	23.2	19.2
Copper	30	300	27	34	108	7.7	4.8	8.1	4.4	5.3	4.6	7.9	10	10.8	21.4	8.3	8.9	12.6	10.5	12	13.4	14	12.5	8.6	10.4	11.1	23.2	11.1	13.3	21.3	13
Mercury	0.25	1.5	0.07	0.15	0.7	0.02	0.01	0.01	0.06	0.02	0.01	0.02	0.01	0.01	0.08	0.02	0.01	0.05	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.06	0.02	0.03	0.04	0.02
Nickel	30	150	36	-	-	8.2	5	11.6	4.8	4.2	5.7	5.5	14.6	15.6	16.2	11.5	13.9	14.8	18	19.5	14.6	15.2	16.4	11.9	15	16.4	17.6	13.9	18.2	23	20.4
Lead	50	400	38	47	112	2.3	1.3	2.9	1.7	1.1	1.7	4.4	3.1	3.5	11.1	2.3	2.9	11.9	5.1	5.1	4	3.4	3.5	2.3	2.8	3.9	19.2	5.9	5.6	12.3	5.3
Zinc	130	600	122	150	271	24.6	15.1	30.1	16.5	11.7	19.4	36.9	30	42	89.5	21.9	28	59.6	43.7	50.4	37.9	36.2	44.6	20.5	27.4	33.4	125	44	51.4	99.9	66.3
Napthalene	0.1	-	0.08	0.16	0.391	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.005	0.005	0.005	0.00483	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.00158	0.00291
Acenaphthylene	0.1	-	-	-	0.128	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.005	0.005	0.005	0.00937	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.00289	0.00364
Acenaphthene	0.1	-	-	-	0.0889	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.005	0.005	0.005	0.00337	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.001	0.00104
Fluorene	0.1	-	-	-	0.144	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.005	0.005	0.005	0.00813	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.00249	0.00298
Phenanthrene	0.1	-	0.032	0.24	0.544	0.005	0.005	0.001	0.00239	0.0023	0.005	0.005	0.005	0.001	0.0478	0.005	0.005	0.0501	0.00183	0.00119	0.0024	0.00117	0.001	0.005	0.005	0.005	0.0169	0.005	0.005	0.0284	0.0421
Anthracene	0.1	-	0.05	0.085	0.245	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.0118	0.005	0.005	0.0161	0.001	0.001	0.00109	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.00301	0.00239
Fluoranthene	0.1	-	0.039	0.6	1.494	0.005	0.005	0.001	0.00638	0.00379	0.005	0.0218	0.005	0.00178	0.0983	0.005	0.005	0.0845	0.00402	0.00192	0.0051	0.00159	0.001	0.005	0.005	0.005	0.0411	0.00977	0.005	0.0576	0.058
Pyrene	0.1	-	0.024	0.665	1.398	0.005	0.005	0.00105	0.00735	0.00361	0.005	0.0333	0.005	0.0027	0.11	0.005	0.005	0.0892	0.00467	0.0028	0.00557	0.002	0.00104	0.005	0.005	0.005	0.0587	0.0109	0.005	0.0524	0.0507
Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.005	0.005	0.001	0.00297	0.00172	0.005	0.0104	0.005	0.001	0.0507	0.005	0.005	0.0427	0.00209	0.001	0.00224	0.001	0.001	0.005	0.005	0.005	0.0198	0.005	0.005	0.0218	0.0185
Chrysene	0.1	-	0.02	0.384	0.846	0.005	0.005	0.001	0.00359	0.00203	0.005	0.0148	0.005	0.00144	0.0642	0.005	0.005	0.0465	0.00261	0.00126	0.00267	0.001	0.001	0.005	0.005	0.005	0.0268	0.005	0.005	0.0306	0.0285
Benzo(b)fluoranthene	0.1	-	-	-	-	0.005	0.005	0.001	0.00468	0.00127	0.005	0.0165	0.005	0.0011	0.074	0.005	0.005	0.0547	0.00288	0.00122	0.0019	0.001	0.001	0.005	0.005	0.005	0.0268	0.005	0.005	0.0287	0.0274
Benzo(k)fluoranthene	0.1	-	-	-	-	0.005	0.005	0.001	0.00581	0.00202	0.005	0.0196	0.005	0.00134	0.0794	0.005	0.005	0	0.00264	0.00103	0.00287	0.00115	0.001	0.005	0.005	0.005	0.037	0.005	0.005	0.029	0.0299
Benzo(a)pyrene	0.1	-	0.03		-	0.005	0.005	0.001	0.00435	0.00212	0.005	0.0168	0.005	0.00106	0.0668	0.005	0.005	0.0557	0.00277	0.00133	0.00254	0.001	0.001	0.005	0.005	0.005	0.0303	0.005	0.005	0.0301	0.0286
Indeno(1,2,3cd)pyrene	0.1	-	0.103	Ų. <u> </u>		0.005	0.005	0.001	0.00336	0.0011	0.005	0.0126	0.005	0.001	0.0537	0.005	0.005	0.0568	0.00224	0.001	0.00135	0.001	0.001	0.005	0.005	0.005	0.0206	0.005	0.005	0.0257	0.0261
Benzo(ghi)perylene	0.1	-	0.08	0.085	 	0.005	0.005	0.001	0.00318	0.00116	0.005	0.0113	0.005	0.00106	0.0476	0.005	0.005	0.0497	0.0021	0.00137	0.00166	0.001	0.001	0.005	0.005	0.005	0.0245	0.005	0.005	0.0231	0.0242
Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.005	0.005	0.005	0.0104	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.005	0.005	0.005	0.00446	0.00512
TPH	100	-	-	-	-	9.98	6.18	8.97	8.64	1.99	25.5	36.8	34.9	6.03	54	4.26	4.18	62.2	8.14	8.17	4.72	3.98	4.1	2.84	4.13	10.2	54.9	8.51	9.38	20.5	56.4
DOD	0.000	0.105==					0.000=		0.000=6	0.00076	0.00116				0.000.00	0.000=6	0.000=6				2 22275			2 2 2 4 2 2					0.00076	2.2222	2 22275
PCBs	0.02000	0.18000	+	-	0.18900	0.00056	0.00056	0.00056	0.00056	0.00056	0.00110	0.00056	0.00056	0.00056	0.00058	0.00056	0.00056	0.00058	0.00056	0.00056	0.00056	0.00056	0.00056	0.00129	0.00056	0.00056	0.00059	0.00056	0.00056	0.00056	0.00056
TBT	0.10000	0.50000	-	-	-	0.00500	0.00500	0.00100	0.00500	0.00100	0.00500	0.00500	0.00500	0.00100	0.01690	0.00500	0.00100	0.02070	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	0.00100	0.00500	0.01840	0.00500	0.00500	0.02110	0.00726

Note: Underlined Values are LOD. Values highlighted red are equal to or greater than AL1.

PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

Ardersier -12.9m Dredge Sampling Results Incorporated with BPEO Assessme

																				Ardersie	er -12.4m Dr	edge Data									
Source	AL1 (Marine Scotland)	AL1 (Marine Scotland)		ERL CSEMP)	PEL (Canada)	S09 ES13 12.50-13.00	S10 ES1 6.50- 7.00	S10 ES7 9.50- 10.00	S10 ES13 12.50-13.00	S11 ES1 6.50- 7.00m	S11 ES7 9.50 10.00m	- S11 ES13 12.50-13.00m	S12 ES1 6.50- 7.00	S12 ES7 9.50 10.00	S12 ES13 12.50-13.00	S13 ES1 6.50- 7.00	S13 ES7 9.50 10.00	- S13 ES13 12.50-13.00	S14 ES1 6.50 7.00)- S14 ES7 9.50 10.00	S14 ES13 12.50-13.00	S15 ES1 6.50- 7.00m	S15 ES7 9.50- 10.00m	S15 ES13 12.50-13.00m	S16 ES1 6.50 7.00m	- S16 ES7 9.50- 10.00m	S16 ES13 12.50-13.00m	S17 ES1 6.50- 7.00	S17 ES7 9.50- 10.00	- S17 ES13 12.50-13.00	S18 ES1 6.50- 7.00m
Arsenic	20	70	25		41.6	1.9	2.4	2.4	1.9	6.9	5.4	4.8	6	3.5	3.1	2.9	2.9	2.5	2.4	4.4	3.1	3.5	5.8	2.8	3.6	2.3	2.8	3.8	3.2	3.2	2.7
Cadmium	0.4	4	0.31	1.2	4.2	0.04	0.14	0.12	0.19	0.17	0.04	0.04	0.17	0.08	0.25	0.39	0.31	0.24	0.2	0.13	0.19	0.04	0.05	0.04	0.04	0.16	0.23	0.04	0.04	0.04	0.14
Chromium	50	370	81	81	160	6.3	17.4	17.5	11.9	30.7	22	21	22.2	18.6	21.2	18.7	17.4	19.5	16.4	19.8	18.8	15	25.9	13.8	21.8	20.3	19.8	15.9	14.6	15.5	19.7
Copper	30	300	27	34	108	4.7	16.1	17.4	11.4	31.2	28.5	26.7	16.3	12.3	13.9	10.3	11.1	10.8	12	11.7	11.6	12	21.7	9.3	13.7	12.8	11.2	11.7	10.1	10.6	12.3
Mercury	0.25	1.5	0.07	0.15	0.7	0.01	0.02	0.02	0.07	0.05	0.03	0.03	0.09	0.04	0.03	0.23	0.23	0.27	0.24	0.17	0.22	0.07	0.05	0.02	0.04	0.04	0.03	0.01	0.01	0.01	0.03
Nickel	30	150	36	-	-	7.7	13.6	13.5	9.5	20.9	15.9	14	14.2	15	16.4	12.4	11.6	13.4	14.3	19.5	16.9	10	16.8	9.3	17.8	20.8	17	14.9	14.1	15.1	14
Lead	50	400	38	47	112	1.6	6.4	7.6	4.3	17.8	14	12.7	13.5	4.8	4.5	5.7	5.2	3.6	5.1	5.3	3.8	9.1	13.6	3.8	8.3	5.5	3.8	4.7	2.4	2.5	4.8
Zinc	130	600	122	150	271	22.2	101	115	60.4	211.9	209.4	195.6	63.6	44.7	45.3	50.6	57.1	50.3	48.3	49.9	42.6	55.3	126.8	34	57.3	55.4	64.9	27	20.8	23.5	48.4
Napthalene	0.1	-	0.08	0.16	0.391	0.001	0.001	0.001	0.001	0.001	0.00206	0.00183	0.00341	0.001	0.001	0.00261	0.001	0.001	0.001	0.00102	0.001	0.00395	0.00123	0.001	0.00164	0.001	0.001	0.005	0.005	0.001	0.00155
Acenaphthylene	0.1	-	-	-	0.128	0.001	0.00328	0.001	0.001	0.0019	0.0034	0.00457	0.00376	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00373	0.00102	0.001	0.00195	0.001	0.001	0.005	0.005	0.001	0.00116
Acenaphthene	0.1	-	-	-	0.0889	0.001	0.001	0.001	0.001	0.00185	0.00212	0.00122	0.00366	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00193	0.001	0.001	0.001	0.001	0.001	0.005	0.005	0.001	0.001
Fluorene	0.1	-	-	-	0.144	0.001	0.00191	0.001	0.001	0.00178	0.00251	0.00345	0.00468	0.001	0.001	0.00102	0.001	0.001	0.001	0.001	0.001	0.00359	0.00116	0.001	0.00173	0.001	0.001	0.005	0.005	0.001	0.001
Phenanthrene	0.1	-	0.032	0.24	0.544	0.00248	0.00634	0.00405	0.00105	0.0326	0.0146	0.0181	0.03	0.00256	0.001	0.00588	0.00256	0.001	0.00321	0.00181	0.001	0.0262	0.00661	0.00396	0.0112	0.00241	0.001	0.005	0.00788	0.001	0.00823
Anthracene	0.1	-	0.05	0.085	0.245	0.001	0.00175	0.001	0.001	0.00487	0.00438	0.00481	0.00845	0.001	0.001	0.00208	0.001	0.001	0.001	0.001	0.001	0.00711	0.00215	0.00284	0.00308	0.00106	0.001	0.005	0.005	0.001	0.00273
Fluoranthene	0.1	-	0.039	0.6	1.494	0.00393	0.00906	0.00575	0.00128	0.0746	0.0338	0.0315	0.0501	0.00496	0.00197	0.00929	0.00537	0.00134	0.00695	0.00318	0.001	0.0453	0.015	0.0108	0.0149	0.00635	0.0012	0.005	0.0135	0.001	0.0163
Pyrene	0.1	-	0.024	0.665	1.398	0.00389	0.00851	0.00654	0.00166	0.0652	0.055	0.0346	0.0473	0.00654	0.00234	0.00874	0.00584	0.00175	0.0101	0.00445	0.00149	0.0485	0.0192	0.0112	0.0184	0.00741	0.00196	0.005	0.0151	0.001	0.015
Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.00126	0.00376	0.00227	0.001	0.0303	0.0189	0.0155	0.0223	0.00215	0.001	0.00351	0.00204	0.001	0.00289	0.00126	0.001	0.0221	0.00802	0.00549	0.00713	0.00299	0.001	0.005	0.0057	0.001	0.00631
Chrysene	0.1	-	0.02	0.384	0.846	0.0018	0.00479	0.00276	0.001	0.0401	0.0261	0.0167	0.0248	0.00297	0.00122	0.00407	0.00245	0.001	0.00438	0.00184	0.001	0.023	0.00875	0.00601	0.00826	0.00342	0.001	0.005	0.00653	0.001	0.00652
Benzo(b)fluoranthene	0.1	-	-	-	-	0.00168	0.0032	0.00201	0.001	0.0352	0.0334	0.0182	0.0286	0.00343	0.001	0.00417	0.00226	0.001	0.00549	0.0015	0.001	0.0276	0.0108	0.00624	0.00902	0.00354	0.001	0.005	0.005	0.001	0.00496
Benzo(k)fluoranthene	0.1	-	-	-	-	0.00149	0.00504	0.00247	0.001	0.0312	0.0333	0.0185	0.0284	0.00432	0.0013	0.00451	0.00214	0.001	0.0061	0.00191	0.001	0.0265	0.0111	0.00642	0.00914	0.00332	0.001	0.005	0.005	0.001	0.00583
Benzo(a)pyrene	0.1	-	0.03	0.384	0.763	0.00141	0.0043	0.00286	0.001	0.0331	0.0326	0.02	0.0295	0.00254	0.001	0.00341	0.00213	0.001	0.00418	0.00156	0.001	0.026	0.0113	0.00724	0.00924	0.00375	0.001	0.005	0.005	0.001	0.00681
Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24	-	0.00124	0.00252	0.00177	0.001	0.0277	0.0322	0.015	0.0287	0.00208	0.001	0.00284	0.00178	0.001	0.00357	0.00114	0.001	0.0264	0.0102	0.00546	0.00892	0.00257	0.001	0.005	0.005	0.001	0.00429
Benzo(ghi)perylene	0.1	-	0.08	0.085	-	0.0014	0.0028	0.00216	0.001	0.0251	0.0285	0.0145	0.0292	0.0025	0.001	0.00286	0.00191	0.001	0.0041	0.00174	0.001	0.0239	0.00998	0.00499	0.00786	0.00234	0.00105	0.005	0.005	0.001	0.00402
Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.001	0.001	0.001	0.001	0.00481	0.00642	0.00275	0.00567	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00482	0.00178	0.001	0.00142	0.001	0.001	0.005	0.005	0.001	0.001
TPH	100	-		-	-	8.54	6.54	7.58	5.24	24	67.7	23.1	42.5	10.9	4.46	7.1	5.99	4.59	11.5	8.89	3.58	41.1	20.9	10.2	14.5	6.21	7.1	49.2	28.1	1.78	6.23
PCBs	0.02000	0.18000	-	-	0.18900	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00066	0.00294	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00107
TBT	0.10000	0.50000	-	-	-	0.00500	0.00500	0.00500	0.00100	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	0.00100	0.00900	0.00500	0.00100	0.00500	0.00500	0.00500	0.01130	0.00237	0.00100	0.00100	0.00100	0.00100	0.00500

Note: Underlined Values are LOD. Values highlighted red are equal to or greater the PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

Ardersier -12.9m Dredge Sampling Results Incorporated with BPEO Assessme

			т т				1	Ī	ī	•	Ī	ī	<u> </u>	Ī	Ī	Ī	-	ī		1			T	T	<u> </u>	1	•	T T			
	(AL1 (Marine		ERL	PEL	S18 ES7 9.50	0.0 -0.0	S19 ES1 6.50	S19 ES7 9.50	S19 ES13	S20 ES1 6.50	S20 ES7 9.50-	S20 ES13	S21 ES1 6.50-	S21 ES7 9.50	S21 ES13	S22 ES1 6.50	S22 ES7 9.50	S22 ES13	S23 ES1 6.50		S23 ES13	S24 ES1 6.50	S24 ES7 9.50	S24 ES13	S25 ES1 6.50	S25 ES7 9.50		S26 ES1 6.50-		S26 ES13
Source	Scotland)	Scotland)	(CSEMP) ((CSEMP)	(Canada)	10.00m	12.50-13.00m	7.00m	10.00m	12.50-13.00m	7.00m	10.00m	12.50-13.00m	7.00	10.00	12.50-13.00	7.00	10.00	12.50-13.00	7.00	10.00	12.50-13.00	7.00	10.00	12.50-13.00	7.00m	10.00m	12.50-13.00m	7.00m	10.00m	12.50-13.00m
Arsenic	20	70	25		41.6	2	2.4	2.4	2.5	3.7	1.6	1.6	1.6	2.4	3.7	3.1	4.1	3.1	3.2	2.8	2.9	2.7	2.2	2.4	2.7	4.3	3.7	3.8	3.3	3.5	3.4
Cadmium	0.4	4	0.31	1.2	4.2	0.12	0.17	0.05	0.13	0.21	0.12	<u>0.04</u>	<u>0.04</u>	0.19	0.26	0.27	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.07	0.04	0.04	0.04
Chromium	50	370	81	81	160	19.2	20.7	16.8	14.5	90.9	21.7	13	12	16.6	19.7	15.8	21.4	17.5	20	18.6	19.1	16	15.1	15	16.8	20.2	16.6	20.5	19	20.2	17.9
Copper	30	300	27	34	108	12.5	12	10.9	10.8	11.6	9.2	9.5	9.7	11.3	11.1	10.3	10.6	9.9	11.8	10	11.5	9.6	10.1	10.1	11.3	12.8	12.8	14	12.3	13.3	11.9
Mercury	0.25	1.5	0.07	0.15	0.7	0.02	0.03	0.02	0.05	0.03	0.03	<u>0.01</u>	<u>0.01</u>	0.2	0.35	0.26	0.02	0.01	0.01	0.1	0.04	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.03
Nickel	30	150	36	-	•	13	15.4	13.8	13.4	63.5	15.3	9.1	10	11.4	14	13.3	17.6	20.2	20.1	16.6	18.3	14.4	13.6	15	17.2	13.1	12.8	14.9	13.5	15.3	12.1
Lead	50	400	38	47	112	4.2	4.6	3.3	3.5	4	3.1	3	2.9	5.1	4.5	3.9	7.1	3.7	4.3	3.9	4.9	3.9	3	3.7	3.9	5	4.2	4.1	3.9	3.8	4.3
Zinc	130	600	122	150	271	40.8	42.8	31.9	30.3	68.2	33.7	26.9	31.6	43.7	50.2	54.1	46.9	38.5	56.2	44.4	54.5	35.9	30.8	46.6	46.3	40.2	35.7	43.1	44.5	50.1	56.6
Napthalene	0.1	-	0.08	0.16	0.391	0.00149	0.00187	0.00351	0.001	0.001	0.00203	0.00141	0.001	0.00115	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00116	0.001	0.001	0.001	0.001	0.001
Acenaphthylene	0.1	-	-	-	0.128	0.00109	0.00306	0.001	0.001	0.001	0.001	0.00304	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.00129	0.001	0.00103	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Acenaphthene	0.1	-	-	-	0.0889	0.001	0.001	0.001	0.001	0.001	0.001	0.00255	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Fluorene	0.1	-	-	-	0.144	0.001	0.00264	0.001	0.001	0.001	0.001	0.00382	0.001	0.00118	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.00103	0.001	0.00118	0.001	0.00109	0.00108	0.001	0.001	0.001	0.001
Phenanthrene	0.1	-	0.032	0.24	0.544	0.00742	0.0193	0.00365	0.00191	0.00587	0.00381	0.0198	0.00106	0.00752	0.00264	0.001	0.005	0.00141	0.001	0.00126	0.00355	0.00392	0.001	0.0124	0.00238	0.00473	0.0113	0.00118	0.00211	0.00183	0.0013
Anthracene	0.1	-	0.05	0.085	0.245	0.0028	0.00532	0.001	0.001	0.00321	0.00132	0.00713	0.001	0.00275	0.001	0.001	0.005	0.001	0.001	0.001	0.0011	0.00127	0.001	0.00526	0.00136	0.00186	0.00982	0.001	0.001	0.001	0.001
Fluoranthene	0.1	-	0.039	0.6	1.494	0.0157	0.0221	0.0046	0.00361	0.0228	0.00811	0.0204	0.00235	0.0121	0.00298	0.00113	0.00896	0.00395	0.001	0.00338	0.0067	0.00772	0.001	0.0302	0.00533	0.00751	0.0309	0.00175	0.00402	0.00317	0.00321
Pyrene	0.1	-	0.024	0.665	1.398	0.0166	0.0234	0.00455	0.00445	0.0217	0.00937	0.0179	0.00319	0.0134	0.00394	0.00155	0.0118	0.00512	0.0016	0.00374	0.00757	0.00916	0.00135	0.0263	0.00539	0.00827	0.0264	0.00311	0.00505	0.00421	0.00428
Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.00655	0.00957	0.00194	0.00153	0.0104	0.00405	0.00696	0.00119	0.00581	0.00144	0.001	0.005	0.0015	0.001	0.0012	0.00256	0.00453	0.001	0.012	0.00187	0.00323	0.0122	0.001	0.00173	0.0012	0.00136
Chrysene	0.1	-	0.02	0.384	0.846	0.00742	0.0102	0.00215	0.00176	0.011	0.00473	0.00714	0.0012	0.00641	0.00165	0.001	0.005	0.0017	0.001	0.00144	0.00311	0.0045	0.001	0.0109	0.00184	0.00388	0.0119	0.00103	0.00209	0.00155	0.00164
Benzo(b)fluoranthene	0.1	-	-	-	-	0.00567	0.00667	0.00174	0.00188	0.0083	0.00524	0.00403	0.00119	0.00632	0.00168	0.001	0.005	0.00156	0.001	0.00119	0.00307	0.00364	0.001	0.00664	0.00112	0.00352	0.00858	0.00103	0.0018	0.0011	0.00158
Benzo(k)fluoranthene	0.1	-	-	-	•	0.00645	0.00766	0.00214	0.00214	0.0106	0.0048	0.00676	0.00166	0.00663	0.00208	0.001	0.005	0.00153	0.001	0.00141	0.00348	0.00462	0.001	0.00965	0.00174	0.00387	0.0112	0.00151	0.00163	0.00157	0.00183
Benzo(a)pyrene	0.1	-	0.03	0.384	0.763	0.00742	0.00997	0.00201	0.00169	0.0125	0.0046	0.00683	0.00161	0.0067	0.00199	0.001	0.005	0.00134	0.001	0.00122	0.00305	0.00502	0.001	0.0106	0.00164	0.00373	0.0126	0.00128	0.00198	0.00151	0.00156
Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24	•	0.00538	0.00537	0.0012	0.00111	0.00747	0.00274	0.00388	0.001	0.00455	0.0015	0.001	0.005	0.001	0.001	0.001	0.00231	0.00276	0.001	0.0053	0.001	0.00239	0.00627	0.001	0.001	0.00118	0.00106
Benzo(ghi)perylene	0.1	-	80.0	0.085	•	0.0054	0.00586	0.00128	0.00132	0.00813	0.00328	0.00395	0.001	0.00566	0.00231	0.001	0.005	0.00143	0.001	0.001	0.0028	0.0028	0.001	0.00529	0.00116	0.00339	0.00686	0.00199	0.00182	0.00163	0.00121
Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.001	0.001	0.001	0.001	0.00128	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00114	0.001	0.001	0.001	0.001
TPH	100	-	-	-	-	6.03	3.94	3.26	4.95	4.81	7.24	2.97	2.7	11.4	7.96	3.53	21.7	6.42	6.64	3.68	5.59	5.78	1.22	2.33	2.87	7.57	5.15	8.04	6.61	10.1	5.85
PCBs	0.02000	0.18000	-	-	0.18900	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056
TBT	0.10000	0.50000	-	-	-	0.00500	0.00500	0.00500	0.00500	0.00174	0.00500	0.00171	0.00500	0.00500	0.00500	0.00500	0.00500	0.00500	0.00100	0.00500	0.00500	0.00500	0.00500	0.00500	0.00100	0.00500	0.00500	0.00500	0.00500	0.00100	0.00500

Note: Underlined Values are LOD. Values highlighted red are equal to or greater the PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

Ardersier -12.9m Dredge Sampling Results Incorporated with BPEO Assessme

Assenic 20 70 25 416 2.7 2.8 2.6 2.9 3.3 9.9 3.13 0 0 0 0 N/A 0 Cadmium 0.4 4 0.31 1.2 4.2 0.64 0.04 0.04 0.04 0.04 0.039 0.00 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0																		
Cadmium 6 4 4 031 12 42 004 0.04 0.04 0.04 0.04 0.04 0.09 0.09	Source	,	,									MAX Conc	Average Conc			No.Exceed BAC?	No. Exceed ERL	No. Exceed PEL?
Chromium So 370 st st 160 175 187 189 173 197 909 1827 1 0 1 1 1 0 Copper 33 300 27 34 108 111 122 122 110.6 11.5 31.2 121.6 1 0 2 0 0 0 0 0 0 0 0	Arsenic	20	70	25		41.6	2.7	2.6	2.6	2.9	3.3	9.9	3.13	0	0	0	N/A	0
Copper 30 300 27 34 108 11.1 12.2 12.2 12.6 11.5 31.2 12.16 1 0 2 0 0	Cadmium	0.4	4	0.31	1.2	4.2	0.04	0.04	0.14	0.04	0.04	0.39	0.09	0	0	2	0	0
Mercury 0.25	Chromium	50	370	81	81	160	17.5	18.7	18.9	17.3	19.7	90.9	18.27	1	0	1	1	0
Nockel 30 150 30 122 124 126 17.6 184 63.5 14.82 1 0 0 1 NA NA NA NA Lead 186 186 186 186 186 186 186 186 186 186	Copper	30	300	27	34	108	11.1	12.2	12.2	10.6	11.5	31.2	12.16	1	0	2	0	0
Lead	Mercury	0.25	1.5	0.07	0.15	0.7	0.01	0.01	0.03	0.01	0.1	0.35	0.05	3	0	15	9	0
Zinc 130 600 122 150 271 43.7 39.6 43.9 47.6 60.8 211.9 52.8 3 0 5 3 0 0 0 0 0 0 0 0 0	Nickel	30	150	36	-	-	12.2	12.4	12.6	17.6	18.4	63.5	14.82	1	0	1	N/A	N/A
Naphthaleme	Lead	50	400	38	47	112	4.2	4	4.6	4.2	4.1	19.2	5.18	0	0	0	0	0
Acenaphthylene 0.1 - 0.1 - 0.128 0.001 0.001 0.001 0.001 0.001 0.001 0.0037 0.002 0 N/A N/A N/A N/A N/A 0 C C C C C C C C C C C C C C C C C C	Zinc	130	600	122	150	271	43.7	39.6	43.9	47.6	60.8	211.9	52.38	3	0	5	3	0
Acenaphthylene 0.1 - 0.1 - 0.128 0.001 0.001 0.001 0.001 0.001 0.001 0.0037 0.002 0 N/A N/A N/A N/A N/A 0 C C C C C C C C C C C C C C C C C C																		
Acenaphthene 0.1 - 0.1 - 0.088 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.002 0 N/A N/A N/A N/A N/A 0 Place of the property o	Napthalene	0.1	-	0.08	0.16	0.391	0.00102	0.001	0.00111	0.00161	0.001	0.005	0.002	0	N/A	0	0	0
Fluorene 0.1 - 0.1 - 0.03 0.24 0.544 0.001 0.001 0.001 0.0023 0.0095 0.0011 0.0501 0.007 0 N/A N/A N/A 0 0 0 0 Anthracene 0.1 - 0.032 0.24 0.544 0.0044 0.0026 0.0059 0.0059 0.0095 0.0011 0.0501 0.007 0 N/A 4 0 0 0 0 Anthracene 0.1 - 0.03 0.085 0.245 0.0013 0.0021 0.0026 0.00459 0.001 0.0161 0.003 0 N/A 8 0 0 0 0 Fluoranthene 0.1 - 0.039 0.6 1.494 0.00645 0.005 0.0104 0.0197 0.00105 0.0983 0.013 0 N/A 8 0 0 0 0 Pyrene 0.1 - 0.024 0.665 1.398 0.0083 0.0066 0.0115 0.0171 0.00181 0.11 0.014 1 N/A 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acenaphthylene	0.1	-	-	-	0.128	0.001	0.001	0.001	0.00194	0.001	0.00937	0.002	0	N/A	N/A	N/A	0
Phenanthrene	Acenaphthene	0.1	-	-	-	0.0889	0.001	0.001	0.001	0.001	0.001	0.005	0.002	0	N/A	N/A	N/A	0
Anthracene	Fluorene	0.1	-	-	-	0.144	0.001	0.001	0.001	0.00239	0.001	0.00813	0.002	0	N/A	N/A	N/A	0
Fluoranthene 0.1 - 0.039 0.6 1.494 0.0645 0.005 0.0104 0.0197 0.00105 0.0983 0.013 0 N/A 8 0 0 0 Pyrene 0.1 - 0.024 0.665 1.398 0.00893 0.00666 0.0115 0.0171 0.00181 0.11 0.014 1 N/A 13 0 0 0 Benzo(a)anthracene 0.1 - 0.016 0.261 0.693 0.00271 0.00223 0.00419 0.00673 0.001 0.0507 0.006 0 N/A 9 0 0 0 Chrysene 0.1 - 0.02 0.384 0.846 0.00307 0.00263 0.00478 0.0073 0.001 0.0642 0.007 0 N/A 9 0 0 0 Enzo(b)fluoranthene 0.1 0.02 0.384 0.846 0.00307 0.00263 0.00479 0.001 0.074 0.007 0 N/A N/A N/A N/A N/A N/A Benzo(k)fluoranthene 0.1 0.0035 0.00232 0.00459 0.00617 0.001 0.074 0.007 0 N/A N/A N/A N/A N/A N/A Benzo(a)pyrene 0.1 - 0.03 0.384 0.763 0.00288 0.00228 0.00459 0.00617 0.001 0.0794 0.007 0 N/A N/A N/A N/A N/A N/A N/A Benzo(a)pyrene 0.1 - 0.03 0.384 0.763 0.00288 0.00228 0.00459 0.00617 0.001 0.0668 0.008 0 N/A 6 0 0 0 Indeno(1,2,3cd)pyrene 0.1 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00357 0.001 0.0568 0.006 0 N/A 0 0 0 N/A Benzo(g)hiperylene 0.1 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.0018 0.0497 0.006 0 N/A 0 0 0 N/A Benzo(g)hiperylene 0.01 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.0018 0.0497 0.006 0 N/A 0 0 0 N/A 0 0 0 N/A Benzo(g)hiperylene 0.01 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.0018 0.0497 0.006 0 N/A N/A 0 0 0 N/A Benzo(g)hiperylene 0.01 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.0018 0.0497 0.006 0 N/A N/A 0 0 0 N/A N/A 0 N/A	Phenanthrene	0.1	-	0.032	0.24	0.544	0.00444	0.0026	0.0059	0.0095	0.00111	0.0501	0.007	0	N/A	4	0	0
Pyrene 0.1 - 0.024 0.665 1.398 0.00893 0.00666 0.0115 0.0171 0.00181 0.11 0.014 1 N/A 13 0 0 Benzo(a)anthracene 0.1 - 0.016 0.261 0.693 0.00271 0.00223 0.00419 0.00673 0.001 0.0507 0.006 0 N/A 9 0 0 Chrysene 0.1 - 0.02 0.384 0.846 0.0037 0.00263 0.00478 0.0073 0.001 0.0642 0.007 0 N/A 9 0 0 Benzo(b)fluoranthene 0.1 - - - 0.00226 0.00232 0.00479 0.001 0.074 0.007 0 N/A N/A N/A N/A Benzo(a)pyrene 0.1 - - 0.00235 0.00232 0.00499 0.00642 0.001 0.074 0.007 0 N/A N/A N/A Benzo(a)pyren	Anthracene	0.1	-	0.05	0.085	0.245	0.00131	0.00121	0.00266	0.00459	0.001	0.0161	0.003	0	N/A	0	0	0
Benzo(a)anthracene	Fluoranthene	0.1	-	0.039	0.6	1.494	0.00645	0.005	0.0104	0.0197	0.00105	0.0983	0.013	0	N/A	8	0	0
Chrysene 0.1 - 0.02 0.384 0.846 0.00307 0.00263 0.00478 0.00733 0.001 0.0642 0.007 0 N/A 9 0 0 0 Benzo(b)fluoranthene 0.1 0.00226 0.00202 0.00355 0.00479 0.001 0.074 0.007 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A Benzo(k)fluoranthene 0.1 0.03 0.384 0.763 0.00288 0.00232 0.00459 0.00617 0.001 0.0794 0.007 0 N/A	Pyrene	0.1	-	0.024	0.665	1.398	0.00893	0.00666	0.0115	0.0171	0.00181	0.11	0.014	1	N/A	13	0	0
Benzo(b)fluoranthene 0.1 0.00226 0.0022 0.00355 0.00479 0.001 0.074 0.007 0 N/A N/A N/A N/A N/A N/A N/A Benzo(k)fluoranthene 0.1 0.00335 0.00232 0.00459 0.00617 0.001 0.0794 0.007 0 N/A N/A N/A N/A N/A N/A Benzo(a)pyrene 0.1 - 0.03 0.384 0.763 0.00288 0.0028 0.00409 0.00642 0.001 0.0668 0.008 0 N/A 6 0 N/A 6 0 0 0 Indeno(1,2,3cd)pyrene 0.1 - 0.103 0.24 - 0.00173 0.00103 0.00221 0.00357 0.001 0.0568 0.006 0 N/A 0 0 0 N/A Benzo(ghi)perylene 0.1 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.00108 0.0497 0.006 0 N/A 0 0 0 N/A Dibenzo(a,h)anthracene 0.01 0.135 0.001 0.001 0.001 0.001 0.001 0.001 0.0014 0.002 1 N/A N/A N/A N/A N/A N/A N/A PCBs 0.0200 0.1800 0.1890 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.00594 0.0056 0.00594 0.0056 0.00594 0.00059 0.00001 0.0000 0.00000 N/A N/A N/A N/A 0.00000	Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.00271	0.00223	0.00419	0.00673	0.001	0.0507	0.006	0	N/A	9	0	0
Benzo(k)fluoranthene 0.1 0.00335 0.00232 0.00459 0.00617 0.001 0.0794 0.007 0 N/A N/A N/A N/A N/A N/A N/A Benzo(a)pyrene 0.1 - 0.03 0.384 0.763 0.00288 0.00228 0.00409 0.00642 0.001 0.0668 0.008 0 N/A 6 0 0 N/A 0 0 0 Indeno(1,2,3cd)pyrene 0.1 - 0.103 0.24 - 0.00173 0.00103 0.00221 0.00357 0.001 0.0568 0.006 0 N/A 0 0 0 N/A 0 0 0 N/A Benzo(ghi)perylene 0.1 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.00108 0.0497 0.006 0 N/A 0 0 0 N/A 0 0 N/A Dibenzo(a,h)anthracene 0.01 0.135 0.001 0.001 0.001 0.001 0.001 0.001 0.0104 0.002 1 N/A N/A N/A N/A N/A 0 TPH 100 15.4 5.26 4.46 3.21 8 67.7 13.03 0 N/A N/A N/A N/A N/A N/A N/A PCBs 0.0200 0.1800 0.1890 0.0056 0.00056 0.00056 0.00056 0.00056 0.00056 0.00056 0.00094 0.00061 0.0000 0.0000 N/A N/A N/A 0.00000	Chrysene	0.1	-	0.02	0.384	0.846	0.00307	0.00263	0.00478	0.00733	0.001	0.0642	0.007	0	N/A	9	0	0
Benzo(a)pyrene 0.1 - 0.03 0.384 0.763 0.0028 0.0028 0.00409 0.00642 0.001 0.0668 0.008 0 N/A 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzo(b)fluoranthene	0.1	-	-	-	-	0.00226	0.00202	0.00355	0.00479	0.001	0.074	0.007	0	N/A	N/A	N/A	N/A
Indeno(1,2,3cd)pyrene	Benzo(k)fluoranthene	0.1	-	-	-	-	0.00335	0.00232	0.00459	0.00617	0.001	0.0794	0.007	0	N/A	N/A	N/A	N/A
Benzo(ghi)perylene 0.1 - 0.08 0.085 - 0.00232 0.00161 0.0026 0.00394 0.00108 0.0497 0.006 0 N/A 0 0 N/A Dibenzo(a,h)anthracene 0.01 - - 0.135 0.001 0.001 0.001 0.001 0.001 0.0104 0.002 1 N/A	Benzo(a)pyrene	0.1	-	0.03	0.384	0.763	0.00288	0.00228	0.00409	0.00642	0.001	0.0668	0.008	0	N/A	6	0	0
Dibenzo(a,h)anthracene 0.01 - - - 0.135 0.001 0.001 0.001 0.0104 0.0104 0.002 1 N/A	Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24	-	0.00173	0.00103	0.00221	0.00357	0.001	0.0568	0.006	0	N/A	0	0	N/A
TPH 100 - - - - 15.4 5.26 4.46 3.21 8 67.7 13.03 0 N/A N/A N/A N/A N/A PCBs 0.02000 0.18000 - - 0.18900 0.00056	Benzo(ghi)perylene	0.1	-	0.08	0.085	-	0.00232	0.00161	0.0026	0.00394	0.00108	0.0497	0.006	0	N/A	0	0	N/A
PCBs 0.0200 0.1800 0.1890 0.0056	Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.001	0.001	0.001	0.001	0.001	0.0104	0.002	1	N/A	N/A	N/A	0
	TPH	100	-	-	-	-	15.4	5.26	4.46	3.21	8	67.7	13.03	0	N/A	N/A	N/A	N/A
TBT 0.10000 0.50000 0.00100 0.00500 0.00500 0.00500 0.00500 0.00100 0.00100 0.00491 0.00000 0.00000 N/A N/A N/A		0.02000	0.18000	-	-	0.18900	0.00056	0.00056	0.00056	0.00056	0.00056	0.00294	0.00061	0.00000	0.00000	N/A	N/A	0.00000
	TBT	0.10000	0.50000	-	-	-	0.00100	0.00500	0.00500	0.00500	0.00100	0.02110	0.00491	0.00000	0.00000	N/A	N/A	N/A

Note: Underlined Values are LOD. Values highlighted red are equal to or greater the PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S17

Date Sampled: 27-Mar-23

Date Samples Received: 29-Mar-23

Test Report Date: 21-Apr-23

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S17 ES1 6.50-7.00	MAR01805.001	Sediment	10.0	90.0	0.00	97.54	2.46	NAIIS
S17 ES7 9.50-10.00	MAR01805.002	Sediment	11.1	88.9	0.00	97.82	2.18	NAIIS
S17 ES13 12.50-13.00	MAR01805.003	Sediment	9.74	90.3	0.00	97.72	2.28	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S17 ES1 6.50-7.00	MAR01805.001	Sediment	3.8	<0.04	15.9	11.7	0.01	14.9	4.7	27.0
S17 ES7 9.50-10.00	MAR01805.002	Sediment	3.2	<0.04	14.6	10.1	<0.01	14.1	2.4	20.8
S17 ES13 12.50-13.00	MAR01805.003	Sediment	3.2	<0.04	15.5	10.6	<0.01	15.1	2.5	23.5
Се	rtified Reference Material SET	TOC 768 (% Recovery)	98	111	97	109	98	96	95	102
	•	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	μg/Kg (Dr	y Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S17 ES1 6.50-7.00	MAR01805.001	Sediment	<1	<1
S17 ES7 9.50-10.00	MAR01805.002	Sediment	<1	<1
S17 ES13 12.50-13.00	MAR01805.003	Sediment	<1	<1
Certifie	d Reference Material E	CR-646 (% Recovery)	80	85
	•	QC Blank	<1	<1

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S17 ES1 6.50-7.00	MAR01805.001	Sediment	<5	<5	<5	<5	<5	<5
S17 ES7 9.50-10.00	MAR01805.002	Sediment	<5	<5	<5	5.70	<5	<5
S17 ES13 12.50-13.00	MAR01805.003	Sediment	<1	<1	<1	<1	<1	<1
С	ertified Reference Material NIS	T1941b (% Recovery)	91	111	64	68	65	91
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	N	N	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S17 ES1 6.50-7.00	MAR01805.001	Sediment	<5	<5	<5	<5	<5	<5
S17 ES7 9.50-10.00	MAR01805.002	Sediment	<5	<5	6.53	<5	13.5	<5
S17 ES13 12.50-13.00	MAR01805.003	Sediment	<1	<1	<1	<1	<1	<1
С	ertified Reference Material NIS	T1941b (% Recovery)	83	77	87	113	79	54
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S17 ES1 6.50-7.00	MAR01805.001	Sediment	<5	<5	<5	<5	49200
S17 ES7 9.50-10.00	MAR01805.002	Sediment	<5	<5	7.88	15.1	28100
S17 ES13 12.50-13.00	MAR01805.003	Sediment	<1	<1	<1	<1	1780
	Certified Reference Material NIS	T1941b (% Recovery)	88	61	79	73	84~
	•	QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version

Customer Reference S230232 - Ardersier Port - S17

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S17 ES1 6.50-7.00	MAR01805.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S17 ES7 9.50-10.00	MAR01805.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S17 ES13 12.50-13.00	MAR01805.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIS	T1941b (% Recovery)	66	92	90	96	102	102	94
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version 1

Customer Reference S230232 - Ardersier Port - S17

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01805.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01805.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01805.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/303/304	MAR01805.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01805.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BKF, CHRYSENE). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01805

Issue Version 1

Customer Reference S230232 - Ardersier Port - S17

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	ВНСН	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S29

Date Sampled: 22-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S29 ES5 12.50-13.00	MAR01797.001	Sediment	18.7	81.3	0.00	92.75	7.25	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S29 ES5 12.50-13.00	MAR01797.001	Sediment	3.3	<0.04	19.7	11.5	0.1	18.4	4.1	60.8
Certified Reference Material SETOC 768 (% Recovery)			93	80	89	91	89	89	87	95
	QC Blank				<0.5	<0.5	< 0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS	UKAS		
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S29 ES5 12.50-13.00	MAR01797.001	Sediment	<1	<1		
Certifie	76	81				
	<1	<1				

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S29

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S29 ES5 12.50-13.00	MAR01797.001	Sediment	<1	<1	<1	<1	<1	<1
Certified Reference Material NIST1941b (% Recovery)		86	94	73	67	60	83	
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S29

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S29 ES5 12.50-13.00	MAR01797.001	Sediment	1.08	<1	<1	<1	1.05	<1
Certified Reference Material NIST1941b (% Recovery)		72	85	85	122	77	50	
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S29 ES5 12.50-13.00	MAR01797.001	Sediment	<1	<1	1.11	1.81	8000
Certified Reference Material NIST1941b (% Recovery)			67	58	74	69	92~
QC Blank			<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S29 ES5 12.50-13.00	MAR01797.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST1941b (% Recovery)		65	99	91	105	89	84	92	
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Page 8 of 10 ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version

Customer Reference S230232 - Ardersier Port - S29

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01797.001	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01797.001	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01797.001	Analysis was conducted by an approved subcontracted laboratory.
ASC/S0P/303/304	MAR01797.001	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (NAPTH). These circumstances should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01797

Issue Version 1

Customer Reference S230232 - Ardersier Port - S29

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions									
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name					
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content					
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane					
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane					
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane					
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin					
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene					
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane					
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene					
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane					
C1N	C1-naphthalenes	PHENANT	Phenanthrene							
C1PHEN	C1-phenanthrene	PYRENE	Pyrene							

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S28

Date Sampled: 22-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference S230232 - Ardersier Port - S28

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S28 ES3 12.50-13.00	MAR01796.001	Sediment	24.5	75.5	0.00	96.5	3.53	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference S230232 - Ardersier Port - S28

		Units				mg/Kg (D	ry Weight)			
		Method No	ICPMSS*							
	Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2	
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S28 ES3 12.50-13.00	MAR01796.001	Sediment	2.90	<0.04	17.3	10.6	0.01	17.6	4.20	47.6
Certified Reference Material SETOC 768 (% Recovery)			93	80	89	91	89	89	87	95
QC Blank			<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference S230232 - Ardersier Port - S28

		Units	μg/Kg (Dry Weight)		
		Method No	ASC/S	DP/301	
	Limit of Detection	1	1		
		Accreditation	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S28 ES3 12.50-13.00	MAR01796.001	Sediment	<5	<5	
Certifie	76	81			
	•	QC Blank	<1	<1	

^{*} See Report Notes

ASCF011z_1.0_03APR23

Page 4 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference S230232 - Ardersier Port - S28

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S28 ES3 12.50-13.00	MAR01796.001	Sediment	1.94	<1	4.59	6.73	6.42	4.79
Ce	tified Reference Material NIS	ST1941b (% Recovery)	86	94	73	67	60	83

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference

S230232 - Ardersier Port - S28

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S28 ES3 12.50-13.00	MAR01796.001	Sediment	3.94	6.17	7.33	_1	19.7	2.39
320 L33 12.30 13.00	WATER 7 30.001	Sediment	3.34	0.17	1.55	`'	1 3.1	2.03
	ified Reference Material NIS			85	85	122	77	50

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference S230232 - Ardersier Port - S28

			/=	I		/= /	
		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S28 ES3 12.50-13.00	MAR01796.001	Sediment	3.57	1.61	9.50	17.1	3210
	Certified Reference Material NIS	ST1941b (% Recovery)	67	58	74	69	92~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version

Customer Reference

S230232 - Ardersier Port - S28

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S28 ES3 12.50-13.00	MAR01796.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST1941b (% Recovery)		65	99	91	105	89	84	92	
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version 1

Customer Reference S230232 - Ardersier Port - S28

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01796.001	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01796.001	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01796.001	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01796.001	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01796.001	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01796.001	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01796

Issue Version 1

Customer Reference S230232 - Ardersier Port - S28

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S24

Date Sampled: 22-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S24 ES1 6.50-7.00	MAR01795.001	Sediment	23.7	76.3	0.00	97.5	2.53	NAIIS
S24 ES7 9.50-10.00	MAR01795.002	Sediment	28.0	72.0	0.81	95.6	3.62	NAIIS
S24 ES13 12.50-13.00		Sediment	20.4	79.6	0.00	94.0	6.00	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	Units mg/Kg (Dry Weight)								
		Method No				ICP	MSS*				
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2	
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc	
S24 ES1 6.50-7.00	MAR01795.001	Sediment	2.20	<0.04	15.1	10.1	0.01	13.6	3.00	30.8	
S24 ES7 9.50-10.00	MAR01795.002	Sediment	2.40	<0.04	15.0	10.1	0.02	15.0	3.70	46.6	
S24 ES13 12.50-13.00	MAR01795.003	Sediment	2.70	<0.04	16.8	11.3	0.01	17.2	3.90	46.3	
(Certified Reference Material SETOC 768 (% Recovery)				89	91	89	89	87	95	
		<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2		

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version
Customer Reference

1

S230232 - Ardersier Port - S24

		Units	ry Weight)			
		Method No	ASC/SOP/301			
		Limit of Detection				
		Accreditation	UKAS	UKAS		
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S24 ES1 6.50-7.00	MAR01795.001	Sediment	<5	<5		
S24 ES7 9.50-10.00	MAR01795.002	Sediment	<5	<5		
S24 ES13 12.50-13.00	MAR01795.003	Sediment	<1	<1		
	Certified Reference Material BCR-646 (% Recovery)					
	•	QC Blank	<1	<1		

^{*} See Report Notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S24 ES1 6.50-7.00	MAR01795.001	Sediment	<1	<1	<1	<1	<1	<1
S24 ES7 9.50-10.00	MAR01795.002	Sediment	1.03	<1	5.26	12.0	10.6	6.64
S24 ES13 12.50-13.00	MAR01795.003	Sediment	<1	<1	1.36	1.87	1.64	1.12
С	Certified Reference Material NIST1941b (% Recovery)			94	73	67	60	83
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S24 ES1 6.50-7.00	MAR01795.001	Sediment	<1	<1	<1	<1	<1	<1
S24 ES7 9.50-10.00	MAR01795.002	Sediment	5.29	9.65	10.9	<1	30.2	1.18
S24 ES13 12.50-13.00	MAR01795.003	Sediment	1.16	1.74	1.84	<1	5.33	<1
	Certified Reference Material NIST1941b (% Recovery)			85	85	122	77	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10

Page 7 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S24 ES1 6.50-7.00	MAR01795.001	Sediment	<1	<1	<1	1.35	1220
S24 ES7 9.50-10.00	MAR01795.002	Sediment	5.30	<1	12.4	26.3	2330
S24 ES13 12.50-13.00	MAR01795.003	Sediment	<1	<1	2.38	5.39	2870
C	Certified Reference Material NIST1941b (% Recovery)			58	74	69	92~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version

Customer Reference S230232 - Ardersier Port - S24

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S24 ES1 6.50-7.00	MAR01795.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S24 ES7 9.50-10.00	MAR01795.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S24 ES13 12.50-13.00	MAR01795.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			99	91	105	89	84	92
	QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version 1

Customer Reference S230232 - Ardersier Port - S24

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01795.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01795.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01795.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01795.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01795.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01795.002-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01795.002-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01795

Issue Version 1

Customer Reference S230232 - Ardersier Port - S24

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S23

Date Sampled: 21-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S23

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S23 ES1 6.50-7.00	MAR01794.001	Sediment	29.6	70.4	0.00	95.1	4.87	NAIIS
S23 ES7 9.50-10.00	MAR01794.002	Sediment	26.7	73.3	0.00	93.3	6.69	NAIIS
S23 ES13 12.50-13.00	MAR01794.003	Sediment	29.9	70.1	0.00	91.3	8.66	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

Customer Reference S230232 - Ardersier Port - S23

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S23 ES1 6.50-7.00	MAR01794.001	Sediment	2.80	<0.04	18.6	10.0	0.10	16.6	3.90	44.4
S23 ES7 9.50-10.00	MAR01794.002	Sediment	2.90	<0.04	19.1	11.5	0.04	18.3	4.90	54.5
S23 ES13 12.50-13.00	MAR01794.003	Sediment	2.70	<0.04	16.0	9.60	0.02	14.4	3.90	35.9
	Certified Reference Material SETOC 768 (% Recovery)			80	89	91	89	89	87	95
_	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

Customer Reference S230232 - Ardersier Port - S23

		Units	μg/Kg (D	ry Weight)	
		Method No	ASC/S	OP/301	
		Limit of Detection	1	1	
		Accreditation	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S23 ES1 6.50-7.00	MAR01794.001	Sediment	<5	<5	
S23 ES7 9.50-10.00	MAR01794.002	Sediment	<5	<5	
S23 ES13 12.50-13.00	MAR01794.003	Sediment	<5	<5	
	Certified Reference Material BCR-646 (% Recovery)				
	<1	<1			

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S23

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S23 ES1 6.50-7.00	MAR01794.001	Sediment	<1	<1	<1	1.20	1.22	1.19
S23 ES7 9.50-10.00	MAR01794.002	Sediment	<1	<1	1.10	2.56	3.05	3.07
S23 ES13 12.50-13.00	MAR01794.003	Sediment	1.29	<1	1.27	4.53	5.02	3.64
Certified Reference Material NIST1941b (% Recovery)			65	97	66	61	63	92
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 5 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

Customer Reference S230232 - Ardersier Port - S23

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S23 ES1 6.50-7.00	MAR01794.001	Sediment	<1	1.41	1.44	<1	3.38	<1
S23 ES7 9.50-10.00	MAR01794.002	Sediment	2.80	3.48	3.11	<1	6.70	<1
S23 ES13 12.50-13.00	MAR01794.003	Sediment	2.80	4.62	4.50	<1	7.72	1.03
Ce	Certified Reference Material NIST1941b (% Recovery)			82	91	109	78	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

Customer Reference S230232 - Ardersier Port - S23

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S23 ES1 6.50-7.00	MAR01794.001	Sediment	<1	<1	1.26	3.74	3680
S23 ES7 9.50-10.00	MAR01794.002	Sediment	2.31	<1	3.55	7.57	5590
S23 ES13 12.50-13.00	MAR01794.003	Sediment	2.76	<1	3.92	9.16	5780
Certified Reference Material NIST1941b (% Recovery)			84	57	76	69	91~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version

. .

Customer Reference S230232 - Ardersier Port - S23

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S23 ES1 6.50-7.00	MAR01794.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S23 ES7 9.50-10.00	MAR01794.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S23 ES13 12.50-13.00	MAR01794.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			99	91	105	89	84	92
	·	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version 1

Customer Reference S230232 - Ardersier Port - S23

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01794.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01794.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01794.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01794.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01794.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01794.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01794 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01794

Issue Version 1

Customer Reference S230232 - Ardersier Port - S23

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	ВНСН	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S22

Date Sampled: 21-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Į.

Customer Reference S230232 - Ardersier Port - S22

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S22 ES1 6.50-7.00	MAR01793.001	Sediment	32.1	67.9	0.00	87.0	13.0	NAIIS
S22 ES7 9.50-10.00	MAR01793.002	Sediment	27.2	72.8	0.00	91.3	8.71	NAIIS
S22 ES13 12.50-13.00	MAR01793.003	Sediment	22.8	77.2	0.00	93.3	6.75	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Customer Reference S230232 - Ardersier Port - S22

	ı	. 1								
		Units				mg/Kg (D	ry Weight)			
		Method No		ICPMSS*						
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S22 ES1 6.50-7.00	MAR01793.001	Sediment	4.10	<0.04	21.4	10.6	0.02	17.6	7.10	46.9
S22 ES7 9.50-10.00	MAR01793.002	Sediment	3.10	<0.04	17.5	9.90	0.01	20.2	3.70	38.5
S22 ES13 12.50-13.00	MAR01793.003	Sediment	3.20	<0.04	20.0	11.8	<0.01	20.1	4.30	56.2
Cert	Certified Reference Material SETOC 768 (% Recovery)			80	89	91	89	89	87	95
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Customer Reference S230232 - Ardersier Port - S22

		Units	μg/Kg (D	ry Weight)		
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS	UKAS		
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S22 ES1 6.50-7.00	MAR01793.001	Sediment	<5	<5		
S22 ES7 9.50-10.00	MAR01793.002	Sediment	<5	<5		
S22 ES13 12.50-13.00	MAR01793.003	Sediment	<1	<1		
Се	Certified Reference Material BCR-646 (% Recove					
		QC Blank	<1	<1		

^{*} See Report Notes

Page 4 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version
Customer Reference

1

S230232 - Ardersier Port - S22

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S22 ES1 6.50-7.00	MAR01793.001	Sediment	<5	<5	<5	<5	<5	<5
S22 ES7 9.50-10.00	MAR01793.002	Sediment	<1	<1	<1	1.50	1.34	1.56
S22 ES13 12.50-13.00	MAR01793.003	Sediment	<1	<1	<1	<1	<1	<1
Ce	Certified Reference Material NIST1941b (% Recovery)		65	97	66	61	63	92
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Customer Reference S230232 - Ardersier Port - S22

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S22 ES1 6.50-7.00	MAR01793.001	Sediment	<5	<5	<5	<5	8.96	<5
S22 ES7 9.50-10.00	MAR01793.002	Sediment	1.43	1.53	1.70	<1	3.95	<1
S22 ES13 12.50-13.00	MAR01793.003	Sediment	<1	<1	<1	<1	<1	<1
Ce	Certified Reference Material NIST1941b (% Recovery)			82	91	109	78	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Customer Reference S230232 - Ardersier Port - S22

	Г	-		1	ı	ı	1
		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S22 ES1 6.50-7.00	MAR01793.001	Sediment	<5	<5	<5	11.8	21700
S22 ES7 9.50-10.00	MAR01793.002	Sediment	1.00	<1	1.41	5.12	6420
S22 ES13 12.50-13.00	MAR01793.003	Sediment	<1	<1	<1	1.60	6640
Certified Reference Material NIST1941b (% Recovery)			84	57	76	69	91~
QC Blank			<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version

Customer Reference S230232 - Ardersier Port - S22

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S22 ES1 6.50-7.00	MAR01793.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S22 ES7 9.50-10.00	MAR01793.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S22 ES13 12.50-13.00	MAR01793.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			99	91	105	89	84	92
	QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version 1

Customer Reference S230232 - Ardersier Port - S22

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report			
ICPMSS*	MAR01793.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.			
SUB_01*	MAR01793.001-003	Analysis was conducted by an approved subcontracted laboratory.			
SUB_02*	MAR01793.001-003	Analysis was conducted by an approved subcontracted laboratory.			
ASC/SOP/301	MAR01793.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.			
ASC/SOP/303/304	MAR01793.001	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.			
ASC/SOP/303/304		The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.			
ASC/SOP/303/304	MAR01793.002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.			
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.			

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01793

Issue Version 1

Customer Reference S230232 - Ardersier Port - S22

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version: 1

Customer: Solmek, 12 Yarm Road, Stockton-on-Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S09

Date Sampled: 22-Mar-23

Date Samples Received: 27-Mar-23

Test Report Date: 19-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

Customer Reference S230232 - Ardersier Port - S09

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S09 ES1 6.50-7.00	MAR01792.001	Sediment	27.5	72.5	0.00	84.0	16.0	NAIIS
S09 ES7 9.50-10.00	MAR01792.002	Sediment	22.8	77.2	0.00	93.2	6.78	NAIIS
S09 ES13 12.50-13.00	MAR01792.003	Sediment	26.2	73.8	1.81	91.6	6.63	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

Customer Reference

S230232 - Ardersier Port - S09

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S09 ES1 6.50-7.00	MAR01792.001	Sediment	4.40	<0.04	23.2	21.3	0.04	23.0	12.3	99.9
S09 ES7 9.50-10.00	MAR01792.002	Sediment	3.60	<0.04	19.2	13.0	0.02	20.4	5.30	66.3
S09 ES13 12.50-13.00	MAR01792.003	Sediment	1.90	<0.04	6.30	4.70	<0.01	7.70	1.60	22.2
Се	Certified Reference Material SETOC 768 (% Recovery)			80	89	91	89	89	87	95
QC Blank			<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version
Customer Reference

1

S230232 - Ardersier Port - S09

		Units	μg/Kg (Dry Weight)		
		Method No	ASC/SOP/301		
		Limit of Detection	1	1	
		Accreditation	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S09 ES1 6.50-7.00	MAR01792.001	Sediment	<5	21.1	
S09 ES7 9.50-10.00	MAR01792.002	Sediment	<5	7.26	
S09 ES13 12.50-13.00	MAR01792.003	Sediment	<5	<5	
C	Certified Reference Material E	CR-646 (% Recovery)	76	81	
		QC Blank	<1	<1	

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S09

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S09 ES1 6.50-7.00	MAR01792.001	Sediment	2.89	<1	3.01	21.8	30.1	28.7
S09 ES7 9.50-10.00	MAR01792.002	Sediment	3.64	1.04	2.39	18.5	28.6	27.4
S09 ES13 12.50-13.00	MAR01792.003	Sediment	<1	<1	<1	1.26	1.41	1.68
Certified Reference Material NIST1941b (% Recovery)		65	97	66	61	63	92	
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S09

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S09 ES1 6.50-7.00	MAR01792.001	Sediment	23.1	29.0	30.6	4.46	57.6	2.49
S09 ES7 9.50-10.00	MAR01792.002	Sediment	24.2	29.9	28.5	5.12	58.0	2.98
S09 ES13 12.50-13.00	MAR01792.003	Sediment	1.40	1.49	1.80	<1	3.93	<1
Certified Reference Material NIST1941b (% Recovery)		76	82	91	109	78	50	
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 6 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

Customer Reference S230232 - Ardersier Port - S09

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S09 ES1 6.50-7.00	MAR01792.001	Sediment	25.7	1.58	28.4	52.4	20500
S09 ES7 9.50-10.00	MAR01792.002	Sediment	26.1	2.91	42.1	50.7	56400
S09 ES13 12.50-13.00	MAR01792.003	Sediment	1.24	<1	2.48	3.89	8540
Cer	tified Reference Material NIS	T1941b (% Recovery)	84	57	76	69	91~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version

Customer Reference S230232 - Ardersier Port - S09

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S09 ES1 6.50-7.00	MAR01792.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S09 ES7 9.50-10.00	MAR01792.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S09 ES13 12.50-13.00	MAR01792.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIS	T1941b (% Recovery)	65	99	91	105	89	84	92
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version 1

Customer Reference S230232 - Ardersier Port - S09

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01792.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01792.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01792.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01792.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01792.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01792.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01792.001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01792

Issue Version 1

Customer Reference S230232 - Ardersier Port - S09

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions										
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name						
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content						
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane						
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane						
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane						
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin						
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene						
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane						
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene						
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane						
C1N	C1-naphthalenes	PHENANT	Phenanthrene								
C1PHEN	C1-phenanthrene	PYRENE	Pyrene								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S14

Date Sampled: 20-Mar-23

Date Samples Received: 23-Mar-23

Test Report Date: 17-Apr-23

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S14 ES1 6.50-7.00	MAR01786.001	Sediment	27.7	72.3	0.00	90.67	9.33	NAIIS
S14 ES7 9.50-10.00	MAR01786.002	Sediment	28.2	71.8	2.10	90.10	7.80	NAIIS
S14 ES13 12.50-13.00	MAR01786.003	Sediment	21.0	79.0	0.00	94.90	5.10	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S14 ES1 6.50-7.00	MAR01786.001	Sediment	2.4	0.20	16.4	12.0	0.24	14.3	5.1	48.3
S14 ES7 9.50-10.00	MAR01786.002	Sediment	4.4	0.13	19.8	11.7	0.17	19.5	5.3	49.9
S14 ES13 12.50-13.00	MAR01786.003	Sediment	3.1	0.19	18.8	11.6	0.22	16.9	3.8	42.6
Ce	Certified Reference Material SETOC 768 (% Recovery)			107	87	101	89	89	88	89
	QC Blank				<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/S	OP/301			
		Limit of Detection	1	1			
		Accreditation	UKAS	UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)			
S14 ES1 6.50-7.00	MAR01786.001	Sediment	<5	9.00			
S14 ES7 9.50-10.00	MAR01786.002	Sediment	<5	<5			
S14 ES13 12.50-13.00	MAR01786.003	Sediment	<1	<1			
Certifie	Certified Reference Material BCR-646 (% Recovery)						
	QC Blank						

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S14

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S14 ES1 6.50-7.00	MAR01786.001	Sediment	<1	<1	<1	2.89	4.18	5.49
S14 ES7 9.50-10.00	MAR01786.002	Sediment	<1	<1	<1	1.26	1.56	1.50
S14 ES13 12.50-13.00	MAR01786.003	Sediment	<1	<1	<1	<1	<1	<1
C	Certified Reference Material NIST1941b (% Recovery)			97	66	61	63	92
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 5 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S14 ES1 6.50-7.00	MAR01786.001	Sediment	4.10	6.10	4.38	<1	6.95	<1
S14 ES7 9.50-10.00	MAR01786.002	Sediment	1.74	1.91	1.84	<1	3.18	<1
S14 ES13 12.50-13.00	MAR01786.003	Sediment	<1	<1	<1	<1	1.00	<1
Ce	ertified Reference Material NIS	T1941b (% Recovery)	76	82	91	109	78	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S14 ES1 6.50-7.00	MAR01786.001	Sediment	3.57	<1	3.21	10.1	11500
S14 ES7 9.50-10.00	MAR01786.002	Sediment	1.14	1.02	1.81	4.45	8890
S14 ES13 12.50-13.00	MAR01786.003	Sediment	<1	<1	<1	1.49	3580
Certi	Certified Reference Material NIST1941b (% Recovery)			57	76	69	91~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version

Customer Reference S230232 - Ardersier Port - S14

	,								
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S14 ES1 6.50-7.00	MAR01786.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S14 ES7 9.50-10.00	MAR01786.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S14 ES13 12.50-13.00	MAR01786.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			105	128	107	105	102	95
	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version 1

Customer Reference S230232 - Ardersier Port - S14

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01786.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01786.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01786.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01786.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01786.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01786.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01786

Issue Version 1

Customer Reference S230232 - Ardersier Port - S14

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions										
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name						
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content						
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane						
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane						
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane						
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin						
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene						
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane						
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene						
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane						
C1N	C1-naphthalenes	PHENANT	Phenanthrene								
C1PHEN	C1-phenanthrene	PYRENE	Pyrene								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S13

Date Sampled: 20-Mar-23

Date Samples Received: 23-Mar-23

Test Report Date: 17-Apr-23

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S13 ES1 6.50-7.00	MAR01785.001	Sediment	28.0	72.0	0.00	92.69	7.31	NAIIS
S13 ES7 9.50-10.00	MAR01785.002	Sediment	25.2	74.8	0.95	90.62	8.44	NAIIS
				76.1	0.00	94.52	5.48	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S13 ES1 6.50-7.00	MAR01785.001	Sediment	2.9	0.39	18.7	10.3	0.23	12.4	5.7	50.6
S13 ES7 9.50-10.00	MAR01785.002	Sediment	2.9	0.31	17.4	11.1	0.23	11.6	5.2	57.1
S13 ES13 12.50-13.00	MAR01785.003	Sediment	2.5	0.24	19.5	10.8	0.27	13.4	3.6	50.3
С	Certified Reference Material SETOC 768 (% Recovery)			107	87	101	89	89	88	89
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Page 3 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S13

		Units	μg/Kg (Dr	y Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S13 ES1 6.50-7.00	MAR01785.001	Sediment	<5	<5
S13 ES7 9.50-10.00	MAR01785.002	Sediment	<5	<5
S13 ES13 12.50-13.00	MAR01785.003	Sediment	<1	<1
Certifie	CR-646 (% Recovery)	73	77	
		QC Blank	<1	<1

^{*} See Report Notes

Page 4 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S13 ES1 6.50-7.00	MAR01785.001	Sediment	<1	<1	2.08	3.51	3.41	4.17
S13 ES7 9.50-10.00	MAR01785.002	Sediment	<1	<1	<1	2.04	2.13	2.26
S13 ES13 12.50-13.00	MAR01785.003	Sediment	<1	<1	<1	<1	<1	<1
C	Certified Reference Material NIST1941b (% Recovery)			97	66	61	63	92
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S13 ES1 6.50-7.00	MAR01785.001	Sediment	2.86	4.51	4.07	<1	9.29	1.02
S13 ES7 9.50-10.00	MAR01785.002	Sediment	1.91	2.14	2.45	<1	5.37	<1
S13 ES13 12.50-13.00	MAR01785.003	Sediment	<1	<1	<1	<1	1.34	<1
(Certified Reference Material NIST1941b (% Recovery)			82	91	109	78	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S13 ES1 6.50-7.00	MAR01785.001	Sediment	2.84	2.61	5.88	8.74	7100
S13 ES7 9.50-10.00	MAR01785.002	Sediment	1.78	<1	2.56	5.84	5990
S13 ES13 12.50-13.00	MAR01785.003	Sediment	<1	<1	<1	1.75	4590
	Certified Reference Material NIST1941b (% Recovery)			57	76	69	91~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version

Customer Reference S230232 - Ardersier Port - S13

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S13 ES1 6.50-7.00	MAR01785.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST1941b (% Recovery)		54	104	89	91	98	92	80	
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version Customer Reference

S230232 - Ardersier Port - S13

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S13 ES7 9.50-10.00	MAR01785.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S13 ES13 12.50-13.00	MAR01785.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST1941b (% Recovery)			103	105	128	107	105	102	95
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version 1

Customer Reference S230232 - Ardersier Port - S13

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01785.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01785.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01785.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01785.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302	MAR01785.001	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01785.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01785.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01785.001-002	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01785

Issue Version 1

Customer Reference S230232 - Ardersier Port - S13

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	ВНСН	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 11 of 11 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S27

Date Sampled: 15-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S27

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	21.0	79.0	0.00	96.41	3.59	NAIIS
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	27.8	72.2	0.43	92.74	6.83	NAIIS
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	20.9	79.1	0.00	93.02	6.98	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

Customer Reference S230232 - Ardersier Port - S27

	Units mg/Kg (Dry Weight)									
		Method No ICPMSS*								
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	2.7	<0.04	17.5	11.1	<0.01	12.2	4.2	43.7
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	2.6	<0.04	18.7	12.2	<0.01	12.4	4.0	39.6
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	2.6	0.14	18.9	12.2	0.03	12.6	4.6	43.9
Certified Reference Material SETOC 768 (% Recovery)			95	119	98	106	124	100	102	96
QC Blank			<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S27

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/SOP/301			
		Limit of Detection	1	1		
		Accreditation	UKAS	UKAS		
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	<1	<1		
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	<5	<5		
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	<5	<5		
Certif	74	75				
	<1	<1				

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

Customer Reference S230232 - Ardersier Port - S27

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	<1	<1	1.31	2.71	2.88	2.26
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	<1	<1	1.21	2.23	2.28	2.02
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	<1	<1	2.66	4.19	4.09	3.55
Certif	Certified Reference Material NIST1941b (% Recovery)			98	70	65	61	86
		QC Blank	<1	<1	<1	<1	<1	<1

Page 5 of 10

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S27

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	2.32	3.35	3.07	<1	6.45	<1
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	1.61	2.32	2.63	<1	5.00	<1
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	2.60	4.59	4.78	<1	10.4	<1
Certi	Certified Reference Material NIST1941b (% Recovery)			85	86	128	78	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 6 of 10

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

Customer Reference S230232 - Ardersier Port - S27

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	1.73	1.02	4.44	8.93	15400
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	1.03	<1	2.60	6.66	5260
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	2.21	1.11	5.90	11.5	4460
Cert	Certified Reference Material NIST1941b (% Recovery)				77	71	100~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S27

					1	1	1	1	
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S27 ES1 6.50-7.00m	MAR01781.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S27 ES7 9.50-10.00m	MAR01781.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S27 ES13 12.50-13.00m	MAR01781.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Cert	Certified Reference Material NIST1941b (% Recovery)			104	89	91	98	92	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version 1

Customer Reference S230232 - Ardersier Port - S27

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01781.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01781.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01781.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01781.002-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/S0P/302	MAR01781.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304		Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01781 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01781

Issue Version 1

Customer Reference S230232 - Ardersier Port - S27

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N C3-naphthalenes		AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]	

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S26

Date Sampled: 16-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

1252

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S26

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	28.3	71.7	0.95	94.40	4.65	NAIIS
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	18.9	81.1	1.15	94.79	4.06	NAIIS
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	21.8	78.2	0.19	91.12	8.69	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version

Customer Reference S230232 - Ardersier Port - S26

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	3.3	<0.04	19.0	12.3	<0.01	13.5	3.9	44.5
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	3.5	<0.04	20.2	13.3	<0.01	15.3	3.8	50.1
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	3.4	<0.04	17.9	11.9	0.03	12.1	4.3	56.6
Cer	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S26

		Units	μg/Kg (Dr	y Weight)		
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	<5	<5		
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	<1	<1		
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	<5	<5		
Certifie	Certified Reference Material BCR-646 (% Recovery)					
		QC Blank	<1	<1		

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version

Customer Reference S230232 - Ardersier Port - S26

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	<1	<1	<1	1.73	1.98	1.80
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	<1	<1	<1	1.20	1.51	1.10
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	<1	<1	<1	1.36	1.56	1.58
Certified Reference Material NIST1941b (% Recovery)			72	98	70	65	61	86
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version
Customer Reference

.

S230232 - Ardersier Port - S26

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	1.82	1.63	2.09	<1	4.02	<1
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	1.63	1.57	1.55	<1	3.17	<1
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	1.21	1.83	1.64	<1	3.21	<1
Certi	Certified Reference Material NIST1941b (% Recovery)		86	85	86	128	78	50
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S26

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	<1	<1	2.11	5.05	6610
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	1.18	<1	1.83	4.21	10100
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	1.06	<1	1.30	4.28	5850
Certifi	Certified Reference Material NIST1941b (% Recovery)			61	77	71	100~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 7 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version
Customer Reference

S230232 - Ardersier Port - S26

	Ī						1	1	
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S26 ES1 6.50-7.00m	MAR01780.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S26 ES7 9.50-10.00m	MAR01780.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S26 ES13 12.50-13.00m	MAR01780.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			104	89	91	98	92	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version 1

Customer Reference S230232 - Ardersier Port - S26

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01780.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01780.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01780.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01780.001& .003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302	MAR01780.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01780.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MΔR01780 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01780

Issue Version 1

Customer Reference S230232 - Ardersier Port - S26

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions											
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name							
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content							
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane							
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane							
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane							
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin							
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene							
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane							
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene							
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane							
C1N	C1-naphthalenes	PHENANT	Phenanthrene									
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S25

Date Sampled: 16-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S25

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	29.1	70.9	4.47	83.63	11.90	NAIIS
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	21.4	78.6	3.89	87.58	8.53	NAIIS
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	21.0	79.0	5.98	86.87	7.15	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

Customer Reference S230232 - Ardersier Port - S25

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	4.3	0.05	20.2	12.8	<0.01	13.1	5.0	40.2
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	3.7	<0.04	16.6	12.8	<0.01	12.8	4.2	35.7
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	3.8	0.07	20.5	14.0	<0.01	14.9	4.1	43.1
Certi	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S25

		Units	μg/Kg (Di	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	<5	<5
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	<5	<5
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	<5	<5
Certifi	74	75		
		QC Blank	<1	<1

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

Customer Reference S230232 - Ardersier Port - S25

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	<1	<1	1.86	3.23	3.73	3.52
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	<1	1.00	9.82	12.2	12.6	8.58
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	<1	<1	<1	<1	1.28	1.03
Certifie	Certified Reference Material NIST1941b (% Recovery)		72	98	70	65	61	86
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

Customer Reference S230232 - Ardersier Port - S25

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	3.39	3.87	3.88	<1	7.51	1.09
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	6.86	11.2	11.9	1.14	30.9	1.08
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	1.99	1.51	1.03	<1	1.75	<1
Cert	Certified Reference Material NIST1941b (% Recovery)		86	85	86	128	78	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

Customer Reference S230232 - Ardersier Port - S25

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	2.39	1.16	4.73	8.27	7570
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	6.27	<1	11.3	26.4	5150
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	<1	<1	1.18	3.11	8040
Ce	rtified Reference Material NIS	T1941b (% Recovery)	93	61	77	71	100~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version

Customer Reference S230232 - Ardersier Port - S25

	,								
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S25 ES1 6.50-7.00m	MAR01779.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S25 ES7 9.50-10.00m	MAR01779.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S25 ES13 12.50-13.00m	MAR01779.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIS	T1941b (% Recovery)	54	104	89	91	98	92	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version 1

Customer Reference S230232 - Ardersier Port - S25

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01779.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01779.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01779.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01779.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302	MAR01779.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01779.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01770 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	D3 Sample Contaminated through Sampling		N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01779

Issue Version 1

Customer Reference S230232 - Ardersier Port - S25

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]	

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S20

Date Sampled: 14-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

Customer Reference S230232 - Ardersier Port - S20

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	29.4	70.6	0.00	97.23	2.77	NAIIS
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	20.5	79.5	0.00	95.86	4.14	NAIIS
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	26.0	74.0	0.84	94.66	4.50	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S20

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
	Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	1.6	0.12	21.7	9.2	0.03	15.3	3.1	33.7
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	1.6	<0.04	13.0	9.5	<0.01	9.1	3.0	26.9
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	1.6	<0.04	12.0	9.7	<0.01	10.0	2.9	31.6
Ceri	OC 768 (% Recovery)	95	119	98	106	124	100	102	96	
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

Customer Reference S230232 - Ardersier Port - S20

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/S0P/301			
		Limit of Detection	1	1		
		Accreditation	UKAS UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	<5	<5		
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	<1	1.71		
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	<5	<5		
Certifie	d Reference Material B	CR-646 (% Recovery)	74	75		
	•	QC Blank	<1	<1		

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

Customer Reference S230232 - Ardersier Port - S20

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	<1	<1	1.32	4.05	4.60	5.24
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	3.04	2.55	7.13	6.96	6.83	4.03
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	<1	<1	<1	1.19	1.61	1.19
Certifie	d Reference Material NIS	T1941b (% Recovery)	72	98	70	65	61	86
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S20

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	3.28	4.80	4.73	<1	8.11	<1
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	3.95	6.76	7.14	<1	20.4	3.82
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	1.00	1.66	1.20	<1	2.35	<1
Cer	tified Reference Material NIS	T1941b (% Recovery)	86	85	86	128	78	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 6 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

Customer Reference S230232 - Ardersier Port - S20

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	2.74	2.03	3.81	9.37	7240
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	3.88	1.41	19.8	17.9	2970
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	<1	<1	1.06	3.19	2700
Certi	fied Reference Material NIS	T1941b (% Recovery)	93	61	77	71	100~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version

Customer Reference S230232 - Ardersier Port - S20

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S20 ES1 6.50-7.00m	MAR01778.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S20 ES7 9.50-10.00m	MAR01778.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S20 ES13 12.50-13.00m	MAR01778.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST1941b (% Recovery)			54	104	89	91	98	92	80
QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version 1

Customer Reference S230232 - Ardersier Port - S20

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01778.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01778.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01778.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01778.001, .003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302	MAR01778.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304		Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01778

Issue Version 1

Customer Reference S230232 - Ardersier Port - S20

Method	Sample and Fraction Size	Method Summary			
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.			
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.			
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.			
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.			
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.			
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.			
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.			

	Analyte Definitions							
Analyte Abbreviation	Analyte Abbreviation Full Analyte name		Full Analyte name	Analyte Abbreviation	Full Analyte name			
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content			
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane			
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane			
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane			
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin			
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene			
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane			
BENZGHIP	BENZGHIP Benzo[ghi]perylene		Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene			
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene DDT		p,p'-Dichlorodiphenyltrichloroethane			
C1N	C1-naphthalenes	PHENANT	Phenanthrene					
C1PHEN	C1-phenanthrene	PYRENE	Pyrene					

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S19

Date Sampled: 14-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

Customer Reference S230232 - Ardersier Port - S19

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	25.5	74.5	0.00	96.85	3.15	NAIIS
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	24.8	75.2	3.65	89.71	6.65	NAIIS
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	18.4	81.6	1.81	92.25	5.94	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S19

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	2.4	0.05	16.8	10.9	0.02	13.8	3.3	31.9
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	2.5	0.13	14.5	10.8	0.05	13.4	3.5	30.3
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	3.7	0.21	90.9	11.6	0.03	63.5	4.0	68.2
Cert	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S19

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	<5	<5		
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	<5	<5		
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	<1	1.74		
Certifie	CR-646 (% Recovery)	79	77			
		QC Blank	<1	<1		

^{*} See Report Notes

Page 4 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S19

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	<1	<1	<1	1.94	2.01	1.74
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	<1	<1	<1	1.53	1.69	1.88
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	<1	<1	3.21	10.4	12.5	8.30
Certif	Certified Reference Material NIST1941b (% Recovery)			98	70	65	61	86
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

Customer Reference S230232 - Ardersier Port - S19

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	1.28	2.14	2.15	<1	4.60	<1
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	1.32	2.14	1.76	<1	3.61	<1
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	8.13	10.6	11.0	1.28	22.8	<1
Certi	Certified Reference Material NIST1941b (% Recovery)			85	86	128	78	50
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S19

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	1.20	3.51	3.65	4.55	3260
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	1.11	<1	1.91	4.45	4950
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	7.47	<1	5.87	21.7	4810
	Certified Reference Material NIST1941b (% Recovery)			61	77	71	100~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version

Customer Reference S230232 - Ardersier Port - S19

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S19 ES1 6.50-7.00m	MAR01777.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S19 ES7 9.50-10.00m	MAR01777.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S19 ES13 12.50-13.00m	MAR01777.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			104	89	91	98	92	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version 1

Customer Reference S230232 - Ardersier Port - S19

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01777.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01777.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01777.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01777.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/S0P/302	MAR01777.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB28). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304		Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01777 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01777

Issue Version 1

Customer Reference S230232 - Ardersier Port - S19

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions											
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name							
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content							
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane							
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane							
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane							
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin							
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene							
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane							
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene							
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane							
C1N	C1-naphthalenes	PHENANT	Phenanthrene									
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version: 2

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S18

Date Sampled: 14-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

This is a revised report and replaces all previously issued versions

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	32.1	67.9	0.34	90.57	9.09	NAIIS
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	32.7	67.3	0.00	92.30	7.70	NAIIS
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	31.2	68.8	0.00	91.43	8.57	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version

2

Customer Reference S230232 - Ardersier Port - S18

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	2.7	0.14	19.7	12.3	0.03	14.0	4.8	48.4
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	2.0	0.12	19.2	12.5	0.02	13.0	4.2	40.8
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	2.4	0.17	20.7	12.0	0.03	15.4	4.6	42.8
	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	QC Blank			<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	<5	<5		
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	<5	<5		
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	<5	<5		
Certifie	d Reference Material B	CR-646 (% Recovery)	79	77		
	•	QC Blank	<1	<1		

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version

Customer Reference S230232 - Ardersier Port - S18

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	1.16	<1	2.73	6.31	6.81	4.96
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	1.09	<1	2.80	6.55	7.42	5.67
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	3.06	<1	5.32	9.57	9.97	6.67
Ce	Certified Reference Material NIST1941b (% Recovery)			101	70	66	67	98
	QC Blank			<1	<1	<1	<1	<1

Page 5 of 10

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	4.02	5.83	6.52	<1	16.3	<1
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	5.40	6.45	7.42	<1	15.7	<1
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	5.86	7.66	10.2	<1	22.1	2.64
Certi	Certified Reference Material NIST1941b (% Recovery)			93	86	124	79	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version

Customer Reference S230232 - Ardersier Port - S18

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	4.29	1.55	8.23	15.0	6230
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	5.38	1.49	7.42	16.6	6030
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	5.37	1.87	19.3	23.4	3940
Certi	Certified Reference Material NIST1941b (% Recovery)			61	77	70	95~
	•	QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

	ı				1	1	1	1	
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S18 ES1 6.50-7.00m	MAR01776.001	Sediment	0.17	0.19	0.18	0.19	<0.08	0.11	0.15
S18 ES7 9.50-10.00m	MAR01776.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S18 ES13 12.50-13.00m	MAR01776.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ce	Certified Reference Material NIST1941b (% Recovery)			103	95	92	95	94	87
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776
Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01776.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01776.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01776.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01776.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01776.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01776 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01776

Issue Version 2

Customer Reference S230232 - Ardersier Port - S18

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	Acenaphthene C2N		THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]	

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S16

Date Sampled: 09-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	22.9	77.1	0.00	79.91	20.09	NAIIS
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	19.7	80.3	0.00	92.71	7.29	NAIIS
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	20.5	79.5	1.30	91.86	6.84	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	3.6	<0.04	21.8	13.7	0.04	17.8	8.3	57.3
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	2.3	0.16	20.3	12.8	0.04	20.8	5.5	55.4
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	2.8	0.23	19.8	11.2	0.03	17.0	3.8	64.9
C	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	QC Blank				<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units	μg/Kg (Dry Weight)			
		Method No	ASC/SOP/301			
		Limit of Detection	1 1			
		Accreditation	UKAS UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	<5	11.3		
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	<1	2.37		
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	<1	<1		
Certifie	79	77				
	QC Blank					

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	1.95	<1	3.08	7.13	9.24	9.02
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	<1	<1	1.06	2.99	3.75	3.54
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	<1	<1	<1	<1	<1	<1
Ceri	Certified Reference Material NIST1941b (% Recovery)		73	101	70	66	67	98
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	7.86	9.14	8.26	1.42	14.9	1.73
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	2.34	3.32	3.42	<1	6.35	<1
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	1.05	<1	<1	<1	1.20	<1
Cei	Certified Reference Material NIST1941b (% Recovery)			93	86	124	79	50
_		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	8.92	1.64	11.2	18.4	14500
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	2.57	<1	2.41	7.41	6210
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	<1	<1	<1	1.96	7100
Certifi	Certified Reference Material NIST1941b (% Recovery)			61	77	70	95~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version

Customer Reference S230232 - Ardersier Port - S16

	,								
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S16 ES1 6.50-7.00m	MAR01775.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S16 ES7 9.50-10.00m	MAR01775.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S16 ES13 12.50-13.00m	MAR01775.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			101	86	82	113	96	69
	QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Page 8 of 10

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version 1

Customer Reference S230232 - Ardersier Port - S16

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01775.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01775.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01775.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01775.001	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01775.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01775 001-002	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01775

Issue Version 1

Customer Reference S230232 - Ardersier Port - S16

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions											
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name							
ACENAPTH	Acenaphthene	C2N C2-naphthalen		THC	Total Hydrocarbon Content							
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane							
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane							
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane							
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin							
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene							
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane							
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene							
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane							
C1N	C1-naphthalenes	PHENANT	Phenanthrene									
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S15

Date Sampled: 17-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Page 2 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S15

			%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	36.7	63.3	2.33	66.36	31.32	NAIIS
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	29.3	70.7	1.09	77.79	21.11	NAIIS
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	30.5	69.5	1.84	86.99	11.18	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S15

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	/ISS*			
	Limit of Detection				0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	3.5	<0.04	15.0	12.0	0.07	10.0	9.1	55.3
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	5.8	0.05	25.9	21.7	0.05	16.8	13.6	127
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	2.8	<0.04	13.8	9.3	0.02	9.3	3.8	34.0
Ce	Certified Reference Material SETOC 768 (% Recovery)				98	106	124	100	102	96
_		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

Customer Reference S230232 - Ardersier Port - S15

		Units	μg/Kg (Di	y Weight)	
		Method No	ASC/SOP/301		
		Limit of Detection	1 1		
		Accreditation	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	<5	<5	
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	<5	<5	
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	<5	<5	
Certifie	79	77			
		QC Blank	<1	<1	

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version
Customer Reference

S230232 - Ardersier Port - S15

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	3.73	1.93	7.11	22.1	26.0	27.6
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	1.02	<1	2.15	8.02	11.3	10.8
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	<1	<1	2.84	5.49	7.24	6.24
Certified Reference Material NIST1941b (% Recovery)			73	101	70	66	67	98
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

Customer Reference S230232 - Ardersier Port - S15

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	23.9	26.5	23.0	4.82	45.3	3.59
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	9.98	11.1	8.75	1.78	15.0	1.16
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	4.99	6.42	6.01	<1	10.80	<1
Certified Reference Material NIST1941b (% Recovery)		91	93	86	124	79	50	
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S15

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	26.4	3.95	26.2	48.5	41100
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	10.2	1.23	6.61	19.2	20900
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	5.46	<1	3.96	11.2	10200
Cert	Certified Reference Material NIST1941b (% Recovery)			61	77	70	95~
	QC Blank			<1	<1	<1	<100

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 7 of 10

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version

Customer Reference S230232 - Ardersier Port - S15

	,								
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S15 ES1 6.50-7.00m	MAR01774.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S15 ES7 9.50-10.00m	MAR01774.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S15 ES13 12.50-13.00m	MAR01774.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			101	86	82	113	96	69
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version 1

Customer Reference S230232 - Ardersier Port - S15

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01774.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01774.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01774.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01774.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01774.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01774 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01774

Issue Version 1

Customer Reference S230232 - Ardersier Port - S15

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions											
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name							
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content							
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane							
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane							
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane							
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin							
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene							
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane							
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene							
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane							
C1N	C1-naphthalenes	PHENANT	Phenanthrene									
C1PHEN	C1-phenanthrene	PYRENE	Pyrene									

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S11

Date Sampled: 16-Mar-23

Date Samples Received: 20-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

Customer Reference S230232 - Ardersier Port - S11

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	28.2	71.8	0.00	83.17	16.83	NAIIS
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	39.3	60.7	0.00	81.88	18.12	NAIIS
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	37.2	62.8	0.57	89.70	9.72	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S11

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	/ISS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	6.9	0.17	30.7	31.2	0.05	20.9	17.8	212
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	5.4	<0.04	22.0	28.5	0.03	15.9	14.0	209
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	4.8	<0.04	21.0	26.7	0.03	14.0	12.7	196
C	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
	•	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S11

	[Units	μg/Kg (Dry Weight)			
		Method No	ASC/S	OP/301		
		Limit of Detection	1	1		
		Accreditation	UKAS	UKAS		
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)		
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	<5	<5		
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	<5	<5		
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	<5	<5		
Certifie	Certified Reference Material BCR-646 (% Recovery)					
	•	QC Blank	<1	<1		

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

Customer Reference S230232 - Ardersier Port - S11

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	1.90	1.85	4.87	30.3	33.1	35.2
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	3.40	2.12	4.38	18.9	32.6	33.4
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	4.57	1.22	4.81	15.5	20.0	18.2
Certifie	Certified Reference Material NIST1941b (% Recovery)			101	70	66	67	98
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version
Customer Reference

S230232 - Ardersier Port - S11

			μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	25.1	31.2	40.1	4.81	74.6	1.78
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	28.5	33.3	26.1	6.42	33.8	2.51
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	14.5	18.5	16.7	2.75	31.5	3.45
Certif	Certified Reference Material NIST1941b (% Recovery)			93	86	124	79	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

Customer Reference S230232 - Ardersier Port - S11

			μg/Kg (Dry Weight)				
			ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	27.7	<1	32.6	65.2	24000
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	32.2	2.06	14.6	55.0	67700
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	15.0	1.83	18.1	34.6	23100
Cert	Certified Reference Material NIST1941b (% Recovery)			61	77	70	95~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 8 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S11

									ν
		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S11 ES1 6.50-7.00m	MAR01773.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S11 ES7 9.50-10.00m	MAR01773.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S11 ES13 12.50-13.00m	MAR01773.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			101	86	82	113	96	69
	QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version 1

Customer Reference S230232 - Ardersier Port - S11

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01773.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01773.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01773.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01773.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01773.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01773 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01773

Issue Version 1

Customer Reference S230232 - Ardersier Port - S11

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S05

Date Sampled: 09-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 12-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S05

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	43.1	56.9	0.00	71.48	28.52	NAIIS
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	31.2	68.8	0.00	90.98	9.02	NAIIS
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	31.7	68.3	0.00	91.86	8.14	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

Customer Reference S230232 - Ardersier Port - S05

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	/ISS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	3.7	0.12	20.4	12.6	0.05	14.8	11.9	59.6
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	2.9	<0.04	17.1	10.5	0.03	18.0	5.1	43.7
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	4.1	0.1	19.8	12.0	0.03	19.5	5.1	50.4
C	Certified Reference Material SETOC 768 (% Recovery)			119	98	106	124	100	102	96
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

Customer Reference S230232 - Ardersier Port - S05

		Units	μg/Kg (Di	y Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	<5	20.7
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	<5	<5
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	<5	<5
Certifi	CR-646 (% Recovery)	79	77	
	•	QC Blank	<1	<1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S05

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	9.37	3.37	16.1	42.7	55.7	54.7
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	<1	<1	<1	2.09	2.77	2.88
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	<1	<1	<1	<1	1.33	1.22
Certif	Certified Reference Material NIST1941b (% Recovery)			101	70	66	67	98
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S05

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	49.7	55.5	46.5	10.4	84.5	8.13
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	2.10	2.64	2.61	<1	4.02	<1
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	1.37	1.03	1.26	<1	1.92	<1
Certifi	Certified Reference Material NIST1941b (% Recovery)			93	86	124	79	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 7 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

Customer Reference S230232 - Ardersier Port - S05

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	56.8	4.83	50.1	89.2	62200
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	2.24	<1	1.83	4.67	8140
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	<1	<1	1.19	2.80	8170
Cert	Certified Reference Material NIST1941b (% Recovery)			61	77	70	95~
	•	QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version

Customer Reference S230232 - Ardersier Port - S05

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S05 ES1 6.50-7.00m	MAR01772.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	0.10	<0.08
S05 ES7 9.50-10.00m	MAR01772.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S05 ES13 12.50-13.00m	MAR01772.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			101	86	82	113	96	69
	QC Blank				<0.08	<0.08	<0.08	< 0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version 1

Customer Reference S230232 - Ardersier Port - S05

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01772.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01772.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01772.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01772.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01772.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01772 001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01772

Issue Version 1

Customer Reference S230232 - Ardersier Port - S05

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S21

Date Sampled: 14-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 11-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S21 ES1 6.50-7.00	MAR01771.001	Sediment	23.3	76.7	0.33	76.91	22.76	NAIIS
S21 ES7 9.50-10.00	MAR01771.002	Sediment	26.6	73.4	1.31	92.13	6.56	NAIIS
S21 ES13 12.50-13.00	MAR01771.003	Sediment	28.5	71.5	0.00	95.14	4.86	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S21 ES1 6.50-7.00	MAR01771.001	Sediment	2.4	0.19	16.6	11.3	0.20	11.4	5.1	43.7
S21 ES7 9.50-10.00	MAR01771.002	Sediment	3.7	0.26	19.7	11.1	0.35	14.0	4.5	50.2
S21 ES13 12.50-13.00	MAR01771.003	Sediment	3.1	0.27	15.8	10.3	0.26	13.3	3.9	54.1
Certified Reference Material SETOC 768 (% Recovery)			97	84	94	103	91	92	91	93
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units	μg/Kg (D	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S21 ES1 6.50-7.00	MAR01771.001	Sediment	<5	<5
S21 ES7 9.50-10.00	MAR01771.002	Sediment	<5	<5
S21 ES13 12.50-13.00	MAR01771.003	Sediment	<5	<5
Ci	ertified Reference Material B	CR-646 (% Recovery)	76	75
	QC Blank	<1	<1	

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S21 ES1 6.50-7.00	MAR01771.001	Sediment	<1	<1	2.75	5.81	6.70	6.32
S21 ES7 9.50-10.00	MAR01771.002	Sediment	<1	<1	<1	1.44	1.99	1.68
S21 ES13 12.50-13.00	MAR01771.003	Sediment	<1	<1	<1	<1	<1	<1
Ci	Certified Reference Material NIST1941b (% Recovery)			104	67	63	65	94
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version
Customer Reference

٦ - `

S230232 - Ardersier Port - S21

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S21 ES1 6.50-7.00	MAR01771.001	Sediment	5.66	6.63	6.41	<1	12.1	1.18
S21 ES7 9.50-10.00	MAR01771.002	Sediment	2.31	2.08	1.65	<1	2.98	<1
S21 ES13 12.50-13.00	MAR01771.003	Sediment	<1	<1	<1	<1	1.13	<1
Certified Reference Material NIST1941b (% Recovery)			74	85	89	110	76	50
QC Blank			<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S21 ES1 6.50-7.00	MAR01771.001	Sediment	4.55	1.15	7.52	13.4	11400
S21 ES7 9.50-10.00	MAR01771.002	Sediment	1.50	<1	2.64	3.94	7960
S21 ES13 12.50-13.00	MAR01771.003	Sediment	<1	<1	<1	1.55	3530
C	Certified Reference Material NIST1941b (% Recovery)			56	75	69	86~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version

Customer Reference S230232 - Ardersier Port - S21

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S21 ES1 6.50-7.00	MAR01771.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S21 ES7 9.50-10.00	MAR01771.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S21 ES13 12.50-13.00	MAR01771.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			110	96	93	100	100	66
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version 1

Customer Reference S230232 - Ardersier Port - S21

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01771.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01771.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01771.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01771.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01771.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01771.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01771.001-002	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01771

Issue Version 1

Customer Reference S230232 - Ardersier Port - S21

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content).Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions								
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	nalyte Abbreviation Full Analyte name		Full Analyte name				
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content				
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane				
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane				
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane				
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin				
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene				
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane				
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene				
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene DDT		p,p'-Dichlorodiphenyltrichloroethane				
C1N	C1-naphthalenes	PHENANT	Phenanthrene						
C1PHEN	C1-phenanthrene	PYRENE	Pyrene						

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S10

Date Sampled: 13-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 11-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version
Customer Reference

S230232 - Ardersier Port - S10

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S10 ES1 6.50-7.00	MAR01770.001	Sediment	19.5	80.5	7.50	87.12	5.38	NAIIS
S10 ES7 9.50-10.00	MAR01770.002	Sediment	18.1	81.9	2.15	89.99	7.86	NAIIS
S10 ES13 12.50-13.00	MAR01770.003	Sediment	19.7	80.3	0.00	97.21	2.79	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S10 ES1 6.50-7.00	MAR01770.001	Sediment	2.4	0.14	17.4	16.1	0.02	13.6	6.4	101
S10 ES7 9.50-10.00	MAR01770.002	Sediment	2.4	0.12	17.5	17.4	0.02	13.5	7.6	115
S10 ES13 12.50-13.00	MAR01770.003	Sediment	1.9	0.19	11.9	11.4	0.07	9.5	4.3	60.4
Ceri	Certified Reference Material SETOC 768 (% Recovery)			84	94	103	91	92	91	93
	·	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

		Units	μg/Kg (D	ry Weight)			
		Method No	ASC/S	OP/301			
		Limit of Detection	1	1			
		Accreditation	UKAS	UKAS			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)			
S10 ES1 6.50-7.00	MAR01770.001	Sediment	<5	<5			
S10 ES7 9.50-10.00	MAR01770.002	Sediment	<5	<5			
S10 ES13 12.50-13.00	MAR01770.003	Sediment	<1	<1			
Cer	CR-646 (% Recovery)	76	75				
	QC Blank						

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S10 ES1 6.50-7.00	MAR01770.001	Sediment	3.28	<1	1.75	3.76	4.30	3.20
S10 ES7 9.50-10.00	MAR01770.002	Sediment	<1	<1	1.00	2.27	2.86	2.01
S10 ES13 12.50-13.00	MAR01770.003	Sediment	<1	<1	<1	<1	<1	<1
	Certified Reference Material NIST1941b (% Recovery)			104	67	63	65	94
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Į.

Customer Reference S230232 - Ardersier Port - S10

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S10 ES1 6.50-7.00	MAR01770.001	Sediment	2.80	5.04	4.79	<1	9.06	1.91
S10 ES7 9.50-10.00	MAR01770.002	Sediment	2.16	2.47	2.76	<1	5.75	<1
S10 ES13 12.50-13.00	MAR01770.003	Sediment	<1	<1	<1	<1	1.28	<1
С	Certified Reference Material NIST1941b (% Recovery)			85	89	110	76	50
	QC Blank			<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 6 of 10

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S10 ES1 6.50-7.00	MAR01770.001	Sediment	2.52	<1	6.34	8.51	6540
S10 ES7 9.50-10.00	MAR01770.002	Sediment	1.77	<1	4.05	6.54	7580
S10 ES13 12.50-13.00	MAR01770.003	Sediment	<1	<1	1.05	1.66	5240
	Certified Reference Material NIST1941b (% Recovery)			56	75	69	86~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S10 ES1 6.50-7.00	MAR01770.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S10 ES7 9.50-10.00	MAR01770.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S10 ES13 12.50-13.00	MAR01770.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			108	94	95	110	86	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version

Customer Reference S230232 - Ardersier Port - S10

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01770.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01770.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01770.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01770.001-002	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01770.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01770.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01770.001-002	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01770

Issue Version 1

Customer Reference S230232 - Ardersier Port - S10

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	ВНСН	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S06

Date Sampled: 13-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 11-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S06

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Asbestos
S06 ES1 6.50-7.00	MAR01769.001	Sediment	28.9	71.1	0.00	94.53	5.47	NAIIS
S06 ES7 9.50-10.00	MAR01769.002	Sediment	21.8	78.2	0.00	95.48	4.52	NAIIS
S06 ES13 12.50-13.00	MAR01769.003	Sediment	21.2	78.8	0.55	93.21	6.24	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

Customer Reference S230232 - Ardersier Port - S06

		Units				mg/Kg (D	ry Weight)			
		Method No					MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S06 ES1 6.50-7.00	MAR01769.001	Sediment	1.9	0.13	15.4	13.4	0.02	14.6	4.0	37.9
S06 ES7 9.50-10.00	MAR01769.002	Sediment	1.8	0.14	16.0	14.0	0.02	15.2	3.4	36.2
S06 ES13 12.50-13.00	MAR01769.003	Sediment	3.5	0.18	18.0	12.5	0.02	16.4	3.5	44.6
Certified Reference Material SETOC 768 (% Recovery)			97	84	94	103	91	92	91	93
	·	QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

Customer Reference S230232 - Ardersier Port - S06

		Units	μg/Kg (Dry Weight)		
		Method No	ASC/SOP/301		
		Limit of Detection	1 1 UKAS UKAS		
		Accreditation			
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S06 ES1 6.50-7.00	MAR01769.001	Sediment	<5	<5	
S06 ES7 9.50-10.00	MAR01769.002	Sediment	<5	<5	
S06 ES13 12.50-13.00	MAR01769.003	Sediment	<5	<5	
Certifie	ed Reference Material E	3CR-646 (% Recovery)	76	75	
	•	QC Blank	<1	<1	

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

Customer Reference S230232 - Ardersier Port - S06

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S06 ES1 6.50-7.00	MAR01769.001	Sediment	<1	<1	1.09	2.24	2.54	1.90
S06 ES7 9.50-10.00	MAR01769.002	Sediment	<1	<1	<1	<1	<1	<1
S06 ES13 12.50-13.00	MAR01769.003	Sediment	<1	<1	<1	<1	<1	<1
Ce	ertified Reference Material NIS	T1941b (% Recovery)	68	104	67	63	65	94
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

Customer Reference S230232 - Ardersier Port - S06

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S06 ES1 6.50-7.00	MAR01769.001	Sediment	1.66	2.87	2.67	<1	5.10	<1
S06 ES7 9.50-10.00	MAR01769.002	Sediment	<1	1.15	<1	<1	1.59	<1
S06 ES13 12.50-13.00	MAR01769.003	Sediment	<1	<1	<1	<1	<1	<1
Ce	rtified Reference Material NIS	T1941b (% Recovery)	74	85	89	110	76	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S06

	-						
		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S06 ES1 6.50-7.00	MAR01769.001	Sediment	1.35	<1	2.40	5.57	4720
S06 ES7 9.50-10.00	MAR01769.002	Sediment	<1	<1	1.17	2.00	3980
S06 ES13 12.50-13.00	MAR01769.003	Sediment	<1	<1	<1	1.04	4100
С	ertified Reference Material NIS	T1941b (% Recovery)	80	56	75	69	86~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 7 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version

Customer Reference S230232 - Ardersier Port - S06

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S06 ES1 6.50-7.00	MAR01769.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S06 ES7 9.50-10.00	MAR01769.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S06 ES13 12.50-13.00	MAR01769.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			110	96	93	100	100	66
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version 1

Customer Reference S230232 - Ardersier Port - S06

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01769.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01769.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01769.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01769.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01769.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01769.001-002	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01760 001	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01769

Issue Version 1

Customer Reference S230232 - Ardersier Port - S06

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions											
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name							
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content							
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane							
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane							
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane							
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin							
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene							
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane							
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene							
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane							
C1N	C1-naphthalenes	PHENANT	Phenanthrene									
C1PHEN	C1-phenanthrene	PYRENE	Pyrene]								

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version: 1

Customer: Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference: S230232 - Ardersier Port - S12

Date Sampled: 10-Mar-23

Date Samples Received: 17-Mar-23

Test Report Date: 11-Apr-23

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Page 1 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S12 ES1 6.50-7.00	MAR01768.001	Sediment	40.7	59.3	0.00	42.09	57.19	NAIIS
S12 ES7 9.50-10.00	MAR01768.002	Sediment	29.3	70.7	0.00	90.36	9.64	NAIIS
S12 ES13 12.50-13.00	MAR01768.003	Sediment	25.2	74.8	0.56	92.14	7.30	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Page 2 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPI	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S12 ES1 6.50-7.00	MAR01768.001	Sediment	6.0	0.17	22.2	16.3	0.09	14.2	13.5	63.6
S12 ES7 9.50-10.00	MAR01768.002	Sediment	3.5	0.08	18.6	12.3	0.04	15.0	4.8	44.7
S12 ES13 12.50-13.00	MAR01768.003	Sediment	3.1	0.25	21.2	13.9	0.03	16.4	4.5	45.3
	97	84	94	103	91	92	91	93		
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units	μg/Kg (Dry Weight)		
		Method No	ASC/SOP/301		
		Limit of Detection	1 1		
		Accreditation	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)	
S12 ES1 6.50-7.00	MAR01768.001	Sediment	<5	<5	
S12 ES7 9.50-10.00	MAR01768.002	Sediment	<5	<5	
S12 ES13 12.50-13.00	MAR01768.003	Sediment	<5	<5	
Certifie	CR-646 (% Recovery)	76	79		
		QC Blank	<1	<1	

^{*} See Report Notes

Page 4 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N*	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S12 ES1 6.50-7.00	MAR01768.001	Sediment	3.76	3.66	8.45	22.3	29.5	28.6
S12 ES7 9.50-10.00	MAR01768.002	Sediment	<1	<1	<1	2.15	2.54	3.43
S12 ES13 12.50-13.00	MAR01768.003	Sediment	<1	<1	<1	<1	<1	<1
Certifi	Certified Reference Material NIST1941b (% Recovery)			104	67	63	65	94
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 5 of 10

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

1

Customer Reference

S230232 - Ardersier Port - S12

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S12 ES1 6.50-7.00	MAR01768.001	Sediment	29.2	28.4	24.8	5.67	50.1	4.68
S12 ES7 9.50-10.00	MAR01768.002	Sediment	2.50	4.32	2.97	<1	4.96	<1
S12 ES13 12.50-13.00	MAR01768.003	Sediment	<1	1.30	1.22	<1	1.97	<1
(Certified Reference Material NIS	T1941b (% Recovery)	74	85	89	110	76	50
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 6 of 10 ASCF011z_1.0_03APR23

 $[\]sim$ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N*	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S12 ES1 6.50-7.00	MAR01768.001	Sediment	28.7	3.41	30.0	47.3	42500
S12 ES7 9.50-10.00	MAR01768.002	Sediment	2.08	<1	2.56	6.54	10900
S12 ES13 12.50-13.00	MAR01768.003	Sediment	<1	<1	<1	2.34	4460
C	ertified Reference Material NIS	T1941b (% Recovery)	80	56	75	69	86~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 7 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version

Customer Reference S230232 - Ardersier Port - S12

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S12 ES1 6.50-7.00	MAR01768.001	Sediment	<0.08	<0.08	0.09	<0.08	0.15	0.10	<0.08
S12 ES7 9.50-10.00	MAR01768.002	Sediment	0.24	0.40	0.44	0.50	0.61	0.41	0.34
S12 ES13 12.50-13.00	MAR01768.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST1941b (% Recovery)			110	96	93	100	100	66
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version 1

Customer Reference S230232 - Ardersier Port - S12

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01768.001-003	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01768.001-003	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01768.001-003	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01768.001-003	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01768.001-003	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BAA, NAPTH). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01768.001-003	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01768.001-003	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01768

Issue Version 1

Customer Reference S230232 - Ardersier Port - S12

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions									
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name					
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content					
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane					
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane					
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane					
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin					
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene					
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane					
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene					
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane					
C1N	C1-naphthalenes	PHENANT	Phenanthrene							
C1PHEN	C1-phenanthrene	PYRENE	Pyrene							

Page 10 of 10 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Solmek Ltd, 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Customer Reference S230232 - Marine Scotland Sediment Analysis

Date Sampled 06-08-Mar-23

Date Received 13-Mar-23

Date Reported 14-Apr-23

Condition of samples Frozen Unsatisfactory

Plastic containers damaged in transit for samples 002 & 010.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Any additional opinions or interpretations found in this report, are outside the scope of UKAS accreditation.

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	%	%	%	%	%	N/A
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_02*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Asbestos
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	12.6	87.4	0.00	97.11	2.89	NAIIS
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	22.0	78.0	0.00	92.86	7.14	NAIIS
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	18.7	81.3	60.70	14.96	24.35	NAIIS
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	22.8	77.2	0.00	80.68	19.32	NAIIS
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	24.4	75.6	0.00	95.71	4.29	NAIIS
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	26.4	73.6	0.34	94.04	5.62	NAIIS
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	40.9	59.1	0.00	83.21	16.79	NAIIS
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	28.2	71.8	0.00	94.22	5.78	NAIIS
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	17.2	82.8	0.00	90.51	9.49	NAIIS
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	55.9	44.1	0.00	61.80	38.20	NAIIS
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	25.3	74.7	0.34	94.48	5.18	NAIIS
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	24.3	75.7	0.38	94.98	4.65	NAIIS
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	20.0	80.0	0.00	96.43	3.57	NAIIS
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	24.1	75.9	2.90	92.97	4.13	NAIIS
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	29.6	70.4	0.00	84.85	15.15	NAIIS
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	29.9	70.1	0.00	57.09	42.91	NAIIS
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	30.0	70.0	9.01	79.97	11.01	NAIIS
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	23.8	76.2	0.00	85.69	14.31	NAIIS

^{*} See Report Notes

NAIIS - No Asbestos Identified In Sample

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	1.1	<0.04	10.0	7.7	0.02	8.2	2.3	24.6
S01 - 7 - 9.50-10.00m	MAR01755.002 ^{D5}	Sediment	1.7	<0.04	5.5	4.8	0.01	5.0	1.3	15.1
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	1.2	<0.04	13.6	8.1	0.01	11.6	2.9	30.1
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	1.4	<0.04	4.4	4.4	0.06	4.8	1.7	16.5
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	1.2	<0.04	4.4	5.3	0.02	4.2	1.1	11.7
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	2.2	<0.04	6.8	4.6	0.01	5.7	1.7	19.4
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	2.5	<0.04	6.9	7.9	0.02	5.5	4.4	36.9
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	2.4	<0.04	16.4	10	0.01	14.6	3.1	30.0
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	3.3	<0.04	18.3	10.8	0.01	15.6	3.5	42.0
S04 - 1 - 6.50-7.00m	MAR01755.010 ^{D5}	Sediment	6.2	<0.04	27.6	21.4	0.08	16.2	11.1	89.5
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	2.4	<0.04	11.9	8.3	0.02	11.5	2.3	21.9
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	2.2	<0.04	15.4	8.9	0.01	13.9	2.9	28.0
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	2.3	<0.04	14.8	8.6	0.01	11.9	2.3	20.5
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	3.2	<0.04	16.3	10.4	0.01	15.0	2.8	27.4
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	2.5	<0.04	18.0	11.1	0.01	16.4	3.9	33.4
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	9.9	<0.04	27.9	23.2	0.06	17.6	19.2	125
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	5.2	<0.04	17.7	11.1	0.02	13.9	5.9	44.0
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	4.0	<0.04	23.1	13.3	0.03	18.2	5.6	51.4
Certific	ed Reference Material SET		104	85	101	102	100	99	104	115
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

D5 - Plastic tub damaged in transit. See Report Notes & Deviating Sample page.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dr	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	<5	<5
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	<5	<5
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	<1	<1
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	<5	<5
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	<1	<1
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	<5	<5
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	<5	<5
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	<5	<5
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	<1	<1
Certifie	d Reference Material E	3CR-646 (% Recovery)	55	63
<u> </u>	·	QC Blank	<1	<1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dr	y Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	13.3	16.9
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	<5	<5
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	<1	<1
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	<5	<5
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	<1	<1
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	<5	<5
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	10.3	18.4
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	<5	<5
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	<5	<5
Certifie	d Reference Material E	3CR-646 (% Recovery)	80	87
<u> </u>		QC Blank	<1	<1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	<5	<5	<5	<5	<5	<5
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	<5	<5	<5	<5	<5	<5
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	<1	<1	<1	<1	<1	<1
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	<1	<1	<1	2.97	4.35	4.68
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	<1	<1	<1	1.72	2.12	1.27
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	<5	<5	<5	<5	<5	<5
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	<5	<5	<5	10.4	16.8	16.5
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	<5	<5	<5	<5	<5	<5
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	<1	<1	<1	<1	1.06	1.10
Certifie	Certified Reference Material NIST 1941b (% Recovery)		88	97	65	77	75	94
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	<5	<5	<5	<5	<5	<5
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	<5	<5	<5	<5	<5	<5
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	<1	<1	<1	<1	<1	<1
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	3.18	5.81	3.59	<1	6.38	<1
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	1.16	2.02	2.03	<1	3.79	<1
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	<5	<5	<5	<5	<5	<5
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	11.3	19.6	14.8	<5	21.8	<5
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	<5	<5	<5	<5	<5	<5
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	1.06	1.34	1.44	<1	1.78	<1
Certified	Certified Reference Material NIST 1941b (% Recovery)		77	88	98	103	89	54
	•	QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	<5	<5	<5	<5	9980
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	<5	<5	<5	<5	6180
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	<1	<1	<1	1.05	8970
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	3.36	<1	2.39	7.35	8640
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	1.10	<1	2.30	3.61	1990
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	<5	<5	<5	<5	25500
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	12.6	<5	<5	33.3	36800
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	<5	<5	<5	<5	34900
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	<1	<1	<1	2.70	6030
(Certified Reference Material NIS	T 1941b (% Recovery)	80	60	77	80	89~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	<5	<5	11.8	50.7	66.8	74.0
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	<5	<5	<5	<5	<5	<5
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	<5	<5	<5	<5	<5	<5
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	<5	<5	<5	<5	<5	<5
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	<5	<5	<5	<5	<5	<5
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	<5	<5	<5	<5	<5	<5
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	<5	<5	<5	19.8	30.3	26.8
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	<5	<5	<5	<5	<5	<5
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	<5	<5	<5	<5	<5	<5
Certi	Certified Reference Material NIST 1941b (% Recovery)		83	112	65	62	57	85
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BKF*	CHRYSENE *	DBENZAH	FLUORANT	FLUORENE
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	47.6	79.4	64.2	<5	98.3	<5
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	<5	<5	<5	<5	<5	<5
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	<5	<5	<5	<5	<5	<5
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	<5	<5	<5	<5	<5	<5
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	<5	<5	<5	<5	<5	<5
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	<5	<5	<5	<5	<5	<5
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	24.5	37.0	26.8	<5	41.1	<5
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	<5	<5	<5	<5	9.77	<5
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	<5	<5	<5	<5	<5	<5
Certi	Certified Reference Material NIST 1941b (% Recovery)		73	79	83	86	82	53
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)				
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	UKAS	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	INDPYR	NAPTH	PHENANT	PYRENE	THC
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	53.7	<5	47.8	110	54000
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	<5	<5	<5	<5	4260
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	<5	<5	<5	<5	4180
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	<5	<5	<5	<5	2840
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	<5	<5	<5	<5	4130
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	<5	<5	<5	<5	10200
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	20.6	<5	16.9	58.7	54900
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	<5	<5	<5	10.9	8510
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	<5	<5	<5	<5	9380
Certi	fied Reference Material NIS	T 1941b (% Recovery)	74	59	74	70	95~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S01 - 1 - 6.50-7.00m	MAR01755.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S01 - 7 - 9.50-10.00m	MAR01755.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S01 - 13 - 12.50-13.00m	MAR01755.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S02 - 1 - 6.50-7.00m	MAR01755.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S02 - 7 - 9.50-10.00m	MAR01755.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S02 - 13 - 12.50-13.00m	MAR01755.006	Sediment	0.09	0.09	0.13	0.24	0.17	0.16	0.22
S03 - 1 - 6.50-7.00m	MAR01755.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S03 - 7 - 9.50-10.00m	MAR01755.008	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S03 - 13 - 15.50-13.00m	MAR01755.009	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Cer	tified Reference Material NIS	T 1941b (% Recovery)	54	80	87	101	91	84	101
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version

Customer Reference S230232 - Marine Scotland Sediment Analysis

		Units	μg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153	PCB180
S04 - 1 - 6.50-7.00m	MAR01755.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.10
S04 - 7 - 9.50-1.00m	MAR01755.011	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S04 - 13 - 12.50-13.00m	MAR01755.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S07 - 1 - 6.50-7.00m	MAR01755.013	Sediment	0.10	0.15	0.19	0.32	0.08	0.19	0.26
S07 - 7 - 9.50-10.00m	MAR01755.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S07 - 13 - 12.50-13.00m	MAR01755.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S08 - 1 - 6.50-7.00m	MAR01755.016	Sediment	<0.08	<0.08	<0.08	<0.08	0.10	0.09	<0.08
S08 - 7 - 9.50-10.00m	MAR01755.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
S08 - 13 - 12.50-13.00m	MAR01755.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified	Reference Material NIS	Γ 1941b (% Recovery)	63	84	88	99	93	83	105
	•	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
ICPMSS*	MAR01755.001-018	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR01755.001-018	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR01755.001-018	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR01755.001, .002, .004, .006-008, .011, .013, .015, .017-018	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302		The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB153). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR01755.001, .002, .006-008, .010-018	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01755.001-018	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304		Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	D4 Inappropriate Container/Packaging		N/A
D5	Damaged in Transit	MAR01755.002 & 010	Plastic tub damaged in transit. Sample transferred to suitable container on arrival.
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01755

Issue Version 2

Customer Reference S230232 - Marine Scotland Sediment Analysis

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Metals	Air dried and seived to <63µm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	itions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		