

Culzean Floating Offshore Wind Turbine Pilot Project Appendix H

Ornithology Displacement Analysis and Collision Risk Modelling

Author: Digger Jackson

Version: 2.0

Date: 13 February 2024

Introduction

This appendix to the Culzean Floating Wind Turbine EIA Report presents additional information on the analyses undertaken to quantify the potential for displacement and collision risk to seabird as part of the assessments presented in Chapter 11: Ornithology of the EIA Report.

The appendix presents displacement matrices for kittiwake, common guillemot and razorbill for the breeding and non-breeding periods. The matrices follow guidance on quantifying and assessing seabird displacement effects (SNCB,2017; NatureScot, 2023 (Guidance Note 8)) from offshore wind developments.

The appendix also provides details of the input parameters and model outputs for the collision risk modelling (CRM) undertaken to predict how many birds might be killed annually due to collision with the Project's single wind turbine. CRM was undertaken for gannet, kittiwake, great-black-backed gull and herring gull. CRM was undertaken using the Stochastic CRM shiny app v 0.1.1 (Caneco, 2022).) and using parameter vales according to NatureScot guidance (NatureScot, 2023 (Guidance Note 7)). The CRM shiny app is an online Graphical User Interface developed especially for seabird collision modelling. It is based on the stochastic model developed by Masden (2015), which in turn was developed from the non-stochastic model developed by Band (2012). The shiny app was used to predict the number of annual collisions for four collision-vulnerable seabird species, gannet, kittiwake, great black-backed gull and herring gull. Predictions were produced from the CRM run in both deterministic and stochastic modes, as recommended by NatureScot guidance (Guidance Note 7).

Displacement Matrices

Appendix H Table 1. Input parameters for displacement matrices

Species	Peak density	Peak density	Buffer applied	Area (+2 km buffer)
	(Breeding Season)	(Non-breeding Season)		
Kittiwake	0.25 birds/km ²	0.13 birds/km ²	2 km	12.6 km²
Guillemot	1.26 birds/km ²	21.7 birds/km ²	2 km	12.6 km²
Razorbill	0.07 birds/km ²	1.11 birds/km²	2 km	12.6 km²

Appendix H Table 2. Displacement matrix for kittiwake during the breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on kittiwake from offshore wind energy developments.

	: kittiwake, peak		% mortality of displaced birds												
2-	km buffer preeding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%			
	10%	0	0	0	0	0	0	0	0	0	0	0			
	20%	0	0	0	0	0	0	0	0	0	1	1			
%	30%	0	0	0	0	0	0	0	0	0	1	1			
of b	40%	0	0	0	0	0	0	0	0	1	1	1			
birds	50%	0	0	0	0	0	0	0	0	1	1	2			
	60%	0	0	0	0	0	0	0	1	1	2	2			
displaced	70%	0	0	0	0	0	0	0	1	1	2	2			
e d	80%	0	0	0	0	0	0	1	1	1	2	3			
	90%	0	0	0	0	0	0	1	1	1	2	3			
	100%	0	0	0	0	0	0	0	0	0	0	3			

Appendix H Table 3. Displacement matrix for kittiwake during the non-breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on kittiwake from offshore wind energy developments.

	Scenario: kittiwake, Peak estimated number inside					% morta	lity of displa	ced birds				
2-	ed number inside km buffer n-breeding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%
	10%	0	0	0	0	0	0	0	0	0	0	0
	20%	0	0	0	0	0	0	0	0	0	0	0
	30%	0	0	0	0	0	0	0	0	0	0	0
% of I	40%	0	0	0	0	0	0	0	0	0	1	1
birds	50%	0	0	0	0	0	0	0	0	0	1	1
of birds displaced	60%	0	0	0	0	0	0	0	0	0	1	1
laceo	70%	0	0	0	0	0	0	0	0	1	1	1
<u></u>	80%	0	0	0	0	0	0	0	0	1	1	1
	90%	0	0	0	0	0	0	0	0	1	1	1
	100%	0	0	0	0	0	0	0	0	1	1	2

Appendix H Table 4. Displacement matrix for common guillemot during the breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on common guillemot from offshore wind energy developments.

monthly e	Guillemot, peak estimated number km buffer during					% morta	ity of displa	ced birds				
	ding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%
	10%	0	0	0	0	0	0	0	0	1	1	2
	20%	0	0	0	0	0	0	1	1	2	3	3
	30%	0	0	0	0	0	0	1	1	2	4	5
% of I	40%	0	0	0	0	0	1	1	2	3	5	6
of birds	50%	0	0	0	0	0	1	2	2	4	6	8
	60%	0	0	0	0	0	1	2	3	5	8	10
displaced	70%	0	0	0	0	1	1	2	3	6	9	11
<u> </u>	80%	0	0	0	1	1	1	3	4	6	10	13
	90%	0	0	0	1	1	1	3	4	7	11	14
	100%	0	0	0	0	0	0	0	0	0	0	16

Appendix H Table 5. Displacement matrix for common guillemot during the non-breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on common guillemot from offshore wind energy developments.

month	rio: Guillemot, peak ly estimated number e 2 km buffer during					% mortal	ity of displa	ced birds				
	n-breeding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%
	10%	0	1	1	1	1	3	5	8	14	22	27
	20%	1	1	2	2	3	5	11	16	27	44	55
\ <u>\</u>	30%	1	2	2	3	4	8	16	25	41	65	82
% of I	40%	1	2	3	4	5	11	22	33	55	87	109
birds	50%	1	3	4	5	7	14	27	41	68	109	136
	60%	2	3	5	7	8	16	33	49	82	131	164
displaced	70%	2	4	6	8	10	19	38	57	95	153	191
	80%	2	4	7	9	11	22	44	65	109	174	218
	90%	2	5	7	10	12	25	49	74	123	196	245
	100%	3	5	8	11	14	27	55	82	136	218	273

Appendix H Table 6. Displacement matrix for razorbill during the breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on razorbill from offshore wind energy developments.

monthly e	e: Razorbill, peak estimated number		% mortality of displaced birds												
	km buffer during eding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%			
	10%	0	0	0	0	0	0	0	0	0	0	0			
	20%	0	0	0	0	0	0	0	0	0	0	0			
	30%	0	0	0	0	0	0	0	0	0	0	0			
of	40%	0	0	0	0	0	0	0	0	0	0	0			
birds	50%	0	0	0	0	0	0	0	0	0	0	0			
% of birds displaced	60%	0	0	0	0	0	0	0	0	0	0	1			
laceo	70%	0	0	0	0	0	0	0	0	0	0	1			
<u></u>	80%	0	0	0	0	0	0	0	0	0	1	1			
	90%	0	0	0	0	0	0	0	0	0	1	1			
	100%	0	0	0	0	0	0	0	0	0	0	1			

Appendix H Table 7. Displacement matrix for razorbill during the non-breeding season. Values are the number of birds rounded to the nearest whole number predicted to be die for a given combination of assumed mortality and rate of displacement. The highlighted cells are the combinations recommended by NatureScot (Guidance Note 8) for the assessment of displacement impacts on razorbill from offshore wind energy developments.

	e: Razorbill, peak estimated number					% morta	lity of displa	ced birds				
	km buffer during reeding season	1%	2%	3%	4%	5%	10%	20%	30%	50%	80%	100%
	10%	0	0	0	0	0	0	0	0	1	1	1
	20%	0	0	0	0	0	0	1	1	1	2	3
	30%	0	0	0	0	0	0	1	1	2	3	4
% of	40%	0	0	0	0	0	1	1	2	3	4	6
birds	50%	0	0	0	0	0	1	1	2	3	6	7
of birds displaced	60%	0	0	0	0	0	1	2	3	4	7	8
laceo	70%	0	0	0	0	0	1	2	3	5	8	10
<u>u</u>	80%	0	0	0	0	1	1	2	3	6	9	11
	90%	0	0	0	1	1	1	3	4	6	10	13
	100%	0	0	0	1	1	1	3	4	7	11	14

CRM Input Parameter Values

Appendix H Table 8. Simulation options selected for CRM

Simulation choice	Selection
Number of iterations	1000
Random seed value	10
Large array correction	No

Appendix H Table 9. Wind farm parameters used in CRM

Number of turbines	Latitude (deg)	Windfarm width (km)	Tidal offset (m)	% upwind flights
1	57	1	0	50

Appendix H Table 10. Turbine parameters used in CRM

Turbine Model	Number of rotor blades	Rotor radius (m)	Surface clearance (m)	Blade Width (m)	Speed/ pitch simulation option	Rotation speed (rpm)	Rotation speed SD	Rotor pitch (deg)	Rotor pitch SD
3 MW	3	56	22	4	probDist	13	0.5	13	0.1

Appendix H Table 11. Wind availability and turbine downtime parameters used in CRM

Metric	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Wind availability (%)	96.28	96.53	95.83	92.78	90.86	92.22	89.11	89.92	93.71	96.14	97.14	96.41
Mean downtime (%)	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
SD Downtime (%)	2	2	2	2	2	2	2	2	2	2	2	2

Appendix H Table 12. Bird size and behaviour parameters used in CRM

Species	Avoidance rate Determinist ic CRM Option 2	Avoidance rate Stochastic CRM Option 2	Avoidance rate SD	Body length (m)	Body length SD	Wingspan (m)	Wingspan SD	Flightt speed (m/s)	Flight speed SD	Nocturnal activity factor	Nocturnal activity SD	Flight type	Proportio n flight activity at CRH	Proportio n flight activity at CRH SD
Gannet	0.992	0.993	0.0003	0.935	0.0325	1.73	0.0375	14.9	0	0.08	0.1	Gliding	0.102	0.01
Kittiwake	0.992	0.993	0.0003	0.390	0.0050	1.08	0.0625	13.1	0.4	0.5	0.005	Flapping	0.124	0.01
Great black- backed gull	0.994	0.994	0.0004	0.710	0.0350	1.58	0.0375	13.7	1.2	0.5	0.005	Flapping	0.291	0.01
Herring gull	0.994	0.994	0.0004	0.595	0.0225	1.44	0.03	12.8	1.8	0.5	0.005	Flapping	0.285	0.01

Appendix H Table 13. Flying bird density (birds/km²) parameters used in stochastic CRM

Species	Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Gannet	Mean	0	0	0	0	0	0.130	0	0.060	0	0	0	0
	SD	0	0	0	0	0	0.091	0	0.060	0	0	0	0
Kittiwake	Mean	0	0	0	0	0.190	0.060	0.130	0.060	0	0	0.130	0
	SD	0	0	0	0	0.108	0.060	0.091	0.060	0	0	0.091	0
Great black- backed gull	Mean	0.130	0.070	0	0.060	0.070	0	0	0.190	0	0.065	0.070	0.190
	SD	0.091	0.070	0	0.060	0.070	0	0	0.141	0	0.046	0.070	0.108
Herring gull	Mean	0.070	0	0	0	0	0	0	0	0	0	0	0
	SD	0.070	0	0	0	0	0	0	0	0	0	0	0

CRM Outputs for CRM Option2

Appendix H Table 14. Stochastic CRM Option 2 outputs for gannet (number of collisions per season / year after adjustment for avoidance rate)

Season	Time Period	CRM Option	Mean	Median	SD	cv	2.5%	97.5%
Breeding	April - September	Option 1	0.029	0.028	0.012	42.781	0.007	0.054
		Option 2	0.030	0.027	0.017	57.021	0.006	0.070
Non brooding	October - March	Option 1						
Non-breeding		Option 2						
Year	January - December	Option 1	0.029	0.028	0.012	42.781	0.007	0.054
		Option 2	0.030	0.027	0.017	57.021	0.006	0.070

Appendix H Table 15. Stochastic CRM Option 2 outputs for kittiwake (number of collisions per year / season after adjustment for avoidance rate)

Season	Time Period	CRM Option	Mean	Median	SD	CV	2.5%	97.5%
Breeding	April - August	Option 1	0.063	0.063	0.040	30.114	0.030	0.103
		Option 2	0.060	0.059	0.019	32.162	0.025	0.101
Non brooding	September - March	Option 1	0.015	0.015	- 0.008	54.351	0.002	0.032
Non-breeding		Option 2		0.014		55.846		
Year	January - December	Option 1	0.078	0.078	0.021	26.845	0.042	0.122
		Option 2	0.075	0.073	0.022	29.186	0.037	0.121

Appendix H Table 16. Stochastic CRM Option 2 outputs for great black-backed gull (number of collisions per year / season after adjustment for avoidance rate)

Season	Time Period	CRM Option	Mean	Median	SD	CV	2.5%	97.5%
Dona din a	April - August	Option 1	0.121	0.119	0.046	37.714	0.043	0.223
Breeding		Option 2	0.129	0.124	0.052	40.021	0.045	0.249
Non brooding	September - March	Option 1	0.161	0.158	0.044	27.406	0.096	0.260
Non-breeding		Option 2	0.172	0.166	0.052	30.424	0.086	0.286
Vasu	January - December	Option 1	0.283	0.278	0.067	23.857	0.167	0.432
Year		Option 2	0.300	0.292	0.081	27.070	0.165	0.482

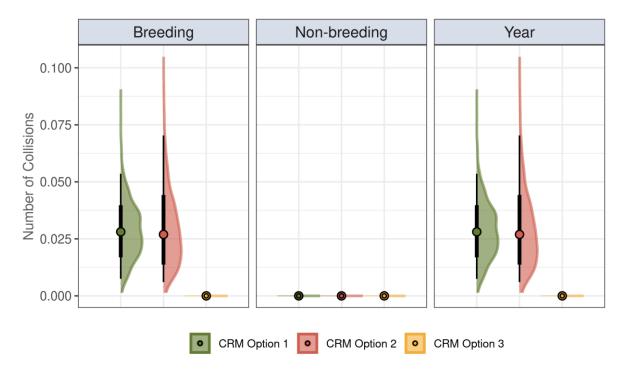
Appendix H Table 17. Stochastic CRM Option 2 outputs for herring gull (number of collisions per year / season after adjustment for avoidance rate)

Season	Time Period	CRM Option	Mean	Median	SD	CV	2.5%	97.5%
Breeding	April - August	Option 1	- 0.000	2 222	0.000		0.000	0.000
		Option 2		0.000				0.000
Non brooding	September - March	Option 1	- 0.022	0.020	0.014	62.023	- 0.002	0.053
Non-breeding		Option 2				63.638		
V	January - December	Option 1		0.020	0.014	62.023	- 0.002	0.053
Year		Option 2	0.022		0.014	63.638		

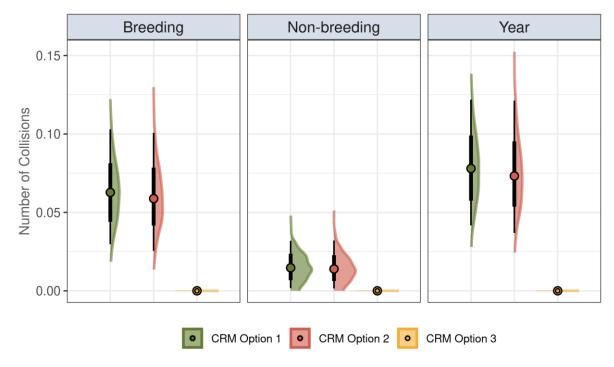
Appendix H Table 18. Deterministic CRM Option 2 outputs for gannet (number of collisions per year / season after adjustment for avoidance rate)

Season	Time Period	CRM Option	No. Collisions
Droading	Anril Contombor	Option 1	0.028
Breeding	April - September	Option 2	0.027
Nan haardina	Ostobou Maush	Option 1	
Non-breeding	October - March	Option 2	
W ii	lancara Danashan	Option 1	0.028
Year	January - December	Option 2	0.027

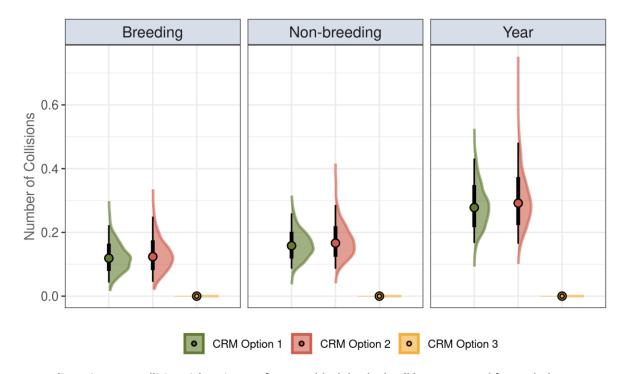
Appendix H Table 19. Deterministic CRM Option 2 outputs for kittiwake (number of collisions per year / season after adjustment for avoidance rate)

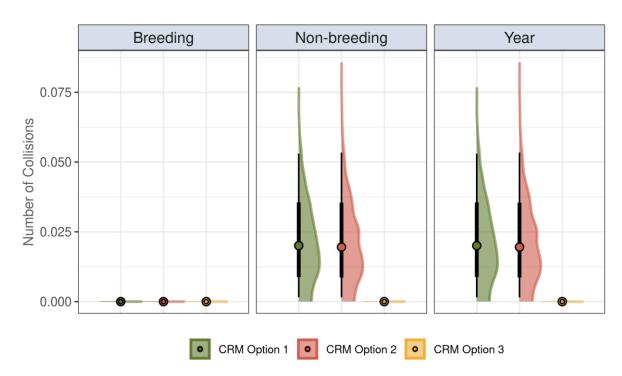

Season	Time Period	CRM Option	No. Collisions
Drooding	April August	Option 1	0.064
Breeding	April - August	Option 2	0.061
Nan haardina	Cantanahan Manah	Option 1	0.016
Non-breeding	September - March	Option 2	0.015
V	I D	Option 1	0.080
Year	January - December	Option 2	0.076

Appendix H Table 20. Deterministic CRM Option 2 outputs for great black-backed gull (number of collisions per year / season after adjustment for avoidance rate)


Season	Time Period	CRM Option	No. Collisions
Drooding	April August	Option 1	0.101
Breeding	April - August	Option 2	0.099
Nan haardina	Cantanahan Manah	Option 1	0.143
Non-breeding	September - March	Option 2	0.139
V	I D	Option 1	0.244
Year	January - December	Option 2	0.237

Appendix H Table 19. Deterministic CRM Option 2 outputs for herring gull (number of collisions per year / season after adjustment for avoidance rate)


Season	eason Time Period CRM (No. Collisions
Prooding	April August	Option 1	0.000
Breeding	April - August	Option 2	0.000
Non brooding	Cantambar March	Option 1	0.017
Non-breeding	September - March	Option 2	0.016
Vaar	January Dagarahan	Option 1	0.017
Year	January - December	Option 2	0.016


Appendix H Figure 1. Collision risk estimates for gannet by season and for a whole year. Density distribution, median, 66% and 95% quantile intervals and quantile dotplots (each dot represents ~2% chance outcome) of simulated values. Note CRM Option 3 was disabled.

Appendix H Figure 2. Collision risk estimates for kittiwake by season and for a whole year. Density distribution, median, 66% and 95% quantile intervals and quantile dotplots (each dot represents ~2% chance outcome) of simulated values. Note CRM Option 3 was disabled.

Appendix H Figure 3. Collision risk estimates for great black-backed gull by season and for a whole year. Density distribution, median, 66% and 95% quantile intervals and quantile dotplots (each dot represents ~2% chance outcome) of simulated values. Note CRM Option 3 was disabled.

Appendix H Figure 4.. Collision risk estimates for herring gull by season and for a whole year. Density distribution, median, 66% and 95% quantile intervals and quantile dotplots (each dot represents ~2% chance outcome) of simulated values. Note CRM Option 3 was disabled.

References

Band, B. (2012) Using a collision risk model to assess bird collision risks for offshore windfarms. SOSS report, The Crown Estate.

Caneco, B. (2022). Stochastic CRM Shiny app. V0.1.1. DMP Statistical Solutions Ltd, Available at: https://dmpstats.shinyapps.io/sCRM/

Masden, E (2015) Developing an avian collision risk model to incorporate variability and uncertainty. Scottish Marine and Freshwater Science Report Vol 6 No 14. Marine Scotland Science. ISSN: 2043-7722 DOI: 10.7489/1659-1

NatureScot. (2023). Guidance Note 7: Guidance to support Offshore Wind Applications: Marine Ornithology - Advice for assessing collision risk of marine birds. https://www.nature.scot/doc/guidance-note-7-guidance-support-offshore-wind-applications-marine-ornithology-advice-assessing

NatureScot (2023). Guidance Note 8: Guidance to support Offshore Wind Applications: Marine Ornithology - Advice for assessing the distributional responses, displacement and barrier effects of Marine birds. https://www.nature.scot/doc/guidance-note-8-guidance-support-offshore-wind-applications-marine-ornithology-advice-assessing

SNCB (2017). Advice on how to present assessment information on the extent and potential consequences of seabird displacement from Offshore Wind Farm (OWF) developments. Joint SNCB Interim Displacement Advice Note. January 2017.