

Ardersier Port Ardersier Sediment Assessment

November 2018

Ardersier Port Ardersier Sediment Assessment

Client: CWC Group

Document number: 8478
Project number: 671549
Status: Final

Author: [Red Reviewer: [Redact

Date of issue: 15 November 2018

Filename: CWC Group

Glasgow	Aberdeen	Inverness	Edinburgh
Craighall Business Park	Banchory Business	Alder House	Suite 114
8 Eagle Street	Centre	Cradlehall Business Park	Gyleview House
Glasgow	Burn O'Bennie Road	Inverness	3 Redheughs Rigg
G4 9XA	Banchory	IV2 5GH	Edinburgh
0141 341 5040	AB31 5ZU	01463 794 212	EH12 9DQ
info@envirocentre.co.uk	01330 826 596		0131 516 9530
www.envirocentre.co.uk			

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with CWC Group ("the Client"). The report is confidential to the Client, and EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced or altered without the prior written approval of EnviroCentre Limited.

Contents

1	Intro	oduction	1
	1.1	Report Usage	1
		Proposed Development	
		Historic Dredging	
		Dredging Operations	
2	Sedi	ment Assessment	4
	2.1	2013 Investigation Approach	4
	2.2	2018 Sampling Approach	7
3	Anal	lytical Results	10
	3.1	Physical Analysis	10
		Chemical Analysis	
		Action Levels – AL1 Vs AL2	
4		mary	
Refe	erence	es	22

Appendices

- A Figures
- B Analytical Results
- C Analytical Summary

Tables

Table 2.1: Summary of Samples	Δ
Table 2.1: Summary of Samples	
Table 2.2: Summary of Samples	
Table 2.2: Summary of Samples	
Table 4.1: Particle Size Analysis Results	10
Table 4.2: TOC Results	12
Table 4.3: Moisture Content	15
Table 5.1: Chemical Analysis Screening Summary	19

1 INTRODUCTION

In September 2018 EnviroCentre were commissioned by the Ardersier Port to provide technical support in relation to the proposed development at the site. The works were commissioned to build upon previous sediment assessment work undertaken at the site by EnviroCentre (as detailed in Report No 5436 dated May 2013).

This report details an update of this assessment incorporating additional information obtained from grab sampling works undertaken in November 2018.

The purpose of these samples is to provide supporting information to Marine Scotland during the licensing process on sediment quality within the proposed dredge areas. The dredging and disposal activities are regulated by Marine Scotland under the Marine (Scotland) Act 2010. The licensing conditions require representative samples to be collected and the nature (i.e. physical composition), quality and contamination status to be determined.

1.1 Report Usage

The information and recommendations contained within this report have been prepared in the specific context stated above and should not be utilised in any other context without prior written permission from EnviroCentre.

If this report is to be submitted for regulatory approval more than 12 months following the report date, it is recommended that it is referred to EnviroCentre for review to ensure that any relevant changes in data, best practice, guidance or legislation in the intervening period are integrated into an updated version of the report.

Whilst the Client has a right to use the information as appropriate, EnviroCentre Ltd retain ownership of the copyright and intellectual content of this report. Any distribution of this report should be controlled to avoid compromising the validity of the information or legal responsibilities held by both the Client and EnviroCentre Ltd (including those of third party copyright). EnviroCentre do not accept liability to any third party for the contents of this report unless written agreement is secured in advance, stating the intended use of the information.

1.2 Proposed Development

The proposed redevelopment at the Ardersier Port involves construction of new quayside with associated dredging at the berth and navigation channel along with construction facilities to cater for vessels and structures associated with normal port operations.

To cater for the envisaged sea traffic, the dredged access channel will be 120m wide with a dredge depth of - 6.5m Chart Datum. This will allow safe access at all states of tide. In addition, a minor element of dredging will be undertaken in the inner channel to a depth of -3m CD (approximately 2-3% of the total dredge).

Dredging will take place in two distinct and separate operations, an initial capital dredge to create the design channel and subsequent maintenance dredging to maintain the channel dimensions. The total volume of material dredged during the capital dredge is estimated to be 2,300,000m³ which will comprise mainly of sand with some gravel.

It is intended to use this material where possible for beneficial reuse. The main uses identified to date are the requirement for bulk fill to embankments for the proposed A96 trunk road construction material and ballast for offshore gravity base foundations for wind turbines.

1.3 Historic Dredging

Since the construction of the fabrication yard at Ardersier in 1972, dredging of the access channel has been a regular occurrence. Initial development of the yard area saw the formation of the channel with the dredged material being pumped ashore for land reclamation purposes. With the construction phase completed, subsequent channel dredging operations were carried out with dredged material being placed at the spoil ground on Whiteness Sands.

The line of the navigation channel formed was fit for purpose taking into account of the type of vessels which would be using it – in the case of McDermott Ardersier, this was for ocean going barges laden with significant structures together with attendant ocean going tugs. The line of the channel was therefore kept as straight as possible given the restricted ability of these vessels to manoeuvre in restricted waters. The frequency of use was also generally limited to finished jacket or module float out or to import of subcontracted elements of particular projects.

The channel width was nominally 100m with the dredge depth taking account of the particular vessels using the channel but dredge depth was typically to 4m below Chart Datum – Admiralty Chart 1077 indicates a dredge depth to 4.7m below Chart Datum. The frequency of channel dredging was dependant on two factors, first the float out draught requirements of the transportation barge with the completed structure and secondly the rate at which siltation in the channel had occurred since the previous dredge.

Observations on the sedimentation of the channel were that it was very much dependant on the wind direction, with the channel general being fairly static except during easterly gales when more significant change occurred. The timing of the maintenance dredges were generally to coincide with structures leaving the yard or vessels entering, and the size of these reflected the amount of material dredged.

1.4 Dredging Operations

Dredging will take place under two distinct and separate operations – firstly, an initial capital dredge will take place to form the new access channel as previously described and secondly, maintenance dredging will take place during following years to maintain the marine access channel to its designed line and level.

1.4.1 Capital Dredging

A comprehensive hydrographic survey has been carried out (June 2018) to update survey data in the area and dredge volumes calculated. On the basis of these surveys and the required channel geometry, it is estimated that 2,300,000m³ of material requires to be dredged. This survey work will be repeated immediately prior to dredging operations commencing to confirm the final volumes of dredge material.

The most appropriate form of dredging would be to use a cutter suction, given the nature and volume of material to be excavated and potentially the timeframe for carrying out the works. Final selection of the dredging plant will be subject to normal tendering processes but it is considered that cutter suction dredging as being most likely option. The cutter suction dredger is a self propelled vessel using a rotating head to loosen the sea bed with the material being connected to a suction tube. Pumps subsequently discharge the material to the disposal points by either barge or more likely in this case by pipeline. The pipelines would either be

November 2018

floating or placed on the seabed or existing land, dependant on site conditions. Cutter suction dredging has been used previously at the site.

2 SEDIMENT ASSESSMENT

2.1 2013 Investigation Approach

In 2013 Port of Ardersier contracted Envirocentre Ltd. to undertake the collection of samples from 6 borehole and 18 grab sediment samples to assess the sediment condition at the site.

The purpose of these samples was to provide supporting information to Marine Scotland during the licensing process on sediment quality within the proposed dredge area.

2.1.1 Sampling Locations

Figure 1 in Appendix A details the sample locations.

Six borehole locations and 19 grab locations were located within the proposed dredge area were identified by the Client as identified in Figure 1.

The following table summarises the sample location information:

Table 2.1: Summary of Samples

Name	Easting	Northing	Comment
Grab 1	279665	859342	Retained by EnviroCentre for analysis
Grab 3	279569	859291	Retained by EnviroCentre for analysis
Grab 5	279687	859184	Retained by EnviroCentre for analysis
Grab 7	279806	859077	Retained by EnviroCentre for analysis
Grab 9	279710	859026	Retained by EnviroCentre for analysis
Grab 11	279828	858919	Retained by EnviroCentre for analysis
Grab 13	279947	858812	Retained by EnviroCentre for analysis
Grab 15	279851	858761	Retained by EnviroCentre for analysis
Grab 16	279997	858617	Retained by EnviroCentre for analysis
Grab 17	280103	858617	Retained by EnviroCentre for analysis
Grab 18	280044	858518	Retained by EnviroCentre for analysis
Grab 19	280166	858542	Retained by EnviroCentre for analysis
Grab 20	280300	858585	Retained by EnviroCentre for analysis

Grab 21	280230	858466	Retained by EnviroCentre for analysis
Grab 22	280366	858466	Retained by EnviroCentre for analysis
Grab 23	280502	858465	Retained by EnviroCentre for analysis
Grab 24	280431	858347	Retained by EnviroCentre for analysis
Grab 25	280241	858415	Retained by EnviroCentre for analysis
Grab 26	280346	858353	Retained by EnviroCentre for analysis
BH10	279982	858750	Retained by EnviroCentre for analysis
BH11	279932	858724	Retained by EnviroCentre for analysis
BH12	279982	858697	Retained by EnviroCentre for analysis
BH15	280029	858526	Retained by EnviroCentre for analysis
BH18	280172	858438	Retained by EnviroCentre for analysis
BH24	280400	858303	Retained by EnviroCentre for analysis

2.1.2 Sampling Methodology

Grab sampling was undertaken on 12th and 13th March 2013 during daylight hours. Borehole drilling was undertaken over two periods, from 5th -12th February 2013 (BH10, 11 and 12) and 11th- 13th March (BH 15, 18 and 24). The following sections detail the sampling methodology used to retrieve sediment samples from the harbour and boreholes.

2.1.3 Sampling

Grab sampling was undertaken from a boat hired from Caley Marina. Borehole drilling works was undertaken by Blake Geoservices Limited. A shell and auger drill rig was utilised for the drilling works to allow collection of samples. Sampling was undertaken by EnviroCentre Limited and Blake Geoservices under supervision of EnviroCentre Limited.

2.1.4 Navigation and Sample Location

The vessel was navigated to the sampling location using GPS equipment. Sample co-ordinates are provided in Appendix B. The borehole locations were identified on site utilising GPS equipment and staked out prior to drilling.

2.1.5 Sample Retrieval

Once on location, grab samples were procured utilising a Van Veen grab. The grab can procure 0.045m3 of sediment upon deployment.

Sampling from borehole locations was undertaken by hand.

Table 2.2: Summary of Samples

Sample	Sample	Sampled Core	Number of Attempts	Sediment Description
Location	Recovery	Recovery Length	& Return Depths	
	Time	(m)		
Grab 1	0.450m	0.4 m	2	Fine to medium brown sand
Grab I	9.45am	0.1m	2	rifie to friedidiff brown saild
Grab 3	12.30pm	0.1m	7	Medium brown sand and gravel
Grab 5	12.15pm	0.1m	2	Fine to medium sand
Grab 7	12.10pm	0.1m	1	Fine to medium sand
Grab 9	12.05pm	0.1m	1	Fine to medium sand
Grab 11	10.50am	0.1m	2	Fine to medium sand
Grab 13	10.35am	0.1m	2	Fine to medium sand
Grab 15	13.00pm	0.1m	2	Fine to medium sand
Grab 16	11.00am	0.1m	2	Fine to medium sand
Grab 17	11.15am	0.1m	2	Fine to coarse sand
Grab 19	13.20pm	0.1m	2	Medium to coarse sand
Grab 20	11.45am	0.1m	1	Fine to medium sand
Grab 21	10.40am	0.1m	1	Fine to medium sand
Grab 22	12.00pm	0.1m	1	Fine to medium sand
Grab 23	11.30am	0.1m	1	Fine to medium sand
Grab 24	11.00am	0.1m	2	Fine sand
Grab 25	10.20am	0.1m	1	Fine to medium sand
Grab 26	10.30am	0.1m	1	Fine to medium sand
BH10	05/02/13	15.00m	1	Varies from gravel to fine sand
BH11	07/02/13	15.00m	1	Fine to coarse sand

BH12	12/02/13	15.00m	1	Fine to coarse sand
BH15	11/3/13	15.00m	1	Ranging from made ground to fine sand (note made ground above mean high water spring)
BH18	13/3/13	14.00m	1	Ranging from made ground to fine sand (note made ground above mean high water spring)
BH24	12/3/13	14.50m	1	Ranging from made ground to fine sand (note made ground above mean high water spring)

2.1.6 Sample Preparation

Grabs were collected as a single sample for analysis while borehole locations were subdivided into samples from every metre. Key samples throughout the borehole core (deemed to be top, middle and bottom – 0.5m, 8.0m and 14m) were also scheduled. In addition samples at 6.0m were scheduled within boreholes BH10, BH11 and BH12 to provide further information for samples in the middle of the core.

The stainless steel (organic analysis) and plastic sampling spoons (inorganic analysis) were cleaned with seawater between samples. Once samples had been placed within appropriate containers, they were labelled and placed immediately into cool boxes with 2 x 2kg bags of ice to cool the samples prior to dispatch to ESG Scientifics for analysis.

2.2 2018 Sampling Approach

An additional round of grab sampling was undertaken in November 2018 by Blake Geoservices. Figure 2 in Appendix A details the sample locations as provided by the client.

A total of 19 grab samples were collected.

The following table summarises the sample location information:

Table 2.3: Summary of Samples

Name	Easting	Northing	Comment
Grab 27	280618	858533	Retained by Blake Geoservices for analysis
Grab 28	280756	858477	Retained by Blake Geoservices for analysis
Grab 29	280726	858438	Retained by Blake Geoservices for analysis
Grab 30	280878	858369	Retained by Blake Geoservices for analysis
Grab 31	280559	858428	Retained by Blake Geoservices for analysis

Grab 32	280665	858363	Retained by Blake Geoservices for analysis
Grab 33	280754	858304	Retained by Blake Geoservices for analysis
Grab 34	280870	858231	Retained by Blake Geoservices for analysis
Grab 35	280578	858341	Retained by Blake Geoservices for analysis
Grab 36	280696	858284	Retained by Blake Geoservices for analysis
Grab 37	280791	858225	Retained by Blake Geoservices for analysis
Grab 38	280505	858338	Retained by Blake Geoservices for analysis
Grab 39	280618	858277	Retained by Blake Geoservices for analysis
Grab 40	280707	858225	Retained by Blake Geoservices for analysis
Grab 41	280824	858158	Retained by Blake Geoservices for analysis
Grab 42	280896	858115	Retained by Blake Geoservices for analysis
Grab 43	281326	857857	Retained by Blake Geoservices for analysis
Grab 44	281399	857814	Retained by Blake Geoservices for analysis
Grab 45	281453	857887	Retained by Blake Geoservices for analysis

2.2.1 Sampling Methodology

Grab sampling was undertaken on the 12th and 13th November 2018 by Blake Geoservices.

2.2.2 Navigation and Sample Location

The vessel was navigated to the sampling location using GPS equipment. Sample co-ordinates are provided in Appendix B.

2.2.3 Sample Retrieval

Once on location, grab samples were procured utilising a Van Veen grab. The grab can procure 0.045m3 of sediment upon deployment.

Table 2.4: Summary of Samples

Sample Location	Sampled Core Recovery Length (m)	Sediment Description
Grab 27	0.1m	Brown Sand and Gravel
Grab 28	0.1m	Brown Sandy Gravel

Grab 29	0.1m	Brown Silty Sand
Grab 30	0.1m	Brown slightly silty gravelly sand
Grab 31	0.1m	Brown silty sand
Grab 32	0.1m	Brown silty sand
Grab 33	0.1m	Brown slightly silty sand
Grab 34	0.1m	Brown and black silty sand
Grab 35	0.1m	Brown silty sand
Grab 36	0.1m	Brown slightly silty sand
Grab 37	0.1m	Black and brown silty sand
Grab 38	0.1m	Black silty sand
Grab 39	0.1m	Black and brown silty sand
Grab 40	0.1m	Black and brown silty sand
Grab 41	0.1m	Black silty sand
Grab 42	0.1m	Black silty sand
Grab 43	0.1m	Black silty sand
Grab 44	0.1m	Black silty sand
Grab 45	0.1m	Black silty sand

3 ANALYTICAL RESULTS

The analytical results for both sampling periods are detailed in the following sections. The analytical results are provided within Appendix B.

3.1 Physical Analysis

3.1.1 Particle Size Distribution (PSD)

Particle Size Distribution data for each sample is included within Appendix B. Sediments sampled within the harbour are reported as being gravels to silts. Field descriptions of the sediments and accompanying comment on sedimentology are included within Appendix B within the logs. Descriptions for each of the samples are provided in Table 3.1.

Table 3.1: Particle Size Analysis Results

Sample ID	Description
Grab 1	Sand
Grab 3	Silt with gravel
Grab 5	Sand
Grab 7	Sand
Grab 9	Sand
Grab 11	Sand
Grab 13	Sand with gravel
Grab 15	Sand with gravel
Grab 16	Sand with gravel
Grab 17	Sand
Grab 19	Silt with gravel
Grab 20	Sand
Grab 21	Sand
Grab 22	Sand
Grab 23	Sand
Grab 24	Sand with gravel

Grab 25	Sand
Grab 26	Sand
BH10-0.8	Gravelly silty sand
BH10-6.0	Sand and gravel
BH10-8.0	Gravelly sand
BH10-14.0	Sand
BH11-0.5	Gravelly sand
BH11-6.0	Sand
BH11-8.0	Sand
BH11-14.0	Sand
BH12-0.5	Clayey sand and gravel
BH12-6.0	Sand
BH12-8.0	Sand
BH12-14.0	Sand
BH15-0.5	Sand
BH15-8.0	Sand
BH15-15.0	Sand
BH18-0.5	Sand with gravel
BH18-10.0	Sand
BH18-14.0	Sand
BH24-0.5	Sand with gravel
BH24-8.0	Sand
BH24-14.0	Sand
Grab 27	Brown Sand and Gravel
Grab 28	Brown Sandy Gravel
Grab 29	Brown Silty Sand
Grab 30	Brown slightly silty gravelly sand

Grab 31	Brown silty sand
Grab 32	Brown silty sand
Grab 33	Brown slightly silty sand
Grab 34	Brown and black silty sand
Grab 35	Brown silty sand
Grab 36	Brown slightly silty sand
Grab 37	Black and brown silty sand
Grab 38	Black silty sand
Grab 39	Black and brown silty sand
Grab 40	Black and brown silty sand
Grab 41	Black silty sand
Grab 42	Black silty sand
Grab 43	Black silty sand
Grab 44	Black silty sand
Grab 45	Black silty sand

3.1.2 Total Organic Carbon (TOC)

Table 3.2: TOC Results

Sample ID	Analysis*	Value ¹	Units
Grab 1		0.24	
Grab 3		0.14	
Grab 5	тос	0.11	%w/w
Grab 7		0.09	
Grab 9		0.09	
Grab 11		0.08	

Grab 13	0.08	
Grab 15	0.07	
Grab 16	0.09	
Grab 17	0.10	
Grab 19	0.08	
Grab 20	0.08	
Grab 21	0.11	
Grab 22	0.09	
Grab 23	0.14	
Grab 24	0.27	
Grab 25	0.08	
Grab 26	0.15	
BH10-0.8	0.20	
BH10-6.0	0.12	
BH10-8.0	0.12	
BH10-14.0	0.25	
BH11-0.5	0.08	
BH11-6.0	0.12	
BH11-8.0	0.09	
BH11-14.0	0.16	
BH12-0.5	0.08	
BH12-6.0	0.09	
BH12-8.0	0.10	
BH12-14.0	0.12	

BH15-0.5	0.13	
BH15-8.0	0.09	
BH15-15.0	0.08	
BH18-0.5	0.12	
BH18-10.0	0.08	
BH18-14.0	0.08	
BH24-0.5	0.5	
BH24-8.0	0.07	
BH24-14.0	0.07	
Grab 27		
Grab 28	0.2	
Grab 29	0.1	
Grab 30		
Grab 31		
Grab 32	0.6	
Grab 33	<0.1	
Grab 34	0.8	
Grab 35	<0.1	
Grab 36	<0.1	
Grab 37	0.9	
Grab 38		
Grab 39	0.4	
Grab 40	0.4	
Grab 41	0.4	
Grab 42	1.2	

Grab 43	0.3	
Grab 44	0.1	
Grab 45	0.1	

3.1.3 Moisture Content

Table 3.3: Moisture Content

Sample ID Analysis* Value ¹							
Analysis*	Value ¹	Units					
	22.2						
	10.4						
	17.1						
	19.3						
	17.7						
	19.2						
	16.7						
	16.8						
Total Moisture	17.4	%					
	17.7						
	14.2						
	18.7						
	18.5						
	17.9						
	20.8						
	21.7						
	17.2						
	20.4						
	Total	22.2 10.4 17.1 19.3 17.7 19.2 16.7 16.8 Total Moisture 17.7 14.2 18.7 18.5 17.9 20.8 21.7 17.2					

BH10-0.8	8.5	
BH10-6.0	9.6	
BH10-8.0	11.8	-
BH10-14.0	20.4	-
BH11-0.5	3.7	-
BH11-6.0	19.1	-
BH11-8.0	16.3	-
BH11-14.0	8.4	-
BH12-0.5	8.3	-
BH12-6.0	17.3	
BH12-8.0	16.3	
BH12-14.0	19.6	
BH15-0.5	4.6	
BH15-8.0	17.0	
BH15-15.0	12.3	
BH18-0.5	5.2	
BH18-10.0	18.5	
BH18-14.0	18.6	-
BH24-0.5	4.5	
BH24-8.0	18.1	
BH24-14.0	19.3	
•		•

3.2 Chemical Analysis

Chemical analysis was only undertake on the samples collected as part of the 2013 exercise.

For the assessment information from the borehole locations has been utilised to assess the suitability for material for placement as spit replenishment. These results represent quality information from material at depth within the harbour area and are therefore considered appropriate for this assessment.

It is recognised that the sample results date from a period of 5 years ago, however the approach to sampling and the analytical suite applied are still compliant with the approach detailed in the Marine Scotland Pre-Disposal Sampling Guidance.

As the channel was not dredged following the 2013 sampling exercise, the results are considered to still be reflective of the sediment conditions present. It is noted that the site is located in an area that does not have any active industry in the vicinity, and as such there is not considered to be a source that would have impacted the sediment quality in the period since the 2013 assessment.

The PSD and TOC results from both the 2013 and 2018 assessment indicate that the material type is similar, consisting principally of sand with limited organic material.

The results of the 2013 assessment are still considered valid and are detailed below.

3.3 Action Levels – AL1 Vs AL2

Two action levels are currently used to assess the suitability of sea based disposal of dredged sediment material Revised Action Level (RAL1) and Revised (RAL2).

Sediment with contaminant concentrations below RAL1 is generally considered to be below background levels for contamination and is suitable for disposal at sea.

For samples between RAL1 and RAL2, additional risk assessment may be required including further sampling and testing to fully identify pockets of contamination or implementation of bioassays to assess the materials suitability for sea disposal.

Material above RAL2 is generally considered to be unsuitable for disposal to sea. If the sea disposal route is to be pursued, further testing along the lines of bioassay accompanied by a robust justification for selecting sea disposal as the BPEO may be required. This would need to be supported further with additional information regarding any mitigation measures which could be put in place as part of these works. This would require further discussion and agreement with Marine Scotland.

3.3.1 Metals

A summary of the results is provided in Appendix C. One sample (Grab 24) recorded a concentration of zinc which exceeded the Action Level 1. The concentration did not exceed the Action Level 2. No other exceedances were recorded

3.3.2 Tributyl Tin (TBT)

A summary of the results is provided in Appendix C. No samples were recorded with values in excess of either Action Level 1 or Action Level 2.

3.3.3 Polyaromatic Hydrocarbons (PAHs)

A summary of the results is provided in Appendix C. The following samples recorded concentrations in exceedance of Action Level 1:

- BH10-14.0
- BH11-0.5
- BH11-8.0
- BH11-14.0
- Grab 3

There are no Action Level 2 values for PAHs.

3.3.4 Polychlorinated Biphenyls (PCBs) ICEs 7

No PCB congeners from the ICEs 7 list were recorded above AL1 in any of the samples collected.

3.3.5 Asbestos

No asbestos was identified in any of the grab samples collected.

4 **SUMMARY**

This report details the findings of two sediment sampling exercises undertaken at the Port of Ardersier in 2013 and 2018 to inform the application for a dredge licence for the site.

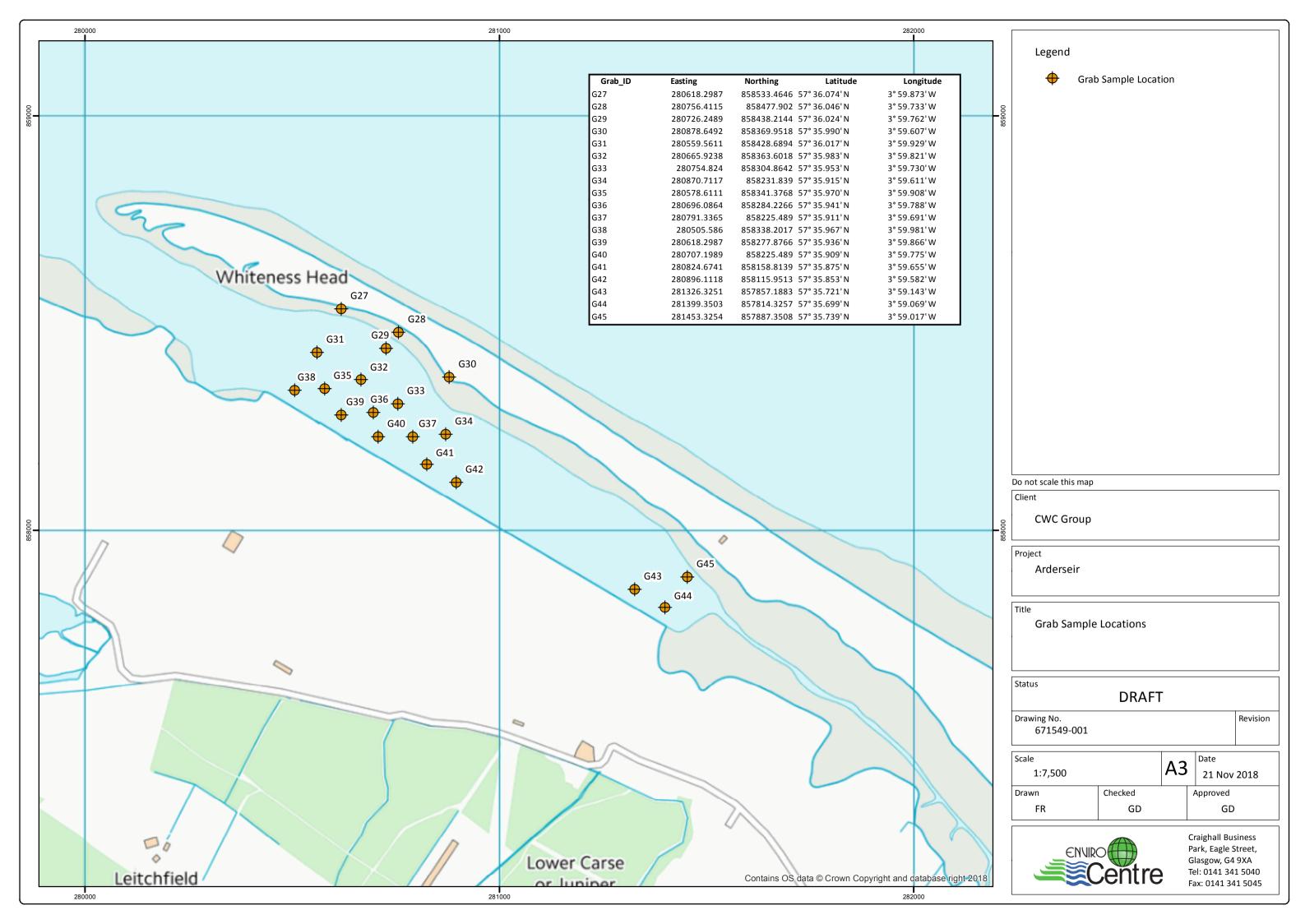
The works incorporated:

- Thirty eight grabs and six borehole cores were collected from Whiteness. The boreholes were collected up to a depth of 14m.
- The sediment material was classified as varying from gravel through to gravelly silt.

Table 5.1 summarises the results of the chemical laboratory analysis with respect to the Action Levels adopted by Marine Scotland.

Table 4.1: Chemical Analysis Screening Summary

Sample ID	-	Metals Metals		Т	PAHs	PCBs	
				1			
Action Level	AL1	AL2	AL1	AL2	AL1	AL1	AL2
Grab 1	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 3	Pass	Pass	Pass	Pass	Exceedance for a few PAHs	Pass	Pass
Grab 5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 7	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 9	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 11	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 13	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 15	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 16	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 17	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 19	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 20	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 21	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 22	Pass	Pass	Pass	Pass	Pass	Pass	Pass


Grab 23	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 24	Exceedanc e for Zinc	Pass	Pass	Pass	Pass	Pass	Pass
Grab 25	Pass	Pass	Pass	Pass	Pass	Pass	Pass
Grab 26	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH10-0.8	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH10-6.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH10-8.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH10-14.0	Pass	Pass	Pass	Pass	Exceedance for a few PAHs	Pass	Pass
BH11-0.5	Pass	Pass	Pass	Pass	Exceedance for a few PAHs	Pass	Pass
BH11-6.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH11-8.0	Pass	Pass	Pass	Pass	Exceedance for a few PAHs	Pass	Pass
BH11-14.0	Pass	Pass	Pass	Pass	Exceedance for a few PAHs	Pass	Pass
BH12-0.5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH12-6.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH12-8.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH12-14.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH15-0.5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH15-8.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH15-15.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH18-0.5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH18-10.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH18-14.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH24-0.5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH24-8.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass
BH24-14.0	Pass	Pass	Pass	Pass	Pass	Pass	Pass

REFERENCES

Marine Scotland (2017). Pre-DredgeSampling Guidance Version 2: Scottish Government.

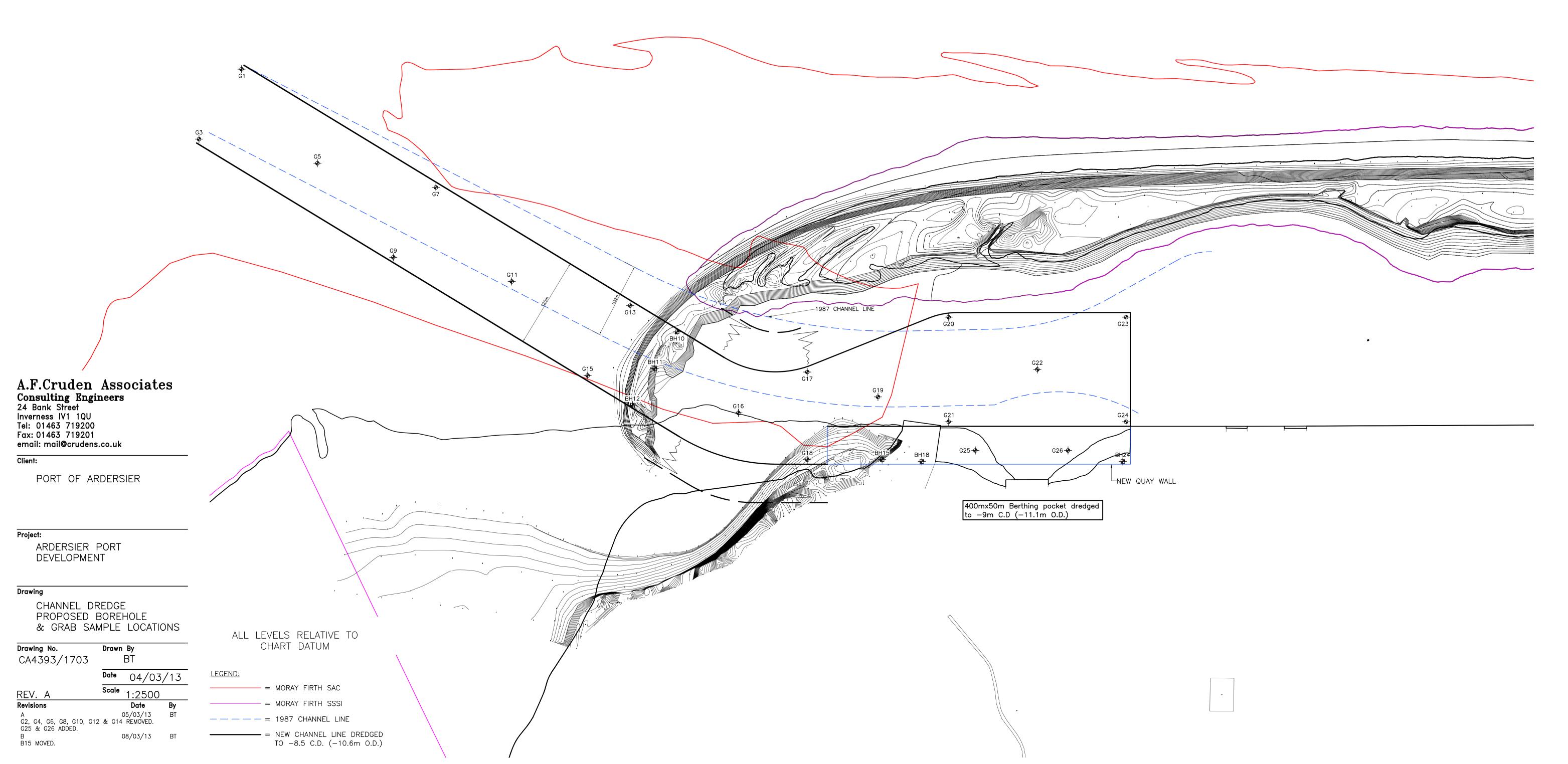
APPENDICES

A FIGURES

Client:

Project:

Drawing


REV. A

B15 MOVED.

BOREHOLE SCHEDULE SEABED BOREHOLE LEVEL (C.D.) DEPTH (m) REF. LOCATION 279982.24E 858750.66N ALREADY COMPLETE 279932.27E 858724.05N 279882.30E 858697.44N 280129.03E 858467.90N +5.9 16m 280172.84E 858438.91N +5.9 30m 280400.83E 858303.84N 16m

GRAB SAMPLE SCHEDULE											
REF.	APPROX. LOCATION	REF.	APPROX. LOCATION REF.		APPROX. LOCATION	REF.	APPROX. LOCATION	REF.	APPROX. LOCATION		
G1	279665E 859342N	G7	279806E 859077N	G13	279947E 858812N	G19	280166E 858542N	G25	280241E 858415N		
G2	REMOVED	G8	REMOVED	G14	G14 REMOVED G		280300E 858585N	G26	280346E 858353N		
G3	279569E 859291N	G9	279710E 859026N	G15	279851E 858761N	G21	280230E 858466N				
G4	REMOVED	G10	REMOVED	G16	279997E 858617N	G22	280366E 858466N				
G5	279687E 859184N	G11	279828E 858919N	G17	280103E 858617N	G23	280502E 858465N				
G6	REMOVED	G12	REMOVED	G18	280044E 858518N	G24	280431E 858347N				

Yard Level +4.53m O.D. ∇ ∇ +6.6m C.D. 0.D. $\sqrt{+2.1}$ m C.D. MLWS -1.2m 0.D. \bigcirc +0.9m C.D.

B ANALYTICAL RESULTS

Our Ref: EFS/131753M (Ver. 2)

Your Ref:

April 9, 2013

[Redact EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Environmental Chemistry

FS

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of [Redact

Dear [Reda

Soil Sample Analysis - Whiteness

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 01/05/13 when they will be discarded. Please call 01283 554467 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG [Redacted]

Project Co-ordinator

[Redacted]

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/131753M (Ver. 2)

EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Site: Whiteness

The 9 samples described in this report were registered for analysis by ESG on 20-Mar-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Apr-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 11)
Table of PCB Congener Results (Page 12)
Analytical and Deviating Sample Overview (Page 13)
Table of Method Descriptions (Page 14)
Table of Report Notes (Page 15)
Table of Sample Descriptions (Appendix A Page 1 of 1)

[Redacted]

On behalf o

ESG: Date of Issue: 09-Apr-2013

[Redacted] Operations Director

Laboratory and Analytical Business

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS)

Tests marked '^' have been subcontracted to another laboratory.

(NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS.

All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	μg/kg	ug/kg	ug/kg	ug/kg	% M/M	mg/kg	
	Method Codes : Method Reporting Limits :	ICPMSS 0.3	ICPMSS 0.2	ICPMSS 1.2	ICPMSS 1.6	ICPMSS 0.7	ICPMSS 0.5	ICPMSS 2	ICPMSS 16	TMSS 0.2	PCBUSECDAR	Sub005 5	Sub005 5	Sub005 20	0.02	PAHMSUS	
	Accreditation Code:	UM	UM	UM	UM	UM	UM	UM	UM	U.Z		N N	N N	N N	0.02 N		
LAB ID Number CL/	Client Sample Description	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	Tot.Moisture @ 105C	PCB-7 Congeners Analysis	^ Dibutyltin	^Tributyltin	^Triphenyltin	Total Organic Carbon	PAH (16) by GCMS	
1307549	BH15 0.50	2.6	<0.20	13.1	27	18.9	<0.5	7.3	153.9	4.6	Req	<21.0	<21.0	<21.0	0.13	Req	
1307551	BH15 15.00	1.3	<0.2	4.5	<1.6	1.8	<0.5	2.3	19.4	12.3	Req	<22.8	<22.8	<22.8	0.08	Req	
1307550	BH15 8.00	1.3	<0.2	4.1	1.7	2	<0.5	2.2	<15.9	17.0	Req	<24.1	<24.1	<24.1	0.09	Req	
1307552	BH18 0.50	1.5	<0.2	8.4	25.8	13.7	<0.5	5.8	178.9	5.2	Req	60.1	<21.1	<21.1	0.12	Req	
1307553	BH18 10.00	0.8	<0.2	3.7	1.7	1.9	<0.5	2	22	18.5	Req	47.9	<24.5	<24.5	0.08	Req	
1307554	BH18 14.00	1.1	<0.2	4.2	<1.6	1.7	<0.5	2.1	25.4	18.6	Req	115.5	<24.6	<24.6	0.08	Req	
1307555	BH24 0.50	1	<0.2	3.4	2.1	2.3	<0.5	<2.0	18.0	4.5	Req	37.7	<20.9	<20.9	0.08	Req	
1307557	BH24 14.00	1.1	<0.2	3.3	<1.6	1.5	<0.5	2	17.4	19.3	Req	38.4	<24.8	<24.8	0.07	Req	
1307556	BH24 8.00	1	<0.2	2.9	<2	1.4	<0.5	<2.0	<15.8	18.1	Req	<24.4	<24.4	<24.4	0.07	Req	
	Environmental Scientifics Group Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ	Client Name EnviroCentre Ltd Contact [Redac Whiteness						Soil Sample Analysis Date Printed 09-Apr-2013 Report Number EFS/131753M									
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	Table Number 1								-							

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH15 0.50 Job Number: S13_1753M LIMS ID Number: CL1307549 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.08	-	UM
Acenaphthylene	208-96-8	-	< 0.08	-	U
Acenaphthene	83-32-9	-	< 0.08	-	UM
Fluorene	86-73-7	-	< 0.08	-	UM
Phenanthrene	85-01-8	-	< 0.08	-	UM
Anthracene	120-12-7	-	< 0.08	-	U
Fluoranthene	206-44-0	-	< 0.08	-	UM
Pyrene	129-00-0	-	< 0.08	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.08	-	UM
Chrysene	218-01-9	-	< 0.08	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.08	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-	UM
Total (USEPA16) PAHs	-	-	< 1.34	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	98
Phenanthrene-d10	98
Chrysene-d12	101
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH15 8.00 Job Number: S13_1753M LIMS ID Number: CL1307550 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration Date Analysed: 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.54	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	97
Phenanthrene-d10	99
Chrysene-d12	101
Perylene-d12	96

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	88
Terphenyl-d14	77

Concentrations are reported on a dry weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH15 15.00 Job Number: S13_1753M LIMS ID Number: CL1307551 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	-	< 0.09	-	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	-	< 0.09	1	UM
Pyrene	129-00-0	-	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 1.46	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	98
Phenanthrene-d10	97
Chrysene-d12	98
Perylene-d12	94

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	94
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH18 0.50 Job Number: S13_1753M LIMS ID Number: CL1307552 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.08	-	UM
Acenaphthylene	208-96-8	-	< 0.08	•	U
Acenaphthene	83-32-9	-	< 0.08	•	UM
Fluorene	86-73-7	-	< 0.08	•	UM
Phenanthrene	85-01-8	-	< 0.08	•	UM
Anthracene	120-12-7	-	< 0.08	•	U
Fluoranthene	206-44-0	-	< 0.08	•	UM
Pyrene	129-00-0	-	< 0.08	•	UM
Benzo[a]anthracene	56-55-3	-	< 0.08	-	UM
Chrysene	218-01-9	-	< 0.08	•	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.08	•	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.08	•	UM
Benzo[a]pyrene	50-32-8	-	< 0.08	•	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-	UM
Total (USEPA16) PAHs	-	-	< 1.35	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	96
Phenanthrene-d10	96
Chrysene-d12	96
Perylene-d12	90

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	94

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH18 10.00 Job Number: S13_1753M LIMS ID Number: CL1307553 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration Date Analysed: 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil **Dilution:** 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.57	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	98
Phenanthrene-d10	96
Chrysene-d12	94
Perylene-d12	87

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH18 14.00 Job Number: S13_1753M LIMS ID Number: CL1307554 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.57	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	95
Phenanthrene-d10	93
Chrysene-d12	92
Perylene-d12	85

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	85
Terphenyl-d14	80

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH24 0.50 Job Number: S13_1753M LIMS ID Number: CL1307555 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.08	-	UM
Acenaphthylene	208-96-8	-	< 0.08	-	U
Acenaphthene	83-32-9	-	< 0.08	-	UM
Fluorene	86-73-7	-	< 0.08	-	UM
Phenanthrene	85-01-8	-	< 0.08	-	UM
Anthracene	120-12-7	-	< 0.08	-	U
Fluoranthene	206-44-0	-	< 0.08	-	UM
Pyrene	129-00-0	-	< 0.08	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.08	-	UM
Chrysene	218-01-9	-	< 0.08	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.08	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-	UM
Total (USEPA16) PAHs	-	-	< 1.34	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	98
Phenanthrene-d10	98
Chrysene-d12	97
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH24 8.00 Job Number: S13_1753M LIMS ID Number: CL1307556 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	•	UM
Phenanthrene	85-01-8	-	< 0.10	•	UM
Anthracene	120-12-7	-	< 0.10	•	U
Fluoranthene	206-44-0	-	< 0.10	•	UM
Pyrene	129-00-0	1	< 0.10	1	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	•	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	•	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	•	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	1	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	•	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.56	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	97
Phenanthrene-d10	97
Chrysene-d12	98
Perylene-d12	92

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH24 14.00 Job Number: S13_1753M LIMS ID Number: CL1307557 Date Booked in: 20-Mar-13 **QC Batch Number:** 130265 **Date Extracted:** 28-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 29-Mar-13 Directory: 2813PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.59	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	101
Acenaphthene-d10	99
Phenanthrene-d10	99
Chrysene-d12	100
Perylene-d12	93

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	93
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: EnviroCentre Ltd: Whiteness SOIL

 Job Number:
 \$13_1753M
 Date Booked in:
 20-Mar-13

 QC Batch Number:
 130071
 Date Extracted:
 27-Mar-13

 Directory:
 0327PCB.GC8
 Date Analysed:
 27-Mar-13

Method: Ultrasonic

Accreditation code: N

				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1307549	BH15 0.50	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99
* CL1307550	BH15 8.00	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96
* CL1307551	BH15 15.00	<4.88	<4.88	<4.88	<4.88	<4.88	<4.88	<4.88
* CL1307552	BH18 0.50	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95
* CL1307553	BH18 10.00	<4.92	<4.92	<4.92	<4.92	<4.92	<4.92	<4.92
* CL1307554	BH18 14.00	<5.07	<5.07	<5.07	<5.07	<5.07	<5.07	<5.07
* CL1307555	BH24 0.50	<4.97	<4.97	<4.97	<4.97	<4.97	<4.97	<4.97
* CL1307556	BH24 8.00	<4.93	<4.93	<4.93	<4.93	<4.93	<4.93	<4.93
* CL1307557	BH24 14.00	<4.90	<4.90	<4.90	<4.90	<4.90	<4.90	<4.90

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site

Consignment No S34189 Date Logged 20-Mar-2013

Whiteness S131753 **Report No**

Report Due 02-Apr-2013

		MethodID	ICPMSS							Apr-2	MCertS	PAHMSUS	PCBUSECDAR	Sub005			TMSS	WSLM59
ID Number	Description	Sampled	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	MCertS Analysis	PAH (16) by GCMS	PCB-7 Congeners Analysis	^DibutyItin	^TributyItin	^Triphenyltin	Tot.Moisture @ 105C	Total Organic Carbon
	Accredited	to ISO17025	>	✓	✓	✓	>	✓	✓	✓	>	>					\	
CL/1307549	BH15 0.50	D																
CL/1307550	BH15 8.00	D																
CL/1307551	BH15 15.00	D																
CL/1307552	BH18 0.50	D																
CL/1307553	BH18 10.00	D																
CL/1307554	BH18 14.00	D																
CL/1307555	BH24 0.50	D																
CL/1307556	BH24 8.00	D																
CL/1307557	BH24 14.00	D																

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/131753

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile

CR Denotes Crocidolite

AM Denotes Amosite

NAIIS No Asbestos Identified in Sample

NADIS No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client : EnviroCentre Ltd

Site: Whiteness
Report Number: S13_1753M

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1307549	BH15 0.50	Brown Gravel SAND
CL/1307550	BH15 8.00	Brown SAND
CL/1307551	BH15 15.00	Brown SAND
CL/1307552	BH18 0.50	Brown SAND Stone
CL/1307553	BH18 10.00	Brown SAND
CL/1307554	BH18 14.00	Brown SAND
CL/1307555	BH24 0.50	Brown Gravel SAND
CL/1307556	BH24 8.00	Brown SAND
CL/1307557	BH24 14.00	Brown SAND

Our Ref: EFS/131671M (Ver. 4)

Your Ref: 363854j

April 9, 2013

[Redacted] EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Environmental Chemistry

FS(

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention o [Redacted]

Dear [Redacte

Soil Sample Analysis - Whiteness Grabs

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 26/04/13 when they will be discarded. Please call 01283 554467 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG [Redacted]

Project Co-ordinator

[Redacted]

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/131671M (Ver. 4)

EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Site: Whiteness Grabs

The 20 samples described in this report were registered for analysis by ESG on 15-Mar-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Apr-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)

Table of PAH (MS-SIM) (80) Results (Pages 4 to 23)

Table of PCB Congener Results (Page 24)

Particle Size Distribution Analysis (Pages 25 to 44)

Table of Asbestos Screening Results (Page 45)

Analytical and Deviating Sample Overview (Pages 46 to 47)

Table of Method Descriptions (Page 48)

Table of Report Notes (Page 49)

Table of Sample Descriptions (Appendix A Page 1 of 1)

[Redacted]

On behalf of

ESG: Date of Issue: 09-Apr-2013

[Redacted] Operations Director

Laboratory and Analytical Business

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory.

(NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS.

All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH Units		%	μg/kg	ug/kg	ug/kg	ug/kg
		Codes :	AMMAR	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	PHSOIL	Sub002a	TMSS	PCBUSECDAR	Sub005	Sub005	Sub005
	Method Reporting Accreditati		0.5 UM	0.3 UM	0.2 UM	1.2 UM	1.6 UM	0.7 UM	0.5 UM	2 UM	16 UM	UM	U	0.2 U		5 N	5 N	20 N
	Noordatati	on oode.	OW	Civi	Civi	OW	OW	OW	OW	OW	OW	OW	Ŭ			.,	.,	- ' '
LAB ID Number CL/	Client Sample Description	Sample Date	Exchange.Ammonium AR	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	pH units (AR)	^Asbestos Screen	Tot.Moisture @ 105C	PCB-7 Congeners Analysis	^DibutyItin	^Tributyltin	^Triphenyltin
1307150	G1	13-Mar-13	<0.06	2.3	0.27	7	3.3	3.9	<0.5	3.8	<16.1	8.0	NAIIS	22.2	Req	34.7	<38.6	<25.7
1307155	G11	13-Mar-13	<0.06	1.2	<0.2	3.1	<1.6	1.5	<0.5	<2.0	<15.9	8.0	NAIIS	19.2	Req	<24.8	<37.1	<24.8
1307156	G13	12-Mar-13	<0.06	1.1	<0.2	6	<1.6	2.3	<0.5	<2.0	<15.8	8.0	NAIIS	16.7	Req	<24.0	<36.0	<24.0
1307157	G15	12-Mar-13	<0.06	1.2	<0.2	4.7	1.7	1.9	<0.5	<2.1	<16.8	8.2	NAIIS	16.8	Req	<24.0	<36.1	<24.0
1307158	G16	13-Mar-13	<0.06	1.2	<0.2	4	1.7	1.8	<0.5	<2.0	<15.9	8.2	NAIIS	17.4	Req	41.2	<36.3	<24.2
1307159	G17	13-Mar-13	3.0	1.2	<0.2	3.3	<1.6	1.6	<0.5	<2.0	<16	8.3	NAIIS	17.7	Req	<24.3	<36.5	<24.3
1307160	G19	12-Mar-13	<0.06	1.7	<0.2	4.3	6.2	4.3	<0.5	3.1	29	8.4	NAIIS	14.2	Req	78.1	<35.0	<23.3
1307161	G20	12-Mar-13	<0.06	1	<0.2	2.6	<1.6	1.3	<0.5	<2.0	<16.1	8.2	NAIIS	18.7	Req	30.8	<36.9	<24.6
1307162	G21	12-Mar-13	<0.06	1	<0.2	3.4	2.2	1.9	<0.5	<2.0	<15.9	8.3	NAIIS	18.5	Req	42.9	<36.8	<24.5
1307163	G22	12-Mar-13	<0.06	1	<0.2	3.3	1.9	1.7	<0.5	<2.0	<15.9	8.3	NAIIS	17.9	Req	30.5	<36.5	<24.4
1307164	G23	12-Mar-13	<0.06	1.3	<0.2	3.8	1.6	1.6	<0.5	2.1	<16.0	8.4	NAIIS	20.8	Req	<25.3	<37.9	<25.3
1307165	G24	12-Mar-13	9.6	3.8	<0.2	11.4	57.7	36.1	<0.5	6.9	412.5	8.2	NAIIS	21.7	Req	90.7	<38.3	<25.5
1307166	G25	12-Mar-13	2.3	1.2	<0.2	3.1	2.8	2.1	<0.5	<2.0	<16.1	8.2	NAIIS	17.2	Req	<24.2	<36.2	<24.2
1307167	G26	12-Mar-13	2.5	1.6	<0.2	6.3	2.6	2.4	<0.5	3	16.4	8.4	NAIIS	20.4	Req	<25.1	<37.7	<25.1
1307168	G27	13-Mar-13	2.5	1.4	<0.2	4.7	2.4	1.8	<0.5	2.4	<15.8	8.4	NAIIS	19.3	Req	27.3	<37.2	<24.8
1307169	G28	13-Mar-13	1.1	1.1	<0.2	4.1	<1.6	1.7	<0.5	<2.0	<16.0	8.4	NAIIS	18.9	Req	39.5	<37.0	<24.7
1307151	G3	13-Mar-13	<0.06	2.1	<0.2	7.3	2.6	3.8	<0.5	4	<15.9	8.4	NAIIS	10.4	Req	70.3	<33.5	<22.3
1307152	G5	13-Mar-13	<0.06	1.1	<0.2	3.2	<1.6	1.9	<0.5	<2.0	<15.9	8.3	NAIIS	17.1	Req	68.8	<36.2	<24.1
1307153	G7	13-Mar-13	<0.06	1.1	<0.2	3.2	<1.6	1.7	<0.5	<2.0	<16.1	8.3	NAIIS	19.3	Req	58.2	<37.2	<24.8
1307154	G9	13-Mar-13	<0.06	1.1	<0.2	3	<1.6	1.5	<0.5	<2.0	<16.0	8.1	NAIIS	17.7	Req	94	<36.5	<24.3
	ESG Environmental Scientifics Group	Client Name EnviroCentre Ltd Contact Mr C Stewart						Soil Sample Analysis										
E	Bretby Business Park, Ashby Road										Date Prin		09-Apr-2013					
E	Burton-on-Trent, Staffordshire, DE15 0YZ		Whiteness Grabs						Report N	lumber	EFS/131671M							
	Tel +44 (0) 1283 554400		Willeness Glabs						Table Nu	ımber			1					
	Fax +44 (0) 1283 554422																	

		Units :		% M/M	mg/kg										
	Method	Codes:	Sub018	WSLM59	PAHMSUS										
	Method Reporting			0.02											
	Accreditati	on Code:		N											
LAB ID Number CL/	Client Sample Description	Sample Date	^Particle Size Dist	Total Organic Carbon	PAH (16) by GCMS										
1307150	G1	13-Mar-13	Req	0.24	Req										
1307155	G11	13-Mar-13	Req	0.08	Req										
1307156	G13	12-Mar-13	Req	0.08	Req										
1307157	G15	12-Mar-13	Req	0.07	Req										
1307158	G16	13-Mar-13	Req	0.09	Req										
1307159	G17	13-Mar-13	Req	0.10	Req										
1307160	G19	12-Mar-13	Req	0.08	Req										
1307161	G20	12-Mar-13	Req	0.08	Req										
1307162	G21	12-Mar-13	Req	0.11	Req										
1307163	G22	12-Mar-13	Req	0.09	Req										
1307164	G23	12-Mar-13	Req	0.14	Req										
1307165	G24	12-Mar-13	Req	0.27	Req										
1307166	G25	12-Mar-13	Req	0.08	Req										
1307167	G26	12-Mar-13	Req	0.15	Req										
1307168	G27	13-Mar-13	Req	0.14	Req										
1307169	G28	13-Mar-13	Req	0.12	Req										
1307151	G3	13-Mar-13	Req	0.14	Req										
1307152	G 5	13-Mar-13	Req	0.11	Req										
1307153	G 7	13-Mar-13	Req	0.09	Req										
1307154	G 9	13-Mar-13	Req	0.09	Req										
	ESG environmental Scientifics Group			Client Name EnviroCentre Ltd Contact [Redacte							Soil Sample Analysis				
E	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400		Whiteness Grabs							Date Printed 09-Apr-20 Report Number EFS/13167 Table Number			9-Apr-2013 S/131671M 1		
	Fax +44 (0) 1283 554422														

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G1 Job Number: S13_1671M LIMS ID Number: CL1307150 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.65	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	98
Phenanthrene-d10	99
Chrysene-d12	101
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	86
Terphenyl-d14	73

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G3 S13_1671M LIMS ID Number: CL1307151 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	ı	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	1	< 0.09	-	UM
Fluorene	86-73-7	1	< 0.09	-	UM
Phenanthrene	85-01-8	5.49	0.10	96	UM
Anthracene	120-12-7	1	< 0.09	-	U
Fluoranthene	206-44-0	6.79	0.32	80	UM
Pyrene	129-00-0	7.07	0.27	91	UM
Benzo[a]anthracene	56-55-3	8.72	0.16	95	UM
Chrysene	218-01-9	8.77	0.16	93	UM
Benzo[b]fluoranthene	205-99-2	10.24	0.13	89	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	10.66	0.13	94	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 2.09	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	98
Phenanthrene-d10	99
Chrysene-d12	102
Perylene-d12	98

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G5 S13_1671M LIMS ID Number: CL1307152 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.54	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	97
Phenanthrene-d10	99
Chrysene-d12	98
Perylene-d12	95

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G7 S13_1671M LIMS ID Number: CL1307153 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.59	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	100
Acenaphthene-d10	99
Phenanthrene-d10	101
Chrysene-d12	103
Perylene-d12	99

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	90
Terphenyl-d14	78

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G9 S13_1671M LIMS ID Number: CL1307154 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.56	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	95
Phenanthrene-d10	96
Chrysene-d12	93
Perylene-d12	90

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G11 S13_1671M LIMS ID Number: CL1307155 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	ı	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	1	< 0.10	-	UM
Fluorene	86-73-7	1	< 0.10	-	UM
Phenanthrene	85-01-8	1	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	1	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.58	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	97
Phenanthrene-d10	98
Chrysene-d12	95
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	94

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G13 S13_1671M LIMS ID Number: CL1307156 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.54	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	98
Acenaphthene-d10	98
Phenanthrene-d10	100
Chrysene-d12	97
Perylene-d12	91

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G15 S13_1671M LIMS ID Number: CL1307157 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	1	< 0.10	-	UM
Fluorene	86-73-7	1	< 0.10	-	UM
Phenanthrene	85-01-8	1	< 0.10	-	UM
Anthracene	120-12-7	1	< 0.10	-	U
Fluoranthene	206-44-0	1	< 0.10	-	UM
Pyrene	129-00-0	1	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	ı	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.54	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	90
Acenaphthene-d10	91
Phenanthrene-d10	91
Chrysene-d12	85
Perylene-d12	79

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	90

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G16 S13_1671M LIMS ID Number: CL1307158 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	•	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.55	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	97
Acenaphthene-d10	97
Phenanthrene-d10	97
Chrysene-d12	98
Perylene-d12	92

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	96
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G17 S13_1671M LIMS ID Number: CL1307159 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.56	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	97
Acenaphthene-d10	98
Phenanthrene-d10	99
Chrysene-d12	97
Perylene-d12	90

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G19 S13_1671M LIMS ID Number: CL1307160 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	ı	< 0.09	-	UM
Fluorene	86-73-7	ı	< 0.09	-	UM
Phenanthrene	85-01-8	ı	< 0.09	-	UM
Anthracene	120-12-7	ı	< 0.09	-	U
Fluoranthene	206-44-0	ı	< 0.09	-	UM
Pyrene	129-00-0	ı	< 0.09	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.09	ı	UM
Chrysene	218-01-9	ı	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	ı	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	ı	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	ı	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	ı	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 1.49	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	94
Acenaphthene-d10	95
Phenanthrene-d10	95
Chrysene-d12	92
Perylene-d12	85

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G20 Job Number: S13_1671M LIMS ID Number: CL1307161 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File: Initial Calibration Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.57	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	97
Acenaphthene-d10	97
Phenanthrene-d10	95
Chrysene-d12	98
Perylene-d12	93

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	96

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G21 Job Number: S13_1671M LIMS ID Number: CL1307162 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	ı	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	1	< 0.10	-	UM
Fluorene	86-73-7	1	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	1	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	1	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.57	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	96
Phenanthrene-d10	96
Chrysene-d12	96
Perylene-d12	92

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	94

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G22 S13_1671M LIMS ID Number: CL1307163 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	•	UM
Fluorene	86-73-7	-	< 0.10	•	UM
Phenanthrene	85-01-8	-	< 0.10	•	UM
Anthracene	120-12-7	-	< 0.10	•	U
Fluoranthene	206-44-0	-	< 0.10	•	UM
Pyrene	129-00-0	1	< 0.10	1	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	•	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	•	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	•	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	1	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	•	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.56	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	96
Acenaphthene-d10	95
Phenanthrene-d10	94
Chrysene-d12	92
Perylene-d12	84

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G23 S13_1671M 15-Mar-13 LIMS ID Number: CL1307164 Date Booked in: **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	1	< 0.10	1	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	•	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	1	UM
Dibenzo[a,h]anthracene	53-70-3	1	< 0.10	1	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.62	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	93
Phenanthrene-d10	93
Chrysene-d12	95
Perylene-d12	88

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	96

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G24 Job Number: S13_1671M LIMS ID Number: CL1307165 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	1	< 0.10	•	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	•	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.63	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	94
Phenanthrene-d10	95
Chrysene-d12	93
Perylene-d12	88

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G25 Job Number: S13_1671M LIMS ID Number: CL1307166 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	ı	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	1	< 0.10	-	UM
Fluorene	86-73-7	1	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	1	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	1	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.55	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	95
Phenanthrene-d10	95
Chrysene-d12	87
Perylene-d12	78

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	90

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G26 S13_1671M LIMS ID Number: CL1307167 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File: Initial Calibration Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	1	< 0.10	-	UM
Fluorene	86-73-7	1	< 0.10	-	UM
Phenanthrene	85-01-8	1	< 0.10	-	UM
Anthracene	120-12-7	1	< 0.10	-	U
Fluoranthene	206-44-0	1	< 0.10	-	UM
Pyrene	129-00-0	1	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	ı	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.61	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	94
Phenanthrene-d10	94
Chrysene-d12	92
Perylene-d12	83

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	93

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: Job Number: G27 S13_1671M LIMS ID Number: CL1307168 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	-	< 0.10	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.10	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.59	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	94
Phenanthrene-d10	94
Chrysene-d12	88
Perylene-d12	80

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	91

Concentrations are reported on a dry weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G28 Job Number: S13_1671M LIMS ID Number: CL1307169 Date Booked in: 15-Mar-13 **QC Batch Number:** 130237 **Date Extracted:** 20-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 21-Mar-13 Directory: 2013PAHMS14\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	-	< 0.10	-	UM
Anthracene	120-12-7	-	< 0.10	-	U
Fluoranthene	206-44-0	-	< 0.10	-	UM
Pyrene	129-00-0	1	< 0.10	•	UM
Benzo[a]anthracene	56-55-3	ı	< 0.10	-	UM
Chrysene	218-01-9	-	< 0.10	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.10	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.10	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.10	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.10	•	UM
Dibenzo[a,h]anthracene	53-70-3	1	< 0.10	•	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.10	-	UM
Total (USEPA16) PAHs	-	-	< 1.58	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	95
Acenaphthene-d10	95
Phenanthrene-d10	96
Chrysene-d12	91
Perylene-d12	81

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	98
Terphenyl-d14	92

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

SOIL

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs Matrix:

Job Number:S13_1671MDate Booked in:15-Mar-13QC Batch Number:130066Date Extracted:21-Mar-13

Directory: 0321PCB.GC8 Date Analysed: 25-Mar-13

Method: Ultrasonic
Accreditation code: N

		Concentration, (μg/kg)						
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1307150	G1	<5.02	<5.02	<5.02	<5.02	<5.02	<5.02	<5.02
* CL1307151	G3	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98
* CL1307152	G5	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96
* CL1307153	G7	<5.02	<5.02	<5.02	<5.02	<5.02	<5.02	<5.02
* CL1307154	G9	<5.01	<5.01	<5.01	<5.01	<5.01	<5.01	<5.01
* CL1307155	G11	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98
* CL1307156	G13	<4.92	<4.92	<4.92	<4.92	<4.92	<4.92	<4.92
* CL1307157	G15	<5.25	<5.25	<5.25	<5.25	<5.25	<5.25	<5.25
* CL1307158	G16	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95
* CL1307159	G17	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96	<4.96
* CL1307160	G19	<4.90	<4.90	<4.90	<4.90	<4.90	<4.90	<4.90
* CL1307161	G20	<5.04	<5.04	<5.04	<5.04	<5.04	<5.04	<5.04
* CL1307162	G21	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98	<4.98
* CL1307163	G22	<4.97	<4.97	<4.97	<4.97	<4.97	<4.97	<4.97
* CL1307164	G23	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00
* CL1307165	G24	<5.10	<5.10	<5.10	<5.10	<5.10	<5.10	<5.10
* CL1307166	G25	<5.05	<5.05	<5.05	<5.05	<5.05	<5.05	<5.05
* CL1307167	G26	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99
* CL1307168	G27	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95	<4.95

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Job Number: S131671

Sampled by: Client
Sampled from: Site
Supplier: Client
Source: Site

Site:

Description: Grey brown SAND

Specification: Not Required

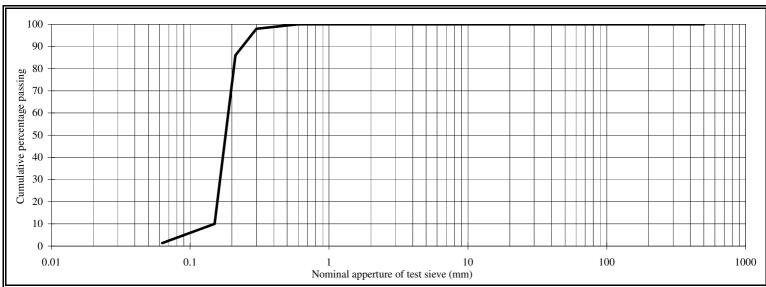
Comments:

Report No:	50171428/13/01
Batch Number:	DAM0040487
ob Dof:	45190904

Lab Ref: 45180804

Client Ref: S1307150 Location: G1

 Date Sampled:
 13.03.13


 Date Received:
 21.03.13

 Date Tested:
 03.04.13

Disturbed

Sample Type: Dist Sample Mass (kg): 0.8

SIEVE ANALYSIS			
BS Sieve			
(mm)	(%)	Specification	
500	100		
300	100		
125	100		
100	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.600	100		
0.425	99		
0.300	98		
0.212	86		
0.150	10		
0.063	1.4		

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation:

BS 1377 - 1 & 2: 1990

Page: 1 of 1 Date: 08.04.13

-

Signed:

[Redacted]

[] [Reda - Section Manager _[√ [Redacte - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Daventry Northants NN11 8RR

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

50171428/13/02

DAM0040487

45180805

S1307151 G3

13.03.13

21.03.13

03.04.13

Disturbed

0001

Determination of Particle Size Distribution

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg): 0.5

Location:

Batch Number:

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey gravelly SAND

Specification: Not Required

Comments:

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	90	
6.3	72	
5	62	
3.35	52	
2	46	
1.18	45	
0.600	45	
1		1

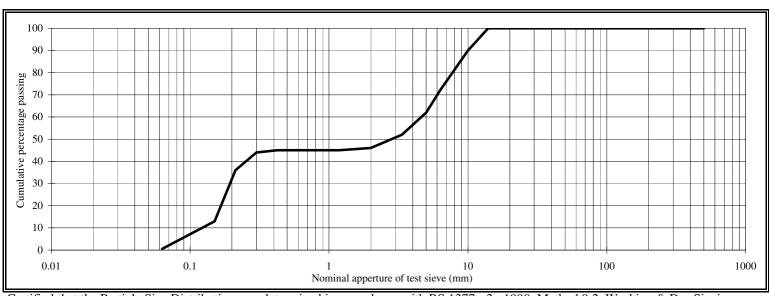
0.425

0.300

0.212

0.150

0.063


45

44

36

13

0.6

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13 [Redacted]

Signed:

] [Reda - Section Manager Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/03

DAM0040487

45180806

S1307152 G5

13.03.13

21.03.13

03.04.13

Disturbed

1.1

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg):

Location:

Batch Number:

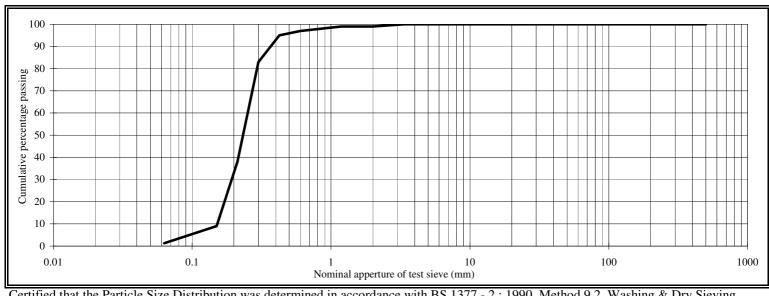
Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671


Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	99	
1.18	99	
0.600	97	
0.425	95	
0.300	83	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13 [Redacted]

Signed:

] [Reda - Section Manager Redact - Laboratory Manager

0.212

0.150

0.063

38

9

1.3

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Date Tested:

Sample Type:

Sample Mass (kg): 1

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required


Comments:

Report No:	50171428/13/04
Batch Number:	DAM0040487
Lab Ref:	45180807
Client Ref:	S1307153
Location:	G7
Date Sampled:	13.03.13
Date Received:	21.03.13

03.04.13

Disturbed

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	98	
14	98	
10	97	
6.3	96	
5	96	
3.35	96	
2	96	
1.18	95	
0.600	95	
0.425	95	
0.300	94	
0.212	77	
0.150	14	
0.063	1.2	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13

Signed:

[Redacted]

[] [Reda - Section Manager

[Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

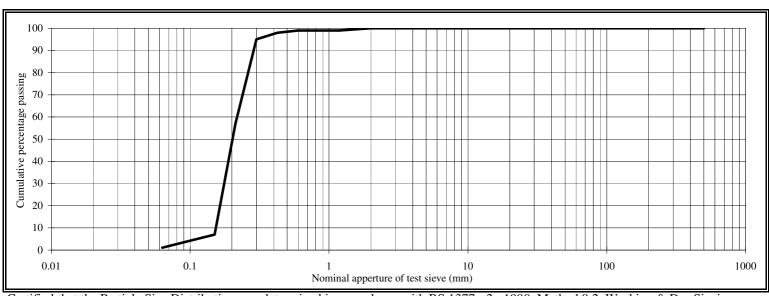
Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:


Report No:	50171428/13/05
Batch Number:	DAM0040487
Lab Ref:	45180808

Client Ref: S1307154 Location: G9

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 03.04.13 Disturbed Sample Type:

Sample Mass (kg): 1.2

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	99	
0.600	99	
0.425	98	
0.300	95	
0.212	57	
0.150	7	
0.063	1.1	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted] [Redact Section Manager Page: 1 of 1 [| Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

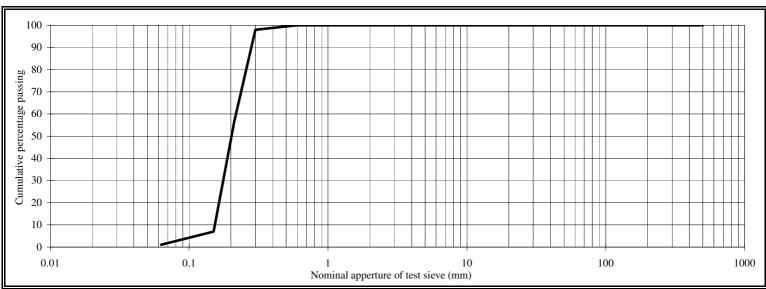
Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

Report No:	50171428/13/06
Batch Number:	DAM0040487
Lab Ref:	45180809


Client Ref: S1307155

Location: G11

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 03.04.13 Sample Type: Disturbed

Sample Mass (kg): 1.2

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	100	
0.425	99	
0.300	98	
0.212	57	
0.150	7	
0.063	1.1	
·	-	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

[] [Reda - Section Manager Page: 1 of 1 [| Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

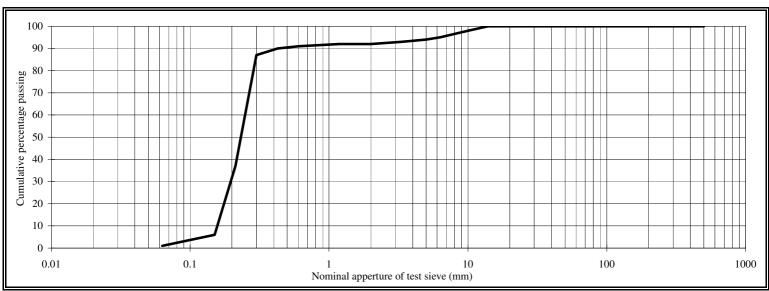
Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

Report No:	50171428/13/07
Batch Number:	DAM0040487
Lab Ref:	45180810


Client Ref: S1307156

Location: G13

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 03.04.13 Disturbed Sample Type:

Sample Mass (kg): 1.2

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	98	
6.3	95	
5	94	
3.35	93	
2	92	
1.18	92	
0.600	91	
0.425	90	
0.300	87	
0.212	37	
0.150	6	
0.063	1.0	
	•	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

[Redacted]

Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Signed: Date: 08.04.13

[] [Reda - Section Manager [Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

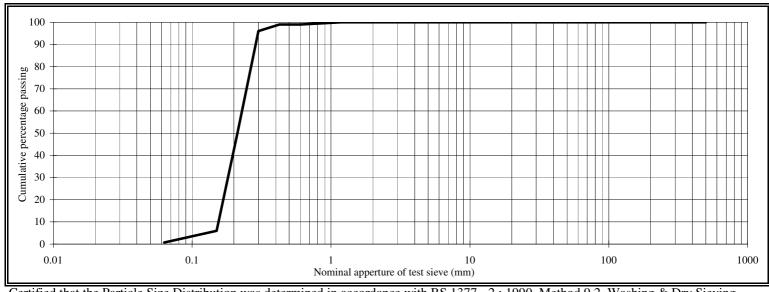
Site: Job Number: \$131671

Sampled by: Client Sampled from: Site Supplier: Client

Source: Site

Description: Brown grey SAND

Specification: Not Required


Comments:

Report No:	50171428/13/08
Batch Number:	DAM0040487
Lab Ref:	45180811
Client Ref:	S1307157
Location:	G15

Date Sampled: 13.03.13
Date Received: 21.03.13
Date Tested: 03.04.13
Sample Type: Disturbed

Sample Type: District Sample Mass (kg): 1.1

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	99	
0.425	99	
0.300	96	
0.212	50	
0.150	6	
0.063	0.7	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation:

BS 1377 - 1 & 2: 1990

[Redacted]

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

SIEVE ANALYSIS

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

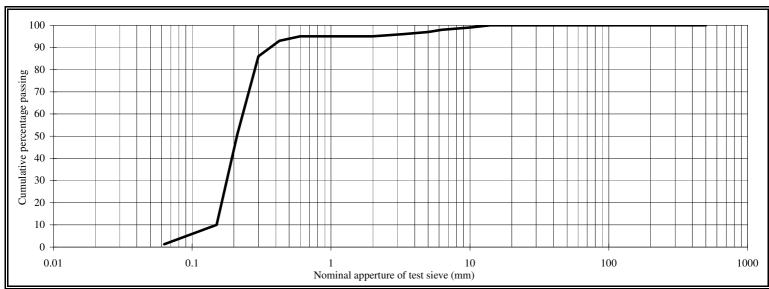
Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site


Description: Brown grey SAND

Specification: Not Required

Comments:

Report No:	50171428/13/09
Batch Number:	DAM0040487
Lab Ref:	45180812
Client Ref:	S1307158
Location:	G16

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 03.04.13 Sample Type: Disturbed Sample Mass (kg): 1.2

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

Page: 1 of 1 [Redac - Section Manager [Redacte - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

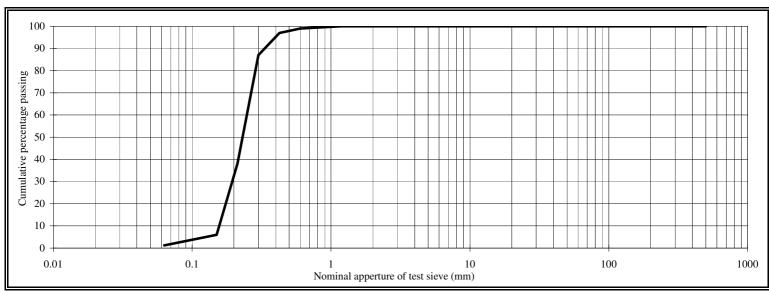
Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Brown grey SAND


Specification: Not Required

Comments:

Description:

Report No:	50171428/13/10
Batch Number:	DAM0040487
Lab Ref:	45180813
Client Ref:	\$1307159
Location:	G17
Date Sampled:	13.03.13
Date Received:	21.03.13
Date Tested:	03.04.13
Sample Type:	Disturbed
Sample Mass (kg):	0.9

SIEVE ANALYSIS		
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	Specification
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	99	
0.425	97	
0.300	87	
0.212	38	
0.150	6	
0.063	1.2	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13

Signed:

[Redacted]

[] [Reda - Section Manager [| Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client

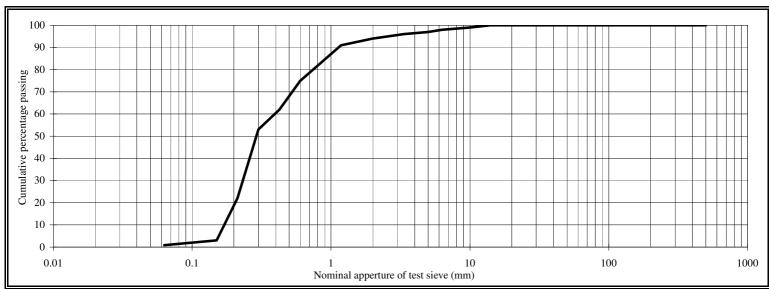
Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

Report No:	50171428/13/11
Batch Number:	DAM0040487
Lab Ref:	45180814


Client Ref: S1307160

Location: G19

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 03.04.13 Sample Type: Disturbed

Sample Mass (kg): 1.3

BS Sieve (mm) Passing (%) Material Specification 500 100 300 100 125 100	1
500 100 300 100	1
300 100	
125 100	
123 100	
100 100	
90 100	
75 100	
63 100	
50 100	
37.5 100	
28 100	
20 100	
14 100	
10 99	
6.3 98	
5 97	
3.35 96	
2 94	
1.18 91	
0.600 75	
0.425 62	
0.300 53	
0.212 22	
0.150 3	
0.063 0.9	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

] [Reda - Section Manager Page: 1 of 1 [Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/12

DAM0040487

45180815

S1307161

13.03.13

21.03.13

03.04.13

Disturbed

G20

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg): 0.7

Location:

Batch Number:

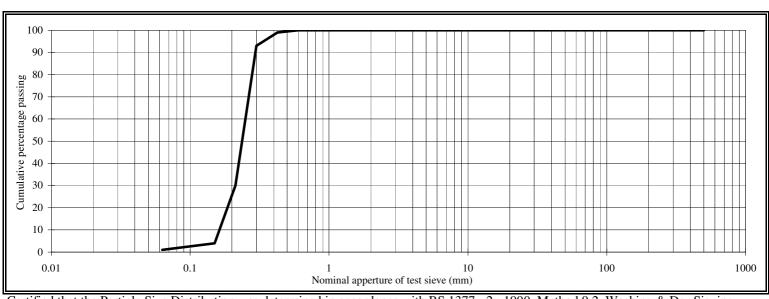
Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671


Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

ſ	SIEVE ANALYSIS		
	BS Sieve	Passing	Material
	(mm)	(%)	Specification
	500	100	
	300	100	
	125	100	
	100	100	
	90	100	
	75	100	
	63	100	
	50	100	
	37.5	100	
	28	100	
	20	100	
	14	100	
	10	100	
	6.3	100	
	5	100	
	3.35	100	
	2	100	
	1.18	100	
	0.600	100	
	0.425	99	
	0.300	93	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation:

BS 1377 - 1 & 2: 1990

Page: 1 of 1 Date: 08.04.13 [Redacted]

Signed:

[] [Reda - Section Manager [√] [Redact - Laboratory Manager

0.212

0.150

0.063

30

4 1.0

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/13

DAM0040487

45180816

S1307162

13.03.13

21.03.13

03.04.13

Disturbed

G21

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg): 0.9

Location:

Batch Number:

Client: Scientifics Ltd Client Address: PO Box 100

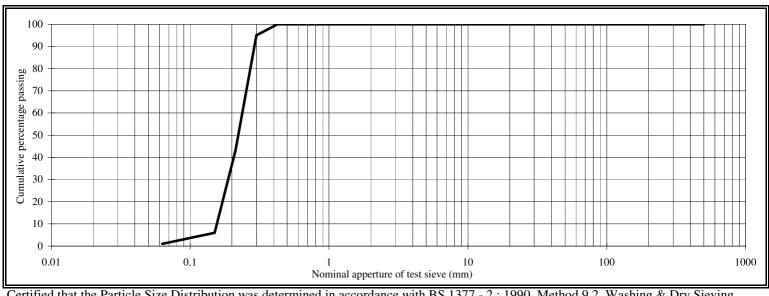
Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Client Supplier:


Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

S	SIEVE ANA	ALYSIS
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	100	
0.425	100	
•		

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13 [Redacted]

Signed:

0.300

0.212

0.150

0.063

95

43

6 1.0

] [Reda - Section Manager [Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/14

DAM0040487

45180817

S1307163

13.03.13

21.03.13

28.03.13

Disturbed

G22

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg):

Location:

Batch Number:

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

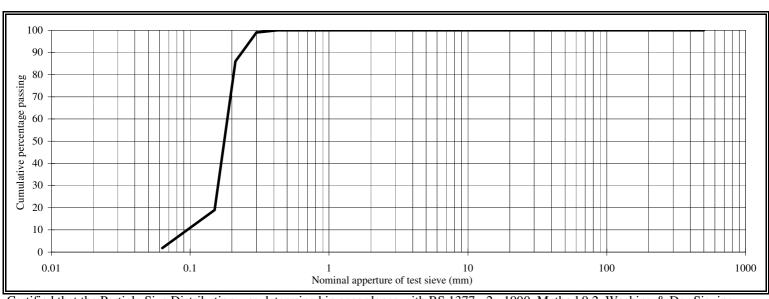
S	SIEVE ANA	ALYSIS
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	100	

100

99

86

19


1.8

0.425

0.300 0.212

0.150

0.063

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Signed: Date: 08.04.13

[Redacted]

[Redac - Section Manager Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Report No:

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

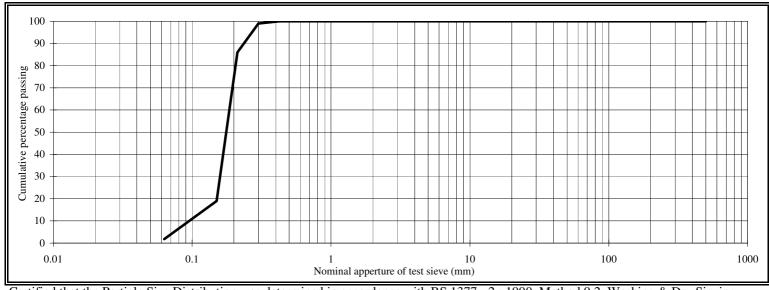
Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required


Comments:

Batch Number: Lab Ref:	DAM0040487 45180817	F
Client Ref: Location:	S1307163 G22	
Date Sampled:	13.03.13	

50171428/13/14

Date Sampled:	13.03.13
Date Received:	21.03.13
Date Tested:	28.03.13
Sample Type:	Disturbed
Sample Mass (kg):	1

	SIEVE ANA	
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	100	
0.425	100	
0.300	99	
0.212	86	
0.150	19	
0.063	1.8	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted] Page: 1 of 1 [] [Reda - Section Manager Signed: | Redact - Laboratory Manager Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/15

DAM0040487

45180818

S1307164

13.03.13

21.03.13

03.04.13

Disturbed

1.2

G23

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg):

Location:

Batch Number:

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

S	SIEVE ANA	ALYSIS
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	99	

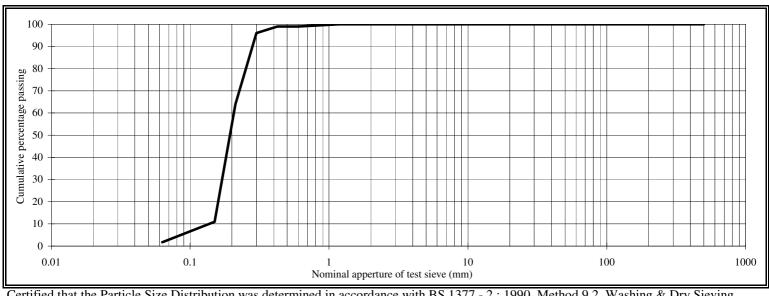
99

96

64

11

1.7


0.425

0.300

0.212

0.150

0.063

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

Page: 1 of 1 Signed: Date: 08.04.13

[Redac - Section Manager Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

S1307165

13.03.13

21.03.13

05.04.13

Disturbed

G24

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg): 0.8

Location:

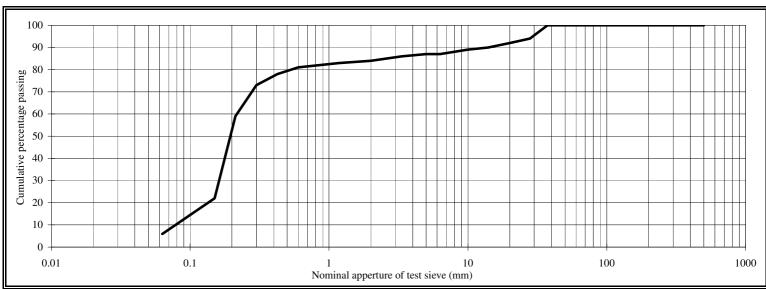
Client: Scientifics Ltd Report No: 50171428/13/16 Client Address: PO Box 100 Batch Number: DAM0040487 Ashby Road, Burton on Trent, Lab Ref: 45180819

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671

Sampled by: Client Sampled from: Site Client Supplier: Source:


Site

Description: Brown grey SAND with occasional Gravel

Specification: Not Required

Comments:

S	SIEVE ANA	ALYSIS
BS Sieve	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	94	
20	92	
14	90	
10	89	
6.3	87	
5	87	
3.35	86	
2	84	
1.18	83	
0.600	81	
0.425	78	
0.300	73	
0.212	59	
0.150	22	
0.063	5.9	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

Page: 1 of 1 Date: 08.04.13

Signed:

[Redacted]

[Redact Section Manager [| Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Date Tested:

Sample Type:

Sample Mass (kg): 0.6

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

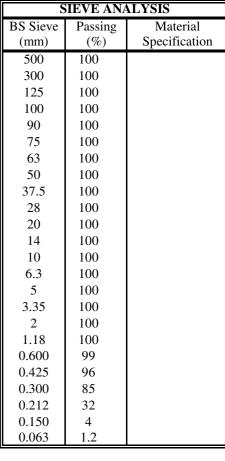
Postcode: DE15 0XD

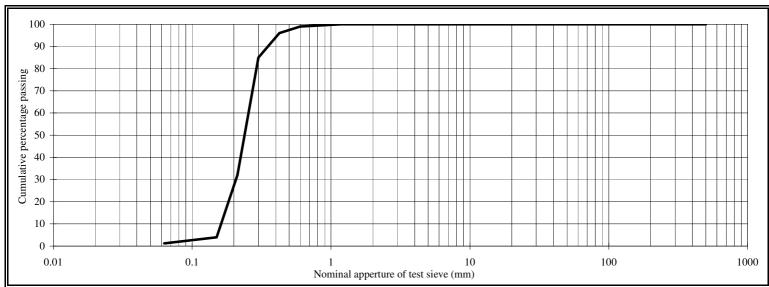
Site: Job Number: S131671

Sampled by: Client

Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND


Specification: Not Required


Comments:

Report No: Batch Number: Lab Ref:	50171428/13/17 DAM0040487 45180820	I
Client Ref: Location:	S1307166 G25	
Date Sampled: Date Received:	13.03.13 21.03.13	

05.04.13

Disturbed

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted] [Redact Section Manager Page: 1 of 1 [| Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

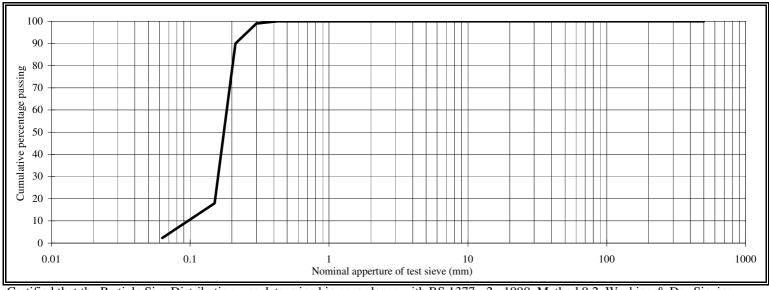
Site: Job Number: S131671

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:


Report No:	50171428/13/18
Batch Number:	DAM0040487
Lab Ref:	45180821

Client Ref: S1307167 Location: G26

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 05.04.13 Disturbed Sample Type:

Sample Mass (kg): 1.1

	S	SIEVE ANA	
	BS Sieve	Passing	Material
L	(mm)	(%)	Specification
	500	100	
	300	100	
	125	100	
	100	100	
	90	100	
	75	100	
	63	100	
	50	100	
	37.5	100	
	28	100	
	20	100	
	14	100	
	10	100	
	6.3	100	
	5	100	
	3.35	100	
	2	100	
	1.18	100	
	0.600	100	
	0.425	100	
	0.300	99	
	0.212	90	
	0.150	18	
L	0.063	2.3	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

] [Reda - Section Manager Page: 1 of 1 [Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

TEST RE

Determination of Particle Size Distribution

50171428/13/19

DAM0040487

45180822

S1307168

13.03.13

21.03.13

05.04.13

Disturbed

1.4

G27

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg):

Location:

Batch Number:

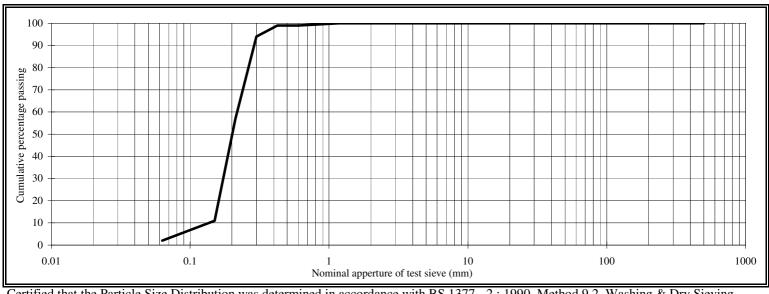
Client: Scientifics Ltd
Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671


Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

C	SIEVE ANA	VI VCIC
BS Sieve		
	Passing	Material
(mm)	(%)	Specification
500	100	
300	100	
125	100	
100	100	
90	100	
75	100	
63	100	
50	100	
37.5	100	
28	100	
20	100	
14	100	
10	100	
6.3	100	
5	100	
3.35	100	
2	100	
1.18	100	
0.600	99	
0.425	99	
0.300	94	
0.212	57	
0.150	11	
0.063	2.0	

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving

Method of Preparation: BS 1377 - 1 & 2 : 1990

Page: 1 of 1
Date: 08.04.13

Signed:

For and on behalf of Environmental Scientifics Group

[Redacted]

[] [Reda - Section Manager [√] [Redact - Laboratory Manager

ASBESTOS ANALYSIS RESULTS - SOIL ANALYSIS

UKAS TESTING

Detection limit of Method SCI-ASB-020 is 0.001%

ESG Asbestos limited Certificate of Analysis for Asbestos in Soils

Sampling has been carried out by client

Client:	•		ESG Enviro	nmental Chen	nistry	•	•	•	Page 1 of 2						
Address:			Etwall Hous	e, Bretby Busi	iness Park, A	shby Road, Burt	ton upon Trent		Report No:	ANO-0488-5765					
For the atten	tion of:		EnviroCenti	e Ltd				Report Date:	26/03/2013						
Site Address	:								Project Number: S131671						
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)	Weight of <2mm Fraction (g)	Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Asbestos by weight of Total Dried Sample		Asbestos Fibre Types Identified					
CL/1307150	13/03/13	G1	25/03/2013					Screen Only		NADIS					
CL/1307151	13/03/13	G3	25/03/2013					Screen Only		NADIS					
CL/1307152	13/03/13	G5	25/03/2013					Screen Only		NADIS					
CL/1307153	13/03/13	G7	25/03/2013					Screen Only		NADIS					
CL/1307154	13/03/13	G9	25/03/2013					Screen Only		NADIS					
CL/1307155	13/03/13	G11	25/03/2013					Screen Only		NADIS					
CL/1307156	12/03/13	G13	25/03/2013					Screen Only		NADIS					
CL/1307157	12/03/13	G15	25/03/2013					Screen Only		NADIS					
CL/1307158	13/03/13	G16	25/03/2013					Screen Only		NADIS					
CL/1307159	13/03/13	G17	25/03/2013					Screen Only		NADIS					
CL/1307160	12/03/13	G19	25/03/2013					Screen Only		NADIS					
CL/1307161	12/03/13	G20	25/03/2013					Screen Only		NADIS					
CL/1307162	12/03/13	G21	25/03/2013					Screen Only		NADIS					
CL/1307163	12/03/13	G22	25/03/2013					Screen Only		NADIS					
CL/1307164	12/03/13	G23	25/03/2013					Screen Only		NADIS					
CL/1307165	12/03/13	G24	25/03/2013					Screen Only NADIS							
CL/1307166	12/03/13	G25	25/03/2013					Screen Only		NADIS					
CL/1307167	12/03/13	G26	25/03/2013					Screen Only		NADIS					
CL/1307168	13/03/13	G27	25/03/2013		Screen Only NADIS										
CL/1307169	13/03/13	G28	25/03/2013					Screen Only		NADIS					
Ke	NAACR = Not Analysed at Clients Request Keys			t .	NAIIS = No Asbe	estos Identified in Sa	ample (Screens Only)	Name:	[Redact	Authorised Signatory:				
	NADIS = No Asbestos Detected in Sample (ID & Quant Only					Quant Only)	Position:	Lab Project Manager	[Redacted]						

The sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 - November 1997 (withdrawn). Fibre identification was carried out using ESG Asbestos Limited in house method of transmitted/polarised light microscopy and centre stop dispersion staining (SCI-ASB-007), based on HSE's HSG 248. The analysis of fine fraction for asbestos content only includes fibres and does not discriminate non-asbestos fibres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out at ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0XD, UKAS Laboratory Number 1089.

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

50171428/13/20

DAM0040487

45180823

S1307169

13.03.13

21.03.13

05.04.13

Disturbed

G28

Report No:

Lab Ref:

Client Ref:

Date Sampled:

Date Received:

Date Tested:

Sample Type:

Sample Mass (kg): 0.9

Location:

Batch Number:

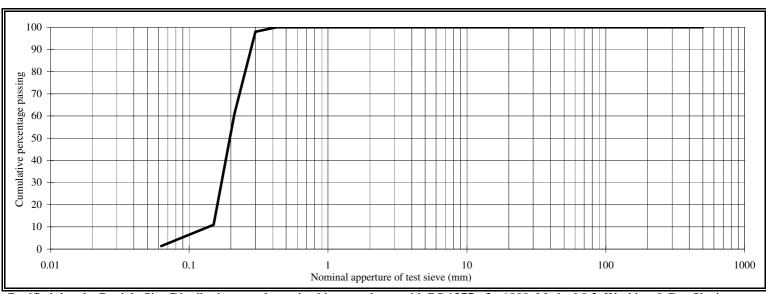
Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131671


Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey SAND

Specification: Not Required

Comments:

S	SIEVE ANALYSIS									
BS Sieve	Passing	Material								
(mm)	(%)	Specification								
500	100									
300	100									
125	100									
100	100									
90	100									
75	100									
63	100									
50	100									
37.5	100									
28	100									
20	100									
14	100									
10	100									
6.3	100									
5	100									
3.35	100									
2	100									
1.18	100									
0.600	100									
0.425	100									
0.300	98									
0.212	61									
0.150	11									
0.063	1 4									

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

Page: 1 of 1 Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

] [Reda - Section Manager [| Redact - Laboratory Manager

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site **Whiteness Grabs Report No** S131671

Consignment No S34150 Date Logged 15-Mar-2013

Report Due 25-Mar-2013

		MethodID	AMMAR	CustServ	ICPMSS								MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	Sub002a	Sub005			Sub018	TMSS	WSLM59
ID Number	Description	Sampled	Exchange.Ammonium AR	REPORT A	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	MCertS Analysis	PAH (16) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	^Asbestos Screen	^DibutyItin	^TributyItin	^Triphenyltin	^Particle Size Dist	Tot.Moisture @ 105C	Total Organic Carbon
		to ISO17025	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓					✓	
CL/1307150	G1	13/03/13																					
CL/1307151	G3	13/03/13																					
CL/1307152	G5	13/03/13																					
CL/1307153	G7	13/03/13																					
CL/1307154	G9	13/03/13																					
CL/1307155	G11	13/03/13																					
CL/1307156	G13	12/03/13																					
CL/1307157	G15	12/03/13																					
CL/1307158	G16	13/03/13																					
CL/1307159	G17	13/03/13																					
CL/1307160	G19	12/03/13																					
CL/1307161	G20	12/03/13																					
CL/1307162	G21	12/03/13																					
CL/1307163	G22	12/03/13																					
CL/1307164	G23	12/03/13																					

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report No

S131671

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site **Whiteness Grabs** Consignment No S34150 Date Logged 15-Mar-2013

S131671

Report Due 25-Mar-2013

		MethodID	AMMAR	CustServ	ICPMSS		·						MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	Sub002a	Sub005			Sub018	TMSS	WSLM59
ID Number	Description	Sampled	Exchange.Ammonium AR	REPORT A	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	MCertS Analysis	PAH (16) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	^Asbestos Screen	^DibutyItin	^TributyItin	^Triphenyltin	^Particle Size Dist	Tot.Moisture @ 105C	Total Organic Carbon
	Accredited	to ISO17025	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓					✓	
	G24	12/03/13																					
	G25	12/03/13																					
	G26	12/03/13																					
	G27	13/03/13																					
CL/1307169	G28	13/03/13																					

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/131671

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	AMMAR	As Received	Determination of Exchangeable Ammonium in Soil using potassium chloride extraction, discrete colorimetric detection
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile

CR Denotes Crocidolite

AM Denotes Amosite

NAIIS No Asbestos Identified in Sample

NADIS No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client: EnviroCentre Ltd
Site: Whiteness Grabs
Report Number: S13_1671M

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1307150	G1	Brown SAND
CL/1307151	G3	Grey Stone SILT
CL/1307152	G5	Brown SAND
CL/1307153	G7	Brown SAND
CL/1307154	G9	Brown SAND
CL/1307155	G11	Brown SAND
CL/1307156	G13	Brown Stone SAND
CL/1307157	G15	Brown Stone SAND
CL/1307158	G16	Brown Stone SAND
CL/1307159	G17	Grey SAND
CL/1307160	G19	Brown Stone SILT
CL/1307161	G20	Brown SAND
CL/1307162	G21	Brown SAND
CL/1307163	G22	Brown SAND
CL/1307164	G23	Grey SAND
CL/1307165	G24	Grey Stone SAND
CL/1307166	G25	Brown SAND
CL/1307167	G26	Grey SAND
CL/1307168	G27	Grey SAND
CL/1307169	G28	Brown SAND

Our Ref: EFS/131670M (Ver. 4)

Your Ref: 363854j

April 9, 2013

[Redacted] EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Environmental Chemistry

FS

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention o [Redacted]

Dear [Redacte

Soil Sample Analysis - Whiteness Grabs

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 26/04/13 when they will be discarded. Please call 01283 554467 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for FSG [Redacted]

Project Co-ordinator

[Redacted]

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/131670M (Ver. 4)

EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Site: Whiteness Grabs

The 1 sample described in this report were registered for analysis by ESG on 15-Mar-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Apr-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of PCB Congener Results (Page 5)
Particle Size Distribution (Page 6)
Table of Asbestos Screening Results (Page 7)
Analytical and Deviating Sample Overview (Page 8)
Table of Method Descriptions (Page 9)
Table of Report Notes (Page 10)
Table of Sample Descriptions (Appendix A Page 1 of 1)

[Redacted]

On behalf o

ESG: Date of Issue: 09-Apr-2013

[Redacted] Operations Director

Laboratory and Analytical Business

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS)

Tests marked '^' have been subcontracted to another laboratory.

(NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS.

All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

		Method Codes: AMMAR ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS ICPMSS PHSOIL Sub002a TMS		% TMSS 0.2	μg/kg PCBUSECDAR	ug/kg Sub005 5	ug/kg Sub005 5	ug/kg Sub005 20										
	Accreditati		UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	U	U		N	N	N
LAB ID Number CL/	Client Sample Description	Sample Date	Exchange.Ammonium AR	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	pH units (AR)	^Asbestos Screen	Tot.Moisture @ 105C	PCB-7 Congeners Analysis	^Dibutyitin	^Tributyltin	^Triphenyltin
1307149	G29	13-Mar-13	15.8	5.7	<0.2	13.3	7.9	10.8	<0.50	7.6	47.6	7.5	NAIIS	47.0	Req	96.2	<56.6	<37.7
	ESG 🔗		Client Name EnviroCentre Ltd Contact [Redacte															
	Environmental Scientifics Group Breitby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422	Date Printed 09-Apr-2013																

		Units :		% M/M	mg/kg											1		
	Method	Codes:	Sub018		PAHMSUS													
	Method Reporting	Limits :		0.02														
	Accreditati	on Code:		N														
LAB ID Number CL/	Client Sample Description	Sample Date	^Particle Size Dist	Total Organic Carbon	PAH (16) by GCMS													
1307149	G29	13-Mar-13	Req	1.31	Req													
	ESG 🔗		Client Name EnviroCentre Ltd									Soil Sa	mple Analysis	3				
	nvironmental Scientifics Group		Contact	ì	[Redact	е							Ι					
	retby Business Park, Ashby Road										Date Pri			09-Apr-2013				
E	Surton-on-Trent, Staffordshire, DE15 0YZ				V	Nhita	nese	Grab	2		Report N		EF:					
	Tel +44 (0) 1283 554400				Y	41116	11633	Jiab	•		Table No	ımber		1				
	Fax +44 (0) 1283 554422																	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

Sample Details: G29 Job Number: S13_1670M LIMS ID Number: CL1307149 Date Booked in: 15-Mar-13 **QC Batch Number:** 130232 **Date Extracted:** 19-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 20-Mar-13 Directory: 1913PAH.GC5\ Matrix: Soil Dilution: 1.0 **Ext Method:** Ultrasonic

Accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.15	-	UM
Acenaphthylene	208-96-8	-	< 0.15	-	U
Acenaphthene	83-32-9	1	< 0.15	-	UM
Fluorene	86-73-7	1	< 0.15	-	UM
Phenanthrene	85-01-8	1	< 0.15	-	UM
Anthracene	120-12-7	1	< 0.15	-	U
Fluoranthene	206-44-0	1	< 0.15	-	UM
Pyrene	129-00-0	1	< 0.15	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.15	-	UM
Chrysene	218-01-9	1	< 0.15	-	UM
Benzo[b]fluoranthene	205-99-2	1	< 0.15	-	UM
Benzo[k]fluoranthene	207-08-9	1	< 0.15	-	UM
Benzo[a]pyrene	50-32-8	1	< 0.15	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	1	< 0.15	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.15	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.15	-	UM
Total (USEPA16) PAHs	-	-	< 2.42	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	140
Acenaphthene-d10	133
Phenanthrene-d10	145
Chrysene-d12	160
Perylene-d12	150

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	104

Concentrations are reported on a dry weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs Matrix: SOIL

 Job Number:
 \$13_1670M
 Date Booked in:
 15-Mar-13

 QC Batch Number:
 130062
 Date Extracted:
 18-Mar-13

 Directory:
 0319PCB.GC8
 Date Analysed:
 19-Mar-13

Method: Ultrasonic

Accreditation code: N

	Concentration, (μg/kg)													
Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180							
G29	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99							
		-												
				Customer ID PCB28 PCB52 PCB101	Customer ID PCB28 PCB52 PCB101 PCB118	Customer ID PCB28 PCB52 PCB101 PCB118 PCB153	Customer ID PCB28 PCB52 PCB101 PCB118 PCB153 PCB138							

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

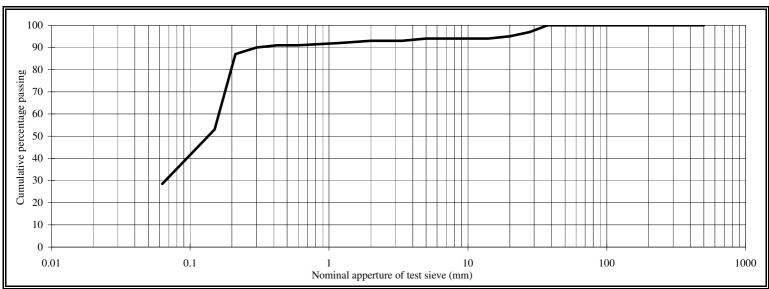
Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131670

Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Brown grey SAND


Specification: Not Required

Comments:

Report No: 50171694/13/01 Batch Number: DAM0040669 Lab Ref: 45181638

G29 Client Ref:

Date Sampled: 13.03.13 Date Received: 21.03.13 Date Tested: 05.04.13 Sample Type: Disturbed Sample Mass (kg): 1.0

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

[Reda - Section Manager Page: 1 of 1 Redact - Laboratory Manager Signed: Date: 08.04.13

For and on behalf of Environmental Scientifics Group

ASBESTOS ANALYSIS RESULTS - SOIL ANALYSIS

Detection limit of Method SCI-ASB-020 is 0.001%

ESG Asbestos limited Certificate of Analysis for Asbestos in Soils

Sampling has been carried out by client

Client:			ESG Enviro	nmental Chen	nistry				Page 1 of 1			
Address:			Etwall Hous	e, Bretby Bus	iness Park, A	shby Road, Burt	on upon Trent		Report No:	ANO-0488-5760		
For the atten	tion of:		EnviroCenti	re Ltd			•	25/03/2013				
Site Address	:						Project Number: S131670					
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)	Weight of <2mm Fraction (g)	Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Asbestos by weight of Total Dried Sample		Asbestos Fibre Ty	pes Identified	
CL/1307149	13/03/13	G29	25/03/2013					Screen Only		NADIS	3	
	_	NAACR = Not Analysed at	Clients Reques	l L	NAIIS = No Asbe	 estos Identified in Sa	mple (Screens Only	<u> </u>)	Name:	[Redact	Authorised Signatory:	
_	Keys					No Asbestos Detec				Lab Project Manager		

The sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 - November 1997 (withdrawn). Fibre identification was carried out using ESG Asbestos Limited in house method of transmitted/polarised light microscopy and centre stop dispersion staining (SCI-ASB-007), based on HSE's HSG 248. The analysis of fine fraction for asbestos content only includes fibres and does not discriminate non-asbestos fibres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out at ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0XD, UKAS Laboratory Number 1089.

S131670

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site **Whiteness Grabs** Consignment No S34150 Date Logged 15-Mar-2013

Report No S131670

Report Due 25-Mar-2013

		MethodID	AMMAR	CustServ	ICPMSS		•			iviai z			MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	Sub002a	Sub005			Sub018	TMSS	WSLM59
ID Number	Description	Sampled	Exchange.Ammonium AR	REPORT A	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	MCertS Analysis	PAH (16) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	^Asbestos Screen	^DibutyItin	^TributyItin	^Triphenyltin	^Particle Size Dist	Tot.Moisture @ 105C	Total Organic Carbon
Accredited to ISO17025			✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓					✓	
CL/1307149	G29	13/03/13																					

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/131670

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	AMMAR	As Received	Determination of Exchangeable Ammonium in Soil using potassium chloride extraction, discrete colorimetric detection
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile

CR Denotes Crocidolite

AM Denotes Amosite

NAIIS No Asbestos Identified in Sample

NADIS No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client: EnviroCentre Ltd
Site: Whiteness Grabs
Report Number: S13_1670M

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1307149	G29	Grey SILT

Our Ref: EFS/131670M (Ver. 3)

Your Ref: 363854j

April 9, 2013

[Redacted] EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Environmental Chemistry

FS(

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of [Redacted]

Dear [Redacte

Soil Sample Analysis - Whiteness Grabs

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 26/04/13 when they will be discarded. Please call 01283 554467 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG [Redacted]

Project Co-ordinator

[Redacted]

TEST REPORT SOIL SAMPLE ANALYSIS

Interim Report Report No. EFS/131670M (Ver. 3)

EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Site: Whiteness Grabs

The 1 sample described in this report were registered for analysis by ESG on 15-Mar-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 09-Apr-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3)
Table of PAH (MS-SIM) (80) Results (Page 4)
Table of PCB Congener Results (Page 5)
Table of Asbestos Screening Results (Page 6)
Analytical and Deviating Sample Overview (Page 7)
Table of Method Descriptions (Page 8)
Table of Report Notes (Page 9)
Table of Sample Descriptions (Appendix A Page 1 of 1)

[Redacted]

On behalf of

ESG: Date of Issue: 09-Apr-2013

[Redacted] Operations Director

Laboratory and Analytical Business

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory.

(NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS.

All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH Units		%	μg/kg	ug/kg	ug/kg	ug/kg
	Method Method Reporting	Codes:	AMMAR 0.5	ICPMSS 0.3	ICPMSS 0.2	ICPMSS 1.2	ICPMSS 1.6	ICPMSS 0.7	ICPMSS 0.5	ICPMSS 2	ICPMSS 16	PHSOIL	Sub002a	TMSS 0.2	PCBUSECDAR	Sub005 5	Sub005 5	Sub005 20
	Method Reporting Accreditation		UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	U	U.2		N S	N N	N N
LAB ID Number CL/	Client Sample Description	Sample Date	Exchange.Ammonium AR	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	pH units (AR)	^Asbestos Screen	Tot.Moisture @ 105C	PCB-7 Congeners Analysis	^Dibutyltin	^TributyItin	^Triphenyltin
1307149	G29	13-Mar-13	15.8	5.7	<0.2	13.3	7.9	10.8	<0.50	7.6	47.6	7.5	NAIIS	47.0	Req	96.2	<56.6	<37.7
	ESG 🚱		Client N			Centre Lt	d					Soil Sample Analysis						
E	prironmental Scientifics Group Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Contact		[Redact	Nhite	ness	Grabs	<u> </u>			Interim Report Date Printed 09-Apr-2013 Report Number EFS/131670M Table Number 1						

	Method	Units :	Sub018	% M/M WSI M59	mg/kg PAHMSUS									
	Method Reporting	Limits:	Oubolo	0.02	17111111000									
	Accreditati	on Code:		N										
LAB ID Number CL/	Client Sample Description	Sample Date	^Particle Size Dist	Total Organic Carbon	PAH (16) by GCMS									
1307149	G29	13-Mar-13		1.31	Req									
													<u> </u>	
	FSG &			ame	Enviro	Centre Lt	d				Soil Sa	imple Analysis	6	
	nvironmental Scientifics Group		Contact		[Redact	e				a		nterim Report		
	Bretby Business Park, Ashby Road									Date Pri			9-Apr-2013	
	Burton-on-Trent, Staffordshire, DE15 0YZ				V	Nhite	ness	Grab	s	Report N		EF	S/131670M	
	Tel +44 (0) 1283 554400				•	7111tG	1000	J. ab.	•	Table Nu	ımber		1	
	Fax +44 (0) 1283 554422													

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs

1.0

Dilution:

Sample Details: G29 Job Number: S13_1670M LIMS ID Number: CL1307149 Date Booked in: 15-Mar-13 **QC Batch Number:** 130232 **Date Extracted:** 19-Mar-13 **Quantitation File:** Initial Calibration **Date Analysed:** 20-Mar-13 Directory: 1913PAH.GC5\ Matrix: Soil

Accredited?: Yes

Ext Method:

Ultrasonic

Target Compounds	CAS#	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.15	-	UM
Acenaphthylene	208-96-8	-	< 0.15	-	U
Acenaphthene	83-32-9	-	< 0.15	-	UM
Fluorene	86-73-7	-	< 0.15	-	UM
Phenanthrene	85-01-8	-	< 0.15	-	UM
Anthracene	120-12-7	-	< 0.15	-	U
Fluoranthene	206-44-0	-	< 0.15	-	UM
Pyrene	129-00-0	-	< 0.15	-	UM
Benzo[a]anthracene	56-55-3	ı	< 0.15	-	UM
Chrysene	218-01-9	-	< 0.15	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.15	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.15	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.15	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.15	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.15	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.15	-	UM
Total (USEPA16) PAHs	-	-	< 2.42	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	140
Acenaphthene-d10	133
Phenanthrene-d10	145
Chrysene-d12	160
Perylene-d12	150

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	104

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: EnviroCentre Ltd: Whiteness Grabs Matrix: SOIL

Job Number:S13_1670MDate Booked in:15-Mar-13QC Batch Number:130062Date Extracted:18-Mar-13Directory:0319PCB.GC8Date Analysed:19-Mar-13

Method: Ultrasonic

Accreditation code: N

		Concentration, (µg/kg)										
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180				
* CL1307149	G29	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99	<4.99				

ASBESTOS ANALYSIS RESULTS - SOIL ANALYSIS

UKAS TIESTING

Detection limit of Method SCI-ASB-020 is 0.001%

ESG Asbestos limited Certificate of Analysis for Asbestos in Soils

Sampling has been carried out by client

Client: ESG Environmental Chemistry								Page 1 of 1			
Address:			Etwall Hous	e, Bretby Bus	iness Park, A	shby Road, Burt	on upon Trent		Report No:	ANO-0488-5760	
or the attent	tion of:		EnviroCenti		•	· ·	•		Report Date:	25/03/2013	
Site Address	:								Project Number:	S131670	
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)		Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Asbestos by weight of Total Dried Sample		pes Identified	
CL/1307149	13/03/13	G29	25/03/2013					Screen Only		NADIS	3
	NAACR = Not Analysed at	Clients Reques	<u> </u>	NAIIS = No Asbe	 estos Identified in Sa	l Imple (Screens Only	<u> </u>)	Name:	[Redact	Authorised Signatory:	
Keys —					NADIS = No Asbestos Detected in Sample (ID & Quant Only)				Position:	Lab Project Manager	[Redacted]

The sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 - November 1997 (withdrawn). Fibre identification was carried out using ESG Asbestos Limited in house method of transmitted/polarised light microscopy and centre stop dispersion staining (SCI-ASB-007), based on HSE's HSG 248. The analysis of fine fraction for asbestos content only includes fibres and does not discriminate non-asbestos fibres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out at ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0XD, UKAS Laboratory Number 1089.

Report No

S131670

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site **Whiteness Grabs** Consignment No S34150 Date Logged 15-Mar-2013

S131670

Report Due 25-Mar-2013

		MethodID	AMMAR	CustServ	ICPMSS		·						MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	Sub002a	Sub005			Sub018	TMSS	WSLM59
ID Number	Description	Sampled	Exchange.Ammonium AR	REPORT A	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	MCertS Analysis	PAH (16) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	^Asbestos Screen	^DibutyItin	^TributyItin	^Triphenyltin	^Particle Size Dist	Tot.Moisture @ 105C	Total Organic Carbon
	Accredited	to ISO17025	✓		✓	1	✓	✓	✓	1	1	1	✓	✓		1	1					✓	
CL/1307149	G29	13/03/13																					

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/131670

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	AMMAR	As Received	Determination of Exchangeable Ammonium in Soil using potassium
			chloride extraction, discrete colorimetric detection
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion
			followed by ICPMS
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid
			digestion followed by high temperature combustion and IR detection
			and in account

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile

CR Denotes Crocidolite

AM Denotes Amosite

NAIIS No Asbestos Identified in Sample

NADIS No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client: EnviroCentre Ltd
Site: Whiteness Grabs
Report Number: S13_1670M

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1307149	G29	Grey SILT

Our Ref: EFS/131009 (Ver. 2)

Your Ref:

March 21, 2013

[Redact EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Environmental Chemistry

ES

Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of [Redact

Dear [Reda

Soil Sample Analysis - Whiteness

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 29/03/13 when they will be discarded. Please call 01283 554467 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG [Redacted]

Project Co-ordinator [Redacted]

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/131009 (Ver. 2)

EnviroCentre Ltd Craighall Business Park 8 Eagle Street Glasgow G4 9XA

Site: Whiteness

The 4 samples described in this report were registered for analysis by ESG on 15-Feb-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 21-Mar-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Table of PAH (MS-SIM) (80) Results (Pages 3 to 6)
Table of PCB Congener Results (Page 7)
Particle Size Distribution Analysis (Pages 8 to 11)
Analytical and Deviating Sample Overview (Page 12)
Table of Method Descriptions (Page 13)
Table of Report Notes (Page 14)

[Redacted]

On behalf of ESG:

[Redacted] Operations Director

Laboratory and Analytical Business

Date of Issue: 21-Mar-2013

Tests marked 'A' have been subcontracted to another laboratory.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	mg/kg	ug/kg	ug/kg	ug/kg		% M/M	mg/kg
		Codes :	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	TMSS	PCBUSECDAR	Sub005	Sub005	Sub005	Sub018	WSLM59	PAHMSUS
	Method Reporting UKAS Acc		0.3 Yes	0.1 Yes	0.5 Yes	0.5 Yes	0.5 Yes	0.1 Yes	0.5 Yes	3 Yes	0.2 Yes	No	5 No	5 No	20 No	No	0.02 No	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	Tot.Moisture @ 105C	PCB-7 Congeners Analysis	^Dibutyltin	^TributyItin	^Triphenyltin	^Particle Size Dist	Total Organic Carbon	PAH (16) by GCMS
1304163	BH10 14.00	05-Feb-13	1.2	<0.1	6.1	1.9	3.8	<0.1	3.2	31.7	20.4	Req	<5.0	43.0	<20.0	Req	0.20	Req
1304164	BH11 0.50	06-Feb-13	1	<0.1	5.7	1.4	2.4	<0.1	2.1	13	3.7	Req	<5.0	41.0	<20.0	Req	0.08	Req
1304166	BH11 14.00	06-Feb-13	1.1	<0.1	4.9	0.9	2.1	<0.1	2.5	28.4	8.4	Req	<5.0	<5.0	<20.0	Req	0.15	Req
1304165	BH11 8.00	06-Feb-13	1.1	<0.1	4.7	0.9	1.8	<0.1	2.7	17.3	16.3	Req	<5.0	<5.0	<20.0	Req	0.08	Req
	Environmental Scientifics Group Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ		Client N		Enviro(Centre Lt						Date Prin	ted	mple A		-Mar-2013 FS/131009		
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422					Wł	nitene	ess				Table Nu				1		

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH10 14.00 Job Number: S13_1009 LIMS ID Number: CL1304163 Date Booked in: 15-Feb-13 **QC Batch Number:** 130124 **Date Extracted:** 18-Feb-13 **Quantitation File:** Initial Calibration **Date Analysed:** 19-Feb-13 **Directory:** 1913PAH.GC5\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.79	0.18	98
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	7.16	0.27	100
Pyrene	129-00-0	7.45	0.19	97
Benzo[a]anthracene	56-55-3	9.16	0.52	98
Chrysene	218-01-9	9.21	0.36	96
Benzo[b]fluoranthene	205-99-2	10.70	0.74	90
Benzo[k]fluoranthene	207-08-9	10.74	0.30	94
Benzo[a]pyrene	50-32-8	11.13	0.55	98
Indeno[1,2,3-cd]pyrene	193-39-5	12.52	0.28	96
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.83	0.26	98
Total (USEPA16) PAHs	-	-	< 4.13	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	88
Acenaphthene-d10	88
Phenanthrene-d10	89
Chrysene-d12	82
Perylene-d12	80

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	106
Terphenyl-d14	90

Concentrations are reported on a wet weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH11 0.50 **Job Number:** S13_1009 LIMS ID Number: CL1304164 Date Booked in: 15-Feb-13 **QC Batch Number:** 130124 **Date Extracted:** 18-Feb-13 **Quantitation File:** Initial Calibration Date Analysed: 19-Feb-13 **Directory:** 1913PAH.GC5\ Matrix: Soil

Directory: 1913PAH.GC5\ Matrix: Soil

Dilution: 1.0 **Ext Method:** Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	5.79	0.10	99
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	7.16	0.11	96
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	9.16	0.21	96
Chrysene	218-01-9	9.21	0.15	97
Benzo[b]fluoranthene	205-99-2	10.70	0.43	92
Benzo[k]fluoranthene	207-08-9	10.74	0.19	91
Benzo[a]pyrene	50-32-8	11.13	0.33	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.52	0.20	98
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.83	0.20	94
Total (USEPA16) PAHs	-	-	< 2.48	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	93
Acenaphthene-d10	90
Phenanthrene-d10	91
Chrysene-d12	83
Perylene-d12	81

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	104
Terphenyl-d14	90

Concentrations are reported on a wet weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH11 8.00 Job Number: S13_1009 LIMS ID Number: CL1304165 Date Booked in: 15-Feb-13 **QC Batch Number:** 130124 **Date Extracted:** 18-Feb-13 **Quantitation File:** Initial Calibration Date Analysed: 19-Feb-13 Directory: 1913PAH.GC5\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	9.16	0.12	92
Chrysene	218-01-9	9.21	0.09	94
Benzo[b]fluoranthene	205-99-2	10.70	0.37	82
Benzo[k]fluoranthene	207-08-9	10.74	0.16	83
Benzo[a]pyrene	50-32-8	11.13	0.28	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.52	0.18	98
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.83	0.16	96
Total (USEPA16) PAHs	-	-	< 2.08	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	88
Acenaphthene-d10	87
Phenanthrene-d10	86
Chrysene-d12	76
Perylene-d12	70

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	83

Concentrations are reported on a wet weight basis.

Customer and Site Details: EnviroCentre Ltd: Whiteness

Sample Details: BH11 14.00 Job Number: S13_1009 LIMS ID Number: CL1304166 Date Booked in: 15-Feb-13 **QC Batch Number:** 130124 **Date Extracted:** 18-Feb-13 **Quantitation File:** Initial Calibration Date Analysed: 19-Feb-13 Directory: 1913PAH.GC5\ Matrix: Soil

Dilution: 1.0 Ext Method: Ultrasonic

UKAS accredited?: Yes

Target Compounds	CAS#	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	1	< 0.08	-
Acenaphthene	83-32-9	1	< 0.08	-
Fluorene	86-73-7	1	< 0.08	-
Phenanthrene	85-01-8	1	< 0.08	-
Anthracene	120-12-7	1	< 0.08	-
Fluoranthene	206-44-0	1	< 0.08	-
Pyrene	129-00-0	1	< 0.08	-
Benzo[a]anthracene	56-55-3	ı	< 0.08	-
Chrysene	218-01-9	1	< 0.08	-
Benzo[b]fluoranthene	205-99-2	10.70	0.28	66
Benzo[k]fluoranthene	207-08-9	10.74	0.12	92
Benzo[a]pyrene	50-32-8	11.13	0.21	99
Indeno[1,2,3-cd]pyrene	193-39-5	12.51	0.16	99
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[g,h,i]perylene	191-24-2	12.83	0.13	98
Total (USEPA16) PAHs	-	-	< 1.78	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	92
Acenaphthene-d10	91
Phenanthrene-d10	92
Chrysene-d12	83
Perylene-d12	79

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	101
Terphenyl-d14	88

Concentrations are reported on a wet weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: EnviroCentre Ltd: Whiteness SOIL

 Job Number:
 S13_1009
 Date Booked in:
 15-Feb-13

 QC Batch Number:
 130035
 Date Extracted:
 18-Feb-13

 Directory:
 0218PCB.GC8
 Date Analysed:
 19-Feb-13

Method: Ultrasonic

* This sample data is not UKAS accredited.

		Concentration, (µg/kg)								
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180		
* CL1304163	BH10 14.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		
* CL1304164	BH11 0.50	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		
* CL1304165	BH11 8.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		
* CL1304166	BH11 14.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

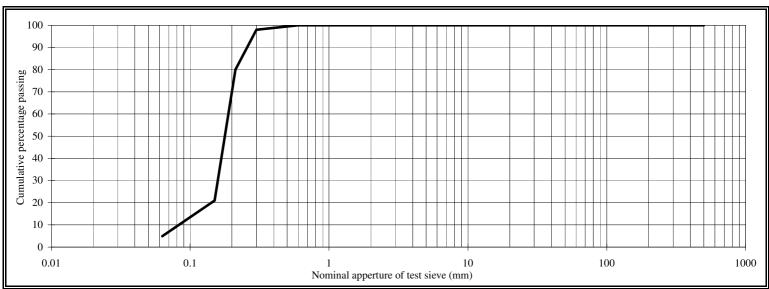
Postcode: DE15 0XD

Site: Job Number: S131009

Sampled by: Client Sampled from: Site Client Supplier: Source: Site

Description: Grey brown SAND

Specification: Not Required


Comments:

Report No:	50170642/13/01
Batch Number:	DAM0040049
Lab Ref:	45178397

Client Ref: S1304163 Location: BH10 Depth (m): 14.00

Date Sampled: Not Advised Date Received: 20.02.13 Date Tested: 22.02.13 Disturbed Sample Type: Sample Mass (kg): 1.2

S	SIEVE ANALYSIS										
BS Sieve	Passing	Material									
(mm)	(%)	Specification									
500	100										
300	100										
125	100										
100	100										
90	100										
75	100										
63	100										
50	100										
37.5	100										
28	100										
20	100										
14	100										
10	100										
6.3	100										
5	100										
3.35	100										
2	100										
1.18	100										
0.600	100										
0.425	99										
0.300	98										
0.212	80										
0.150	21										
0.063	4.9										
											

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

Page: 1 of 1 Signed: Date: 26.02.13

] [Reda - Section Manager Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

TEST

Determination of Particle Size Distribution

Report No:

Sample Type:

Sample Mass (kg): 1.2

Client: Scientifics Ltd
Client Address: PO Box 100

Ashby Road, Burton on Trent,

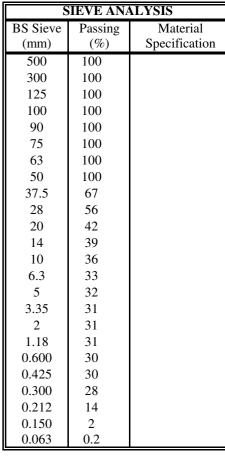
Staffordshire

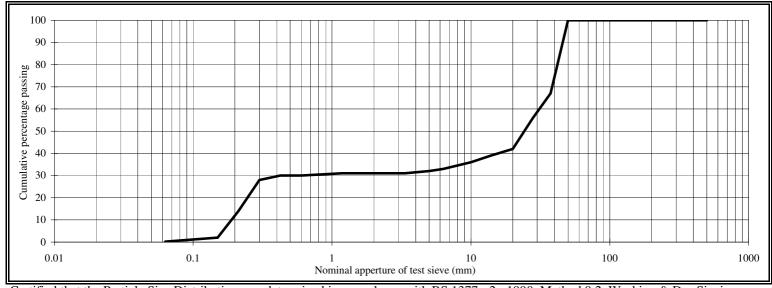
Postcode: DE15 0XD

Site: Job Number: \$131009

Sampled by: Client Sampled from: Site Supplier: Client Source: Site

Description: Brown gravelly SAND


Specification: Not Required


Comments:

Batch Number:	DAM0040049
Lab Ref:	45178398
CII D	01204164
Client Ref:	S1304164
Location:	BH11
Depth (m):	0.50
Data Samplad:	Not Advised
Date Sampled:	110111411504
Date Received:	20.02.13
Date Tested:	22.02.13

50170642/13/02

Disturbed

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation:

BS 1377 - 1 & 2: 1990

[Redacted]

Page: 1 of 1
Date: 26.02.13

Signed:

[] [Reda - Section Manager
[√] [Redact - Laboratory Manager

For and on behalf of Environmental Scientifics Group

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

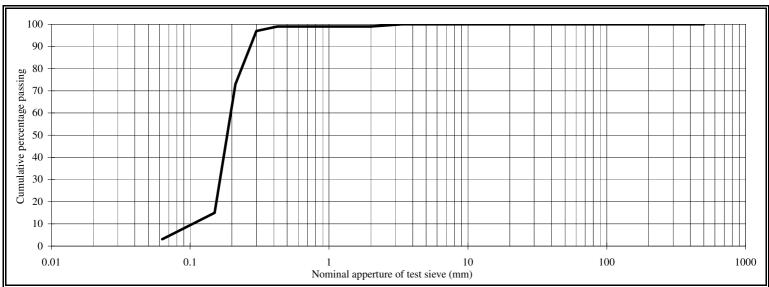
Postcode: DE15 0XD

Site: Job Number: S131009

Sampled by: Client Sampled from: Site Client Supplier:

Source: Site

Description: Brown grey SAND


Specification: Not Required

Comments:

Report No:	50170642/13/03
Batch Number:	DAM0040049
Lab Ref:	45178399

Client Ref: S1304165 Location: **BH11** Depth (m): 8.00

Date Sampled: Not Advised Date Received: 20.02.13 Date Tested: 22.02.13 Disturbed Sample Type: Sample Mass (kg): 1.1

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

Page: 1 of 1 Signed: Date: 26.02.13

[Redact Section Manager [| Redacte Laboratory Manager

For and on behalf of Environmental Scientifics Group

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

Telephone: +44 (0) 1327 703828 Facsimile: +44 (0) 1327 300154

0001

Determination of Particle Size Distribution

Client: Scientifics Ltd Client Address: PO Box 100

Ashby Road, Burton on Trent,

Staffordshire

Postcode: DE15 0XD

Site: Job Number: S131009

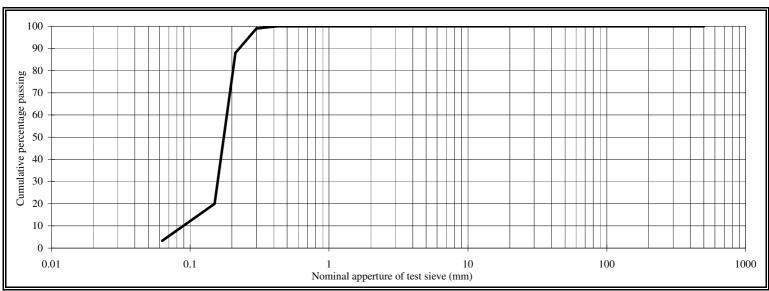
Sampled by: Client Sampled from: Site Supplier: Client

Source: Site

Description: Grey brown SAND

Specification: Not Required

Comments:


Report No:	50170642/13/04
Batch Number:	DAM0040049
Lab Ref:	45178400

Client Ref: S1304166 Location: **BH11** Depth (m): 14.00

Date Sampled: Not Advised Date Received: 20.02.13 Date Tested: 22.02.13 Disturbed Sample Type:

Sample Mass (kg): 1.3

SIEVE ANALYSIS									
BS Sieve	Passing	Material							
(mm)	(%)	Specification							
500	100								
300	100								
125	100								
100	100								
90	100								
75	100								
63	100								
50	100								
37.5	100								
28	100								
20	100								
14	100								
10	100								
6.3	100								
5	100								
3.35	100								
2	100								
1.18	100								
0.600	100								
0.425	100								
0.300	99								
0.212	88								
0.150	20								
0.063	3.3								
	·								

Certified that the Particle Size Distribution was determined in accordance with BS 1377 - 2: 1990, Method 9.2. Washing & Dry Sieving Method of Preparation: BS 1377 - 1 & 2:1990

[Redacted]

] [Reda - Section Manager Page: 1 of 1 [Redact - Laboratory Manager Signed: Date: 26.02.13

For and on behalf of Environmental Scientifics Group

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

S131009

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer **EnviroCentre Ltd** Site

Consignment No S33551 Whiteness Date Logged 15-Feb-2013

Report No

S131009

Report Due 21-Mar-2013

		MethodID	CustServ	ICPMSS			•					PAHMSUS	PCBUSECDAR	Sub005			Sub018	TMSS	WSLM59
ID Number	Description	Sampled	REPORT A	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Zinc (MS)	PAH (16) by GCMS	PCB-7 Congeners Analysis	^DibutyItin	^TributyItin	^TriphenyItin	^Particle Size Dist	Tot.Moisture @ 105C	Total Organic Carbon
Accredited to ISO17025				✓	✓	~	✓	✓	✓	✓	✓	✓						✓	
CL/1304163	BH10 14.00	05/02/13																	
CL/1304164	BH11 0.50	06/02/13																	
CL/1304165	BH11 8.00	06/02/13																	
CL/1304166	BH11 14.00	06/02/13																	

Note: For analysis where the scheduled turnaround is greater than the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

Deviating Sample Key

- The sample was received in an inappropriate container for this analysis
- The sample was received without the correct preservation for this analysis
- Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

Analysis dependant upon trigger result - Note: due date may be affected if triggered

No analysis scheduled

Analysis Subcontracted - Note: due date may vary

Report Number: EFS/131009

Method Descriptions

Matrix	MethodID	dID Analysis Method Description Basis						
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS					
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection					
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection					
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.					
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis					
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection					

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile

CR Denotes Crocidolite

AM Denotes Amosite

NAIIS No Asbestos Identified in Sample

NADIS No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF Tel: 01355 573340

Tel: 01355 573340 Fax: 01355 573341

Report Number: 783808-1 Interim

Date of Report: 23-Nov-2018

Customer: Blake Geoservices

Munro Sawmills
Old Evanton Road

Dingwall. IV15 9UN

Customer Contact: [Redacted]

Customer Job Reference: 18128-01 Customer Purchase Order: 18128/01

Customer Site Reference: Port of Ardersier

Date Job Received at Concept: 19-Nov-2018

Date Analysis Started: 20-Nov-2018

Date Analysis Completed:

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Produced and authorised by : [Redacted] Customer Service Advisor

783808-1 Interim

Concept Reference: 783808

Project Site: Port of Ardersier

Customer Reference: 18128-01

Soil Analysed as Soil

Miscellaneous

	Concep	ot Reference	783808 001	783808 002	783808 003	783808 004	783808 005		
	ner Sampl	le Reference	G27	G28	G29	G30	G31		
	t Lab Tem	perature (C)	1	1	1	1	1		
	Date Sampled						12-NOV-2018	13-NOV-2018	12-NOV-2018
Determinand	Method	Test Sample	LOD	Units					
Total Organic Carbon	T21	A40	0.1	%		0.2	0.1		

Concept Reference: 783808

Project Site: Port of Ardersier
Customer Reference: 18128-01

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	783808 006	783808 007	783808 008	783808 009	783808 010
	e Reference	G32	G33	G34 G35		G36			
	t Lab Tem	perature (C)	1	1	1 1		1		
	Date Sampled						13-NOV-2018	12-NOV-2018	12-NOV-2018
		Tool							
Determinand	Method	Test Sample	LOD	Units					
Total Organic Carbon	T21	A40	0.1	%	0.6	<0.1	0.8	<0.1	<0.1

Concept Reference: 783808

Project Site: Port of Ardersier
Customer Reference: 18128-01

Soil Analysed as Soil

Miscellaneous

	Concep	t Reference	783808 011	783808 012	783808 013	783808 014	783808 015		
	ner Sampl	e Reference	G37	G38	G39	G40	G41		
	Receipt at Lab Temperature (C)					1	1	1	1
	Date Sampled					12-NOV-2018	12-NOV-2018	12-NOV-2018	12-NOV-2018
Determinand Method Test Sample LOD Units									

0.9

Concept Reference: 783808

Project Site: Port of Ardersier

Customer Reference: 18128-01

Soil Analysed as Soil

Miscellaneous

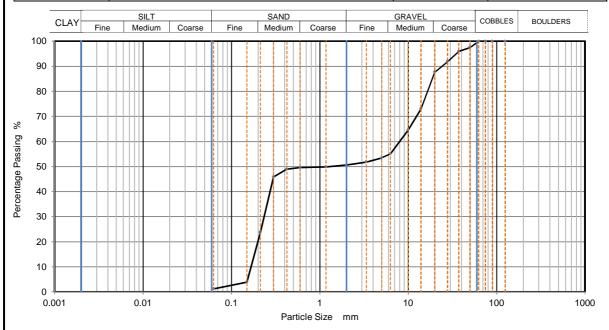
		·	Concep	783808 016	783808 017	783808 018	783808 019			
	ner Sampl	G42	G43	G44	G45					
	t Lab Tem	1	1	1	1					
	Da	13-NOV-2018	13-NOV-2018	13-NOV-2018	13-NOV-2018					
Determinand	LOD									
Total Organic Carbon	T21	A40	0.1	%	1.2	0.3	0.1	0.1		

Index to symbols used in 783808-1 Interim

Value	Description
A40	Assisted dried < 40C
N	Analysis is not UKAS accredited

Notes

Please note interim results are considered preliminary and are subject to change.

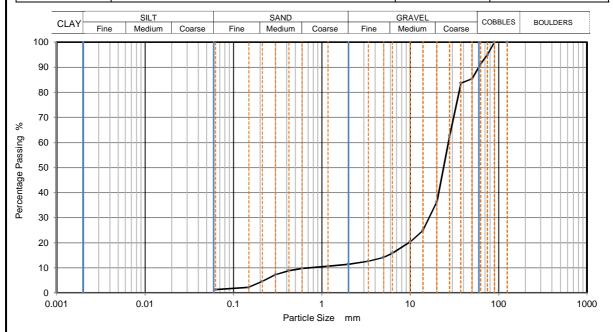

Method Index

Value	Description
T21	OX/IR

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Total Organic Carbon	T21	A40	0.1	%	N	001-019

1 bam	particle size distribution				4506-235
ritchies	FARTIC	Borehole/Pit No.	G27		
Site Name	Port of Ardersier			Sample No.	811200
Soil Description	Brown SAND + GRAV	Brown SAND + GRAVEL			0.00
Specimen Reference	1 Specimen m Depth m			Sample Type	В
Test Method	BS1377:Part 2:1990,	clause 9.2		KeyLAB ID	811200

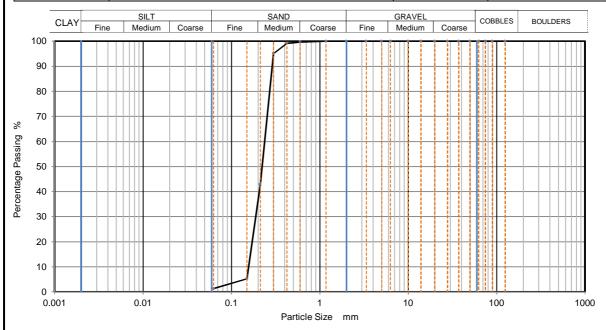

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	98		
37.5	96		
28	92		
20	88		
14	73		
10	65		
6.3	55		
5	53		
3.35	52		
2	51		
1.18	50		
0.6	50		•
0.425	49		
0.3	46		
0.212	24		
0.15	4		
0.063	1		

Dry Mass of sample, g.	10029

Sample Proportions	% dry mass
Very coarse	0
Gravel	49
Sand	49
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	8.02
D30	mm	0.234
D10	mm	0.167
Uniformity Coefficient		48
Curvature Coefficient		0.041

🖈 bam	DADT	PARTICLE SIZE DISTRIBUTION			4506-235
ritchies	FANT	Borehole/Pit No.	G28		
Site Name	Port of Ardersier			Sample No.	811201
Soil Description	Brown sandy GRA\	Brown sandy GRAVEL			0.00
Specimen Reference	1	1 Specimen m			В
Test Method	BS1377:Part 2:199	0, clause 9.2		KeyLAB ID	811201

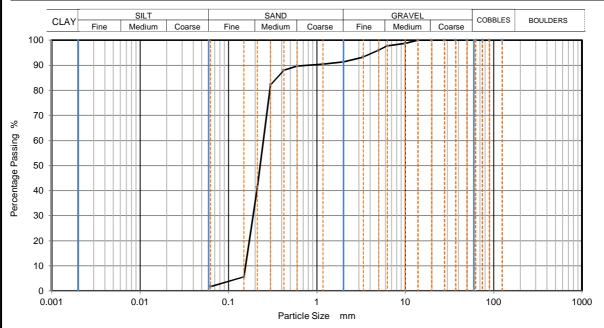

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	95		
63	91		
50	85		
37.5	84		
28	63		
20	36		
14	25		
10	20		
6.3	16		
5	14		
3.35	13		
2	11		
1.18	11		
0.6	10		•
0.425	9		
0.3	7		
0.212	5		
0.15	2		
0.063	1		

Dry Mass of sample, g.	13782
------------------------	-------

Sample Proportions	% dry mass
Very coarse	9
Gravel	80
Sand	10
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	27.1
D30	mm	16.4
D10	mm	0.72
Uniformity Coefficient		38
Curvature Coefficient		14

1 bam	DADTI	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies	PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	G29	
Site Name	Port of Ardersier		Sample No.	811202	
Soil Description	Brown silty SAND		Depth, m	0.00	
Specimen Reference	1 Specimen m Depth m		Sample Type	В	
Test Method	od BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811202	

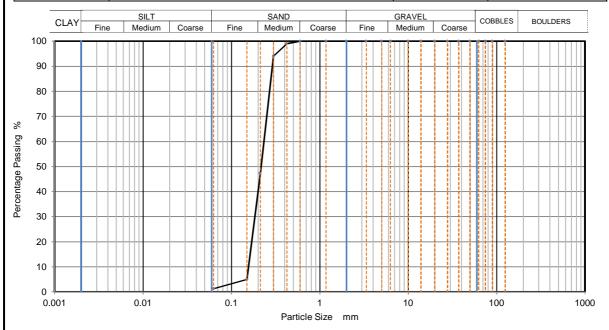

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	99		
0.3	95		
0.212	43		
0.15	5		
0.063	1		

Dry Mass of sample, g.	2273
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	99
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	0.238
D30	mm	0.188
D10	mm	0.157
Uniformity Coefficient		1.5
Curvature Coefficient		0.95

☆ bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235	
ritchies			Borehole/Pit No.	G30	
Site Name	Port of Ardersier	Port of Ardersier		Sample No.	811203
Soil Description	Brown slightly silty gravelly SAND		Depth, m	0.00	
Specimen Reference	1	1 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811203	

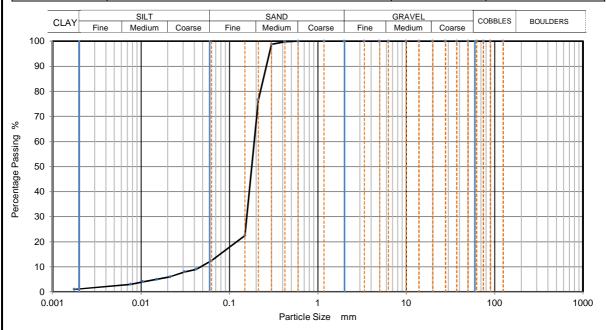

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	98		
5	96		
3.35	93		
2	91		
1.18	90		
0.6	90		-
0.425	88		
0.3	82		
0.212	41		
0.15	6		
0.063	2		

Dry Mass of sample, g.	5035
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	9
Sand	90
Fines <0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.249
D30	mm	0.19
D10	mm	0.157
Uniformity Coefficient		1.6
Curvature Coefficient		0.93

1 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	G31	
Site Name	Port of Ardersier		Sample No.	811204
Soil Description	Brown silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811204

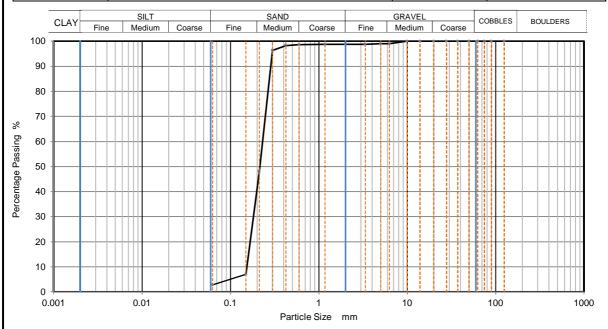

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		-
0.425	99		
0.3	94		
0.212	47		
0.15	5		
0.063	1		

Dry Mass of sample, g.	2472
	•

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	99
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	0.233
D30	mm	0.184
D10	mm	0.156
Uniformity Coefficient		1.5
Curvature Coefficient		0.93

🖈 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	G32	
Site Name	Port of Ardersier		Sample No.	811205
Soil Description	Brown silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	811205

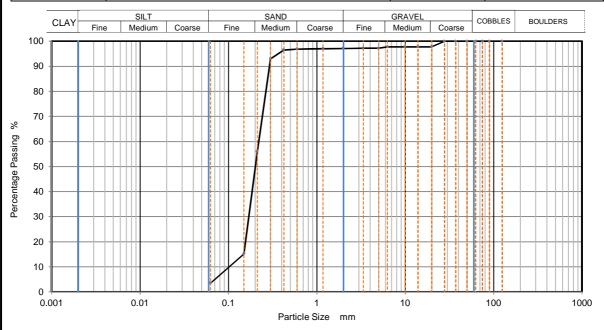

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0425	9
90	100	0.0312	8
75	100	0.0216	6
63	100	0.0151	5
50	100	0.0105	4
37.5	100	0.0076	3
28	100	0.0018	1
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.67	Mg/m3
0.3	99		
0.212	77		
0.15	22		
0.063	12		

Dry Mass of sample, g.	2573
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	88
Silt	11
Clay	1

Grading Analysis		
D100	mm	
D60	mm	0.191
D30	mm	0.157
D10	mm	0.0473
Uniformity Coefficient		4
Curvature Coefficient		2.7

🖈 bam	TARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G33
Site Name	Port of Ardersier		Sample No.	811206
Soil Description	Brown slightly silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811206

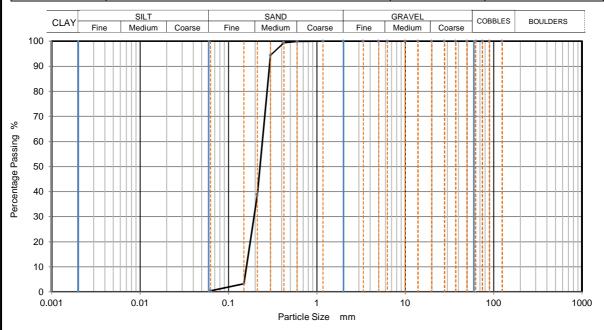

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99		
2	99		
1.18	99		
0.6	99		-
0.425	98		
0.3	96		
0.212	48		
0.15	7		
0.063	3		

Dry Mass of sample, g.	1779
	•

Sample Proportions	% dry mass
Very coarse	0
Gravel	1
Sand	96
Fines <0.063mm	3

Grading Analysis		
D100	mm	
D60	mm	0.231
D30	mm	0.182
D10	mm	0.154
Uniformity Coefficient		1.5
Curvature Coefficient		0.93

🖈 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G34
Site Name	Port of Ardersier		Sample No.	811207
Soil Description	Brown + black silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m		Sample Type	В
Test Method	est Method BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811207

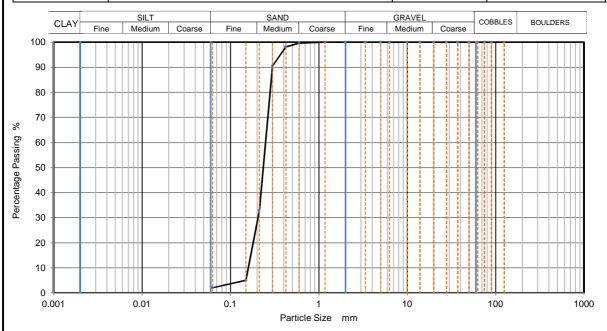

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	98		
10	98		
6.3	98		
5	97		
3.35	97		
2	97		
1.18	97		
0.6	97		-
0.425	97		
0.3	93		
0.212	56		
0.15	15		
0.063	4		

Dry Mass of sample, g.	1893
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	3
Sand	94
Fines <0.063mm	3

Grading Analysis		
D100	mm	
D60	mm	0.22
D30	mm	0.17
D10	mm	0.102
Uniformity Coefficient		2.1
Curvature Coefficient		1.3

1 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G35
Site Name	Port of Ardersier		Sample No.	811208
Soil Description	Brown silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811208	

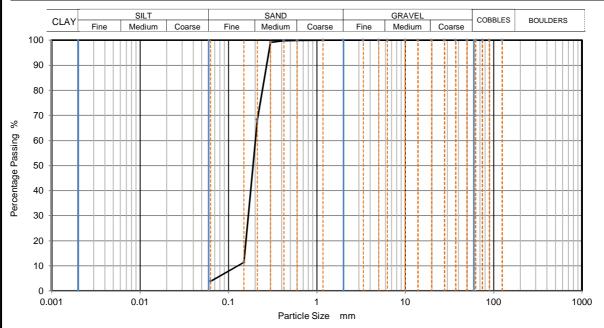

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		-
0.425	99		
0.3	94		
0.212	39		
0.15	3		
0.063	0		

Dry Mass of sample, g.	3705
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	100
Fines <0.063mm	0

Grading Analysis		
D100	mm	
D60	mm	0.242
D30	mm	0.195
D10	mm	0.16
Uniformity Coefficient		1.5
Curvature Coefficient		0.98

🖈 bam	DADT	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies	FANI			Borehole/Pit No.	G36
Site Name	Port of Ardersier	Port of Ardersier		Sample No.	811209
Soil Description	Brown slightly silty SAND		Depth, m	0.00	
Specimen Reference	1	1 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811209	

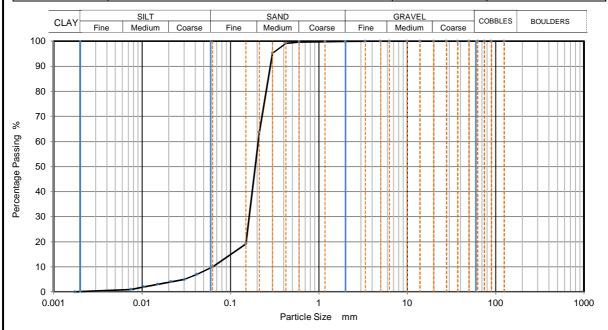

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	98		
0.3	91		
0.212	33		
0.15	5		
0.063	2		

Dry Mass of sample, g.	2260
Dry Mass of Sample, g.	2200

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	98
Fines <0.063mm	2

Grading Analysis		
D100	mm	
D60	mm	0.25
D30	mm	0.205
D10	mm	0.16
Uniformity Coefficient		1.6
Curvature Coefficient		1.1

☆ bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235	
ritchies	FANI	FARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	G37
Site Name	Port of Ardersier	Port of Ardersier		Sample No.	811210
Soil Description	Black + brown silty SAND		Depth, m	0.00	
Specimen Reference	1	1 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811210	

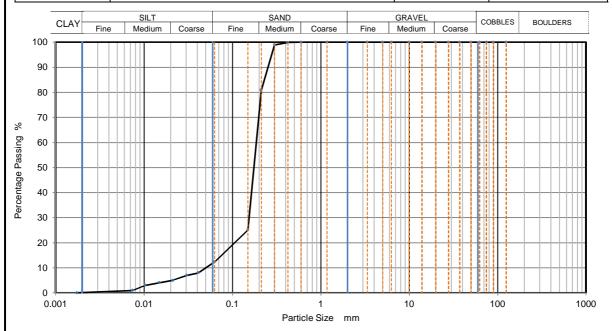

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
	400	111111	
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	100		
0.3	99		•
0.212	68		
0.15	11		
0.063	4		

Dry Mass of sample, g.	1709

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	96
Fines <0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	0.202
D30	mm	0.168
D10	mm	0.129
Uniformity Coefficient		1.6
Curvature Coefficient		1.1

🖈 bam	DADTIC	ICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies	PARIK			Borehole/Pit No.	G38
Site Name	Port of Ardersier		Sample No.	811211	
Soil Description	Black silty SAND		Depth, m	0.00	
Specimen Reference	1	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	811211	

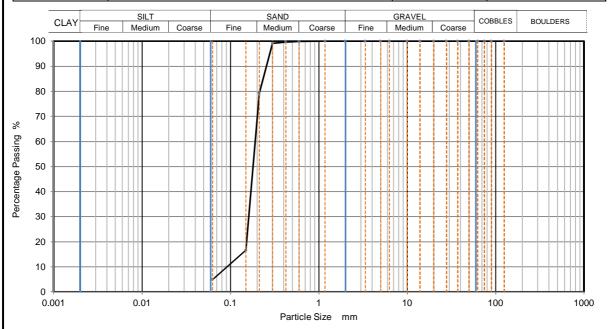

Sieving		Sedimentation	
Particle Size	0/ Danaina	Particle Size	0/ Danaina
mm	% Passing	mm	% Passing
125	100	0.0421	7
90	100	0.0307	5
75	100	0.0214	4
63	100	0.0150	3
50	100	0.0105	2
37.5	100	0.0075	1
28	100	0.0017	0
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	99	2.67	Mg/m3
0.3	95		
0.212	64		
0.15	19		
0.063	10		

Dry Mass of sample, g.	1971
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	90
Silt	10
Clay	0

Grading Analysis		
D100	mm	
D60	mm	0.206
D30	mm	0.163
D10	mm	0.0638
Uniformity Coefficient		3.2
Curvature Coefficient		2

🖈 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G39
Site Name	Port of Ardersier		Sample No.	811212
Soil Description	Black + brown silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	811212

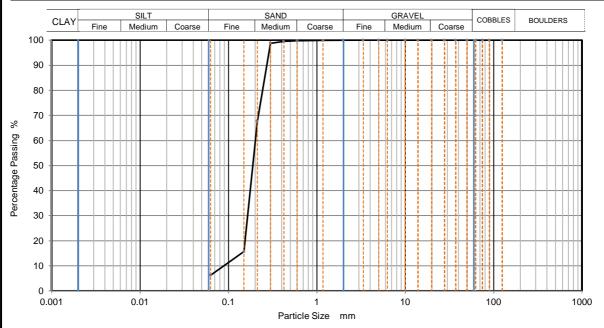

Sieving		Sedimentation	
Particle Size	% Passing	Particle Size	% Passing
mm	/6 F assiriy	mm	70 Fassing
125	100	0.0414	8
90	100	0.0306	7
75	100	0.0213	5
63	100	0.0149	4
50	100	0.0104	3
37.5	100	0.0075	1
28	100	0.0017	0
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.67	Mg/m3
0.3	99		
0.212	81		
0.15	25		
0.063	12		

Dry Mass of sample, g.	2823

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	88
Silt	12
Clay	1

Grading Analysis		
D100	mm	
D60	mm	0.186
D30	mm	0.155
D10	mm	0.0515
Uniformity Coefficient		3.6
Curvature Coefficient		2.5

🖈 bam	PARTICLE SIZE DISTRIBUTION -		Job Ref	4506-235	
ritchies			Borehole/Pit No.	G40	
Site Name	Port of Ardersier		Sample No.	811213	
Soil Description	Black + brown silty SAND		Depth, m	0.00	
Specimen Reference	1	Specimen Depth	m	Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811213	

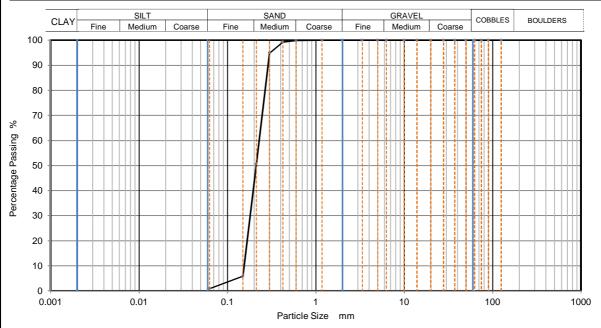

Sie	Sieving		entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		·
0.425	100		
0.3	99		
0.212	79		
0.15	17		
0.063	5		

Dry Mass of sample, g.	1796

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	95
Fines <0.063mm	5

Grading Analysis		
D100	mm	
D60	mm	0.191
D30	mm	0.161
D10	mm	0.092
Uniformity Coefficient		2.1
Curvature Coefficient		1.5

🖈 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G41
Site Name	Port of Ardersier		Sample No.	811214
Soil Description	Black silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811214

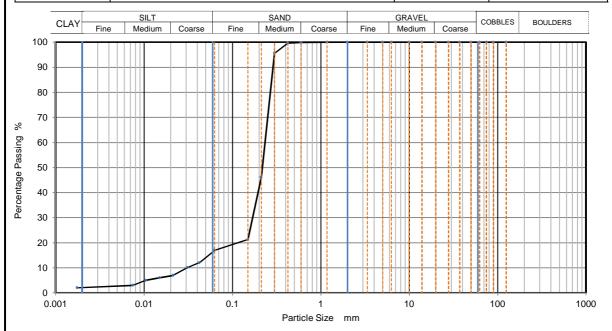

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	100		
0.3	99		
0.212	68		
0.15	16		
0.063	6		

Dry Mass of sample, g.	1636
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	94
Fines <0.063mm	6

Grading Analysis		
D100	mm	
D60	mm	0.202
D30	mm	0.165
D10	mm	0.0895
Uniformity Coefficient		2.3
Curvature Coefficient		1.5

∌ bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235
ritchies			Borehole/Pit No.	G42
Site Name	Port of Ardersier		Sample No.	811215
Soil Description	Black silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811215

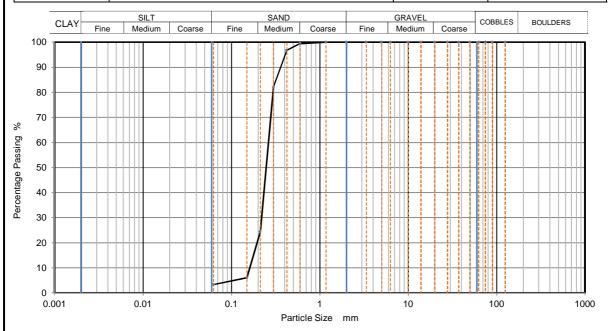

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		•
0.425	99		
0.3	95		•
0.212	51		
0.15	6		
0.063	1		

Dry Mass of sample, g.	1675
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	99
Fines <0.063mm	1

Grading Analysis		
D100	mm	
D60	mm	0.228
D30	mm	0.181
D10	mm	0.155
Uniformity Coefficient		1.5
Curvature Coefficient		0.92

🖈 bam	PARTICLE SIZE DISTRIBUTION		Job Ref	4506-235	
ritchies PARTICLE SIZE DISTRIBUTION		Borehole/Pit No.	G43		
Site Name	Port of Ardersier	Port of Ardersier		Sample No.	811216
Soil Description	Black silty SAND		Depth, m	0.00	
Specimen Reference	1	1 Specimen m Depth m		Sample Type	В
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5		KeyLAB ID	811216	

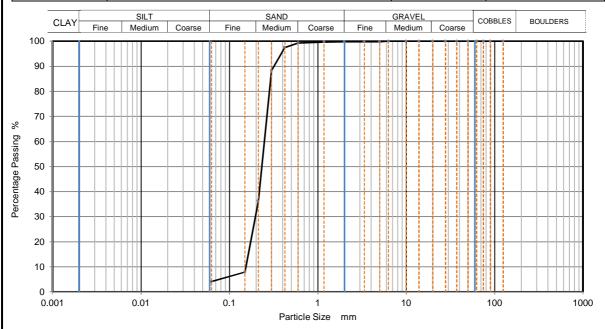

Sie	ving	Sedime	entation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T d55H1g	mm	70 T d55H1g
125	100	0.0425	12
90	100	0.0311	10
75	100	0.0215	7
63	100	0.0151	6
50	100	0.0105	5
37.5	100	0.0075	3
28	100	0.0018	2
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.67	Mg/m3
0.3	96		
0.212	46		
0.15	21		
0.063	17		

Dry Mass of sample, g.	2257
------------------------	------

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	83
Silt	15
Clay	2

Grading Analysis		
D100	mm	
D60	mm	0.234
D30	mm	0.17
D10	mm	0.0306
Uniformity Coefficient		7.6
Curvature Coefficient		4

1 bam	particle Size Distribution		Job Ref	4506-235	
ritchies			Borehole/Pit No.	G44	
Site Name	Port of Ardersier	Port of Ardersier		Sample No.	811217
Soil Description	Black silty SAND		Depth, m	0.00	
Specimen Reference	1 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811217	


Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		•
0.425	97		
0.3	82		
0.212	24		
0.15	6		
0.063	3		

Dry Mass of sample, g.	3189

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	97
Fines <0.063mm	3

Grading Analysis		
D100	mm	
D60	mm	0.263
D30	mm	0.219
D10	mm	0.162
Uniformity Coefficient		1.6
Curvature Coefficient		1.1

☆ bam	PARTICLE SIZE DISTRIBUTION -		Job Ref	4506-235
•			Borehole/Pit No.	G45
Site Name	Port of Ardersier		Sample No.	811218
Soil Description	Black silty SAND		Depth, m	0.00
Specimen Reference	1 Specimen m		Sample Type	В
Test Method	BS1377:Part 2:1990, clause 9.2		KeyLAB ID	811218

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		·
0.425	98		
0.3	88		
0.212	36		
0.15	8		
0.063	4		

Dry Mass of sample, g.	2677
	•

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	96
Fines <0.063mm	4

Grading Analysis		
D100	mm	
D60	mm	0.248
D30	mm	0.196
D10	mm	0.154
Uniformity Coefficient		1.6
Curvature Coefficient		1

C ANALYTICAL SUMMARY

Applicant Information

Applicant:	Ardersier Port
Description of dredging:	TBC
Total amount to be dredged (wet tonnes)	2300000

Sample Details & Physical Properties

Explanatory Notes:

An example of a 'Dredge area' is: 'Dock A, Harbour X'

Provide description of the dredge area and the latitude and longitude co-oridnates (WGS84) for each sample location. Co-ordinates taken from GPS equipment should be set to WGS84. Note for sample depth that the seabed is 0 metres.

Gravel is defined as >2mm, **Sand** is defined as >63um<2mm, **Silt** is deinfed as <63um).

Sample information:

Sample into				Type of	Sample denth	Total solids	Gravel	Sand	Silt	TOC	
Sample ID	Dredge area	Latitude	Longitude	Type of sample	Sample depth (m)	(%)	Gravel (%)	(%)	(%)	(%)	Specific gravity Asbestos
BH10 0.80	1			Core	0.8	91.5	62	26.8	11.2	0.2	No
	<u> </u>									0.12	
BH10 8.00	1		0 0 4 ° 0 0 . 3 6 1 W	Core	8	88.2	44	54	2		No
BH10 14.00	1	5 7 ° 3 6 . 0 9 8 N		Core	14	79.6	0	95.1	4.9	0.25	No
BH11 0.50	1		J 0 0 4 ° 0 0 . 3 9 0 W	Core	0.5	96.3	69	30.8	0.2	0.08	No
BH11 14.00	1	5 7 ° 3 6 . 0 8 9 N		Core	14	91.6	0	96.7	3.3	0.16	No
BH11 8.00	1	5 7 ° 3 6 . 0 8 9 'N		Core	8	83.7	0	96.9	3.1	0.09	No
BH12 0.50	1	5 7 ° 3 6 . 0 8 1 'N	J 0 0 4 0 0 0 . 3 6 0 W	Core	0.5	91.7	47	38.7	14.3	0.08	No
BH12 14.00	1	5 7 ° 3 6 . 0 8 1 'N	l 0 0 4 ° 0 0 . 3 6 0 W	Core	14	80.4	0	96.8	3.2	0.12	No
BH12 8.00	1	5 7 ° 3 6 . 0 8 1 h	l 0 0 4 ° 0 0 . 3 6 0 W	core	8	83.7	0	98	2	0.1	No
BH10 6.00	1	5 7 ° 3 6 0 9 8 N	l 0 0 4 ° 0 0 . 3 6 1 W	Core	6	90.4	46	51.1	2.9	0.12	No
BH11 6.00	1	5 7 ° 3 6 0 8 9 N	l 0 0 4 ° 0 0 . 3 9 0 W	Core	6	80.9	1	96.1	2.9	0.12	No
BH12 6.00	1	5 7 ° 3 6 . 0 8 1 'N	1 0 0 4 ° 0 0 . 3 6 0 W	Core	6	82.7	0	97.6	2.4	0.09	No
BH15 0.50	1		1004°00.328W	Core	0.5					0.13	No
BH15 15.00	1	5 7 ° 3 6 . 0 2 6 N	J 0 0 4 ° 0 0 . 3 2 8 W	Core	15					0.08	No
BH15 8.00	1		J 0 0 4 ° 0 0 . 3 2 8 W	Core	8					0.09	No
BH18 10.00	1	5 7 ° 3 5 . 5 9 9 'N	l 0 0 4 ° 0 0 . 2 4 1 W	Core	10					0.08	No
BH18 14.00	1	5 7 ° 3 5 5 9 9 N	l 0 0 4 ° 0 0 . 2 4 1 W	Core	14					0.08	No
BH24 0.50	1	5 7 ° 3 5 5 8 N	l 0 0 4 ° 0 0 . 1 0 1 W	Core	0.5					0.5	No
BH24 14.00	1	5 7 ° 3 5 5 8 N	l 0 0 4 ° 0 0 . 1 0 1 W	Core	14					0.07	No
BH24 8.00	1	5 7 ° 3 5 . 5 5 8 N	0 0 4 ° 0 0 . 1 0 1 W	Core	8					0.07	No
G37	1	5 7 ° 3 5 . 9 1 1 N	l 0 0 3 ° 5 9 . 6 9 1 W	Grab	0.1		0	96	4	0.9	No
G38	1	5 7 ° 3 5 . 9 6 7 N	l 0 0 3 ° 5 9 . 9 8 1 W	Grab	0.1		0	90	10		
G39	1		1 0 0 3 ° 5 9 . 8 6 6 W	Grab	0.1		0	88	12	0.4	
G40	1	5 7 ° 3 5 9 0 9 N	l 0 0 3 ° 5 9 . 7 7 5 W	Grab	0.1		0	95	5	0.4	
G41	1	5 7 ° 3 5 . 8 7 5 N	1 0 0 3 ° 5 9 . 6 5 5 W	Grab	0.1		0	94	6	0.4	
G42	1	5 7 ° 3 5 . 8 5 3 h		Grab	0.1		0	99	1	1.2	
G43	1	5 7 ° 3 5 . 7 2 1 'N	l 0 0 3 ° 5 9 . 1 4 3 W	Grab	0.1		0	83	17	0.3	
G44	1		1 0 0 3 ° 5 9 . 0 6 9 W	Grab	0.1		0	97	3	0.1	
G45	1	5 7 ° 3 5 . 7 3 9 N	l 0 0 3 ° 5 9 . 0 1 7 W	Grab	0.1		0	96	4	0.1	
		° . 'N	1 ° . 'W								

Trace Metals & Organotins

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Sample information:

Sample Inform	nation:												
		Type of	Sample depth	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)	Zinc (Zn)	Dibutyltin (DBT)	Tributyltin (TBT)
Sample ID	Dredge area	sample	(m)					mg/kg d	ry weight				
BH10 0.80	1	Core	0.8	2.076502732	<0.1	11.14754098	6.010928962	0.142076503	7.213114754	5.355191257	24.26229508	0.027322404	0.042622951
BH10 8.00	1	Core	8	1.473922902	<0.1	6.12244898	2.721088435	<0.1	3.628117914	2.947845805	14.05895692	<0.05	<0.02
BH10 14.00	1	Core	14	1.507537688	<0.1	7.663316583	2.386934673	<0.1	4.020100503	4.773869347	39.8241206	<0.05	0.054020101
BH11 0.50	1	Core	0.5	1.038421599	<0.1	5.919003115	1.453790239	<0.1	2.180685358	2.492211838	13.49948079	<0.05	0.042575286
BH11 14.00	1	Core	14	1.200873362	<0.1	5.349344978	0.982532751	<0.1	2.729257642	2.292576419	31.00436681	<0.05	<0.02
BH11 8.00	1	Core	8	1.314217443	<0.1	5.615292712	1.075268817	<0.1	3.225806452	2.150537634	20.66905615	<0.05	<0.02
BH12 0.50	1	Core	0.5	1.417666303	<0.1	13.84950927	6.761177754	<0.1	8.287895311	5.34351145	23.00981461	0.102508179	<0.02
BH12 14.00	1	Core	14	2.114427861	<0.1	7.711442786	5.223880597	<0.1	10.94527363	9.577114428	40.29850746	0.186567164	<0.02
BH12 8.00	1	core	8	1.433691756	<0.1	5.615292712	1.672640382	<0.1	2.986857826	2.270011947	16.60692951	0.047789725	<0.02
BH10 6.00	1	Core	6	1.659292035	<0.1	7.743362832	4.867256637	<0.1	4.646017699	5.420353982	23.11946903	0.050884956	<0.02
BH11 6.00	1	Core	6	1.483312732	<0.1	5.686032138	2.101359703	<0.1	2.966625464	2.224969098	30.5315204	0.055624227	<0.02
BH12 6.00	1	Core	6	1.088270859	<0.1	4.836759371	1.69286578	<0.1	2.660217654	2.055622733	14.51027811	0.053204353	<0.02
BH15 0.50	1	Core	0.5	2.725366876	<0.2	13.73165618	28.30188679	<0.5	7.651991614	19.81132075	161.3207547	<0.021	<0.021
BH15 15.00	1	Core	15	1.482326112	<0.2	5.131128848	<1.6	<0.5	2.622576967	2.052451539	22.12086659	<0.0228	<0.0228
BH15 8.00	1	Core	8	1.56626506	<0.2	4.939759036	2.048192771	<0.5	2.65060241	2.409638554	<15.9	<0.0241	<0.0241
BH18 10.00	1	Core	10	0.981595092	<0.2	4.539877301	2.085889571	<0.5	2.45398773	2.331288344	26.99386503	0.0601	<0.0211
BH18 14.00	1	Core	14	5.97826087	<0.2	22.82608696	<1.6	<0.5	11.41304348	9.239130435	138.0434783	0.0479	<0.0245
BH24 0.50	1	Core	0.5	1.047120419	<0.2	3.560209424	2.19895288	<0.5	<2	2.408376963	18.84816754	0.1155	<0.0246
BH24 14.00	1	Core	14	1.36307311	<0.2	4.089219331	<1.6	<0.5	2.478314746	1.858736059	21.56133829	0.0377	< 0.029
BH24 8.00	1	Core	8	1.221001221	<0.2	3.540903541	<2	<0.5	<2	1.709401709	<15.8	0.0384	<0.0248
G37	1	Grab	0.1										
G38	1	Grab	0.1										
G39	1	Grab	0.1										
G40	1	Grab	0.1										
G41	1	Grab	0.1										
G42	1	Grab	0.1										
G43	1	Grab	0.1										
G44	1	Grab	0.1										
G45	1	Grab	0.1										
0	0	0	0										

Polyaromatic Hydrocarbons (PAH)

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Definitions:	
ACENAPTH	Acenaphthene
ACENAPHY	Acenaphthylene
ANTHRACN	Anthracene
BAA	Benz(a)anthracene
BAP	Benzo(a)pyrene
BBF	Benzo(b)fluoranthene
BEP	Benzo(e)pyrene
BENZGHIP	Benzo(ghi)perylene
BKF	Benzo(K)fluoranthene
C1N	C1-naphthalenes
C1PHEN	C1-phenanthrene
C2N	C2-naphthalenes
C3N	C3-naphthalenes
CHRYSENE	Chrysene
DBENZAH	Diben(ah)anthracene
FLUORANT	Fluoranthene
FLUORENE	Fluorene
INDPYR	Indeno(1,2,3-cd)pyrene
NAPTH	Naphthalene
PERYLENE	Perylene
PHENANT	Phenanthrene
DVDENE	Dyrono

Sample informa	tion:																									
		Type of	Sample depth												μg/kg											
Sample ID	Dredge area	sample	(m)	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF	BEP	BENZGHIP	BKF	C1N	C1PHEN	C2N	C3N	CHRYSENE	DBENZAH	FLUORANT	FLUORENE	INDPYR	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH10 0.80	1	Core	0.8	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH10 8.00	1	Core	8	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH10 14.00	1	Core	14	<80	<80	<80	653	690	929		326	376					452	<80	339	<80	351	<80		<80	238	
BH11 0.50	1	Core	0.5	<80	<80	<80	218	342	446		207	197					155	<80	114	<80	207	<80		<80	<80	
BH11 14.00	1	Core	14	<80	<80	<80	<80	229	305		141	131					<0.08	<80	<80	<80	174	<80		<80	<80	
BH11 8.00	1	Core	8	<80	<80	<80	143	334	442		191	191					107	<80	<80	<80	215	<80		<80	<80	
BH12 0.50	1	Core	0.5	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH12 14.00	1	Core	14	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH12 8.00	1	core	8	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH10 6.00	1	Core	6	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH11 6.00	1	Core	6	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH12 6.00	1	Core	6	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH15 0.50	1	Core	0.5	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH15 15.00	1	Core	15	<90	<90	<90	<90	<90	<90		<90	<90					<90	<90	<90	<90	<90	<90		<90	<90	
BH15 8.00	1	Core	8	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100		<100	<100	
BH18 10.00	1	Core	10	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH18 14.00	1	Core	14	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100		<100	<100	
BH24 0.50	1	Core	0.5	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100		<100	<100	
BH24 14.00	1	Core	14	<80	<80	<80	<80	<80	<80		<80	<80					<80	<80	<80	<80	<80	<80		<80	<80	
BH24 8.00	1	Core	8	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100		<100	<100	
G37	1	Grab	0.1																							
G38	1	Grab	0.1																							
G39	1	Grab	0.1																							
G40	1	Grab	0.1																							
G41	1	Grab	0.1																							
G42	1	Grab	0.1																							
G43	1	Grab	0.1																							
G44	1	Grab	0.1																							
G45	1	Grab	0.1																							
0	0	0	0																							

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.
ICES7 is the sum of PCB 28,52,101,138,153,180 and 118.

AHCH	alpha-Hexachlorcyclohexane
BHCH	beta-Hexachlorcyclohexane
GHCH	gamma-Hexachlorcyclohexane
DIELDRIN	Dieldrin
HCB	Hexachlorobenzene
PPDDE	p,p'-Dichorodiphenyldicloroethylene
PPDDT	p,p'-Dichorodiphenyltrichloroethane
DDTDE	n n' Dicharadinhanuldialaraathana

Sample informatio	12																																				
		Type of Sample d	lepth PCB28	PCB52 PCB101	1 PCB118	PCB138 P	CB153	PCB18 PCB105	PCB110 PC	CB128 PC	B141 PCB149	PCB151	PCB156 PC	CB158 PC	CB170 PCB18	0 PCB183	PCB187 F	PCB194 PCB	31 PCB44	PCB47	PCB49 P	CB66 ICES	S7 AHC	CH BHCH	GHCH	DIELDRIN HCB	DDE DE	T TDE	BDE100 BDE	138 BDE15	3 BDE154	BDE17 BDE18	3 BDE209	BDE28 BDE	47 BDE66	BDE85	BDE99
Sample ID	Dredge area	Type of Sample d sample (m) Core 0.8																		μg/k	3																
BH10 0.80	1	Core 0.8	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH10 8.00	1	Core 8	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH10 14.00	1	Core 14	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH11 0.50	1	Core 0.5	<5.00	<5.00 <5.00 <5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH11 14.00	1	Core 14	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH11 8.00	1	Core 8	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00 <5.00 <5.00																						
BH12 0.50	1	Core 0.5	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00																						
BH12 14.00 BH12 8.00 BH10 6.00	1	Core 14	<5.00	<5.00 <5.00	<5.00	<5.00	<5.00								<5.00 <5.00																			4	/ /	/ / /	1
BH12 8.00	1	core 8		<5.00 <5.00											<5.00																			4			
BH10 6.00	1	Core 6				<5.00									<5.00																			A			1
BH11 6.00	1	Core 6	<5.00	<5.00 <5.00	<5.00		<5.00								<5.00 <5.00																			4	/ /	/ / /	1
BH12 6.00	1	Core 6		<5.00 <5.00		<5.00	<5.00								<5.00																						
BH15 0.50	1	Core 0.5		<4.99 <4.99		<4.99									<4.99																			4	/ /	/ / /	1
BH15 15.00	1	Core 15		<4.88 <4.88											<4.88																						
BH15 8.00	1	Core 8	<4.96	<4.96 <4.96	<4.96	<4.96	<4.96								<4.96 <4.95																			4	/ /	/ / /	1
BH18 10.00	1	Core 10		<4.95 <4.95											<4.95																						
BH18 14.00	1	Core 14	<4.92	<4.92 <4.92	<4.92	<4.92	<4.92								<4.92 <5.07 <4.97																			A			1
BH24 0.50	1	Core 0.5	<5.07	<5.07 <5.07	<5.07	<5.07	<5.07								<5.07																			4			
BH24 14.00	1	Core 14	<4.97	<4.97 <4.97	<4.97	<4.97	<4.97								<4.97																			A			
BH24 8.00	1	Core 8	<4.90	<4.90 <4.90	<4.90	<4.90	<4.90								<4.90																			4			4
G37	1	Grab 0.1																																A			
G38	1	Grab 0.1																																4			4
G39	1	Grab 0.1																																A			
G40	1	Grab 0.1																																4			4
G41	1	Grab 0.1																																A			
G42	1	Grab 0.1																																4			4
G43	1	Grab 0.1																																A			
G44	1	Grab 0.1																																			
G45	1	Grab 0.1																																A			
0	0	0 0																																			
•																																			*		

PR Details

Explanatory Notes:
The values entered for each determinand should be an average wet weight concentration from all the samples representing the material to be disposed to sea. They should be entered in the units stated in the Unit of measurement column in the table below.

Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Average for the total dredge area:

Sample ID	Unit of measurement	
Total Solids	%	83
Gravel	%	11
Sand	%	86
Silt	%	3
Arsenic (As)	Î	1.74
Cadmium (Cd)		<0.2
Chromium (Cr)		6.55
Copper (Cu)		0.5
Mercury (Hg)	-	0.1
Nickel (Ni)	mg/kg	4.64
Lead (Pb)		4.61
Zinc (Zn)		60.7
Dibutyltin (DBT)		0.062
Tributyltin (TBT)		0.046
Acenapth	+	92
Acenapthylene	-	92
Anthracn	-	92
BAA	-	113
BAP	-	124
BBF		138
BEP	-	28.8
	-	
Benzghip	4	105
BKF	⊣	107
C1N C1PHEN	4	35.8 65.2
	⊣	
C2N	⊣	51.2
C3N Chrisana	⊣	76.6
Chrysene	Ⅎ	105
Debenzah	4	93
Flurant	_	104
Fluorene	_	92
Indypr	_	107
napth	_	92
perylene	_	180
phenant		42.7
pyrene		98
THC		
PCB28		<5
PCB52		<5
PCB101		<5
PCB118		<5
PCB138		<5
PCB153		<5
PCB18		
PCB105		
PCB110		
PCB128		
PCB141		
PCB149	μg/kg	
PCB151		
PCB156		
PCB158		
PCB170		
PCB180	_	<5
PCB183		
PCB187		
PCB194		
PCB31		
PCB44		
PCB47		
PCB49		
PCB66		
ICES7		
AHCH		
BHCH		
GHCH	7	
DIELDRIN	7	
HCB	1	
DDE	1	
DDT	1	
TDE	┪	
BDE100	┪	
BDE138	╡	
BDE153	╡	
BDE154	Ⅎ	
	╡	
BDE17	⊣	
BDE183	⊣	
DDEGOO	1	
BDE209		
BDE28		
BDE28 BDE47		
BDE28		

Comments:		

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete "Laboartory_2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

Laboratory n			
1	ear:	2013 - Note due to the time period since analysis some of the information cannot be confirmed	d
		Does the laboratory carrying out the analyses undertake the analysis of blank samples and	
LabRefMat		laboratory reference materials with each batch of samples of waste and other material dumpe	d
		in the maritime area that is analysed by that laboratory?	No
CompAnal		Does the laboratory carrying out the analyses undertake periodic comparative analysis of	
Companai		laboratory reference materials and certified reference materials?	Yes
		Does the laboratory carrying out the analyses undertake the compilation of quality control cha	rts
OAOC		based upon the data resulting from the analyses of the laboratory reference materials and	
QAQC	Q3	certified reference materials, and the use of those quality control charts to monitor analytical	
		performance in relation to all samples of dumped wastes or other materials?	Yes
		Does the laboratory carrying out the analyses undertake periodic participation in interlaborator	ry
InterlabCaleb	Q4	comparison exercises, including, where possible, international comparison exercises?	
			Yes
		Does the laboratory carrying out the analyses undertake periodic participation in national and,	
InternatCaleb	Q5	where possible, international laboratory proficiency schemes	Yes
		If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of	
SpikedSamples	Q6	substances which are provided by the organisers of the scheme?	Yes
		If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the composition	
BlindSamples	Q7	of those samples is not disclosed in advance?	Yes
		If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the results of th	e
Ranking	Q8	scheme for each participating laboratory are made available to all participating laboratories?	
			Yes
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	<63um(meta
		PSA method	BS1377 Wa
GranMeth	Q10		

Ranking	Q8	scheme for each participating laboratory are made available to all participating laboratories?	Yes		
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	<63um(metals)		
GranMeth	Q10		BS1377 Washing and Drying Sieving Method		
OCMeth	Q11		Carbonate removal and sulfurous acid/combustion at 800°C/NDIR,		
MetExtrType	Q12	Method of extraction used for metal analysis	Aquaregia		
MethOfDetMetals	Q13	Method of detection used for metal analysis	ICP-MS		
PAHExtrType	Q14	Method of extraction used for poly aromatic hydrocarbon analysis	hexane/acetone extraction		
MethOfDetPAH	Q15	Method of detection used for poly aromatic hydrocarbons analysis	GCMS		
OHExtrType		Method of extraction used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	Ultrasonic acetone/hexane solvent extraction		
MethOfDetOH	Q17	Method of detection used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	GCECD		
OTExtrType	Q18		Derivatisation and solvent extraction		
MethOfDetOT	Q19	Method of detection used for organotin analysis	GCMS		

		LOD/LOQ	Precision (%)	Recovery (%
	Hg	0.5		
	As	0.3		
	Cd	0.2		
	Cu Pb	1.6 0.7		
mg/kg	Zn	16		
	Cr	1.2		
	Ni	2		
	TBT	0.0005		
	DBT	0.02		
	PCB28	5		
	PCB31			
	PCB44			
	PCB47			
	PCB49			
	PCB52	5		
	PCB66			
	PCB101	5		
	PCB105			
	PCB110 PCB118	5		
	PCB128	5		
	PCB138+163	5		
	PCB141			
	PCB149			
	PCB151			
	PCB153	5		
	PCB156			
	PCB158			
	PCB170			
	PCB180	5		
	PCB183			
	PCB187			
	PCB194			
	DDE			
	DDD			
	Dieldrin			
	Lindane			
	HCB			
	BDE17			
	BDE28			
μg/kg	BDE47			
	BDE66			
	BDE85			
	BDE99			
	BDE100			
	BDE138			
	BDE153 BDE154			
	BDE 183			
	BDE209			
	ACENAPTH	1		
	ACENAPHY	1		
	ANTHRACN	1		
	BAA	1		
	BAP	1		
	BBF	1		
	BENZGHIP	11		
	BEP	1		
	BKF	1 1		
	C1N C1PHEN	1 1		
	C1PHEN C2N	1		
	C3N	1		
	CHRYSENE	1		
	DBENZAH	1		
	FLUORENE	1		
	FLUORANT	1		
	INDPYR	1		
	NAPTH	1		
	PERYLENE	1		
	PHENANT	1		
	PYRENE	1		
	THC	1		

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete Laboartory, 2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

OTExtrType

Laboratory 2 Details:

Laboratory name BAM Ritchies - PSD Results Only

Year: | 2018

		Does the laboratory carrying out the analyses undertake the analysis of blank samples and	
LabRefMat	01	laboratory reference materials with each batch of samples of waste and other material dumpe	
Lubitonnut	٦.	in the maritime area that is analysed by that laboratory?	No
	+	Does the laboratory carrying out the analyses undertake periodic comparative analysis of	140
CompAnal	Q2	laboratory reference materials and certified reference materials?	No
	+	Does the laboratory carrying out the analyses undertake the compilation of quality control cha	
		based upon the data resulting from the analyses of the laboratory reference materials and	
QAQC	Q3	certified reference materials, and the use of those quality control charts to monitor analytical	
		performance in relation to all samples of dumped wastes or other materials?	No
	+	Does the laboratory carrying out the analyses undertake periodic participation in interlaborator	
InterlabCaleb	04	comparison exercises, including, where possible, international comparison exercises?	y
IIIteriaDCaleD	Q4	comparison exercises, including, where possible, international comparison exercises?	No
	+	Does the laboratory carrying out the analyses undertake periodic participation in national and,	
InternatCaleb	Q5	boes the laboratory carrying out the analyses undertake periodic participation in national and, where possible, international laboratory proficiency schemes	
	1		Yes
SpikedSamples	Q6	If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of	
opineuSalliples	40	substances which are provided by the organisers of the scheme?	Yes
DII	Q7	If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the composition	
BlindSamples	ų,	of those samples is not disclosed in advance?	Yes
		If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the results of th	e
Ranking	Q8	scheme for each participating laboratory are made available to all participating laboratories?	
			Yes
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	N/A
	1	PSA method	Method in line
GranMeth	Q10		
	1		
	+	Organic Carbon method	
OCMeth	Q11		
o o moun	~		
	1	Method of extraction used for metal analysis	
MetExtrType	Q12		
motexu i ypo	~		
	+	Method of detection used for metal analysis	
MethOfDetMetals	Q13		
mourorbouncturo	۳.۰		
	+	Method of extraction used for poly aromatic hydrocarbon analysis	
PAHExtrType	Q14		
· Allexii i ypo	~		
	1	Method of detection used for poly aromatic hydrocarbons analysis	
MethOfDetPAH	Q15		
metholbetran	213		
	+		

		LOD/LOQ	Precision (%)	Recovery (%
	Hg		\ /	- / \
	As			
	Cd			
	Cu			
mg/kg	Pb			
	Zn			
	Cr			
	Ni TBT			
	DBT			
	PCB28			
	PCB31			
	PCB44			
	PCB47			
	PCB49			
	PCB52			
	PCB66			
	PCB101			
	PCB105			
	PCB110			
	PCB118			
	PCB128			
	PCB138+163 PCB141			
	PCB141			
	PCB149 PCB151			
	PCB151			
	PCB156			
	PCB158			
	PCB170			
	PCB180			
	PCB183			
	PCB187			
	PCB194			
	DDE			
	DDT			
	Dieldrin			
	Lindane			
	HCB			
	BDE17			
	BDE28			
μg/kg	BDE47			
	BDE66			
	BDE85			
	BDE99			
	BDE100			
	BDE138			
	BDE153			
	BDE154			
	BDE183 BDE209			
	ACENAPTH			
	ACENAPHY			
	ANTHRACN			
	BAA			
	BAP			
	BBF			
	BENZGHIP			
	BEP			
	BKF			
	C1N			
	C1PHEN C2N			
	C3N			
	CHRYSENE			
	DBENZAH			
	FLUORENE			
	FLUORANT			
	INDPYR			
	NAPTH			
	PERYLENE			
	PHENANT			
	PYRENE			
	THC			

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete "Laboartory_2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

Laboratory 3 Details:

Laboratory name Concept Life Sciences - TOC only

1	ear:	2018	
LabRefMat	Does the laboratory carrying out the analyses undertake the analysis of blank samples and laboratory reference materials with each batch of samples of waste and other material dump in the maritime area that is analysed by that laboratory?		
CompAnal	Q2	Does the laboratory carrying out the analyses undertake periodic comparative analysis of laboratory reference materials and certified reference materials?	Yes
QAQC	Q3	Does the laboratory carrying out the analyses undertake the compilation of quality control chat based upon the data resulting from the analyses of the laboratory reference materials and certified reference materials, and the use of those quality control charts to monitor analytical performance in relation to all samples of dumped wastes or other materials?	ts Yes
InterlabCaleb	Q4	Does the laboratory carrying out the analyses undertake periodic participation in interlaborator comparison exercises, including, where possible, international comparison exercises?	y Yes
InternatCaleb	Q5	Does the laboratory carrying out the analyses undertake periodic participation in national and, where possible, international laboratory proficiency schemes	Yes
SpikedSamples	Q6	If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of substances which are provided by the organisers of the scheme?	Yes
BlindSamples	Q7	If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the composition of those samples is not disclosed in advance?	Yes
Ranking	Q8	If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the results of the scheme for each participating laboratory are made available to all participating laboratories?	Vac

Kalikilig	щo	screme for each participating laboratory are made available to all participating laboratories?	Yes	
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	Whole	
GranMeth	Q10			
OCMeth	Q11	Organic Carbon method	Oxidation Infra	Red
MetExtrType	Q12	Method of extraction used for metal analysis		
MethOfDetMetals	Q13	Method of detection used for metal analysis		
PAHExtrType	Q14	Method of extraction used for poly aromatic hydrocarbon analysis		
MethOfDetPAH	Q15			
OHExtrType		Method of extraction used for organohalogens inc PCBs, pesticides, flame retardants etc analysis		
MethOfDetOH		Method of detection used for organohalogens inc PCBs, pesticides, flame retardants etc analysis		
OTExtrType	Q18	Method of extraction used for organotin analysis		
MethOfDetOT	Q19	Method of detection used for organotin analysis		
		I.		

		LOD/LOQ	Precision (%)	Recovery (%
	Hg		` /	
	As			
	Cd			
	Cu Pb			
mg/kg	Zn			
	Cr			
	Ni			
	TBT			
	DBT			
	PCB28			
	PCB31			
	PCB44 PCB47			
	PCB47			
	PCB52			
	PCB66			
	PCB101			
	PCB105			
	PCB110			
	PCB118			
	PCB128			
	PCB138+163 PCB141			
	PCB149			
	PCB151			
	PCB153			
	PCB156			
	PCB158			
	PCB170			
	PCB180			
	PCB183 PCB187			
	PCB194			
	DDE			
	DDT			
	DDD			
	Dieldrin			
	Lindane			
	HCB			
	BDE17 BDE28			
μg/kg	BDE47			
Parra	BDE66			
	BDE85			
	BDE99			
	BDE100			
	BDE138			
	BDE153			
	BDE154			
	BDE183 BDE209			
	ACENAPTH			
	ACENAPHY			
	ANTHRACN			
	BAA			
	BAP			
	BBF			
	BENZGHIP			
	BEP			
	BKF C1N			
	C1PHEN			
	C2N		+	
	C3N			
	CHRYSENE			
	DBENZAH			
	FLUORENE			
	FLUORANT			
	INDPYR			
	NAPTH PERYLENE			
	PHENANT			
	PYRENE			
	THC			

Applicant Information

Γ	Applicant:	Ardersier Port
r	Description of dredging:	
ľ	Total amount to be dredged (wet tonnes)	2300000

Sample Details & Physical Properties

Explanatory Notes:

An example of a 'Dredge area' is: 'Dock A, Harbour X'

Provide description of the dredge area and the latitude and longitude co-oridnates (WGS84) for each sample location. Co-ordinates taken from GPS equipment should be set to WGS84. Note for sample depth that the seabed is 0 metres.

Gravel is defined as >2mm, **Sand** is defined as >63um<2mm, **Silt** is deinfed as <63um).

Sample information:

			Т	ype of Sample depth	Total solids	Gravel	Sand	Silt	TOC	
Sample ID	Dredge area	Latitude		sample (m)	(%)	(%)	(%)	(%)	(%)	Specific gravity Asbestos
Ġ1	1	5 7 ° 3 6 . 2 8 7 N		Grab 0.1	77.8)O	98.6	1.4	0.24	No
G11	1	5 7 ° 3 6 . 1 5 1 'N		Grab 0.1	80.8	0	98.9	1.1	0.08	No
G13	1	5 7 ° 3 6 . 1 1 8 'N	0 0 4 ° 0 0 . 3 8 3 W	Grab 0.1	83.3	7	92	1	0.08	No
G15	1	5 7 ° 3 6 . 1 1 0 N	0 0 4 ° 0 0 . 4 0 1 W	Grab 0.1	83.2	0	99.3	0.7	0.07	No
G16	1	5 7 ° 3 6 . 0 5 5 N	0 0 4 ° 0 0 . 3 4 9 W	Grab 0.1	82.6	4	94.3	1.3	0.09	No
G17	1	5 7 ° 3 6 . 0 5 6 N	0 0 4 ° 0 0 . 2 8 5 W	Grab 0.1	82.3	0	98.8	1.2	0.1	No
G19	1	5 7 ° 3 6 . 0 3 3 N	0 0 4 ° 0 0 . 2 4 6 W	Grab 0.1	85.8	4	95.1	0.9	0.08	No
G20	1	5 7 ° 3 6 . 0 4 8 N	0 0 4 ° 0 0 . 1 6 6 W	Grab 0.1	81.3	0	99	1	0.08	No
G21	1	5 7 ° 3 6 . 0 0 9 N	0 0 4 ° 0 0 . 2 0 6 W	Grab 0.1	81.5	0	99	1	0.11	No
G22	1	5 7 ° 3 6 . 0 1 0 N	0 0 4 ° 0 0 . 1 2 4 W	Grab 0.1	82.1	0	98.2	1.8	0.09	No
G23	1	5 7 ° 3 6 . 0 1 1 N	0 0 4 ° 0 0 . 0 4 2 W	Grab 0.1	79.1	0	98.3	1.7	0.14	No
G24	1	5 7 ° 3 5 . 5 7 2 N	0 0 4 ° 0 0 . 0 8 3 W	Grab 0.1	78.3	14	80.1	5.9	0.27	No
G25	1	5 7 ° 3 5 . 5 9 2 N	0 0 4 ° 0 0 . 1 9 9 W	Grab 0.1	82.8	0	98.8	1.2	0.08	No
G26	1	5 7 ° 3 5 . 5 7 3 N	0 0 4 ° 0 0 . 1 3 5 W	Grab 0.1	79.6	0	97.7	2.3	0.15	No
G27	1	5 7 ° 3 6 . N	I 0 0 4 ° 5 3 . W	Grab 0.1	80.7	0	98	2		No
G28	1	5 7 ° 3 6 . N	I 0 0 4 ° 5 3 . W	Grab 0.1	81.1					No
G3	1	5 7 ° 3 6 . 2 6 9 N		Grab 0.1	89.6	48	51.4	0.6	0.14	No
G5	1	5 7 ° 3 6 . 2 3 6 N	0 0 4 ° 0 0 . 5 4 6 W	Grab 0.1	82.9	0	98.7	1.3	0.11	No
G7	1	5 7 ° 3 6 . 2 0 2 N		Grab 0.1	80.7	4	94.8	1.2	0.09	No
G9	1	5 7 ° 3 6 . 1 8 5 N	0 0 4 ° 0 0 . 5 2 9 W	Grab 0.1	82.3	0	98.9	1.1	0.09	No
G27	1	5 7 ° 3 6 . 0 7 4 N		Grab 0.1		49	49	1		No
G28	1	5 7 ° 3 6 . 0 4 6 N		Grab 0.1		89	10	1	0.2	
G29	1	5 7 ° 3 6 . 0 2 4 N		Grab 0.1		0	99	1	0.1	
G30	1	5 7 ° 3 5 . 9 9 0 N		Grab 0.1		8	90	2		
G31	1	5 7 ° 3 6 . 0 1 7 N		Grab 0.1		0	99	1		
G32	1	5 7 ° 3 5 . 9 8 3 N		Grab 0.1		0	88	12	0.6	
G33	1	5 7 ° 3 5 . 9 5 3 N		Grab 0.1		1	96	3	<0.1	
G34	1	5 7 ° 3 5 . 9 1 5 N		Grab 0.1		3	94	3	8.0	
G35	1	5 7 ° 3 5 . 9 7 0 N		Grab 0.1		0	100	0	<0.1	
G36	1	5 7 ° 3 5 . 9 4 1 N	I 0 0 3 ° 5 9 . 7 8 8 W	Grab 0.1		0	98	2	<0.1	

Trace Metals & Organotins

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Sample information:

		Type of	Sample depth	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)	Zinc (Zn)	Dibutyltin (DBT)	Tributyltin (TBT)
Sample ID	Dredge area	sample	(m)	,	,	· / /	11 ,	mg/kg d	ry weight	, ,	. ,	. , ,	, , ,
G1	1	Grab	0.1	2.956298201	0.347043702	8.997429306	4.241645244	<0.5	4.884318766	5.01285347	<15.8	<0.0244	<0.0244
G11	1	Grab	0.1	1.485148515	<0.2	3.836633663	<1.6	<0.5	<2	1.856435644	<15.8	<0.0248	< 0.0371
G13	1	Grab	0.1	1.320528211	<0.2	7.202881152	<1.6	<0.5	<2	2.761104442	<15.8	<0.024	< 0.036
G15	1	Grab	0.1	1.442307692	<0.2	5.649038462	2.043269231	<0.5	<2	2.283653846	<15.8	<0.024	< 0.0361
G16	1	Grab	0.1	1.452784504	<0.2	4.842615012	2.05811138	<0.5	<2	2.179176755	<15.8	0.0412	< 0.0363
G17	1	Grab	0.1	1.44057623	<0.2	3.961584634	<1.6	<0.5	<2	1.920768307	<15.8	<0.0243	<0.0365
G19	1	Grab	0.1	1.981351981	<0.2	5.011655012	7.226107226	<0.5	3.613053613	5.011655012	33.7995338	0.0781	< 0.035
G20	1	Grab	0.1	1.2300123	<0.2	3.19803198	<1.6	<0.5	<2	1.59901599	<15.8	0.0308	< 0.0369
G21	1	Grab	0.1	1.226993865	<0.2	4.171779141	2.699386503	<0.5	<2	2.331288344	<15.8	0.0429	<0.0368
G22	1	Grab	0.1	1.218026797	<0.2	4.019488429	2.314250914	<0.5	<2	2.070645554	<15.8	0.0305	<0.0365
G23	1	Grab	0.1	1.641414141	<0.2	4.797979798	2.02020202	<0.5	2.651515152	2.02020202	<15.8	< 0.0253	<0.0379
G24	1	Grab	0.1	4.853128991	<0.2	14.55938697	73.69093231	<0.5	8.812260536	46.10472542	526.8199234	0.0907	<0.0383
G25	1	Grab	0.1	1.449275362	<0.2	3.743961353	3.381642512	<0.5	<2	2.536231884	<15.8	<0.0242	<0.0362
G26	1	Grab	0.1	2.010050251	<0.2	7.914572864	3.266331658	<0.5	3.768844221	3.015075377	20.60301508	<0.0251	<0.0377
G27	1	Grab	0.1	1.734820322	<0.2	5.824039653	2.973977695	<0.5	2.973977695	2.230483271	<15.8	0.0273	<0.0372
G28	1	Grab	0.1	1.356350185	<0.2	5.055487053	<1.6	<0.5	<2	2.096177559	<15.8	0.0395	<0.0370
G3	1	Grab	0.1	2.34375	<0.2	8.147321429	2.901785714	<0.5	4.464285714	4.241071429	<15.8	0.0703	<0.0335
G5	1	Grab	0.1	1.326899879	<0.2	3.860072376	<1.6	<0.5	<2	2.291917973	<15.8	0.0688	<0.0362
G7	1	Grab	0.1	1.36307311	<0.2	3.965303594	<1.6	<0.5	<2	2.106567534	<15.8	0.0582	<0.0372
G9	1	Grab	0.1	1.336573512	<0.2	3.645200486	<1.6	<0.5	<2	1.822600243	<15.8	0.094	<0.0365
G27	1	Grab	0.1										
G28	1	Grab	0.1										
G29	1	Grab	0.1										
G30	1	Grab	0.1										
G31	1	Grab	0.1										
G32	1	Grab	0.1										
G33	1	Grab	0.1										
G34	1	Grab	0.1										
G35	1	Grab	0.1										
G36	1	Grab	0.1										

Polyaromatic Hydrocarbons (PAH)

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Definitions:	
ACENAPTH	Acenaphthene
ACENAPHY	Acenaphthylene
ANTHRACN	Anthracene
BAA	Benz(a)anthracene
BAP	Benzo(a)pyrene
BBF	Benzo(b)fluoranthene
BEP	Benzo(e)pyrene
BENZGHIP	Benzo(ghi)perylene
BKF	Benzo(K)fluoranthene
C1N	C1-naphthalenes
C1PHEN	C1-phenanthrene
C2N	C2-naphthalenes
C3N	C3-naphthalenes
CHRYSENE	Chrysene
DBENZAH	Diben(ah)anthracene
FLUORANT	Fluoranthene
FLUORENE	Fluorene
INDPYR	Indeno(1,2,3-cd)pyrene
NAPTH	Naphthalene
PERYLENE	Perylene
PHENANT	Phenanthrene
DVDENIE	2

		Type of	Sample depth	1											μg/kg										
Sample ID	Dredge area	sample	(m)	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF	BEP	BENZGHIP	BKF	C1N	C1PHEN	C2N	C3N	CHRYSENE	DBENZAH	FLUORANT	FLUORENE	INDPYR	NAPTH	PERYLENE PHENANT	PYRENE	THC
G1	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G11	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G13	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G15	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G16	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G17	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G19	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G20	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G21	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G22	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G23	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G24	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G25	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G26	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G27	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G28	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G3	1	Grab	0.1	<100	<100	357	178	<100	145		<100	145					145	<100	301	111	<100	<100	<100	178	
G5	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G7		Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G9	1	Grab	0.1	<100	<100	<100	<100	<100	<100		<100	<100					<100	<100	<100	<100	<100	<100	<100	<100	
G27	1	Grab	0.1																						
G28	1	Grab	0.1																						
G29	1	Grab	0.1										-												
G30 G31	1	Grab Grab	0.1																					+	
G31	1	Grab	0.1																					+	
G32 G33	1	Grab	0.1																					+	
G34	1	Grab	0.1																					+	
G34 G35	1	Grab	0.1																						
G35 G36	1	Grab	0.1																					+-	
G30		Grab	0.1																					4	l

Explanatory Notes:
Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red. ICES7 is the sum of PCB 28,52,101,138,153,180 and 118.

AHCH	alpha-Hexachlorcyclohexane
BHCH	beta-Hexachlorcyclohexane
GHCH	gamma-Hexachlorcyclohexane
DIELDRIN	Dieldrin
HCB	Hexachlorobenzene
PPDDE	p,p'-Dichorodiphenyldicloroethylene
PPDDT	p,p'-Dichorodiphenyltrichloroethane
PPTDF	p.p'-Dichorodiphenyldicloroethane

Sample information	Sample Direct parts Sample Column Colu																											
		Type of Sample depth PCB	28 PCB52 PCB10	PCB118 PCB1	138 PCB153	PCB18 PCB105	PCB110 PCB128	PCB141 PCB149	PCB151 PCI	B156 PCB158	PCB170 PCB1	30 PCB183 PCB	187 PCB194 P	CB31 PCB44	PCB47 PCB49	PCB66 IC	S7 AHC	CH BHCH G	HCH DIELDRIN	HCB DDE	DDT T	DE BDE100 BDE13	8 BDE153 BDE154	BDE17 BDE183	BDE209 BDE28	BDE47 BC	DE66 BDE85	BDE99
Sample ID	Dredge area	sample (m)													µg/kg													
G1	1	Grab 0.1 <4.9	3 <4.93 <4.93	<4.93 <4.9	93 <4.93						<4.9	3															/	
G11	1	Grab 0.1 <4.5	8 <4.98 <4.98	<4.98 <4.9	98 <4.98																							
G13	1	Grab 0.1 <4.9	2 <4.92 <4.92	<4.92 <4.9	92 <4.92						<4.9	2															/	
G15	1	Grab 0.1 <5.2	2 <4.92 <4.92 5 <5.25 <5.25	<5.25 <5.2	25 <5.25						<5.2	5																
G16	1		5 <4.95 <4.95								<4.9	5																
G17	1		6 <4.96 <4.96								<4.9 <5.2 <4.9 <4.9	3																
G19	1	Grab 0.1 <4.9	0 <4.90 <4.90	<4.90 <4.9	90 <4.90						<4.9 <5.0 <4.9 <4.9 <5.0 <5.1 <5.1 <4.9)																
G20	1	Grab 0.1 <5.0	4 <5.04 <5.04	<5.04 <5.0	04 <5.04						<5.0	1																
G21	1		8 <4.98 <4.98								<4.9	3																
G22	1	Grab 0.1 <4.5									<4.9	7																
G23	1		0 <5.00 <5.00	<5.00 <5.0							<5.0)														1 /	/ /	
G24	1	Grab 0.1 <5.		<5.10 <5.1							<5.1)																
G25	1	Grab 0.1 <5.0		<5.05 <5.0							<5.0	5																
G26	1		9 <4.99 <4.99								<4.9	9																
G27	1		5 <4.95 <4.95								<4.9 <4.9	5																
G28	1		9 <4.99 <4.99								<4.9	9																
G3	1		8 <4.98 <4.98								<4.9 <4.9 <5.0	3																
G5	1	Grab 0.1 <4.9	6 <4.96 <4.96	<4.96 <4.9	96 <4.96						<4.9	3																/
G7	1	Grab 0.1 <5.0	2 <5.02 <5.02	<5.02 <5.0	02 <5.02						<5.0	2																
G9	1		1 <5.01 <5.01	<5.01 <5.0	01 <5.01						<5.0																	
G27	1	Grab 0.1																										
G28	11	Grab 0.1																										
G29	1	Grab 0.1																										
G30	11	Grab 0.1																										
G31	1	Grab 0.1																										
G32	11	Grab 0.1																										
G33	1	Grab 0.1																										
G34	1	Grab 0.1																										
G35	1	Grab 0.1																										
G36	1	Grab 0.1																								اسسا		
	•																											

PR Details

Explanatory Notes:
The values entered for each determinand should be an average wet weight concentration from all the samples representing the material to be disposed to sea. They should be entered in the units stated in the Unit of measurement column in the table below.

Results above Action Level 1 will be highlighted in blue and above Action Level 2 in red.

Average for the total dredge area:

Sample ID	Unit of measurement	
Total Solids	%	83
Gravel	%	11
Sand	%	86
Silt	%	3
Arsenic (As)	Î	1.74
Cadmium (Cd)		<0.2
Chromium (Cr)		6.55
Copper (Cu)		0.5
Mercury (Hg)	-	0.1
Nickel (Ni)	mg/kg	4.64
Lead (Pb)		4.61
Zinc (Zn)		60.7
Dibutyltin (DBT)		0.062
Tributyltin (TBT)		0.046
Acenapth	+	92
Acenapthylene	-	92
Anthracn	-	92
BAA	-	113
BAP	-	124
BBF		138
BEP	-	28.8
	-	
Benzghip	4	105
BKF	⊣	107
C1N C1PHEN	4	35.8 65.2
	⊣	
C2N	⊣	51.2
C3N Chrisana	⊣	76.6
Chrysene	Ⅎ	105
Debenzah	4	93
Flurant	_	104
Fluorene	_	92
Indypr	_	107
napth	_	92
perylene	_	180
phenant		42.7
pyrene		98
THC		
PCB28		<5
PCB52		<5
PCB101		<5
PCB118		<5
PCB138		<5
PCB153		<5
PCB18		
PCB105		
PCB110		
PCB128		
PCB141		
PCB149	μg/kg	
PCB151		
PCB156		
PCB158		
PCB170		
PCB180	_	<5
PCB183		
PCB187		
PCB194		
PCB31		
PCB44		
PCB47		
PCB49		
PCB66		
ICES7		
AHCH		
BHCH		
GHCH	7	
DIELDRIN	7	
HCB	1	
DDE	1	
DDT	1	
TDE	┪	
BDE100	┪	
BDE138	╡	
BDE153	╡	
BDE154	Ⅎ	
	╡	
BDE17	⊣	
BDE183	⊣	
DDEGOO	1	
BDE209		
BDE28		
BDE28 BDE47		
BDE28		

Comments:		

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete Laboartory, 2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

Laboratory	name	ESG	
	Year:	2013 - See other sheet for details	
LabRefMat	04	Does the laboratory carrying out the analyses undertake the analysis of blank samples and laboratory reference materials with each batch of samples of waste and other material dumper	
Labreimat	Q1	in the maritime area that is analysed by that laboratory?	No.
CompAnal	Q2	Does the laboratory carrying out the analyses undertake periodic comparative analysis of laboratory reference materials and certified reference materials?	Yes
QAQC	Q3	Does the laboratory carrying out the analyses undertake the compilation of quality control cha based upon the data resulting from the analyses of the laboratory reference materials and certified reference materials, and the use of those quality control charts to monitor analytical performance in relation to all samples of dumped wastes or other materials?	ts Yes
InterlabCaleb	Q4	Does the laboratory carrying out the analyses undertake periodic participation in interlaborator comparison exercises, including, where possible, international comparison exercises?	y Yes
InternatCaleb	Q5	Does the laboratory carrying out the analyses undertake periodic participation in national and, where possible, international laboratory proficiency schemes	Yes
SpikedSamples	Q6	If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of substances which are provided by the organisers of the scheme?	Yes
BlindSamples	Q7	If the answer to questions 4 or 5 is "Yes' then does the laboratory confirm that the composition of those samples is not disclosed in advance?	Yes
Ranking	Q8	If the answer to questions 4 or 5 is "Yes" then does the laboratory confirm that the results of th scheme for each participating laboratory are made available to all participating laboratories?	Yes
Frac∆nal	09	Enter the size fraction that is analysed i.e. Whole or less than 63um etc.	res

FracAnai		Enter the size fraction that is analysed i.e. whole or less than 65µm etc.	
GranMeth	Q10		
OCMeth	Q11	Organic Carbon method	
MetExtrType	Q12	Method of extraction used for metal analysis	
MethOfDetMetals		Method of detection used for metal analysis	
PAHExtrType	Q14	Method of extraction used for poly aromatic hydrocarbon analysis	
MethOfDetPAH	Q15	Method of detection used for poly aromatic hydrocarbons analysis	
OHExtrType	Q16	Method of extraction used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
MethOfDetOH		Method of detection used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
OTExtrType	Q18	Method of extraction used for organotin analysis	
MethOfDetOT	Q19	Method of detection used for organotin analysis	

		LOD/LOQ	Precision (%)	Recovery (%
	Hg			
	As			
	Cd			
	Cu Pb			
mg/kg	Zn			
	Cr			
	Ni			
	TBT			
	DBT			
	PCB28			
	PCB31			
	PCB44			
	PCB47			
	PCB49			
	PCB52 PCB66			
	PCB66 PCB101			
	PCB101			
	PCB110			
	PCB118			
	PCB128			
	PCB138+163			
	PCB141			
	PCB149			
	PCB151			
	PCB153			
	PCB156			
	PCB158			
	PCB170			
	PCB180			
	PCB183 PCB187			
	PCB194			
	DDE			
	DDT			
	DDD			
	Dieldrin			
	Lindane			
	HCB			
	BDE17			
	BDE28			
μg/kg	BDE47			
	BDE66 BDE85			
	BDE99			
	BDE100			
	BDE 138			
	BDE153			
	BDE154			
	BDE183			
	BDE209			
	ACENAPTH			
	ACENAPHY			
	ANTHRACN			
	BAA			
	BAP			
	BBF			
	BENZGHIP BEP			
	BEP BKF			
	C1N			
	C1PHEN			
	C2N			
	C3N			
	CHRYSENE			
	DBENZAH			
	FLUORENE			
	FLUORANT			
	INDPYR			
	NAPTH			
	PERYLENE			
	PHENANT PYRENE			

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete "Laboartory_2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

Laboratory 2 Details:	
Laboratory name	
Year:	

LabRefMat	Q1	Does the laboratory carrying out the analyses undertake the analysis of blank samples and laboratory reference materials with each batch of samples of waste and other material dumper in the maritime area that is analysed by that laboratory?	1
CompAnal	Q2	Does the laboratory carrying out the analyses undertake periodic comparative analysis of laboratory reference materials and certified reference materials?	
QAQC	Q3	Does the laboratory carrying out the analyses undertake the compilation of quality control chail based upon the data resulting from the analyses of the laboratory reference materials and certified reference materials, and the use of those quality control charts to monitor analytical performance in relation to all samples of dumped wastes or other materials?	ts
InterlabCaleb	Q4	Does the laboratory carrying out the analyses undertake periodic participation in interlaborator comparison exercises, including, where possible, international comparison exercises?	у
InternatCaleb	Q5	Does the laboratory carrying out the analyses undertake periodic participation in national and, where possible, international laboratory proficiency schemes	
SpikedSamples	Q6	If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of substances which are provided by the organisers of the scheme?	
BlindSamples		If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the composition of those samples is not disclosed in advance?	
Ranking		If the answer to questions 4 or 5 is "Yes" then does the laboratory confirm that the results of the scheme for each participating laboratory are made available to all participating laboratories?	•
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	
GranMeth	Q10	PSA method	
		Organic Carbon method	

FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	
GranMeth	Q10		
OCMeth	Q11	Organic Carbon method	
MetExtrType	Q12	Method of extraction used for metal analysis	
MethOfDetMetals	Q13	Method of detection used for metal analysis	
PAHExtrType	Q14	Method of extraction used for poly aromatic hydrocarbon analysis	
MethOfDetPAH	Q15	Method of detection used for poly aromatic hydrocarbons analysis	
OHExtrType		Method of extraction used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
MethOfDetOH	Q17	Method of detection used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
OTExtrType	Q18		
MethOfDetOT	Q19	Method of detection used for organotin analysis	

		LOD/LOQ	Precision (%)	Recovery (%
	Hg			
	As			
	Cd			
	Pb			
mg/kg	Zn			
	Cr			
	Ni			
	TBT			
	DBT			
	PCB28			
	PCB31			
	PCB44 PCB47			
	PCB49			
	PCB52			
	PCB66			
	PCB101			
	PCB105			
	PCB110			
	PCB118 PCB128			
	PCB138+163			
	PCB141			
	PCB149			
	PCB151			
	PCB153			
	PCB156			
	PCB158			
	PCB170			
	PCB180 PCB183			
	PCB187			
	PCB194			
	DDE			
	DDT			
	DDD			
	Dieldrin			
	Lindane			
	HCB BDE17			
	BDE28			
μg/kg	BDE47			
10 0	BDE66			
	BDE85			
	BDE99			
	BDE100			
	BDE138			
	BDE153 BDE154			
	BDE 154			
	BDE209			
	ACENAPTH			
	ACENAPHY			
	ANTHRACN			
	BAA			
	BAP BBF			
	BENZGHIP			
	BEP			
	BKF			
	C1N			
	C1PHEN			
	C2N			
	C3N			
	CHRYSENE			
	DBENZAH			
	FLUORENE			
	FLUORANT			
	NAPTH			
	PERYLENE			
	PHENANT			
	PYRENE			
	THC			

Explanatory Notes:
Please complete a separate worksheet for each laboratory (e.g. complete "Laboartory_1" worksheet for 1 laboratory and complete "Laboartory_2" worksheet for a second laboratory). If there are more than 3 laboratories then please contact MS-LOT.

Laboratory 3 Details:	
Laboratory name	
Year:	

LabRefMat		Does the laboratory carrying out the analyses undertake the analysis of blank samples and laboratory reference materials with each batch of samples of waste and other material dumper in the maritime area that is analysed by that laboratory?	7
CompAnal		Does the laboratory carrying out the analyses undertake periodic comparative analysis of laboratory reference materials and certified reference materials?	
QAQC	Q3	Does the laboratory carrying out the analyses undertake the compilation of quality control chail based upon the data resulting from the analyses of the laboratory reference materials and certified reference materials, and the use of those quality control charts to monitor analytical performance in relation to all samples of dumped wastes or other materials?	ts
InterlabCaleb	Q4	Does the laboratory carrying out the analyses undertake periodic participation in interlaborator comparison exercises, including, where possible, international comparison exercises?	у
InternatCaleb	Q5	Does the laboratory carrying out the analyses undertake periodic participation in national and, where possible, international laboratory proficiency schemes	
SpikedSamples	Q6	If the answer to questions 4 or 5 is 'Yes' then does the laboratory analyse samples of substances which are provided by the organisers of the scheme?	
BlindSamples		If the answer to questions 4 or 5 is 'Yes' then does the laboratory confirm that the composition of those samples is not disclosed in advance?	
Ranking	Q8	If the answer to questions 4 or 5 is "Yes" then does the laboratory confirm that the results of the scheme for each participating laboratory are made available to all participating laboratories?	
FracAnal	Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	
GranMoth	010	PSA method	

FracAnal		Q9	Enter the size fraction that is analysed i.e. Whole or less than 63µm etc.	
GranMeth		210	PSA method	
OCMeth	d	211	Organic Carbon method	
MetExtrTyp	oe C	212	Method of extraction used for metal analysis	
MethOfDetMe	etals C	213	Method of detection used for metal analysis	
PAHExtrTyp	pe C	214	Method of extraction used for poly aromatic hydrocarbon analysis	
MethOfDetP	AH C	215	Method of detection used for poly aromatic hydrocarbons analysis	
OHExtrTyp	ое С	216	Method of extraction used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
MethOfDetC	он с	217	Method of detection used for organohalogens inc PCBs, pesticides, flame retardants etc analysis	
OTExtrTyp	е С	218	Method of extraction used for organotin analysis	
MethOfDetC	от с	219	Method of detection used for organotin analysis	

		LOD/LOQ	Precision (%)	Recovery (%
	Hg		1 1	
	As			
	Cd			
	Cu Pb			
mg/kg	Zn			
	Cr			
	Ni			
	TBT			
	DBT			
	PCB28			
	PCB31			
	PCB44			
	PCB47			
	PCB49 PCB52			
	PCB66			
	PCB101			
	PCB105			
	PCB110			
	PCB118			
	PCB128			
	PCB138+163			
	PCB141			
	PCB149			
	PCB151 PCB153			
	PCB155			
	PCB158			
	PCB170			
	PCB180			
	PCB183			
	PCB187			
	PCB194			
	DDE			
	DDT DDD			
	Dieldrin			
	Lindane			
	HCB			
	BDE17			
	BDE28			
μg/kg	BDE47			
	BDE66			
	BDE85 BDE99			
	BDE 100			
	BDE138			
	BDE153			
	BDE154			
	BDE183			
	BDE209			
	ACENAPTH			
	ACENAPHY			
	ANTHRACN BAA			
	BAP			
	BBF			
	BENZGHIP			
	BEP			
	BKF			
	C1N			
	C1PHEN			
	C2N			
	C3N			
	CHRYSENE			
	DBENZAH			
	FLUORENE			
	INDPYR			
	NAPTH			
	PERYLENE			
	PHENANT			
	PYRENE			
	THC			