# Salamander Offshore Wind Farm Offshore EIA Report

Volume ER.A.4, Annex 9.1: Environmental Baseline Report



Powered by Ørsted and Simply Blue Group

# **Environmental Baseline** Report Salamander Offshore Wind Farm

### Geophysical & Environmental

SALAMANDER

Survey

North Sea, UK

DATE CLIENT Salamander Offshore Wind Co. Ltd. 2023-08-18

CREATED BY Iris Duranović DOC NO. 104052-SBE-OI-SUR-REP-ENVSURRE

**APPROVED BY Daniel Jenkins** 

REVISION A1

# **OCEAN INFINITY<sup>®</sup>**

Ocean Infinity Group Holding AB Sven Källfelts Gata 11 | SE-426 71 Västra Frölunda, Sweden Phone: +46 (0)31 762 03 00 | Email: info@oceaninfinity.com www.oceaninfinity.com



### **Revision History**

| Revision | Date       | Status                      | Check          | Approval       |
|----------|------------|-----------------------------|----------------|----------------|
| A1       | 2023-08-18 | Re-Issued for Client Review | Iris Duranović | Daniel Jenkins |
| А        | 2023-06-22 | Issue for Use               | Iris Duranović | Daniel Jenkins |
| 03       | 2023-04-21 | Issue for Client Review     | Iris Duranović | Daniel Jenkins |
| 02       | 2023-01-30 | Issue for Client Review     | Iris Duranović | Daniel Jenkins |
| 01       | 2023-01-30 | Issue for Internal Review   | Iris Duranović | Daniel Jenkins |

### **Revision Log**

| Date       | Section                                | Change                                                                                                                                                                                                                                            |
|------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2023-04-21 | All                                    | Revision in line with client comments received in<br>documents SBE Comment Sheet - 104052-SBE-OI-<br>SUR-REP-ENVSURRE Rev 02 and<br>SBE Comment Sheet - 104052-SBE-OI-SUR-REP-<br>ENVSURRE Rev 02_MarineSpace 010322_MMJB.<br>Appendix D updated. |
| 2023-08-18 | Figures 10 and 11<br>Figures 37 and 39 | Updated figures with correct habitat shape file<br>Updated figures with extended Sabellaria raster and<br>to include green habitats between KP 21 to 24.                                                                                          |

### **Document Control**

| Responsibility | Position                   | Name                              |
|----------------|----------------------------|-----------------------------------|
| Content        | Benthic Ecologist          | Luke Colbeck-Tate                 |
| Content        | Benthic Ecologist          | Felicia Fetscher                  |
| Content        | Senior Benthic Ecologist   | Tobias Sundkvist                  |
| Content, Check | Benthic Ecologist          | Rikard Karlsson                   |
| Content, Check | Senior Benthic Ecologist   | Iris Duranović                    |
| Check          | Project Report Coordinator | Donatien Eve - Federico Beccarini |
| Check          | Document Controller        | Sofie Mellander                   |
| Approval       | Project Manager            | Daniel Jenkins                    |



### Table of Contents

| 1. Inti                                                                                                                                                                           | oduction                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                                                                                               | Project Information and Survey Area 12                                                                                                                                                                                                                                                                             |
| 1.2                                                                                                                                                                               | Project Requirements                                                                                                                                                                                                                                                                                               |
| 1.3                                                                                                                                                                               | Scope of Work                                                                                                                                                                                                                                                                                                      |
| 1.4                                                                                                                                                                               | Environmental Scope of Work                                                                                                                                                                                                                                                                                        |
| 1.5                                                                                                                                                                               | Purpose Of Document                                                                                                                                                                                                                                                                                                |
| 1.6                                                                                                                                                                               | Reference Documents                                                                                                                                                                                                                                                                                                |
| 2. Sur                                                                                                                                                                            | vey Parameters                                                                                                                                                                                                                                                                                                     |
| 2.1                                                                                                                                                                               | Geodetic Datum and Grid Coordinate System17                                                                                                                                                                                                                                                                        |
| 2.1                                                                                                                                                                               | Vertical Datum                                                                                                                                                                                                                                                                                                     |
| 2.2                                                                                                                                                                               | Time Datum                                                                                                                                                                                                                                                                                                         |
| 3. Sur                                                                                                                                                                            | vey Performance                                                                                                                                                                                                                                                                                                    |
| 3.1                                                                                                                                                                               | Survey Tasks                                                                                                                                                                                                                                                                                                       |
| 3.2                                                                                                                                                                               | Mobilisation and Calibration Test                                                                                                                                                                                                                                                                                  |
| 3.3                                                                                                                                                                               | Vessel and Equipment                                                                                                                                                                                                                                                                                               |
| 3.3.                                                                                                                                                                              | 1 Vessel Equipment                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |
| 4. Me                                                                                                                                                                             | thodology21                                                                                                                                                                                                                                                                                                        |
| 4. Me                                                                                                                                                                             | thodology                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                   | Field Methods                                                                                                                                                                                                                                                                                                      |
| 4.1                                                                                                                                                                               | Field Methods                                                                                                                                                                                                                                                                                                      |
| 4.1<br>4.1.                                                                                                                                                                       | Field Methods211Survey Design212Drop Down Video (DDV)21                                                                                                                                                                                                                                                            |
| 4.1<br>4.1.<br>4.1.                                                                                                                                                               | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling22                                                                                                                                                                                                                                     |
| 4.1<br>4.1.<br>4.1.<br>4.1.                                                                                                                                                       | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling22                                                                                                                                                                                                                                     |
| 4.1<br>4.1.<br>4.1.<br>4.1.<br>4.1.                                                                                                                                               | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods23                                                                                                                                                                  |
| 4.1<br>4.1.<br>4.1.<br>4.1.<br>4.1.<br>4.2                                                                                                                                        | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis23                                                                                                                                         |
| 4.1<br>4.1.<br>4.1.<br>4.1.<br>4.1.<br>4.2<br>4.2.                                                                                                                                | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses24                                                                                                                 |
| 4.1<br>4.1.<br>4.1.<br>4.1.<br>4.1.<br>4.2<br>4.2.<br>4.2.                                                                                                                        | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses24                                                                                                                 |
| 4.1<br>4.1.<br>4.1.<br>4.1.<br>4.2<br>4.2.<br>4.2.<br>4.2.                                                                                                                        | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses243Biological Analysis25Data Analyses25                                                                            |
| <ul> <li>4.1</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.2</li> <li>4.2.</li> <li>4.2.</li> <li>4.2.</li> <li>4.3</li> </ul>                               | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses243Biological Analysis25Data Analyses251Visual Data Analyses25                                                     |
| <ul> <li>4.1</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.2.</li> <li>4.2.</li> <li>4.2.</li> <li>4.2.</li> <li>4.3.</li> <li>4.3.</li> </ul>               | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses233Biological Analysis25Data Analyses251Visual Data Analyses252Particle Size Distribution26                        |
| <ul> <li>4.1</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.1.</li> <li>4.2.</li> <li>4.2.</li> <li>4.2.</li> <li>4.2.</li> <li>4.3.</li> <li>4.3.</li> <li>4.3.</li> </ul> | Field Methods211Survey Design212Drop Down Video (DDV)213Faunal Grab Sampling224Particle Size and Contaminants Grab Sampling23Laboratory Methods231Particle Size Analysis232Contaminants Analyses243Biological Analysis25Data Analyses251Visual Data Analyses252Particle Size Distribution263Contaminant Analysis26 |



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

|    | 4.4 | MBE          | S Derivatives                                      |     |
|----|-----|--------------|----------------------------------------------------|-----|
|    | 4.4 | 4.1          | Backscatter                                        | 28  |
|    | 4.5 | Habi         | tat Classification                                 | 30  |
|    | 4.6 | Prote        | ected Habitats and Species Assessments             | 31  |
| 5. | Re  | esults       |                                                    |     |
|    | 5.1 | Sum          | mary of Identified Habitats                        |     |
|    | 5.2 | Area         | Description                                        | 40  |
|    | 5.3 | Parti        | cle Size Distribution                              | 42  |
|    | 5.3 | 3.1          | Multivariate Analyses for Sediment                 | 45  |
|    | 5.4 | Cont         | aminant Analyses                                   |     |
|    | 5.4 | 1.1          | Metals                                             | 48  |
|    | 5.4 | 1.2          | Organics and Moisture                              | 51  |
|    | 5.4 | 1.3          | Total Hydrocarbons                                 | 53  |
|    | 5.4 | 1.4          | Polycyclic Aromatic Hydrocarbons                   | 55  |
|    | 5.5 | Stati        | stical Analyses                                    | 58  |
|    | 5.5 | 5.1          | Non-Colonial Fauna from Grab Samples               | 58  |
|    | 5.5 | 5.2          | Phyletic Composition                               | 58  |
|    | 5.5 | 5.3          | Univariate Statistical Analyses                    | 60  |
|    | 5.5 | 5.4          | Multivariate Analyses                              | 66  |
|    | 5.5 | 5.5          | Relationship Between Physical and Biological Data  | 72  |
|    | 5.5 | 5.6          | Sessile Colonial Epifauna from Grab Samples        |     |
|    | 5.6 | Biom         | nass                                               |     |
|    | 5.7 | Epib         | enthic Fauna from Visual Survey                    |     |
|    | 5.7 | 7.1          | Non-Colonial Epibenthic Fauna in Site Stills       | 80  |
|    | 5.7 | 7.2          | Colonial Epifauna in Site Stills                   | 83  |
|    | 5.8 | Pote         | ntial Areas and Species of Conservation Importance | 86  |
|    | 5.8 | 3.1          | Rocky Reefs                                        | 87  |
|    | 5.8 | 3.2          | Biogenic Reefs                                     | 88  |
|    | 5.8 | 3.3          | Offshore Subtidal Sands and Gravels                | 107 |
|    | 5.8 | 3.4          | Notable Taxa                                       | 107 |
| 6. | Di  | scussio      | on                                                 |     |
| 7. | Сс  | onclusi      | ons                                                |     |
| 8. | Re  | Reservations |                                                    |     |
| 9. | Re  | eferend      | ces                                                |     |



### **Appendices**

- Appendix A Geophysical Overview of Sample Locations
- Appendix B Sample Position List
- Appendix C Environmental Field Report
- Appendix D Photo Identification Results
- Appendix E Grab Identification Results
- Appendix F Particle Size Analysis Results
- Appendix G Chemical Analyses Results
- Appendix H GIS Database

### List of Figures

| Figure 1 Overview of the Salamander Offshore Wind Farm survey area13                     |
|------------------------------------------------------------------------------------------|
| Figure 2 Overview of the relation between different vertical references                  |
| Figure 3 M/V Northern Franklin                                                           |
| Figure 4 Offshore SeaSpyder DDV System21                                                 |
| Figure 5 Example image from the survey21                                                 |
| Figure 6 Day grab sampler23                                                              |
| Figure 7 Hamon grab sampler23                                                            |
| Figure 8 Focal Statistics settings                                                       |
| Figure 9 Example of 2022 EUNIS Hierarchy                                                 |
| Figure 10 Overview of sampled sites and classified habitats                              |
| Figure 11 Overview of sampled sites and species-specific habitats                        |
| Figure 12 Overview of sampled sites with normalised backscatter data                     |
| Figure 13 Particle size distribution from grab samples, sorted by increasing easting     |
| Figure 14 Dendrogram based on Euclidian distance for the sediment composition,46         |
| Figure 15 PCA plot of sediment composition for each grab sample site, showing groups47   |
| Figure 16 Arsenic (As) levels (mg/kg dry weight) from grab samples with threshold        |
| Figure 17 Levels of EPA 16 PAHs summarized ( $\mu g/kg$ ) samples with threshold values, |
| Figure 18 Relative percentage abundance of non-colonial fauna from grab samples          |
| Figure 19 Relative percentage number of non-colonial fauna from grab samples             |
| Figure 20 Overview of the Number of Taxa (S) per grab sample site                        |



| Figure 21 Overview of the Number of Individuals (N) per grab sample site                                |
|---------------------------------------------------------------------------------------------------------|
| Figure 22 Overview of the Shannon-Wiener Index (H') per grab sample site65                              |
| Figure 23 SIMPROF dendrogram of non-colonial faunal composition from grab samples 67                    |
| Figure 24 nMDS-plot of non-colonial faunal composition from grab samples with group 68                  |
| Figure 25 Spatial overview of groups produced in SIMPROF dendrogram of non-colonial 71                  |
| Figure 26 Relative number of taxa of colonial epifauna from grab samples73                              |
| Figure 27 Relative percentage of total biomass (g/0.1 m <sup>2</sup> ) of major phyla74                 |
| Figure 28 Relative percentage of total biomass (g/0.1 m <sup>2</sup> ) of "Others"                      |
| Figure 29 Overview of total biomass (g/0.1 m <sup>2</sup> ) per grab sample site                        |
| Figure 30 Site photo still from ECR_S5280                                                               |
| Figure 31 Relative percentage abundance of non-colonial fauna in grab site stills                       |
| Figure 32 Average non-colonial faunal densities (ind./m <sup>2</sup> ) in stills per grab sample site82 |
| Figure 33 Relative percentage of total coverage of colonial fauna in grab site stills                   |
| Figure 34 Average percentage coverage per m <sup>2</sup> for colonial fauna in stills per grab site 85  |
| Figure 35 ECR_S40 sample before sieving                                                                 |
| Figure 36 ECR_S41 sample before sieving                                                                 |
| Figure 37 Distribution of S. spinulosa quantities per grab sample site                                  |
| Figure 38 Average percentage coverage per m <sup>2</sup> of S. spinulosa from stills                    |
| Figure 39 Distribution of S. spinulosa percentage coverage per square meter                             |
| Figure 40 Distribution of individual stills with S. spinulosa reefiness assessment                      |
| Figure 41 Distribution of individual stills with S. spinulosa reefiness assessment                      |
| Figure 42 Distribution of individual stills with S. spinulosa reefiness assessment                      |



### List of Tables

| Table 1 Project details.   12                                                                | 2 |
|----------------------------------------------------------------------------------------------|---|
| Table 2 Reference documents15                                                                | 5 |
| Table 3 Geodetic parameters.   17                                                            | 7 |
| Table 4 Projection parameters.   17                                                          | 7 |
| Table 5 Vertical reference parameters.    18                                                 | 3 |
| Table 6 Survey tasks                                                                         | Э |
| Table 7 Vessel Equipment                                                                     | ) |
| Table 8 Benthic survey equipment.   20                                                       | ) |
| Table 9 DDV system settings during acquisition.    21                                        | 1 |
| Table 10 British standard (2010) sieve sizes                                                 | 4 |
| Table 11 Marine sediment contaminants analyses.    24                                        | 4 |
| Table 12 Univariate statistical analyses.    27                                              | 7 |
| Table 13 Backscatter Intensity colour schema for each area (intensity is presented in dB) 29 | Э |
| Table 14 Proposed matrix for Sabellaria spinulosa reef identification (Gubbay, 2007)31       | 1 |
| Table 15 Sabellaria spinulosa Reef Structure Matrix (Step 1) and S. spinulosa Reef           | 2 |
| Table 16 Guidelines used to categorise 'reefiness' for stony reefs (Irving, 2009)            | 3 |
| Table 17 Guidelines used to categorise low resemblance stony reefs (Brazier, 2020)           | 3 |
| Table 18 Number of sampled sites and transects                                               | 4 |
| Table 19 Identified habitats within the surveyed area.       35                              | 5 |
| Table 20 Species-specific habitats within the surveyed area                                  | ô |
| Table 21 Summary of PSA results.   42                                                        | 2 |
| Table 22 Summary of correlation results for sediments45                                      | 5 |
| Table 23 Summary of correlation results for sediment fractions, easting and depth against 45 | 5 |
| Table 24 Summary of correlation results for arsenic (As).       48                           | 3 |
| Table 25 Metal concentrations (mg/kg dry weight) with threshold values                       | Э |
| Table 26 Total organic matter, total organic carbon, and moisture content in samples 51      | 1 |
| Table 27 Summary of correlation results for Total Oil.    53                                 | 3 |
| Table 28 THC concentrations (µg/kg dry weight) in samples53                                  | 3 |
| Table 29 Summary of correlation results for Σ16PAH55                                         | 5 |
| Table 30 PAH concentrations (µg/kg dry weight) in samples.                                   | 5 |



| Table 31 Phyletic composition of non-colonial fauna from grab samples.         59          |
|--------------------------------------------------------------------------------------------|
| Table 32 The ten most abundant taxa from grab samples, together with                       |
| Table 33 The ten most frequently occurring taxa from grab samples, together                |
| Table 34 Univariate indices of species richness, diversity, and evenness for fauna         |
| Table 35 Summary of characteristics of the non-colonial faunal groups from grab         68 |
| Table 36 Results of BEST test between physical data and biological data for single and72   |
| Table 37 Phyletic composition of colonial epifauna from grab samples                       |
| Table 38 Biomass (blotted wet weight in g/0.1 m²)75                                        |
| Table 39 Top 10 sites with the highest number of taxa and assigned habitats.       79      |
| Table 40 Top 10 most frequently occurring non-colonial taxa across all sites               |
| Table 41 Top 10 most frequently occurring colonial taxa across all sites.       83         |
| Table 42 Habitats of conservation interest within the ECR and WAA                          |
| Table 43 Species of conservation interest within the ECR and WAA.       87                 |
| Table 44 Stony Reef assessment at site S47.    87                                          |
| Table 45 Summary of S. spinulosa quantities per grab sample site                           |
| Table 46 Percentage coverage per square meter of S. spinulosa from grab site stills,       |
| Table 47 Example stills from WAA_S06.    92                                                |
| Table 48 Example stills from WAA_S12.    93                                                |
| Table 49 Example stills from WAA_S20.    93                                                |
| Table 50 Example stills from WAA_S25.    93                                                |
| Table 51 Example stills from WAA_S26.    94                                                |
| Table 52 Example stills from ECR_S39.    94                                                |
| Table 53 Example screen shots from video of 'Bommies'.       96                            |
| Table 54 Example of S. spinulosa assessment per grab sample site/ per still acquired97     |
| Table 55 Sabellaria spinulosa 'reefiness' assessment                                       |
| Table 56 Species rarely recorded in the UK identified during the survey                    |

### Abbreviations and Definitions

| Σ16PAH | Sum of the 16 EPA PAHs       |
|--------|------------------------------|
| AL     | Action Level                 |
| CAD    | Computer-Aided Design        |
| CBRA   | Cable Burial Risk Assessment |



| ССМЕ  | Canadian Council of Ministers of the Environment                       |
|-------|------------------------------------------------------------------------|
|       | Centre for Environment, Fisheries and Aquaculture Science              |
|       | Conductivity, Temperature and Depth                                    |
| dB    |                                                                        |
| DDV   |                                                                        |
| DG    | •                                                                      |
| DPR   |                                                                        |
|       | Environmental Assessment Criteria                                      |
| EC    |                                                                        |
| ECR   | -                                                                      |
| ECC   |                                                                        |
|       | Environmental Impact Assessment                                        |
|       |                                                                        |
|       | Emergency Notification Flowchart                                       |
|       | European Petroleum Survey Group                                        |
| EU    | -                                                                      |
|       | European Nature Information System                                     |
| FLOW  | -                                                                      |
| FMGT  |                                                                        |
|       | Global Navigation Satellite System                                     |
| HAZOP |                                                                        |
| HG    |                                                                        |
| HSE   |                                                                        |
| IA    |                                                                        |
|       | Interim Sediment Quality Guidelines                                    |
|       | International Union for Conservation of Nature                         |
|       | Joint Nature Conservation Committee                                    |
|       | Kenneth Pye Associates Limited                                         |
| LAT   |                                                                        |
| LED   |                                                                        |
| LOI   |                                                                        |
|       | Mobilisation and Calibrations                                          |
| MBES  |                                                                        |
| MDS   |                                                                        |
| MHWS  | Mean High Water Springs                                                |
| MMO   | Marine Management Organisation                                         |
| MPA   | Marine Protected Area                                                  |
|       | Norwegian Environmental Agency                                         |
|       | NE Atlantic Marine Biological Quality Control                          |
| OAA   |                                                                        |
| 01    | Ocean Infinity                                                         |
| OSPAR | Oslo Paris Conventions for the protection of the marine environment of |
|       | the North East Atlantic                                                |
|       |                                                                        |



| РАН     | Polycyclic Aromatic Hydrocarbon                       |
|---------|-------------------------------------------------------|
| РС      | Principal Component                                   |
| РСА     | Principal Component Analysis                          |
| PEL     | Probable Effect Level                                 |
| PMF     | Priority Marine Feature                               |
| PPS     | Pulse Per Second                                      |
| PRIMER  | Plymouth Routines in Multivariate Ecological Research |
| PSA     | Particle Size Analysis                                |
| QA      | Quality Assurance                                     |
| RA      | Risk Assessment                                       |
| RMS     | Root Mean Square                                      |
| RPL     | Route Position List                                   |
| SAC     | Special Area of Conservation                          |
| SBES    | Simply Blue Energy Scotland                           |
| SBET    | Smoothed Best Estimated Trajectory                    |
| SBL     | Scottish Biodiversity List                            |
| SIMPER  | Similarity Percentages                                |
| SIMPROF | Similarity Profile                                    |
| SBP     | Sub Bottom Profiler                                   |
| SPA     | Special Protection Area                               |
| SSS     | Side Scan Sonar                                       |
| STR     | Subsea Technology & Rentals                           |
| THC     | Total Hydrocarbons                                    |
| тос     | Total Organic Content                                 |
| TOM     | Total Organic Matter                                  |
| UKAS    | The United Kingdom Accreditation Service              |
| UKHO    | UK Hydrographic Office                                |
| USBL    | Ultra-short Baseline                                  |
| UTC     | Coordinated Universal Time                            |
| UTM     | Universal Transverse Mercator                         |
| UXO     | Unexploded Ordnance                                   |
| VORF    | Vertical Offshore Reference Frame                     |
| WAA     | Windfarm Array Area                                   |
| WFD     | Water Framework Directive                             |
| WGS84   | World Geodetic System 1984                            |
| WTG     | Wind Turbine Generator                                |
|         |                                                       |



### **Executive Summary**

This report details the results of the benthic survey performed east of Peterhead in the Northeast of Scotland at the Salamander Offshore Wind Farm for Salamander Offshore Wind Company Ltd.

Geophysical data was acquired to determine water depths, surficial geology, seabed features, shallow geology, and objects present within the survey area. Instruments used during the geophysical survey were multibeam echo sounder, magnetometer, side scan sonar and sub-bottom profiler. The environmental data acquisition included sediment sampling and imagery to establish a baseline for the habitats and faunal communities in the survey area. The survey was performed using drop down video, Day grab and Hamon grab samplers.

The geophysical interpretation combined with the environmental data was used as the basis for the European Nature Information System habitat classifications and assessments of potential areas and species of conservation importance.

All geophysical and benthic equipment was deployed from the survey vessel M/V Northern Franklin.

A total of 52 grab sample sites were selected for sampling, based on geophysical data, and sampled for taxonomic identification, particle size analysis and contaminants. Five additional grab sites were added to the survey due to the presence of Ross worm *Sabellaria spinulosa*, as well as one was a standalone extended video transect to investigate a distinct seabed feature.

The benthic survey started on the 1<sup>st</sup> of September 2022 and was completed on the 22<sup>nd</sup> of September 2022.

A total of six broad-scale habitats, including one habitat complex, were identified within the survey area. Additionally, taxonomic assemblages from the acquired grab sample data further indicate the presence of 11 species-specific habitats, including seven habitat complexes. One Priority Marine Feature habitat, offshore subtidal sands and gravels, and one Scottish Biodiversity List habitat, Subtidal sands and gravels, were also noted present. No features qualifying as Annex I (1170) were identified within the survey area although aggregations of Ross worm, *S. spinulosa*, were present both along the Export Cable Route and within the Windfarm Array Area.

Two Priority Marine Feature species, sandeel *Ammodytes* sp. and ocean quahog *Arctica islandica*, were also identified within the survey area together with the Scottish Biodiversity Listed sea pen species *Pennatula phosphorea*.

The results of the particle size analysis showed limited variation in the sediment composition across the survey area, with sand being the dominant sediment fraction.

Metal concentrations were generally low, with threshold values for arsenic being exceeded at six sites and cadmium at one site. Hydrocarbon levels were low, with polycyclic aromatic hydrocarbon concentration exceeding the threshold limits at five sites.

The faunal analyses of the grab samples showed that the phyletic composition was dominated by annelids. The two most abundant taxa were the mollusc *Kurtiella bidentata* and the annelid *Scoloplos armiger*.

Pielou's Evenness index, Shannon-Wiener index, and Simpson's Index of Dominance had a limited variation across the grab sample sites, with the SIMPROF (Similarity Profile) test identifying five faunal groups. Bryozoa followed by Cnidaria, had the highest frequency of occurrence and presented the highest number of different taxa among the sessile colonial epifauna. Mollusca comprised the majority of the biomass. The most abundant non-colonial phyla in still photographs were Arthropoda followed by Cnidaria, and the colonial fauna with the highest coverage was Annelida.

### **OCEAN INFINITY**<sup>®</sup>



### 1. Introduction

### 1.1 Project Information and Survey Area

The Salamander Offshore Wind Farm is being developed by Salamander Offshore Wind Company Ltd., a joint venture partnership between Ørsted, Simply Blue Group and Subsea7.

The project area is located approximately 35 km east of Peterhead in the Northeast of Scotland, in the Windfarm Array Area (WAA) of interest of approximately 84.1 km<sup>2</sup> with water depths up to 115 m. The Export Cable Route (ECR) has an approximate route length of 35 km and an approximate area of 41 km<sup>2</sup>.

For the Salamander Reconnaissance Geophysical and Environmental Site Investigation, data is required within the Salamander array area and along the offshore export cable corridor that runs between the array area and the landfall. Given the project schedule and consenting application submission, this survey will also aim to provide the necessary data to feed into the Environmental Impact Assessment (EIA) process.

Project details are stated in Table 1. An overview of the survey area is presented in Figure 1.

Table 1 Project details.

| Client                             | Salamander Offshore Wind Company Ltd. |  |
|------------------------------------|---------------------------------------|--|
| Project                            | Salamander Offshore Wind Farm         |  |
| Ocean Infinity (OI) Project Number | 104052                                |  |
| Survey Type                        | Geophysical and Environmental         |  |
| Area                               | North-East Scotland (UK)              |  |
| Survey Period                      | August – September 2022               |  |
| Survey Vessels                     | Northern Franklin (Offshore)          |  |
| OI Project Manager                 | Daniel Jenkins                        |  |
| Client Focal Point                 | Eric Kiltie                           |  |

### **OCEAN INFINITY**<sup>®</sup>





Figure 1 Overview of the Salamander Offshore Wind Farm survey area.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

### 1.2 Project Requirements

A reconnaissance geophysical plus environmental survey was required to support project development. The primary uses for the collected data were:

- To characterise the site for the purposes of the EIA process;
- To map and identify the shallow geology, seabed features, local topography and any geohazards at the reconnaissance level;
- To refine the site boundary and preliminary Wind Turbine Generator foundations (WTG) layout;
- To inform preliminary cable route evaluation and to determine preferred cable route;
- To inform early mooring concept design / screening;
- Refinement of the desk study ground model and planning of the reconnaissance geotechnical campaign.

Secondary uses for the data may include the following (although additional specific survey data may be required for each of these secondary applications):

- Informing physical processes;
- Informing Water and Sediment Quality;
- Supporting Benthic Ecology assessment;
- Supporting Marine Archaeology;
- Early data to assist Unexploded Ordnance (UXO) studies;
- Inform the geotechnical site investigations;
- Informing preliminary cable engineering studies.

### 1.3 Scope of Work

The reconnaissance geophysical and environmental survey of the proposed Windfarm Array Area (WAA) and the Export Cable Route (ECR) was undertaken to:

- Provide data necessary for the consenting application
- Map and sample the benthic ecology habitat
- Act as a baseline for a reconnaissance-level ground model, which will be developed through the different stages of the project
- Aid the engineering studies, namely, mooring feasibility, concept selection and design, Cable Burial Risk Assessment (CBRA)
- Corroborate constraints and geohazards identified from desktop studies as well as capturing those that were not observed at that stage.

The WAA has an area of approximately 84.1 km<sup>2</sup> and it includes a 500 m buffer. The offshore and nearshore sections of the ECR have an approximate length of 35 km and an area of 40.9 km<sup>2</sup>. The cut off between the offshore and the nearshore sections of the ECR is at a water depth of 20 m LAT. The intertidal area (IA) of the export cable route is defined between 0 m LAT and the mean high water springs (MHWS) point with a corridor of 500 m (104052-SBE-OI-SUR-REP-TIDALRE).



### 1.4 Environmental Scope of Work

#### **Environmental Baseline Survey Sediment Sampling Sites**

It was required that the benthic physical and faunal characteristics of the survey area, both nearshore and offshore, were established in order to determine the baseline conditions of the area. The key objective was to ensure that all the interpreted surface sediment units identified during the Geophysical Survey were sampled adequately.

#### **Habitat Assessment Survey**

The environmental survey of the ECR and WAA was conducted to assess for the presence of potentially important and environmentally sensitive habitats such as:

- Annex I habitats of the European Union (EU) Habitats Directive (1992)
- Any evidence of the threatened and/or declining species and habitats listed by OSPAR (2008), Scottish Priority Marine Features (PMF) and Scottish Biodiversity List (SBL) species.
- Species on the International Union for Conservation of Nature (IUCN) Global Red List of threatened species (IUCN, 2019).

Any potentially sensitive habitats identified during the survey were investigated using high-resolution video and stills photography and the extent of any habitats or features identified were mapped. All sediment types identified by the geophysical data acquisition were ground-truthed during the habitat assessment survey. In addition, any potential features of cultural/heritage importance (e.g. wrecks) were investigated.

#### **Biotope Mapping**

All biotope determination was undertaken in line with Joint Nature Conservation Committee (JNCC) guidance on assigning benthic biotopes within the European Nature Information System (EUNIS), marine version 2022, habitat classification system.

### 1.5 Purpose Of Document

The purpose of this report is to present the environmental methodology and results within the survey area. This report presents the baseline environmental conditions from the Salamander Offshore Wind Farm.

This Report details the data and results of the 2022 survey spanning the majority of the Export Cable Route (ECR), to approximate KP 8.3, as well as the entire Windfarm Array Area (WAA). Future reports will use revised nomenclature for the ECR as Offshore Export Cable Corridor (ECC) and the WAA as Offshore Array Area (OAA), with the OAA comprising <33.33 km<sup>2</sup> of the original 84.1 km<sup>2</sup> of the WAA.

Areas of special interest within the survey area are presented in this report as well as in the GIS habitat charts. All existing OI data from the survey are correlated with each other and compared against the existing background information and the environmental survey data, to strengthen the accuracy of the interpretations.

### 1.6 Reference Documents

The documents used as references to this Environmental Survey Report are presented in Table 2.

Table 2 Reference documents.

| Document Number              | Title                       | Author |
|------------------------------|-----------------------------|--------|
| QUA_W-QUA-QASSURAN-MAN       | OI Quality Assurance Manual | 01     |
| 104052-SBE-OI-DCC-MDR-MDR006 | Master Document Register    | 01     |



## CO

#### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Document Number                   | Title                                                       | Author |
|-----------------------------------|-------------------------------------------------------------|--------|
| 104052-SBE-OI-QAC-PRO-CADGIS      | CAD and GIS Specification                                   | OI     |
| 104052-SBE-OI-QAC-PRO-PROJMANU    | Project Manual – Northern Franklin                          | 01     |
| 104052-SBE-OI-SCH-PRO-SCHEDULE    | Time Schedule                                               | 01     |
| 104052-SBE-OI-MAC-PRO-NFRANKLIN   | Mobilisation and Calibration Procedures - Northern Franklin | 01     |
| 104052-SBE-OI-MAC-REP-NFRANKLIN   | Mobilisation and Calibration Report - Northern Franklin     | OI     |
| 104052-SBE-OI-QAC-PRO-COMMMATR    | Communications Matrix                                       | OI     |
| 104052-SBE-OI-MOB-PLA-NFRANKLIN   | Mobilisation Plan - Northern Franklin                       | OI     |
| 104052-SBE-OI-QAC-PRO-PROJQPLA    | Project Quality Plan                                        | OI     |
| 104052-SBE-OI-HSE-PRO-HSEPLAN     | HSE Plan                                                    | OI     |
| 104052-SBE-OI-HSE-PRO-HIRAAP      | Hazard Identification & Risk Assessment - APEM              | OI     |
| 104052-SBE-OI-HSE-PRO-HAZOPNF     | Hazard and Operability Study - Northern Franklin            | OI     |
| 104052-SBE-OI-HSE-PRO-ENFRANKLIN  | Emergency Notification Flowchart - Northern Franklin        | OI     |
| 104052-SBE-OI-HSE-PRO-ERPFRANKLIN | Emergency Response Plan - Northern Franklin                 | GS     |
| 104052-SBE-OI-SUR-REP-ENVFIERE    | Environmental Field Report                                  | OI     |
| 104052-SBE-OI-SUR-REP-MMO         | Marine Mammal Mitigation Report                             | 01     |
| 104052-SBE-OI-SUR-REP-SURVEYRE    | Integrated Geophysical and Habitat Assessment Report        | 01     |
| 104052-SBE-OI-SUR-REP-TIDALRE     | Intertidal Report                                           | 01     |
| 104052-SBE-OI-SUR-REP-ENVSURRE    | Environmental Baseline Survey Report- this document         | 01     |
| 104052-SBE-OI-SUR-REP-GISCAD      | GIS and CAD datasets (with Final Survey Report)             | 01     |
| 104052-SBE-OI-SUR-REP-SURVEYRE    | Integrated Geophysical and Habitat Assessment Report        | OI     |



### 2. Survey Parameters

### 2.1 Geodetic Datum and Grid Coordinate System

The geodetic and projection parameters used during the project are presented in Table 3 and Table 4.

Table 3 Geodetic parameters.

| Horizontal Datum: WGS 84 |                                   |  |  |
|--------------------------|-----------------------------------|--|--|
| Datum                    | World Geodetic System 1984 (6326) |  |  |
| Ellipsoid                | World Geodetic System 1984 (7030) |  |  |
| Prime Meridian           | Greenwich (8901)                  |  |  |
| Semi-major axis          | 6 378 137.000 m                   |  |  |
| Semi-minor axis          | 6 356 752.3142 m                  |  |  |
| Inverse Flattening (1/f) | 298.257223563                     |  |  |
| Unit                     | International metre               |  |  |

Table 4 Projection parameters.

| Projection Parameters |                            |  |
|-----------------------|----------------------------|--|
| Projection            | UTM Zone 30 N (EPSG 32630) |  |
| Zone                  | 30 N                       |  |
| Central Meridian      | 03° 00' 00'' W             |  |
| Latitude Origin       | 0                          |  |
| False Northing        | 0 m                        |  |
| False Easting         | 500 000 m                  |  |
| Central Scale Factor  | 0.9996                     |  |
| Units                 | metres                     |  |

The ITRF2014 realization is treated as equivalent to WGS84. Thus, no transformation is required.

### 2.1 Vertical Datum

The bathymetric survey data was reduced to the Lowest Astronomical Tide (LAT) through the usage of the UK Hydrographic Office (UKHO) Vertical Offshore Reference Frame (VORF) model.

The Global Navigation Satellite System (GNSS) tides was used to correct the bathymetry data to the project vertical reference level. The GNSS tide was obtained by post-processing GNSS data collected by an Applanix PosMV 320 system. The GNSS data was then post-processed and applied to the data. This tidal reduction methodology encompassed all vertical movement of the vessel, including tidal effect and vessel movement due to waves and currents.

The short variations in height were identified as heave and the long variations as tide. This methodology was very robust since it is not limited by the filter settings defined in the online systems and provided very good results in complicated environmental conditions.

The output from POSPac is a so-called SBET (Smoothed Best Estimated Trajectory) solution with ellipsoidal heights with accuracies of 5 cm Root Mean Square (RMS), which are corrected for motion and referenced to the Multi-beam Echo Sounder (MBES) reference point.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

The procedure has proven to be very accurate as it accounts for any changes in height caused by changes in atmospheric pressure, storm surge, squat, loading or any other effect not accounted for in a tidal prediction. By incorporating a height model of the defined vertical datum into the process, all heights used the same vertical reference which was valid at the location of the actual measurement independent of the size of the survey area, instead of choosing a single mean value. Comparisons with the closest water-level station were performed to ensure that the data is levelled correctly.

The vertical reference datum parameters and height model used during the project are presented in Table 5.

Table 5 Vertical reference parameters.

| Vertical Reference Parameters |      |  |
|-------------------------------|------|--|
| Vertical Reference            | LAT  |  |
| Height Model                  | VORF |  |

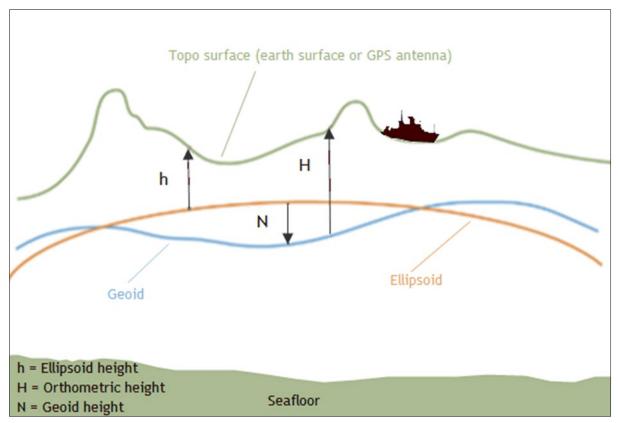
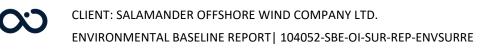




Figure 2 Overview of the relation between different vertical references.

### 2.2 Time Datum

Coordinated universal time (UTC) was used on all survey systems on board the vessel. The synchronisation of the vessel's onboard system was governed by the pulse per second (PPS) issued by the primary positioning system. All displays, overlays and logbooks were annotated in UTC. The Daily Progress Report (DPR) refers to UTC.

### **OCEAN INFINITY**<sup>®</sup>



### 3. Survey Performance

### 3.1 Survey Tasks

The Environmental Survey tasks are presented in Table 6.

Table 6 Survey tasks.

| Task                         | Date                    | Description                                                                                                                                                           |
|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mobilisation and Calibration | 2022-08-06 - 2022-08-08 | Mobilisation and calibration of geophysical survey equipment.                                                                                                         |
| Geophysical survey – WAA     | 2022-08-08 – 2022-08-30 | Geophysical Survey with MBES/Sub-bottom profiler (SBP)<br>(vessel mounted) and Side Scan Sonar<br>(SSS)/Magnotometer (MAG) (ROTV towed), 2D Sparker<br>(vessel towed) |
| Geophysical survey – ECR     | 2022-08-30 - 2022-09-01 | Geophysical Survey with MBES/SBP (vessel mounted) and SSS/MAG (ROTV towed), 2D Sparker (vessel towed)                                                                 |
| Re-mobilisation              | 2022-09-01 - 2022-09-02 | Mobilisation for benthic survey – Drop down camera Sea<br>Spyder STR, Hamon Grab, Day grab                                                                            |
| Environmental Survey         | 2022-09-10 - 2022-09-21 | Drop down camera and grab survey                                                                                                                                      |
| Demobilisation               | 2022-09-22              | Demobilisation in Aberdeen.                                                                                                                                           |

### 3.2 Mobilisation and Calibration Test

Mobilisation and calibrations (MAC) were conducted between 2<sup>nd</sup> September and 10<sup>th</sup> September 2022 in Aberdeen, Scotland.

Detailed methodology and acceptance test procedures are presented in the Mobilisation and Calibration Report, 104052-SBE-OI-MAC-REP-NFRANKLIN and the Environmental Field Report 104052-SBE-OI-SUR-REP-ENVFIERE.

### 3.3 Vessel and Equipment

#### 3.3.1 Vessel Equipment

The Environmental survey operations were conducted by the offshore vessel M/V Northern Franklin (Figure 3).

The vessel is equipped with a DP1 system and can perform geophysical seabed mapping (including UXO surveys) and geotechnical/environmental sampling assignments. Deployment of equipment was performed via a starboard A-frame.





Figure 3 M/V Northern Franklin.

The vessel M/V Northern Franklin is equipped with navigation and positioning systems as stated in Table 7 with environmental sampling equipment stated in Table 8.

| Table | 7 | Vessel | Equipment. |
|-------|---|--------|------------|
|-------|---|--------|------------|

| Instrument                                          | Name                                                                                                          |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Primary Positioning System                          | Applanix POS MV 320 with C-Nav 3050 with C-NavC <sup>2</sup> corrections on the SF2 service                   |
| Secondary Positioning System                        | C-Nav 3050 using C-NavC <sup>2</sup> corrections on the SF1 service                                           |
| Primary Gyro and INS System                         | Applanix POS MV 320                                                                                           |
| Secondary Gyro                                      | iXblue GAPS                                                                                                   |
| Underwater Positioning System                       | iXblue GAPS                                                                                                   |
| Survey Navigation System                            | QPS QINSy                                                                                                     |
| Surface Pressure Sensor                             | Vaisala Pressure Sensor                                                                                       |
| Multibeam Echo Sounder (Deep Water)                 | Kongsberg EM710 (70-100 kHz)                                                                                  |
| Multibeam Echo Sounder<br>(Medium to Shallow Water) | Kongsberg EM2040D (200-400 kHz)                                                                               |
| Parametric Sub-Bottom Profiler                      | Hull mounted Innomar 2000 SES – Medium 100                                                                    |
| Low frequency Sub-Bottom Profiler                   | Towed GEOSPARK-1000 (200 tip)                                                                                 |
| Sound Velocity Sensor                               | Valeport SVX2, deployed over the side<br>Real-time SVS Valeport miniSVS, hull-mounted at the MBES transducers |

#### Table 8 Benthic survey equipment.

| Equipment                            | Name                                  |
|--------------------------------------|---------------------------------------|
| Benthic Grab                         | Day Grab (0.1m²)                      |
| Benthic Grab                         | Hamon Grab (0.1m <sup>2</sup> )       |
| Video System and Photographic Camera | STR SeaSpyder                         |
| Sieve Table                          | 1 mm & 5 mm Sieves and Sampling Table |

### 4. Methodology

### 4.1 Field Methods

#### 4.1.1 Survey Design

The benthic survey was conducted using grab samplers and a video and still camera system. Sample sites were selected using the information provided from the geophysical survey data and in accordance with the requirements of the Client.

A Senior Benthic Ecologist planned the benthic survey based on the geophysical data and preliminary geological interpretations, ensuring that the different habitats as interpreted from the Side Scan Sonar (SSS), Multibeam Echo Sounder (MBES), including normalised backscatter values, were ground-truthed. A detailed account of selected sites, including a geophysical overview, is presented in Appendix A.

The full SSS data coverage available was reviewed and interpreted based on texture and reflectivity. The SSS data were compared and correlated with MBES and backscatter.

Sample sites were documented by video and still photography and by grab sampling. Where grab sampling was not possible due to coarse substrates or sensitive habitats, only video/still photo was used for sampling. The methods used, correlate the geophysical information from MBES, and SSS with information on the substrate through Particle Size Analysis (PSA) and quantitative taxonomic analysis of the infauna. These survey and analytical methods provide a comprehensive overview of present conditions.

The final sample site locations were agreed upon in consultation with the Client prior to the commencement of the sample collection, and the site selection was validated through a rationale submitted to the Client. The locations of the sample sites were based on depth variation, sediment, and habitat changes as delineated during the geophysical survey to provide benthic data of all habitats interpreted within the survey area.

#### 4.1.2 Drop Down Video (DDV)

A SeaSpyder DDV system from Subsea Technology & Rentals Ltd (STR) (Figure 4 and Figure 5) was used to acquire still and video imagery at each sample site.

The DDV system was fitted with four lasers which produced a 17 x 14 cm pattern of dots on the seabed for scaling. Lighting was provided by Light Emitting Diode (LED) lamps with adjustable intensity. A surface control unit and powerful topside processor gave full remote control of the camera. The unit was positioned via an Ultra-short Baseline (USBL) beacon attached to the camera frame for subsea positioning. Acquisition settings are presented in Table 9.



Figure 4 Offshore SeaSpyder DDV System.

Table 9 DDV system settings during acquisition.



Figure 5 Example image from the survey.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Camera | White Balance | ISO | F-stop | Exposure     | Resolution                       |
|--------|---------------|-----|--------|--------------|----------------------------------|
| Stills | Auto          | 800 | F/16   | 1/125 or 160 | 24 MP                            |
| Video  | Auto          | n/a | n/a    | 1/25, 1/30   | 1920 x 1080 and 30 frames/second |

Each sample site was planned as a 50 m line transect covering the centre location of the proposed grab sample site. A minimum of seven (7) stills were taken along the 50 m transect at positions +25 m, +15 m, +5 m, 0 m, -5 m, -15 m, and -25 m from the target centre. One standalone video transect (ECR\_T53) was performed, with a length of 490 m along which 30 images were obtained. Stills were taken more frequently if the seabed exhibited features of interest i.e., reefs and/or evidence of increased diversity.

The camera was positioned as close as possible to the pre-selected starting point using the vessel's dynamic positioning system during the survey. The camera frame was lowered onto the seabed to adjust the camera focus. When the camera focus was set, an initial photo was taken, before the video recording was initiated.

The camera frame was eased off the seabed and towed slowly at approximately 0.3 - 0.5 knots. It was positioned as close to the seabed as possible with an approximate altitude of 0.5 - 1 m. Altitude was determined by seabed topography and weather conditions.

Prior to grab sampling, an experienced marine biologist reviewed all grab sites onboard to confirm the presence/absence of any potentially sensitive habitats or features of conservation interest.

#### 4.1.3 Faunal Grab Sampling

At each grab sample site, two (2) grab samples were to be acquired: one (1) sample for faunal analyses and one (1) sample that was subsampled for Particle Size Analysis (PSA) and contaminant analyses.

The primary grab sampler utilised for PSA and contaminants sampling was the Day Grab (DG) (Figure 6). The Hamon Grab (HG) was used as a secondary grab to sample PSA and fauna in areas of coarse sediment, however, the Hamon Grab could not be used for contaminants samples (Figure 7). Upon retrieval, samples were checked for adequate sample volume and samples covering less than 0.1 m<sup>2</sup> of bottom surface sediment were deemed unacceptable. No samples of less than 5 cm (7 cm in fine sediments) for the DG or 2.7 litres for HG were considered acceptable samples (Worsfold, Hall, & O'Reilly, 2010; Davies, et al., 2001).

If an acceptable sample volume was not achieved within three (3) attempts at the grab sample site (e.g., in areas of coarse sediment) then this was recorded, and the survey continued with the next grab sample site. Samples that were not accepted were not included in any statistical analyses.

The third attempt was repositioned slightly, to obtain a representative sample. Real-time observations of existing geophysical data were undertaken onboard by the experienced marine biologist in order to determine the closest area of suitable substrate.

A field log of sample positions including time, sediment type, and water depth was kept for later reference. All samples were photo-documented in-situ. Approved faunal samples were carefully sieved with seawater over stacked 5 mm and 1 mm sieves using gentle hose pressure. Sieve fractions were fixated with 95% ethanol in separate jars, that were labelled with a unique label containing the grab sample site ID and replicate number.

### **OCEAN INFINITY**<sup>®</sup>



CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

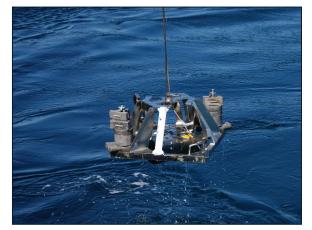



Figure 6 Day grab sampler.

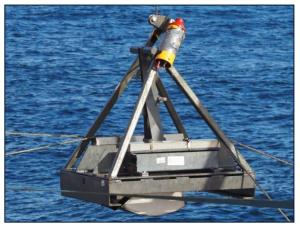



Figure 7 Hamon grab sampler.

#### 4.1.4 Particle Size and Contaminants Grab Sampling

The primary grab sampler utilised for the PSA and chemical sampling was the DG. The HG was used as a secondary grab to sample PSA in areas of coarse sediment, however, the HG could not be used for chemical samples.

Upon retrieval, samples were checked for adequate sample volume and samples covering less than 0.1 m<sup>2</sup> of bottom surface sediment were deemed unacceptable. No samples of less than 5 cm (7 cm in fine sediments) for the DG or 2.7 litres for HG were considered acceptable samples (Worsfold, Hall, & O'Reilly, 2010; Davies, et al., 2001). Sample re-attempts follow the same procedures as outlined in Section 4.1.3.

Samples for metals, hydrocarbons (Total Hydrocarbons, THC, and Polycyclic Aromatic Hydrocarbon, PAH), and organics (Loss of Ignition, LOI, and total organic content, TOC) were sampled from the top 2 cm of an undisturbed surface.

Contaminant samples for organics and hydrocarbons were sampled using a metal spoon and stored in labelled 250 ml metal tins. Samples for metal analyses were sampled using a plastic spoon and stored in labelled one (1) L plastic container. The grab sampler was cleaned between samples and sample sites.

The sample containers were labelled with a unique sample site ID. Metal and contaminant samples were immediately frozen after processing. Any replicate samples for all the analyses were collected and stored as back-up samples (not analysed).

A field log of sample positions including time, sediment type, and water depth was kept for later reference. Samples were photo-documented in situ. For further information regarding sample volume and the number of attempts, see Appendix B.

### 4.2 Laboratory Methods

#### 4.2.1 Particle Size Analysis

The Particle Size Analysis (PSA) was conducted by UK based company Kenneth Pye Associates Limited. (KPAL). Prior to analysis, a sub-sample was acquired from each container and sent for analysis of TOC and TOM.

Up to one litre of sediment from each sample site was analysed to detail the different particle fraction components with a combination of sieving and sedimentation methods.

PSA samples were analysed in accordance with NMBAQC Guidelines for Particle Size Analysis (PSA) for Supporting Biological Analysis (Mason, 2022) to provide data over the complete particle size range allowing determination of the gravel to sand plus mud ratio. KPAL also hold Marine Management Organisation (MMO) accreditation for particle size analysis.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

Samples were wet separated at 2.0 mm. The >2.0 mm fraction, where present, was analysed using nested British Standard sieves at 'half' phi intervals. The sub-2.0 mm fraction was analysed via laser diffraction (size range  $0.04 \,\mu$ m to 2.0 mm). The laser and sieve data were mathematically merged and calculations of particle size summary parameters (percentages of mud, sand, and gravel, silt/clay ratio, sand/mud ratio, median, mean, d10, d90, etc.) were calculated using GRADISTAT software (Blott & Pye, 2001).

The particle sizes were grouped into five large textural groups for description purposes (Table 10). The samples were described according to British standard 1377 (British Standard, 2010) and British Geological Society (BGS) modified Folk classification (Long, 2006). Detailed results for each grab sample site are provided in Appendix F.

| Classification | Particle Size Intervals (Diameter mm) | Grouped Classification |  |
|----------------|---------------------------------------|------------------------|--|
| Boulder        | >75                                   | Devideer (ashbias      |  |
| Cobble         | 75-64                                 | Boulders/cobbles       |  |
| Coarse Gravel  | 64-20                                 |                        |  |
| Medium Gravel  | 20-6                                  | Gravel                 |  |
| Fine Gravel    | 6-2                                   |                        |  |
| Coarse Sand    | 2-0.6                                 |                        |  |
| Medium Sand    | 0.6-0.2                               | Sand                   |  |
| Fine Sand      | 0.2-0.063                             |                        |  |
| Coarse Silt    | 0.063-0.02                            |                        |  |
| Medium Silt    | 0.02-0.006                            | Silt                   |  |
| Fine Silt      | 0.006-0.002                           |                        |  |
| Clay           | <0.002                                | Clay                   |  |

Table 10 British standard (2010) sieve sizes.

#### 4.2.2 Contaminants Analyses

The contaminants analyses were conducted by the UK based company SOCOTEC. The different compounds that were analysed along with detection limits are stated in Table 11. The analyses included concentrations/contents of metals, TOM, TOC, THC and PAH.

Detailed results of each grab sample site are provided in Appendix G.

Table 11 Marine sediment contaminants analyses.

| Analytes                                               | Method                                     | Accreditation  | Method Reporting Limit,<br>PPM Unless Stated<br>Otherwise |
|--------------------------------------------------------|--------------------------------------------|----------------|-----------------------------------------------------------|
| Particles Size Analysis and<br>Distribution (PSA, PSD) | NMBAQC                                     | NMBAQC         | N/A                                                       |
| Total Organic Carbon                                   | Sulphurous acid/combustion at 1600°`C/NDIR | UKAS 17025     | 0.02 %                                                    |
| Total Organic Matter by LOI                            | Combustion at 450°C                        | Not accredited | 0.20 %                                                    |





| Analytes                                                                                  | Method                                             | Accreditation  | Method Reporting Limit,<br>PPM Unless Stated<br>Otherwise |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|-----------------------------------------------------------|
| Metals suite: As(1), Cd(0.1), Cr(0.5),<br>Cu(2), Ni(0.5), Pb(2), Sn (0.5), V(2),<br>Zn(3) | Microwave assisted<br>HF/Boric extraction & ICPMS  | UKAS 17025     | Limits of detection within parentheses.                   |
| Metals suite: Hg(0.001)                                                                   | Nitric/peroxide extraction & ICPMS                 | Not accredited | Limits of detection within parentheses.                   |
| Metals suite: Al(10), Ba(1), Fe(10)                                                       | Microwave assisted<br>HF/Boric extraction & ICPOES | UKAS 17025     | Limits of detection within parentheses.                   |
| THC (inc. saturates)                                                                      | Solvent extraction & GC-FID                        | Not accredited | 100 μg/kg (Total)<br>1 μg/kg<br>(Individual alkanes)      |
| РАН                                                                                       | Solvent extraction & GC-MS                         | UKAS 17025     | 1 μg/kg                                                   |

#### 4.2.3 Biological Analysis

The faunal analysis was conducted by the UK-based company APEM Ltd. Analysis was conducted in accordance with the NE Atlantic Marine Biological Analytical Quality Control (NMBAQC) scheme (Worsfold, Hall, & O'Reilly, 2010), and all the samples were quality controlled.

The faunal samples were sorted from sediment residue, and the fauna was identified to the lowest taxonomic level possible, mainly species and enumerated. When the species could not be identified, the specimen was grouped into the nearest identifiable taxon of a higher rank, i.e., genus, family, or order etc.

If the species remained unknown but separated from any other found within the same genus, it was assigned a "Type" denomination, i.e., Type A or Type B. Juveniles were marked with the qualifier "juvenile" and excluded from further statistical analyses. Colonial fauna was not quantified in the laboratory analysis and recorded as Present (P).

Biomass analysis was conducted on the infauna from grab samples following identification and enumeration. Biomass was measured for each taxon for each sample, using the blotted wet-weight method, to the nearest 0.0001 g. All infaunal analyses followed the NMBAQC scheme. For a more detailed description, view Appendix E.

### 4.3 Data Analyses

#### 4.3.1 Visual Data Analyses

For epifauna identification, seven (7) stills along each transect were selected. Results are presented as an average of individuals or colonies per m<sup>2</sup>. For the extended standalone transect (T53), 18 stills were selected.

The stills were analysed to identify species and densities, including seabed substrate. Particular attention was paid to the elevation of habitats above ambient seabed level, together with their spatial extent, percentage biogenic cover and patchiness, as these are key criteria for evaluating areas of conservation importance and reef structures (Gubbay, 2007; Irving, 2009).

Quantitative methods were used for the identification of biota in grab samples and still photographs, with all the data presented as individuals per square metre and percentage cover of colonial species. Stills were analysed in AutoCAD Map 3D 2022 where visual epibenthic fauna was counted and results summarised in a log, containing scientific name, position, date, time, stills ID and quality checked.

For a more detailed description of species, view Appendix D.



#### 4.3.2 Particle Size Distribution

Sediment particle size distribution statistics for each sample were calculated from the raw data by the laboratory. Main sediment fractions and percentages were plotted to examine sediment composition changes across the survey area and used to aid the habitat assessment. Multivariate analyses were undertaken on the PSA data set, to identify patterns in the sediment distribution.

The PSA results were analysed using Plymouth Routines in Multivariate Ecological Research (PRIMER) software and normalised before being included in any statistical analysis.

Data for the percentage composition was analysed in a cluster analysis using the Euclidean distance. A Principal Component Analysis (PCA) was undertaken on the sediment data set to identify spatial patterns and relationships between variables.

Detailed results for each grab sample site are provided in Appendix F.

#### 4.3.3 Contaminant Analysis

Environmental Quality Standards (EQS) for metals and hydrocarbons in sediments are not yet developed for UK waters.

Assessment criteria developed by the Canadian Council of Ministers of the Environment (CCME) together with the Centre for Environment, Fisheries and Aquaculture Science (Cefas) guideline action levels for disposal of dredged material have been considered common practice to use.

The Oslo and Paris Conventions for the protection of the marine environment of the North-East Atlantic (OSPAR) Environmental Assessment Criteria (EAC) have also been used as guidelines for metal and PAH concentrations, when applicable, within this report. The Canadian sediment quality guidelines include two values as assessment criteria, the Interim Sediment Quality Guidelines (ISQG) and Probable Effect Level (PEL).

The ISQG are threshold levels that are set to protect all aquatic life during an indefinite period of exposure, and for values above PEL, adverse effects are expected to occur frequently (CCME, 1995; CCME, 2001). For concentrations between the ISQG and PEL, adverse effects occur occasionally.

Cefas Action Levels are used as a part of assessing the contamination status in dredged material, where material below Action Level 1 (AL1) generally indicates that contaminant levels are of no concern, while contaminant levels above Action Level 2 (AL2) generally are considered unsuitable for disposal in the sea (MMO, 2015).

OSPAR's Environmental Assessment Criteria (EACs) are under development, and OSPAR uses "Effect range-low" (ERL) values for sediment assessment of metals and PAH, where EACs are not available. The ERL value indicates a concentration below which adverse effects on organisms are rarely observed (OSPAR, 2011).

Condition classes established by the Norwegian Environmental Agency (NEA) for contamination in coastal sediments (NEA, 2016, revised 2020) for metals, PAH and other organic compounds were also used. This system uses five classes, class 1 - Background levels, class 2 - Good, with no known toxic effects, class 3 - Moderate, with chronic effects at long-term exposure, class 4 - Poor, with acute toxic effects at short-term exposure and class 5 - Very Poor, with extensive toxic effects.

There are no OSPAR or UK contamination threshold values regarding THC for marine sediments. In the absence of such guidelines, Dutch intervention levels for aquatic sediments can offer a useful comparison.

Concentrations above the Dutch intervention values represent a serious level of contamination, where functional properties of the sediment are seriously impaired or threatened (Hin, Osté, & Schmidt, 2010).

Detailed results are presented in Appendix G.

#### 4.3.4 Univariate Statistical Analyses

Univariate analyses were undertaken using the Plymouth Routines in Multivariate Ecological Research (PRIMER) v7.0 statistical package (Clarke, 2015).



Univariate analyses included the primary variables, the number of taxa (S) and abundance (N) together with the Margalef's index of Richness (D), Pielou's index of Evenness (J), Shannon- Wiener index of Diversity (H') and the Simpson's index of Dominance ( $\lambda$ ) which are summarised in Table 12.

| Analyses                                  | Parameters       | Formula           | Description                                                                                                                                                                                                                                            |
|-------------------------------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. of Taxa (S)                           | Species richness | S                 | The number of species (taxa) in each sample.                                                                                                                                                                                                           |
| No. of Individuals (N)                    | Abundance        | Ν                 | The number of individuals in each sample.                                                                                                                                                                                                              |
| Margalef's Index of<br>Richness (D)       | Richness         | d = (S-1) / ln(N) | A measure of the number of species present for a given number of individuals                                                                                                                                                                           |
| Shannon-Wiener Index<br>of Diversity (H') | Diversity        | H' = Σi Pi ln(Pi) | The diversity index incorporates both species<br>richness and equitability, where Pi is the proportion<br>of the total count arising from the /th species. A<br>lower value equals a high chance that all abundance<br>is concentrated to one species. |
| Pielou's Index of<br>Evenness (J)         | Evenness         | J = H' / In (s)   | Measures how evenly individuals are distributed<br>between species. Gives a value between 0 to 1,<br>where a higher value equals a more even<br>community.                                                                                             |
| Simpson's Index of<br>Dominance (1-λ)     | Dominance        | λ = (Σ pi2)       | Dominance index between 0 - 1 where 0<br>corresponds to assemblages whose total abundance<br>is dominated by one or very few of the species<br>present and 1 represents a more evenly species<br>distribution.                                         |

#### Table 12 Univariate statistical analyses.

#### 4.3.5 Multivariate Statistical Analyses

Multivariate analysis was undertaken using the Plymouth Routines in Multivariate Ecological Research (PRIMER) v7.0 statistical package (Clarke, 2015). The statistical analyses were based on macrofaunal data derived from the taxonomic analyses of one replicate from each sample site. All samples had sufficient sample volume to be included in the analyses. Abundances were expressed as a number of individuals per square metre.

The macrofaunal organisms were separated into non-colonial and sessile colonial fauna. Colonial fauna was not quantified in the laboratory analysis and was treated separately in the statistical analyses. All colonial fauna were considered to be epifauna. Juvenile (JUV) taxa were excluded from the dataset. Foraminiferans were excluded from the datasets. The faunal composition was linked to physical variables such as depth and sediment composition.

Square root transformation was applied to the non-colonial enumerated fauna datasets before calculating the Bray-Curtis similarity measures. This transformation was made to prevent abundant species from influencing the Bray-Curtis similarity index measures, excessively and to take the rarer species into account (Clarke & Warwick, 2001).

The macrofaunal laboratory results were compared for faunal composition within and between sampling sites. Site related differences in community structure were examined in a clustering analysis using Euclidean distance and the Bray-Curtis similarity coefficient. This method is common when measuring ecological distance in biological sample data.

Multi-Dimensional Scaling (MDS) analysis was undertaken in conjunction with the cluster analysis. The MDS analysis is based on the same similarity matrix as that of the cluster analysis and produces a multidimensional ordination of samples.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

The number of restarts was set to 999 with a minimum stress of 0.01. The MDS plot visualises the relative (dis)similarities between samples; the closer they are the more similar the species composition between the samples. The degree to which these relations can be satisfactorily represented is expressed as the stress coefficient statistic, low values (<0.1) indicate a good ordination with low probabilities of misleading interpretation. Generally, the higher the stress, the greater the likelihood of non-optimal solutions (Clarke & Warwick, 2001).

A Similarity Profile (SIMPROF) test was run in conjunction with the cluster analysis, which was used to identify significantly different naturally occurring groups among grab samples.

The results are presented in the cluster dendrogram as black lines indicating significant statistical differences. Significance level for the cluster analysis was set to 5 %. Red lines represent samples that are not statistically different. The SIMPROF is based on taxa, and the abundance of each taxon in each sample, thus different SIMPROF groups may host similar fauna which differ in abundance.

A Similarity Percentages analysis (SIMPER) was undertaken following the cluster analysis. SIMPER examines variable relations to each other and presents the species' contributions and similarities within and among groups.

PSA data were analysed in PRIMER and normalised before included in any statistical analysis. Data for the percentage composition was analysed in a cluster analysis using the Euclidean distance. A Principal Component Analysis (PCA) was undertaken on the sediment data set in order to identify spatial patterns and relationships between variables.

The relationship between the physical and biological data was tested using the BIOENV method, with Spearman rank correlations, in the BEST procedure in PRIMER v.7. This analysis identifies variables that exert the greatest influence on the spatial distribution of the input dataset. Prior to the BEST analyses species abundance data were square root transformed and the physical variables were normalised.

#### 4.4 MBES Derivatives

During the post-processing and assessment of benthic data, an additional MBES data derivative backscatter was produced to further strengthen the accuracy of the interpretations.

#### 4.4.1 Backscatter

The use of backscatter data to assist habitat interpretations and mapping is a methodology under development, increasingly used in these types of analyses (Lurton, et al., 2015).

Backscatter Normalised Values are a measurement of the MBES echo that is scattered in the direction of the transducer. This data records the intensity, in decibels (dB), of the echo that returns to the transducer after the emitted pulse interacts with the seabed.

The backscatter amplitude varies with several factors such as frequency, beam pattern, range and losses due to absorption and spreading, angle with the seabed as well as sediment type and other factors.

The raw data were processed with the Fledermaus (FMGT) software, which applied various standard normalisations to the data to compensate for how the intensity varied across the swath producing a grayscale floating-point raster image gridded at 1 m, where each gridded cell contains a measured intensity value.

The intensity decibel value interval, varied between the datasets acquired within the WAA and along the ECR due to their varying directionality. The range is typically 0 (hard seabed) to -47 (soft seabed) for the exported raster data.

Backscatter values varied across a small spatial scale, making interpretations on a larger scale challenging due to the small-scale variation. To mitigate this, the Focal Statistics tool in ArcGIS was used to reduce the variation in the values. The backscatter raster data was imported into ArcGIS and a raster image was created based on the measured intensity values for each cell and plotted.

Within ArcGIS, a secondary raster image was created through the calculation of the cell value with the Focal Statistics tool. The tool calculates a new value for each input cell based on the neighbouring cell values. The new



value output was based on the average value of the neighbouring cells in a 5x5 m (5x5 cells) square area with the target cell included (Figure 8). The new cells maintained the original cell size of 1x1 m.

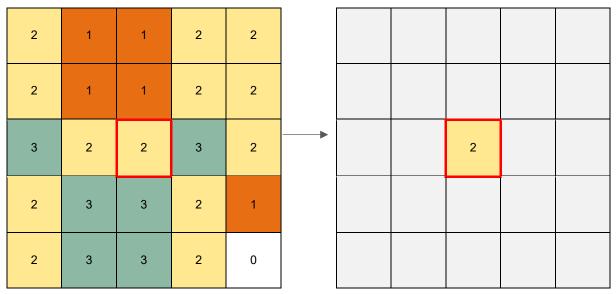



Figure 8 Focal Statistics settings.

Ground-truthing data (imagery) together with geophysical data were used to align the backscatter reflectivity intervals based on the trends interpreted, with regard to substrate and habitats (Lurton, et al., 2015). However, there were limiting factors due to the numerous and morphologically different ripple features in the area as well as the particle density in the water column.

The difficulties, that features such as ripples, impose on backscatter data are due to changes in elevation and angle of the seabed. These affect the amount of reflected sound, resulting in values indicating too hard or too soft a substrate. These potential errors are partially mitigated by using the Focal Statistics tool in ArcGIS, as the interpolation used in the tool averages out the overestimated and underestimated values from the backscatter.

Outlier values from the outermost ranges from the data sets were naturally excluded as the grouping of the intervals were set and these are detailed in Table 13.

| Datasets  | Colour Bars and Classes (dB) | Outliers (dB)  |
|-----------|------------------------------|----------------|
| RAW       |                              | -6 - 4; -4726  |
| FOCAL ECR |                              | -3522; -6 - 10 |

Table 13 Backscatter Intensity colour schema for each area (intensity is presented in dB).



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Datasets  | Colour Bars and Classes (dB) | Outliers (dB) |
|-----------|------------------------------|---------------|
| FOCAL WAA |                              | -2823; -1310  |

### 4.5 Habitat Classification

Habitats were classified to the lowest hierarchic level possible and based on interpretations that combine biotope descriptions of species abundance, diversity, depth and seabed features from grab samples, video and photos acquired at each sample site.

The classification of the communities of the different habitat types was based on physical characteristics such as benthic geology, wave exposure, tidal currents, temperature, and salinity together with key species present in the area. In addition, normalized backscatter data from MBES was used to delineate habitats in areas of homogenous sediments.

The EUNIS classification (EEA, 2022) is divided into six hierarchic levels, (Figure 9). At Level 1, the habitats are divided into marine, coastal and terrestrial habitats. The marine habitats are further divided into three separate categories: benthic, pelagic and ice-associated habitats.

At Level 2, the biological zone and presence/ absence of rock is a classification criterion, and at Level 3, the classifications are separated into marine regions.

Level 4 gives references to specific taxa. For rocky substrates, the major epifauna is used, and for softer substrates, the classification relies on both zonation and physical attributes. Further, at Level 5, the classification is based on both the physical and biological characters of the habitats, and classes are defined with both infauna and epifauna on different substrates. At the highest level, level 6, the different characterising taxa are associated with different environmental characteristics of the habitat.

If two different habitat classifications within what appears to be a similar habitat are identified, without any apparent differences in the interpreted geophysical data, a low number of transects may lead to the assignment of a matrix of two habitats. Extrapolating a large area based on a low number of samples may lead to a lower hierarchic biotope level for that area, than the actual biotope level for a singular sample within the habitat.

These compromises are reviewed individually. A smaller homogenous and distinctive area can be assigned to a higher hierarchic level compared to a larger and more variable area containing several different biotopes. The result of the habitat classification is presented in the results section and GIS charts.

| L1 | <ul> <li>(M) Marine Habitats</li> </ul>                                                        |
|----|------------------------------------------------------------------------------------------------|
| L2 | (MC4) Circalittoral mixed sediment                                                             |
| L3 | (MC42) Atlantic circalittoral mixed sediment                                                   |
| L4 | (MC421) Faunal communities of Atlantic circalittoral mixed sediment                            |
| L5 | (MC4211) Cerianthus lloydii and other burrowing anemones in circalittoral muddy mixed sediment |
|    | (MC42111) Cerianthus Iloydii with Nemertesia spp. and other hydroids in circalittoral          |
| L6 | muddy mixed sediment                                                                           |

Figure 9 Example of 2022 EUNIS Hierarchy.



### 4.6 Protected Habitats and Species Assessments

For the assessment and classification of potential areas and/or species of conservation importance, the following legislation and guidelines have been applied when relevant.

The European Commission (EC) Habitat Directive specifies the European nature conservation policy (EUR 28, 2013). Species and habitats of special interest for conservation are specified in the different annexes to the directive. Annex I states the habitats of special conservation interest and Annex II states the species of special conservation interest. Among the habitats specified in Annex I are the "Reefs" (code 1170). Reefs can be of biogenic, e.g. mussel beds or corals, or geogenic origin, e.g. stony areas with epifauna.

The Oslo and Paris Conventions for the protection of the marine environment of the North-East Atlantic (OSPAR), list protected species and habitats, as well as sensitive habitats and species in need of protection in the North-East Atlantic. This serves also as a complement to the EC (European Commission) Habitats Directive.

The species and habitats found in this survey were compared to the list of Scottish Priority Marine Features (PMF) (Tyler-Walters, et al., 2016) that further defines the habitats and species which are considered to be marine nature conservation priorities in Scottish waters.

In addition to the above-mentioned policies and guidelines the Scottish Biodiversity List (SBL) identifying the species and habitats which are the highest priority for biodiversity conservation in Scotland was also consulted (SBL, 2009).

In the Habitat Directive's interpretation manual (EUR 28, 2013) reefs are explained as follows:

"Reefs can be either biogenic concretions or of geogenic origin. They are hard compact substrata on solid and soft bottoms, which arise from the sea floor in the sublittoral and littoral zone. Reefs may support a zonation of benthic communities of algae and animal species as well as concretions and corallogenic concretions."

The distinction between what *is* and what *is not* a "reef" is not so precise and is generally referred to as "reefiness". This is particularly relevant in the case of the tube-building polychaete, *Sabellaria spinulosa* and areas of cobbles and boulders (stony reef).

If for example *S. spinulosa* or the horse mussel, *Modiolus modiolus,* is found in an area it does not automatically qualify as a "reef", Annex I habitat or a potential Annex I habitat. Therefore, a scoring/assessment system based on a series of physical, biological and spatial characteristics is used to assess the degree of "reefiness".

A method to assess 'reefiness' was presented by Gubbay (2007) and involves the quantification of three separate criteria: Elevation (average tube height in cm), Area (m<sup>2</sup>) and Patchiness (percentage cover) as presented in Table 14. A similar assessment matrix for stony reefs by Irving (2009) is presented in Table 16.

| Characteristic Not A Reef               |           | "Reefiness" |                    |            |  |  |
|-----------------------------------------|-----------|-------------|--------------------|------------|--|--|
|                                         | NOLA REEL | Low         | Medium             | High       |  |  |
| Elevation (cm)<br>(Average tube height) | <2        | 2 – 5       | 5 – 10             | >10        |  |  |
| Extent (m <sup>2</sup> )                | <25       | 25 - 10 000 | 10 000 - 1 000 000 | >1 000 000 |  |  |
| Patchiness<br>(% cover)                 | <10       | 10-20       | 20 – 30            | >30        |  |  |

Table 14 Proposed matrix for Sabellaria spinulosa reef identification (Gubbay, 2007).



The general definition of biogenic reefs is made by (Holt, Rees, Hawkings, & Seed, 1998) as;

"Solid, massive structures which are created by accumulations of organisms, usually arising from the seabed or at least clearly forming a substantial, discrete community or habitat which is very different from the surrounding seabed. The structure of the reef may be composed almost entirely of the reef-building organism and its tubes or shells or it may to some degree be composed of sediments, stones and shells bound together by the organism."

To assess the overall 'reefiness' the Collins (2010) method of combining the three separate criteria (elevation, extent and patchiness) as established by Gubbay (2007) was implemented. Reef structure was assessed in Step 1 followed by Step 2 aimed to categorise the final 'reefiness' (Table 15).

The patchiness of *S. spinulosa* was derived from the visual data analysis and the percentage coverage was calculated from each still image taken along the transect. Elevation of the *S. spinulosa* tubes was estimated from each still image taken along the transect. The area was calculated from boundaries (polygons) drawn in GIS based on the interpreted geophysical and bathymetrical data.

For the purpose of this report, areas comprising aggregations of *S. spinulosa* are designated as *"S. spinulosa* aggregations" to illustrate the presence and spatial distribution of aggregations.

Table 15 Sabellaria spinulosa Reef Structure Matrix (Step 1) and S. spinulosa Reef Structure Matrix vs Area Matrix (Step 2) to determine final "Reefiness" (Collins, 2010).

| Step 1                |                  |            |            |                 |        |                       |            |            |        |      |
|-----------------------|------------------|------------|------------|-----------------|--------|-----------------------|------------|------------|--------|------|
|                       |                  |            |            |                 |        | Eleva                 | tion (cm)  |            |        |      |
| Reef Structure Matrix |                  | <2         |            | 2 - 5           | 5 - 10 | >10                   |            |            |        |      |
|                       |                  | Not a reef |            | Low             | Medium | High                  |            |            |        |      |
|                       | <10              | Not a r    | Not a reef |                 | ef     | Not a reef            | Not a reef | Not a reef |        |      |
| Patchiness            | 10 - 20          | Low        |            | Not a ree       |        | Low                   | Low        | Low        |        |      |
| (%)                   | 20 – 30          | Mediu      | ım         | m Not a ree     |        | Low                   | Medium     | Medium     |        |      |
|                       | >30              | High       |            | Not a reef      |        | Not a reef            |            | Low        | Medium | High |
|                       |                  |            |            | Step 2          | 1      |                       |            |            |        |      |
|                       |                  |            |            |                 |        | Area (I               | m²)        |            |        |      |
| Reef S                | Structure vs Are | a          |            | <25 25 - 10 000 |        | 10 000 -<br>1 000 000 | >1 000 000 |            |        |      |
|                       |                  |            | No         | ot a reef       |        | Low                   | Medium     | High       |        |      |
|                       | N                | ot a reef  | No         | ot a reef       |        | Not a reef            | Not a reef | Not a reef |        |      |
| Reef Struct           |                  | Low        | No         | ot a reef       |        | Low                   | Low        | Low        |        |      |
| Reel Struct           |                  | /ledium    | No         | ot a reef       |        | Low                   | Medium     | Medium     |        |      |
|                       |                  | High       | No         | Not a reef      |        | Medium                | High       | High       |        |      |

### **OCEAN INFINITY**<sup>®</sup>



Table 16 Guidelines used to categorise 'reefiness' for stony reefs (Irving, 2009).

| Measure of 'reefiness'                                                                                                                                                                          | Not a stony reef              | Low Medium                  |                    | High                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|--------------------|---------------------------------------------------------------|--|--|
| Composition                                                                                                                                                                                     | <10 %                         | 10-40 %<br>Matrix supported | 40-95 %            | >95 %<br>Clast supported                                      |  |  |
| Notes: Diameter of cobbles / boulders being greater than 64 mm. Percentage cover relates to a minimum area of 25 m <sup>2</sup> . This 'composition' characteristic also includes 'patchiness'. |                               |                             |                    |                                                               |  |  |
| Elevation                                                                                                                                                                                       | Flat Seabed                   | <0.064 m                    | 0.064 m-5 m        | >5 m                                                          |  |  |
| Notes: Minimum height (64 mm) relates to minimum size of constituent cobbles. This characteristic could also include<br>'distinctness' from the surrounding seabed.                             |                               |                             |                    |                                                               |  |  |
| Extent                                                                                                                                                                                          | <25 m <sup>2</sup>            |                             | >25 m <sup>2</sup> |                                                               |  |  |
| Biota                                                                                                                                                                                           | Dominated by infaunal species |                             |                    | >80 % of species<br>present composed of<br>epifaunal species. |  |  |

This scoring system indicates that stony reefs should be elevated by at least 0.064 m and with a composition of at least 10 % stones, covering an area of at least 25 m<sup>2</sup> and having an associated community of largely epifaunal species.

For Stony Reefs with a Low resemblance, the methodologies proposed by Brazier and Golding *et al* (2020) were consulted to assess whether or not an area would meet the criteria for inclusion in Annex I (1170) – Reefs, Stony Reefs. The methodology is still under review and development and is therefore not fully implemented but contains guidance on classifying and enumerating reef habitat "Key Species" as well as "Reef-Species" often present in Stony Reef habitats (Table 17).

Table 17 Guidelines used to categorise low resemblance stony reefs (Brazier, 2020).

|               | Key Species Count | Reef-Species Count |
|---------------|-------------------|--------------------|
| Reef          | ≥3                | >20                |
| Possible Reef | >1 and <3         | <5 and <20         |
| Not Reef      | 0                 | <5                 |

For "Bedrock Reefs" no similar scoring system exists. In areas where the geophysical data cannot provide information on the degree of bedrock exposure, these areas will be delineated as "Potential Bedrock Reefs." The qualifying criteria for the classification "Bedrock Reefs" is the presence of bedrock that could support an epifaunal community.



### 5. Results

A total of 57 grab sample sites were sampled. Faunal samples were successfully obtained at 52 grab sample sites and ground-truthing imagery was obtained at 57 sample sites. PSA and contaminants were successfully obtained at 51 sites.

No PSA or contaminants samples were obtained at site S06 due to the presence of *Sabellaria spinulosa* aggregations acquired in the first (faunal) grab sample, as agreed with the Client during the survey. DDV was performed prior to grab sampling and aggregations of *S. spinulosa* were identified in the DDV but these sparsely distributed in low densities with large patches of rippled shelly sand in between. The aggregations obtained in the faunal grab sample were mainly buried as they were only visible once the sample had been sieved. Subsequent faunal analyses of the sample showed no living specimens of *S. spinulosa* in these aggregations.

Grab sampling was not undertaken at sites S45, S47, S49, S50 and S52 due to the presence of *Sabellaria spinulosa* aggregations identified from DDV. These sites were replaced respectively by sites S54, S55, S56, S57 and S58 where faunal, PSA and contaminant samples were successfully acquired. Both the original and replacement site DDV transects were analysed to identify epifauna.

An additional standalone DDV transect (site T53) was performed in the ECR to investigate a seabed feature identified from the geophysical data. Transect T53 was 490 m in length and confirmed the presence of two raised seabed features identified as a possible sea channel (104052-SBE-OI-SUR-REP-SURVEYRE).

See Table 18 and Appendix A for details regarding planned sites with geophysical data. Further information regarding sample site coordinates is provided in Appendix B.

| Number of Sample Sites | Standalone Transect Sites | Grab Sample Sites |  |
|------------------------|---------------------------|-------------------|--|
| Number of Sumple Sites | 1                         | 57                |  |
| Still Images           | 18                        | 434               |  |
| Faunal Samples         | N/A                       | 52                |  |
| Contaminant Samples    | N/A                       | 51                |  |
| PSA Samples            | N/A                       | 51                |  |

Table 18 Number of sampled sites and transects.

### 5.1 Summary of Identified Habitats

A total of six (6) habitats, including one (1) habitat complex, are interpreted to be present within the survey area. An overview of the distribution of habitats and grab sample sites is presented in Table 19 and illustrated in Figure 10.

One PMF habitat, Offshore subtidal sands and gravels, and one SBL habitat, Subtidal sands and gravels, are both interpreted to be present along the ECR and within the WAA. Both habitats are very common subtidal habitats around the British Isles and throughout the North Sea, and overlap with one another.

Large areas of the tube building polychaete *S. spinulosa* was found, the composition consisted of scattered aggregations surrounded in high mobile sediments. This habitat will be delineated as "S. spinulosa aggregations presence", it is interpreted to be present along the ECR and within the WAA based on the assessment seen in 4.6 results seen in 5.8.2 along with overview images Figure 40, Figure 41 and Figure 42 and Figure 40.

The taxonomic assemblages from the acquired grab sample data further indicate the presence of 11 species-specific habitats, including 7 habitat complexes, that are presented in Table 20 and illustrated in Figure 11.

The ID column in Table 19 and Table 20 defines the colour in the GIS charts for the specific habitat type.



Table 19 Identified habitats within the surveyed area.

| Habitat Image | ID | Habitat<br>Classification                                                                                           | Habitat<br>Code | Site ID                                                                                                                                                                          |
|---------------|----|---------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |    | Atlantic<br>circalittoral<br>coarse<br>sediment                                                                     | MC32            | ECR_S48, ECR_S51, ECR_T53,<br>ECR_S54, ECR_S55, ECR_S56,<br>ECR_S57, ECR_S58                                                                                                     |
|               |    | Atlantic<br>circalittoral<br>mixed sediment                                                                         | MC42            | ECR_S49, ECR_S50, ECR_S52                                                                                                                                                        |
|               |    | Atlantic<br>circalittoral<br>sand                                                                                   | MC52            | WAA_S09, WAA_S13, WAA_S18,<br>WAA_S19, WAA_S22, WAA_S27,<br>WAA_S28, WAA_S31, WAA_S32,<br>ECR_S42,<br>ECR_S44, ECR_S46                                                           |
|               |    | Atlantic<br>circalittoral<br>sand/ Sabellaria<br>spinulosa on<br>stable Atlantic<br>circalittoral<br>mixed sediment | MC52/<br>MC2211 | WAA_S01, WAA_S02, WAA_S03,<br>WAA_S04, WAA_S05, WAA_S06,<br>WAA_S07, WAA_S08, WAA_S10,<br>WAA_S11, WAA_S12, WAA_S14,<br>WAA_S15, WAA_S17, WAA_S20,<br>WAA_S21, ECR_S39, ECR_S40, |
|               |    | Sabellaria<br>spinulosa on<br>stable Atlantic<br>circalittoral<br>mixed sediment                                    | MC2211          | WAA_S25, WAA_S26, WAA_S24,<br>ECR_S41, ECR_S43, ECR_S45,<br>ECR_S47                                                                                                              |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Habitat Image | ID | Habitat<br>Classification        | Habitat<br>Code | Site ID                                                                                           |
|---------------|----|----------------------------------|-----------------|---------------------------------------------------------------------------------------------------|
|               |    | Atlantic<br>circalittoral<br>mud | MC62            | WAA_S16, WAA_S23, WAA_S29,<br>WAA_S30, WAA_S33, WAA_S34,<br>WAA_S35, WAA_S36, WAA_S37,<br>WAA_S38 |

Table 20 Species-specific habitats within the surveyed area.

| Habitat Classification                                                                                                                                                                                     | Habitat<br>Code   | ID | Site ID                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|---------------------------------------------------------------------------------------------------------------------------------|
| Sabellaria spinulosa on stable Atlantic circalittoral mixed sediment                                                                                                                                       | MC2211            |    | ECR_S40, ECR_S41                                                                                                                |
| Mysella bidentata and Thyasira spp. in circalittoral muddy<br>mixed sediment/<br>Abra prismatica, Bathyporeia elegans and polychaetes in<br>circalittoral fine sand                                        | MC4213/<br>MC5212 |    | WAA_S21, WAA_S22,<br>WAA_S24, WAA_S25                                                                                           |
| <i>Mysella bidentata</i> and <i>Thyasira</i> spp. in circalittoral muddy<br>mixed sediment/<br><i>Amphiura filiformis, Mysella bidentata</i> and <i>Abra nitida</i> in<br>Atlantic circalittoral sandy mud | MC4213/<br>MC6211 |    | WAA_S18                                                                                                                         |
| Mysella bidentata and Thyasira spp. in circalittoral muddy<br>mixed sediment/<br>Amphiura filiformis and Nuculoma tenuis in Atlantic<br>circalittoral and offshore muddy sand                              | MC4213/<br>MC6213 |    | WAA_S09, WAA_S15                                                                                                                |
| Faunal communities of Atlantic circalittoral sand                                                                                                                                                          | MC521             |    | WAA_S13                                                                                                                         |
| Echinocyamus pusillus, Ophelia borealis and Abra prismatica<br>in circalittoral fine sand                                                                                                                  | MC5211            |    | ECR_S44, ECR_S46, ECR_S48,<br>ECR_S51, ECR_S54, ECR_S55,<br>ECR_S56, ECR_S57, ECR_S58,<br>WAA_S17, WAA_S19, WAA_S20,<br>WAA_S26 |
| Echinocyamus pusillus, Ophelia borealis and Abra prismatica<br>in circalittoral fine sand/<br>Amphiura filiformis, Mysella bidentata and Abra nitida in<br>Atlantic circalittoral sandy mud                | MC5211/<br>MC6211 |    | ECR_S39, ECR_S42,<br>ECR_S43, WAA_S01,<br>WAA_S04, WAA_S05,<br>WAA_S11, WAA_S12                                                 |
| Echinocyamus pusillus, Ophelia borealis and Abra prismatica<br>in circalittoral fine sand/<br>Amphiura filiformis and Nuculoma tenuis in Atlantic<br>circalittoral and offshore muddy sand                 | MC5211/<br>MC6213 |    | WAA_S07, WAA_S08,<br>WAA_S10, WAA_S14                                                                                           |
| Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand/                                                                                                                           | MC5212/<br>MC6211 |    | WAA_S02, WAA_S03,<br>WAA_S06                                                                                                    |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Habitat Classification                                                                                                                                                                                                                               | Habitat<br>Code   | ID | Site ID                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|---------------------------------------------------------------------------------|
| Amphiura filiformis, Mysella bidentata and Abra nitida in Atlantic circalittoral sandy mud                                                                                                                                                           |                   |    |                                                                                 |
| Medium to very fine sand, 100-120 m, with polychaetes<br>Spiophanes kroyeri, Amphipectene auricoma, Myriochele sp.,<br>Aricidea wassi and amphipods Harpinia antennaria/<br>Thyasira spp. and Nuculoma tenuis in Atlantic circalittoral<br>sandy mud | MC5213/<br>MC6212 |    | WAA_S16, WAA_S23,<br>WAA_S30, WAA_S33,<br>WAA_S35, WAA_S36,<br>WAA_S37, WAA_S38 |
| Amphiura filiformis, Mysella bidentata and Abra nitida in<br>Atlantic circalittoral sandy mud                                                                                                                                                        | MC6211            |    | WAA_S27, WAA_S28,<br>WAA_S29, WAA_S31,<br>WAA_S32, WAA_S34                      |



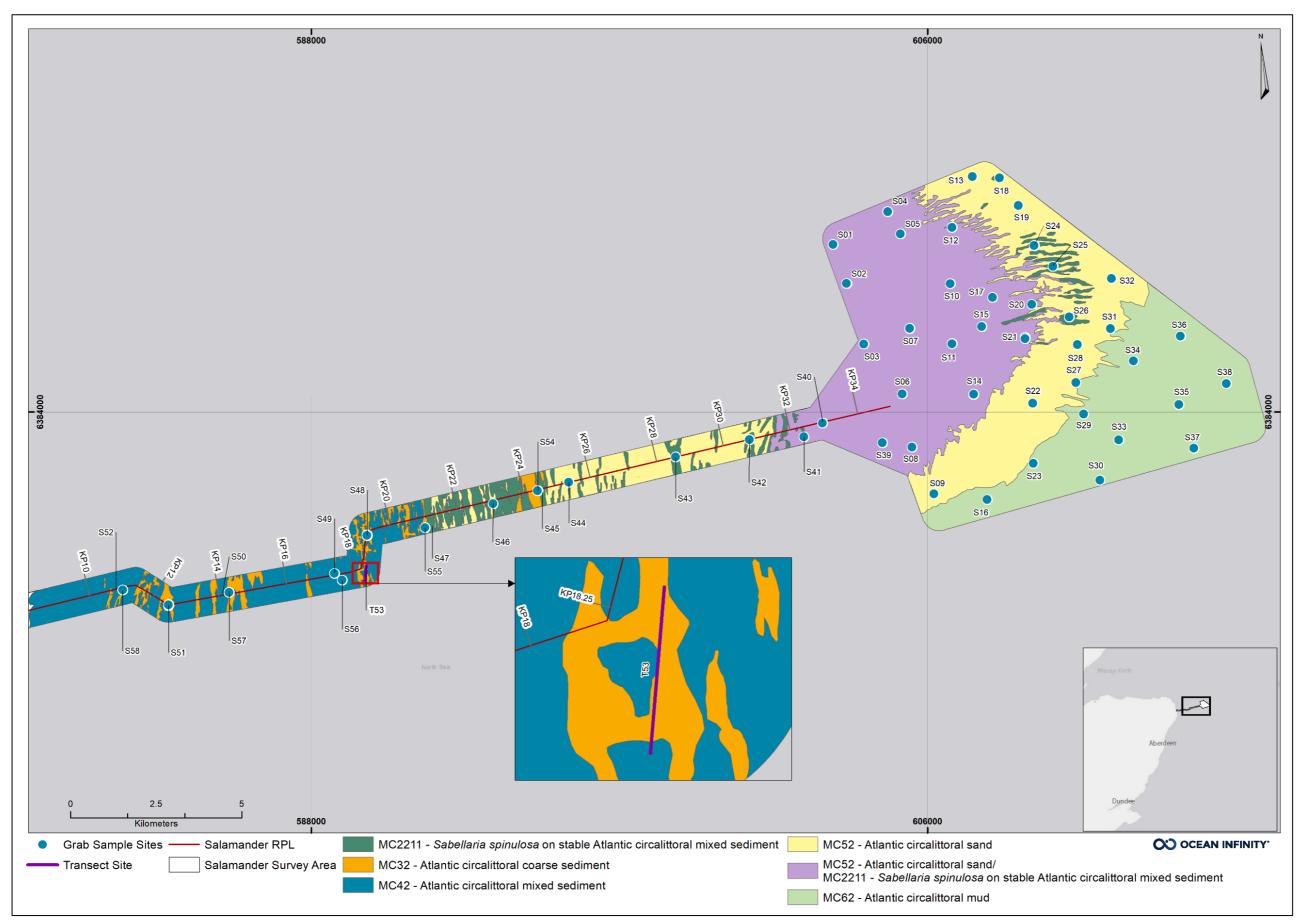



Figure 10 Overview of sampled sites and classified habitats.



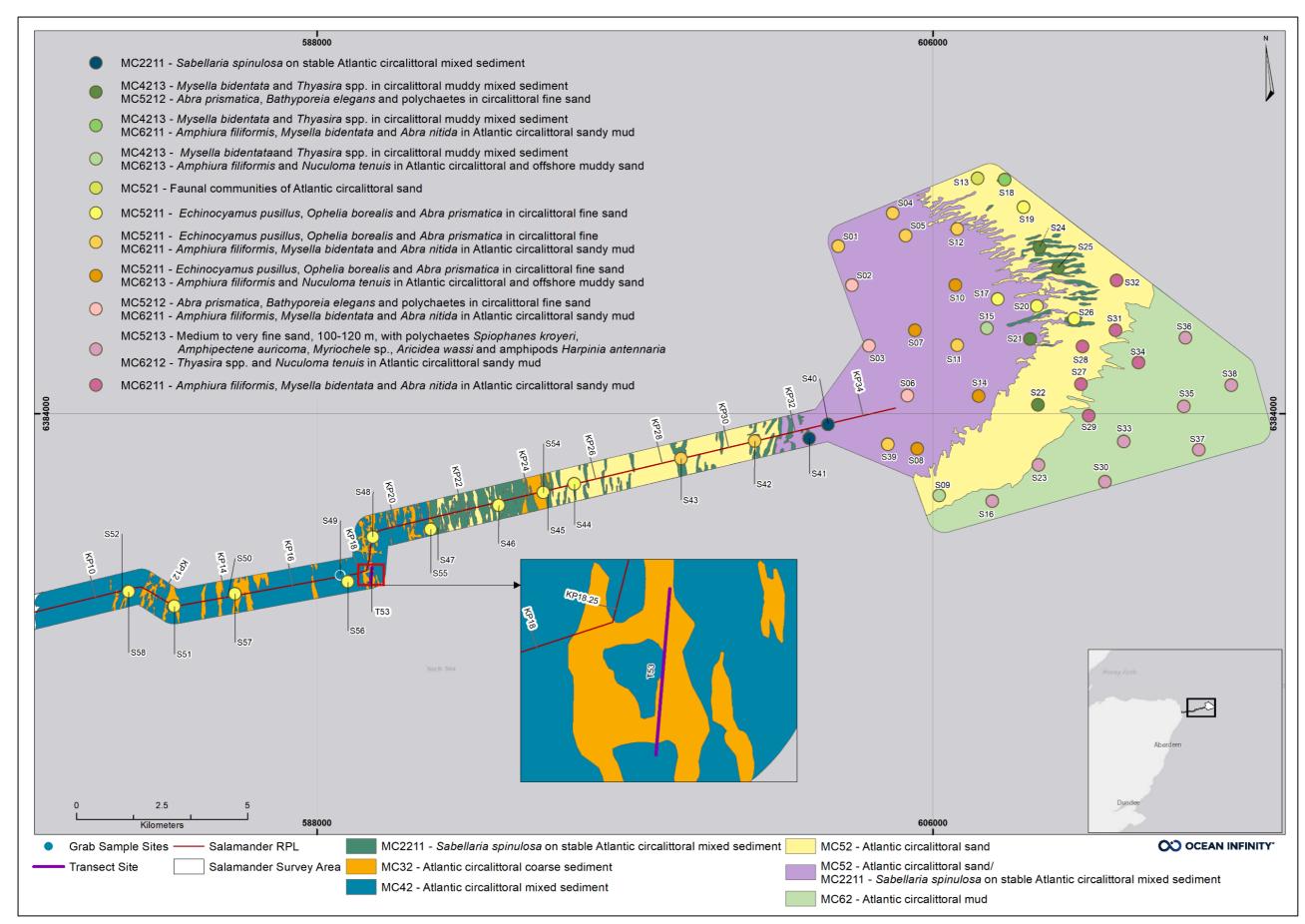



Figure 11 Overview of sampled sites and species-specific habitats.



## 5.2 Area Description

The habitat classifications within the survey area were derived based on the interpreted geophysical data in combination with environmental sample sites (Figure 10 and Figure 11). The habitat interpretations at the benthic sample sites were extrapolated to similar areas, where similarity was based on geophysical interpretations of substrate, texture, topography, and depth.

For further details regarding results from the photo analyses and grab samples sites, see Appendix D and Appendix E, Habitats and Species of interest are further detailed in Section 5.8.

The backscatter intensity values, across the WAA, exhibited limited variation and were low, indicating finer sediments (Figure 12). The ECR was more variable with had higher intensity compared to the WAA. The backscatter values transitioned from lower values in the eastern end of the ECR to higher values in the west, indicating a change in sediment composition from finer to coarser sediments.

The southern and southeasternmost sections of the WAA present a rather featureless flat seabed and are classified as **MC62** - Atlantic circalittoral mud. Bordering the eastern section, a belt of **MC52** - Atlantic circalittoral sand stretches from the southern to the northern ends of the WAA. In the throughs of the sand waves and ripples, present in the central and northern parts of the sand belt, habitat **MC2211** - *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment is interpreted to be present. Due to the complexity and dense presence of sand waves and ripple features within the central and western sections of the WAA, as well as the patchy growth forms of *S. spinulosa*, these areas have been classified as a habitat complex comprising **MC52** and **MC2211**.

The easternmost section of the ECR is classified as predominantly alternating between **MC52/ MC2211** and **MC2211**, where habitat **MC2211** is interpreted to be associated with the crest of the sand wave features.

The central section of the ECR alternates between areas of MC2211, together with MC32 – Atlantic circalittoral coarse sediment, and areas of MC52. Habitats MC32 and MC52 are predominantly associated with ripple features. The westernmost section of the ECR, closest to shore, comprises heterogeneous areas of mixed sediments classified as MC42 - Atlantic circalittoral mixed sediment, with areas of rippled accumulated shell gravel, classified as MC32.



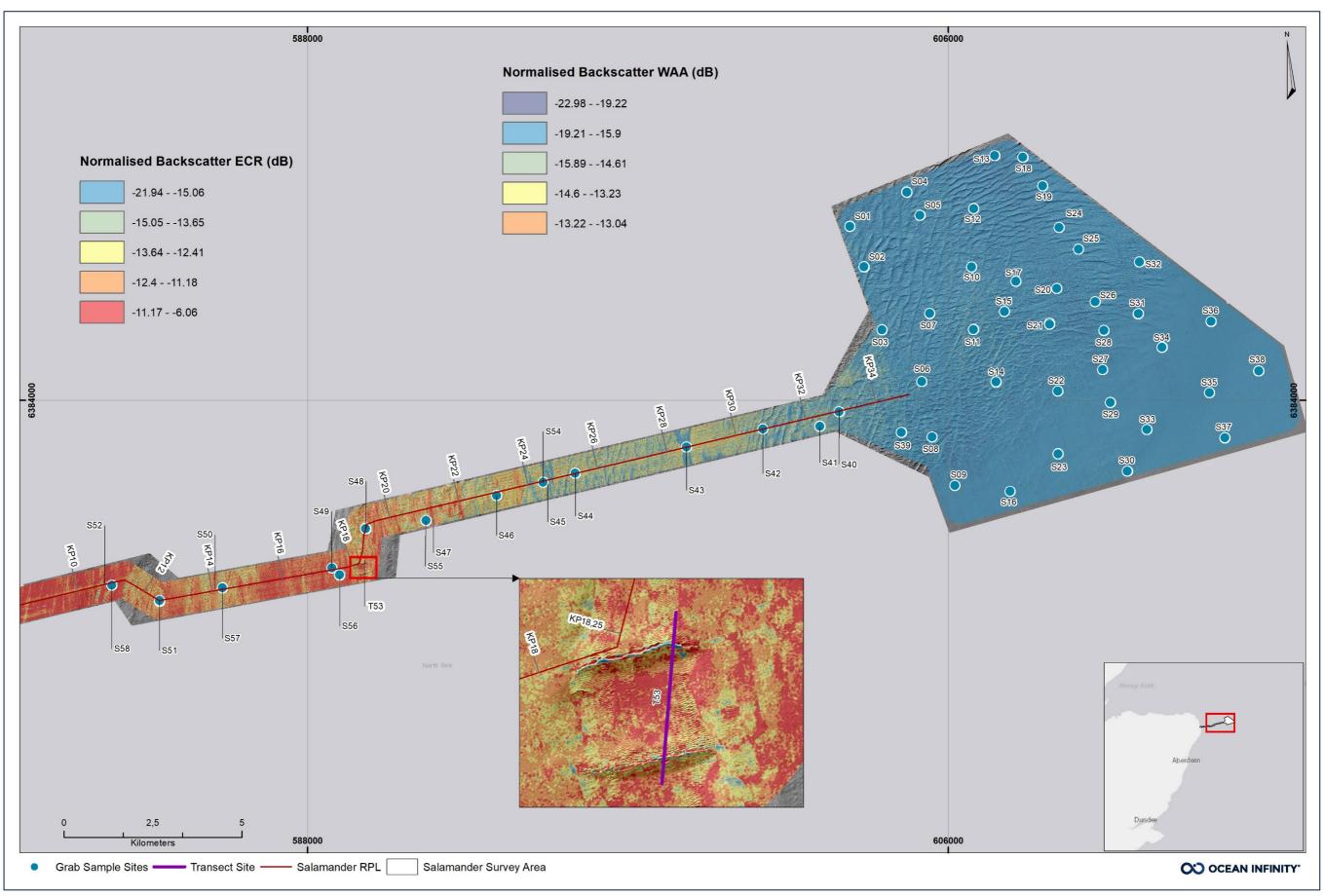



Figure 12 Overview of sampled sites with normalised backscatter data.



## 5.3 Particle Size Distribution

A total of 52 sample sites were selected for PSA sampling. Samples were successfully acquired at 51 sites, with the sample at site S06 not being acquired due to the presence of *S. spinulosa* aggregations in the faunal sample. Detailed results from the PSA are stated in Appendix F.

The results from the PSA analyses showed a limited variation in the sediment composition. The WAA primarily comprised muddy Sand, which, when moving westwards along the ECR, transitioned to gravelly Sand (Figure 13).

Sand was the dominating sediment fraction, with a mean content of 86.2 % (SD=5.0), followed by Mud which had a mean content of 10.8 % (SD=5.2), comprising 9.4 % (SD=4.6) Silt and 1.4 % (SD=0.7) Clay. The Gravel content was low and variable with a mean content of 3.0 % (SD=5.29) (Table 22).

Sediment fractions were tested for correlations with depth and easting, with Gravel having the strongest correlation to both variables (Table 22), with R<sup>2</sup>-values of 0.65 and 0.54, respectively. However, note that depth, easting, and the different sediment fractions correlate with each other to a variable degree (Table 23).

| Comula ID | Double (m) | Sec    | diment Fra | ction (%) |      | Mud (%)     | BGS (1982) Classification    |
|-----------|------------|--------|------------|-----------|------|-------------|------------------------------|
| Sample ID | Depth (m)  | Gravel | Sand       | Silt      | Clay | (Silt-Clay) | (modified from folk, 1954)   |
| WAA_S01   | 97         | 0.7    | 87.6       | 10.2      | 1.5  | 11.7        | Muddy Sand                   |
| WAA_S02   | 94         | 1.9    | 86.1       | 10.4      | 1.6  | 12.0        | Slightly Gravelly Muddy Sand |
| WAA_S03   | 92         | 14.5   | 74.7       | 9.6       | 1.2  | 10.8        | Gravelly Muddy Sand          |
| WAA_S04   | 98         | 0.0    | 88.9       | 9.7       | 1.4  | 11.0        | Muddy Sand                   |
| WAA_S05   | 97         | 0.9    | 76.0       | 20.2      | 2.9  | 23.1        | Muddy Sand                   |
| WAA_S07   | 96         | 0.2    | 89.9       | 8.6       | 1.2  | 9.9         | Sand                         |
| WAA_S08   | 98         | 0.4    | 91.1       | 7.3       | 1.1  | 8.4         | Sand                         |
| WAA_S09   | 108        | 0.0    | 85.9       | 12.3      | 1.8  | 14.1        | Muddy Sand                   |
| WAA_S10   | 93         | 1.1    | 83.7       | 13.3      | 1.9  | 15.2        | Slightly Gravelly Muddy Sand |
| WAA_S11   | 92         | 2.4    | 87.1       | 9.1       | 1.3  | 10.5        | Slightly Gravelly Muddy Sand |
| WAA_S12   | 93         | 1.0    | 76.8       | 19.1      | 3.1  | 22.2        | Muddy Sand                   |
| WAA_S13   | 92         | 0.1    | 88.9       | 9.5       | 1.4  | 10.9        | Muddy Sand                   |
| WAA_S14   | 98         | 0.2    | 89.7       | 8.8       | 1.3  | 10.1        | Muddy Sand                   |
| WAA_S15   | 92         | 0.8    | 80.2       | 16.4      | 2.5  | 18.9        | Muddy Sand                   |
| WAA_S16   | 106        | 0.0    | 87.4       | 10.9      | 1.7  | 12.6        | Muddy Sand                   |
| WAA_S17   | 92         | 0.2    | 95.0       | 4.1       | 0.7  | 4.7         | Sand                         |
| WAA_S18   | 93         | 1.0    | 82.6       | 14.3      | 2.1  | 16.5        | Muddy Sand                   |
| WAA_S19   | 91         | 0.1    | 89.6       | 9.1       | 1.2  | 10.3        | Muddy Sand                   |
| WAA_S20   | 90         | 0.0    | 92.7       | 6.3       | 1.0  | 7.3         | Sand                         |
| WAA_S21   | 91         | 0.0    | 91.6       | 7.3       | 1.1  | 8.4         | Sand                         |
| WAA_S22   | 98         | 0.1    | 87.5       | 10.9      | 1.5  | 12.4        | Muddy Sand                   |
| WAA_S23   | 102        | 0.2    | 85.0       | 12.9      | 1.9  | 14.8        | Muddy Sand                   |
| WAA_S24   | 90         | 2.6    | 88.0       | 8.1       | 1.3  | 9.4         | Slightly Gravelly Sand       |
| WAA_S25   | 89         | 0.2    | 90.2       | 8.4       | 1.2  | 9.7         | Sand                         |

Table 21 Summary of PSA results.



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

|           |           | Se     | diment Fra | ction (%) |      | Mud (%)     | BGS (1982) Classification    |
|-----------|-----------|--------|------------|-----------|------|-------------|------------------------------|
| Sample ID | Depth (m) | Gravel | Sand       | Silt      | Clay | (Silt-Clay) | (modified from folk, 1954)   |
| WAA_S26   | 90        | 0.0    | 89.8       | 8.8       | 1.3  | 10.1        | Muddy Sand                   |
| WAA_S27   | 96        | 0.0    | 88.3       | 10.1      | 1.6  | 11.7        | Muddy Sand                   |
| WAA_S28   | 94        | 0.2    | 87.7       | 10.7      | 1.4  | 12.1        | Muddy Sand                   |
| WAA_S29   | 97        | 0.1    | 87.3       | 11.0      | 1.6  | 12.6        | Muddy Sand                   |
| WAA_S30   | 103       | 0.0    | 85.6       | 12.4      | 2.0  | 14.4        | Muddy Sand                   |
| WAA_S31   | 92        | 0.0    | 89.6       | 9.1       | 1.3  | 10.4        | Muddy Sand                   |
| WAA_S32   | 88        | 3.2    | 86.0       | 9.4       | 1.4  | 10.8        | Slightly Gravelly Muddy Sand |
| WAA_S33   | 99        | 0.0    | 86.6       | 11.7      | 1.8  | 13.4        | Muddy Sand                   |
| WAA_S34   | 94        | 0.0    | 88.0       | 10.4      | 1.6  | 12.0        | Muddy Sand                   |
| WAA_S35   | 101       | 0.0    | 85.1       | 13.0      | 1.9  | 14.9        | Muddy Sand                   |
| WAA_S36   | 97        | 0.0    | 84.7       | 13.1      | 2.1  | 15.3        | Muddy Sand                   |
| WAA_S37   | 102       | 0.0    | 85.1       | 12.8      | 2.1  | 14.9        | Muddy Sand                   |
| WAA_S38   | 103       | 0.0    | 83.1       | 14.8      | 2.2  | 16.9        | Muddy Sand                   |
| ECR_S39   | 97        | 0.7    | 88.2       | 9.6       | 1.4  | 11.1        | Muddy Sand                   |
| ECR_S40   | 94        | 9.5    | 73.6       | 14.6      | 2.3  | 16.9        | Gravelly Muddy Sand          |
| ECR_S41   | 94        | 3.1    | 77.7       | 16.3      | 2.9  | 19.2        | Slightly Gravelly Muddy Sand |
| ECR_S42   | 97        | 3.2    | 89.6       | 6.3       | 0.9  | 7.2         | Slightly Gravelly Sand       |
| ECR_S43   | 87        | 3.6    | 89.3       | 6.2       | 0.9  | 7.1         | Slightly Gravelly Sand       |
| ECR_S44   | 87        | 8.2    | 84.4       | 6.5       | 0.9  | 7.4         | Gravelly Sand                |
| ECR_S46   | 79        | 8.7    | 85.5       | 5.0       | 0.8  | 5.8         | Gravelly Sand                |
| ECR_S48   | 80        | 10.3   | 88.3       | 1.1       | 0.3  | 1.4         | Gravelly Sand                |
| ECR_S51   | 82        | 11.4   | 87.7       | 0.6       | 0.2  | 0.8         | Gravelly Sand                |
| ECR_S54   | 85        | 2.6    | 95.4       | 1.5       | 0.4  | 2.0         | Slightly Gravelly Sand       |
| ECR_S55   | 72        | 16.5   | 81.1       | 2.0       | 0.5  | 2.5         | Gravelly Sand                |
| ECR_S56   | 81        | 10.4   | 86.4       | 2.6       | 0.6  | 3.2         | Gravelly Sand                |
| ECR_S57   | 85        | 7.6    | 91.4       | 0.8       | 0.2  | 1.1         | Gravelly Sand                |
| ECR_S58   | 75        | 26.1   | 73.0       | 0.8       | 0.2  | 1.0         | Gravelly Sand                |
| Mean      |           | 3.0    | 86.2       | 9.4       | 1.4  | 10.8        |                              |
| SD        |           | 5.3    | 5.0        | 4.6       | 0.7  | 5.2         |                              |
| Min       |           | 0.0    | 73.0       | 0.6       | 0.2  | 0.8         |                              |
| Max       |           | 26.1   | 95.4       | 20.2      | 3.1  | 23.1        |                              |
| Median    |           | 0.4    | 87.4       | 9.6       | 1.4  | 10.9        |                              |



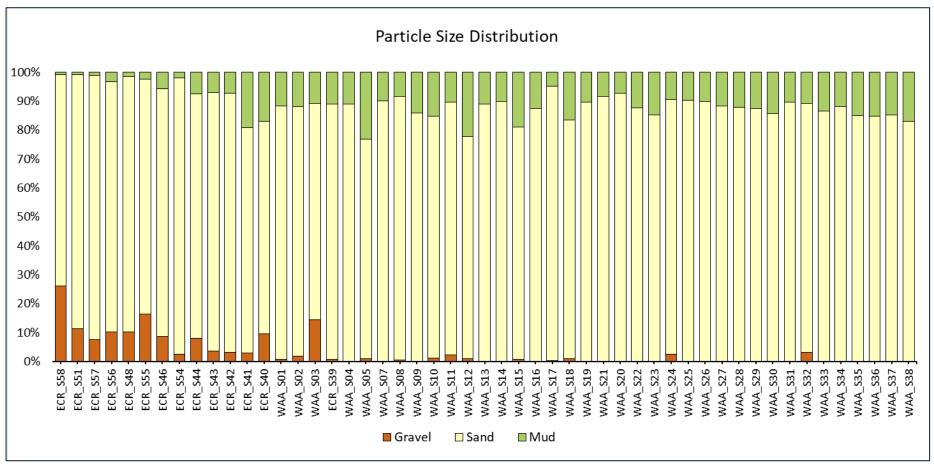



Figure 13 Particle size distribution from grab samples, sorted by increasing easting.



| Variable #1 | Variable #2 | R <sup>2</sup> value | Relationship |  |  |  |  |  |  |  |
|-------------|-------------|----------------------|--------------|--|--|--|--|--|--|--|
| Gravel      | Easting     | 0.65                 | Negative     |  |  |  |  |  |  |  |
| Gravel      | Depth       | 0.54                 | Negative     |  |  |  |  |  |  |  |
| Silt        | Easting     | 0.49                 | Positive     |  |  |  |  |  |  |  |
| Silt        | Depth       | 0.48                 | Positive     |  |  |  |  |  |  |  |
| Mud         | Depth       | 0.48                 | Positive     |  |  |  |  |  |  |  |
| Mud         | Easting     | 0.48                 | Positive     |  |  |  |  |  |  |  |
| Clay        | Depth       | 0.42                 | Positive     |  |  |  |  |  |  |  |
| Clay        | Easting     | 0.41                 | Positive     |  |  |  |  |  |  |  |
| Sand        | Easting     | 0.02                 | Positive     |  |  |  |  |  |  |  |
| Sand        | Depth       | 0.00                 | Positive     |  |  |  |  |  |  |  |

#### Table 22 Summary of correlation results for sediments.

Table 23 Summary of correlation results for sediment fractions, easting and depth against one another.

| Variable #1 | Variable #2 | R <sup>2</sup> value | Relationship |
|-------------|-------------|----------------------|--------------|
| Silt        | Mud         | 1.00                 | Positive     |
| Clay        | Mud         | 0.98                 | Positive     |
| Silt        | Clay        | 0.97                 | Positive     |
| Easting     | Depth       | 0.56                 | Positive     |
| Gravel      | Silt        | 0.30                 | Negative     |
| Gravel      | Mud         | 0.30                 | Negative     |
| Gravel      | Clay        | 0.26                 | Negative     |
| Sand        | Clay        | 0.24                 | Negative     |
| Gravel      | Sand        | 0.23                 | Negative     |
| Sand        | Mud         | 0.22                 | Negative     |
| Sand        | Silt        | 0.22                 | Negative     |

#### 5.3.1 Multivariate Analyses for Sediment

Multivariate analyses were undertaken on the PSA data set, to identify patterns in the sediment distribution. Analyses included hierarchical clustering employing the Euclidean distance resemblance matrix, SIMPROF analysis and principal component analysis (PCA). The datasets were normalised prior to the analyses being performed.

The SIMPROF analysis of the sediment composition produced 18 distinct groups separating the 51 grab samples (Figure 14).

Principal component 1 (PC1), explaining 51.5% of the variation, separated the sites based on the gravel-to-mud ratio. Principal component 2 (PC2), explaining 48.5 % of the variation, separated the sites based on the sand content (Figure 15).

SIMPROF group c comprises mixed sediment composition, corresponding to the Folk class Gravelly Muddy Sand; Groups b, f, g, h, l, j, k, l, m, n, and p comprise sand with a noticeable mud content, corresponding to the Folk classes Muddy Sand, and Slightly Gravelly Muddy Sand; Groups a and d comprise sand with gravel and low mud content, corresponding to the Folk classes Gravelly Sand; Groups e, o, q, r and one (1) of the four (4) sites in group j comprises clean sands, corresponding to Folk classes Sand, and Slightly Gravelly Sand.






Figure 14 Dendrogram based on Euclidian distance for the sediment composition, showing SIMPROF groups with a 5 % significance level.



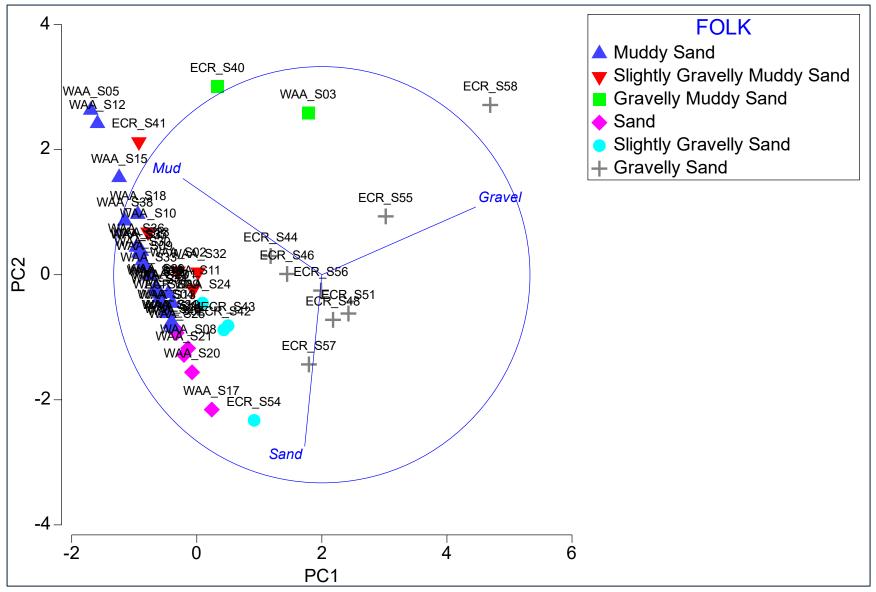



Figure 15 PCA plot of sediment composition for each grab sample site, showing groups based on the FOLK classifications.



### 5.4 Contaminant Analyses

A total of 52 sample sites were selected for contaminant sampling. Samples were successfully acquired at 51 sites, with the sample at site S06 not being acquired due to the presence of *S. spinulosa* aggregations in the faunal sample.

Detailed results from the chemical analyses are stated in Appendix G.

#### 5.4.1 Metals

Metal concentrations were overall low across the survey area. Threshold values were exceeded at seven (7) grab sample sites (Table 25).

The threshold value for arsenic (As) according to the Canadian Council of Ministers of the Environment's (CCME) ISQG (7.24 mg/kg) was exceeded at six (6) sites; ECR\_S48, ECR\_S51, ECR\_55, ECR\_56, ECR\_S57 and ECR\_S58 (Figure 16). Exceeding the ISQG threshold indicates "the possible effect range within which adverse effects occasionally occur" (CCME, 2001). Furthermore, at one of these sites (ECR\_S58) the lower threshold of the Norwegian Environment Agency's (NEA) class 3 Moderate (18 mg/kg) was exceeded. These sites are all situated towards the western section of the offshore ECR.

The lower threshold value for cadmium (Cd) according to NEA's class 2 - Good (0.2 mg/kg) was exceeded at site WAA\_S18 (Table 25), thereby exceeding the expected natural background levels (class 1 - Background), according to NEA (2016, revised 2020). Concentrations of Cd were below the detection limit at all other sites.

Arsenic concentrations were tested for correlations with depth, easting, and sediment fractions (Table 24). Easting, followed by Gravel, had the strongest correlation with As, both having an R<sup>2</sup>-value of 0.67. However, note that depth, easting, and sediment fractions correlate with each other to a variable degree (Table 22 and Table 23).

| Variable #1 | Variable #2 | R <sup>2</sup> value | Relationship |
|-------------|-------------|----------------------|--------------|
| Arsenic     | Easting     | 0.67                 | Negative     |
| Arsenic     | Gravel      | 0.67                 | Positive     |
| Arsenic     | Depth       | 0.47                 | Negative     |
| Arsenic     | Silt        | 0.42                 | Negative     |
| Arsenic     | Mud         | 0.42                 | Negative     |
| Arsenic     | Clay        | 0.37                 | Negative     |
| Arsenic     | Sand        | 0.04                 | Negative     |

#### Table 24 Summary of correlation results for arsenic (As).



Table 25 Metal concentrations (mg/kg dry weight) with threshold values. Highlighted cells and their colour indicates where and which threshold values have been exceeded.

| Analyte            | As    | Cd    | Cr    | Cu    | Pb    | Ni    | Sn    | V     | Zn    | Al     | Ва     | Fe     | Hg      |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|
| Method             | SEDMS | SEDOES | SEDOES | SEDOES | TMMS1   |
| Limit of Detection | 0.5   | 0.2   | 2     | 2     | 1.2   | 2     | 1     | 1     | 3     | 10     | 1      | 45     | 0.01    |
| NEA 1 Background   | 0     | 0     | 0     | 0     | 0     | 0     | -     | -     | 0     | -      | -      | -      | 0       |
| NEA 2 Good         | 15    | 0.2   | 60    | 20    | 25    | 30    | -     | -     | 90    | -      | -      | -      | 0.05    |
| NEA 3 Moderate     | 18    | 2.5   | 620   | -     | 150   | 42    | -     | -     | 139   | -      | -      | -      | 0.52    |
| NEA 4 Poor         | 71    | 16    | 6000  | 48    | 1480  | 271   | -     | -     | 750   | -      | -      | -      | 0.75    |
| NEA 5 Very Poor    | 580   | 147   | 15500 | 147   | 2000  | 533   | -     | -     | 6690  | -      | -      | -      | 1.45    |
| OSPAR ERL          |       | 1.2   | 81    | 34    | 47    | -     | -     | -     | 150   | -      | -      | -      | 0.15    |
| Cefas AL1          | 20    | 0.4   | 40    | 40    | 50    | 20    | -     | -     | 130   | -      | -      | -      | 0.3     |
| Cefas AL2          | 100   | 5     | 400   | 400   | 500   | 200   | -     | -     | 800   | -      | -      | -      | 3       |
| CCME PEL           | 41.6  | 4.2   | 160   | 108   | 112   | -     | -     | -     | 271   | -      | -      | -      | 0.7     |
| CCME ISQG          | 7.24  | 0.7   | 52.3  | 18.7  | 30.2  | -     | -     | -     | 124   | -      | -      | -      | 0.13    |
| Dutch RIVM         | 85    | 14    | 380   | 190   | 580   | 210   | -     | -     | 2000  | -      | -      | -      | 10      |
| Units              | mg/kg  | mg/kg  | mg/kg  | mg/kg   |
| WAA_S01            | 5.1   | <0.2* | 17.3  | 2.2   | 10.4  | 4.7   | <1.0* | 19.1  | 24.0  | 22300  | 353    | 7670   | 0.01    |
| WAA_S02            | 4.4   | <0.2* | 20.4  | 2.4   | 10.2  | 4.6   | <1.0* | 18.8  | 13.5  | 21300  | 349    | 7250   | <0.01*  |
| WAA_S03            | 5.6   | <0.2* | 20.1  | 3.3   | 10.1  | 5.2   | <1.0* | 19.1  | 14.5  | 20100  | 327    | 7960   | < 0.01* |
| WAA_S04            | 4.4   | <0.2* | 16.5  | 2.3   | 9.9   | 4.7   | <1.0* | 17.9  | 20.4  | 22300  | 365    | 7220   | 0.01    |
| WAA_S05            | 4.5   | <0.2* | 20.5  | 3.3   | 11.5  | 6.5   | <1.0* | 20.2  | 18.7  | 23600  | 397    | 7380   | <0.01*  |
| _<br>WAA_S07       | 4.9   | <0.2* | 14.5  | 2.2   | 9.3   | 4.2   | <1.0* | 18.5  | 12.4  | 20900  | 340    | 7130   | <0.01*  |
| -<br>WAA_S08       | 5.4   | <0.2* | 16.3  | 2.4   | 10.6  | 4.5   | <1.0* | 18.9  | 15.4  | 21300  | 360    | 7290   | <0.01*  |
| <br>WAA_S09        | 1.5   | <0.2* | 6.0   | <2.0* | 3.4   | 2.1   | <1.0* | 5.6   | 10.8  | 21000  | 355    | 7260   | < 0.01* |
| WAA_S10            | 4.4   | <0.2* | 17.7  | 2.7   | 10.7  | 5.1   | <1.0* | 19.7  | 15.0  | 22900  | 389    | 7440   | < 0.01* |
|                    | 4.9   | <0.2* | 16.8  | 2.9   | 10.7  | 5.6   | <1.0* | 21.1  | 14.4  | 21200  |        | 7630   | < 0.01  |
| WAA_S11            |       |       |       |       |       |       |       |       |       |        | 341    |        |         |
| WAA_S12            | 4.0   | <0.2* | 18.8  | 3.6   | 10.8  | 6.8   | <1.0* | 21.0  | 24.0  | 23400  | 359    | 7460   | <0.01*  |
| WAA_S13            | 3.7   | <0.2* | 15.8  | 2.3   | 9.7   | 4.6   | <1.0* | 16.9  | 15.0  | 22400  | 357    | 6860   | <0.01*  |
| WAA_S14            | 4.3   | <0.2* | 15.2  | <2.0* | 9.8   | 4.1   | <1.0* | 17.4  | 13.5  | 21500  | 348    | 6610   | <0.01*  |
| WAA_S15            | 5.1   | <0.2* | 15.6  | 2.2   | 10.0  | 4.3   | <1.0* | 19.0  | 13.4  | 22400  | 363    | 6950   | <0.01*  |
| WAA_S16            | 1.2   | <0.2* | 5.6   | <2.0* | <1.2* | <2.0* | <1.0* | 5.1   | 4.0   | 23800  | 416    | 7240   | 0.01    |
| WAA_S17            | 5.6   | <0.2* | 14.1  | <2.0* | 9.2   | 3.6   | <1.0* | 18.8  | 13.7  | 19500  | 324    | 6760   | 0.02    |
| WAA_S18            | 3.6   | 0.2   | 16.3  | 2.3   | 10.1  | 5.1   | <1.0* | 17.6  | 13.4  | 22600  | 376    | 6440   | < 0.01* |
| WAA_S19            | 4.1   | <0.2* | 14.3  | <2.0* | 10.0  | 4.2   | <1.0* | 15.6  | 13.5  | 23100  | 360    | 5840   | < 0.01* |
| WAA_S20            | 5.7   | <0.2* | 13.7  | <2.0* | 9.5   | 3.6   | <1.0* | 17.7  | 11.1  | 21700  | 342    | 6710   | <0.01*  |
| WAA_S21            | 4.4   | <0.2* | 16.5  | 2.1   | 10.6  | 4.0   | <1.0* | 20.0  | 14.0  | 23300  | 350    | 7570   | 0.01    |
| WAA_S22            | 4.0   | <0.2* | 19.3  | 2.5   | 11.3  | 6.0   | 1.4   | 19.5  | 15.6  | 25700  | 423    | 7770   | <0.01*  |
| -<br>WAA_S23       | 4.6   | <0.2* | 18.5  | 2.1   | 11.2  | 5.4   | <1.0* | 19.8  | 24.2  | 24100  | 420    | 7770   | 0.01    |
| WAA_S24            | 3.6   | <0.2* | 17.6  | 2.1   | 9.5   | 4.9   | <1.0* | 17.9  | 15.2  | 22100  | 358    | 6900   | 0.01    |
| WAA_525            | 4.3   | <0.2* | 16.8  | 2.7   | 9.7   | 5.0   | <1.0* | 18.2  | 13.6  | 22000  | 370    | 7320   | 0.01    |
|                    | 4.3   | <0.2* | 15.5  | 2.7   | 9.7   | 5.5   | <1.0* | 18.2  |       |        |        | 6760   |         |
| WAA_S26            |       |       |       |       |       |       |       |       | 15.1  | 22300  | 358    |        | < 0.01* |
| WAA_S27            | 3.9   | <0.2* | 16.5  | 2.0   | 9.6   | 5.4   | <1.0* | 14.8  | 12.8  | 22300  | 378    | 5890   | < 0.01* |
| WAA_S28            | 4.0   | <0.2* | 16.2  | 2.4   | 10.5  | 4.9   | <1.0* | 17.4  | 13.5  | 24600  | 413    | 7260   | 0.02    |
| WAA_S29            | 4.2   | <0.2* | 24.3  | 2.1   | 10.4  | 5.4   | <1.0* | 17.2  | 13.3  | 23900  | 397    | 6770   | 0.01    |
| WAA_S30            | 3.9   | <0.2* | 17.1  | 2.4   | 10.2  | 4.9   | <1.0* | 16.6  | 13.7  | 23400  | 386    | 6540   | 0.01    |
| WAA_S31            | 4.0   | <0.2* | 16.2  | 3.1   | 10.1  | 5.1   | <1.0* | 15.7  | 12.3  | 23700  | 387    | 7090   | 0.01    |
| WAA_S32            | 3.6   | <0.2* | 15.9  | 2.7   | 9.3   | 3.9   | <1.0* | 16.2  | 11.0  | 21400  | 344    | 6340   | 0.01    |
| WAA_\$33           | 3.6   | <0.2* | 16.0  | 2.0   | 10.1  | 4.8   | <1.0* | 16.7  | 19.5  | 23600  | 376    | 6250   | 0.01    |
| WAA_S34            | 3.8   | <0.2* | 17.2  | 2.9   | 10.1  | 5.7   | <1.0* | 16.2  | 12.9  | 23700  | 387    | 6820   | <0.01*  |
| WAA_S35            | 4.3   | <0.2* | 17.5  | 2.4   | 10.9  | 5.6   | <1.0* | 17.8  | 14.4  | 25600  | 436    | 6760   | <0.01*  |
| WAA_S36            | 3.4   | <0.2* | 17.4  | 2.4   | 10.7  | 5.1   | <1.0* | 16.6  | 13.8  | 24400  | 423    | 6110   | 0.01    |
| -<br>WAA_\$37      | 3.7   | <0.2* | 18.8  | 3.0   | 10.9  | 6.3   | <1.0* | 18.6  | 15.5  | 25300  | 425    | 6770   | 0.01    |
| WAA_S38            | 3.4   | <0.2* | 17.5  | 2.7   | 10.5  | 5.9   | <1.0* | 17.7  | 13.9  | 24700  | 411    | 6480   | 0.01    |
| ECR_S39            | 5.8   | <0.2  | 17.3  | 2.7   | <1.2* | 4.7   | <1.0* | 20.9  | 15.5  | 22000  | 376    | 8110   | 0.01    |

# **OCEAN INFINITY**<sup>®</sup>



CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Analyte | As   | Cd    | Cr   | Cu    | Pb    | Ni  | Sn    | v    | Zn   | AI    | Ва  | Fe    | Hg     |
|---------|------|-------|------|-------|-------|-----|-------|------|------|-------|-----|-------|--------|
| ECR_S40 | 6.4  | <0.2* | 16.9 | 2.7   | <1.2* | 4.9 | <1.0* | 18.8 | 16.8 | 22800 | 368 | 7380  | <0.01* |
| ECR_S41 | 3.9  | <0.2* | 18.4 | 3.5   | 10.7  | 6.2 | <1.0* | 20.7 | 18.0 | 23300 | 380 | 7700  | 0.01   |
| ECR_S42 | 6.8  | <0.2* | 18.6 | 2.9   | 10.5  | 4.6 | <1.0* | 21.3 | 15.6 | 20000 | 327 | 7890  | <0.01* |
| ECR_S43 | 7.0  | <0.2* | 17.6 | 2.6   | 10.3  | 4.5 | <1.0* | 21.0 | 15.3 | 19800 | 324 | 7370  | <0.01* |
| ECR_S44 | 6.3  | <0.2* | 12.2 | 2.0   | 9.4   | 3.5 | <1.0* | 19.0 | 11.0 | 18400 | 320 | 6570  | <0.01* |
| ECR_S46 | 5.1  | <0.2* | 12.3 | 2.6   | 9.1   | 4.2 | <1.0* | 19.8 | 13.1 | 20200 | 331 | 8230  | <0.01* |
| ECR_S48 | 11.9 | <0.2* | 10.9 | 2.3   | 9.9   | 5.9 | <1.0* | 28.1 | 14.6 | 19900 | 291 | 8290  | <0.01* |
| ECR_S51 | 11.1 | <0.2* | 14.9 | <2.0* | 9.4   | 6.4 | <1.0* | 28.7 | 11.9 | 17300 | 248 | 7680  | <0.01* |
| ECR_S54 | 5.4  | <0.2* | 10.9 | <2.0* | 8.2   | 3.6 | <1.0* | 16.0 | 12.3 | 17700 | 395 | 6120  | <0.01* |
| ECR_S55 | 7.8  | <0.2* | 13.7 | <2.0* | 9.3   | 5.1 | <1.0* | 25.5 | 13.4 | 21700 | 361 | 7960  | <0.01* |
| ECR_S56 | 7.6  | <0.2* | 13.1 | 2.4   | 10.7  | 4.6 | <1.0* | 24.6 | 14.1 | 22300 | 330 | 8360  | <0.01* |
| ECR_S57 | 12.0 | <0.2* | 10.1 | 2.8   | 10.1  | 8.4 | <1.0* | 28.1 | 10.7 | 16900 | 229 | 6130  | <0.01* |
| ECR_S58 | 19.3 | <0.2* | 15.6 | 2.3   | 13.4  | 8.8 | <1.0* | 42.3 | 16.1 | 15100 | 238 | 10600 | <0.01* |
| Mean    | 5.3  | 0.2   | 15.9 | 2.5   | 10.0  | 5.1 | 1.4   | 19.2 | 14.6 | 21976 | 360 | 7189  | 0.01   |
| SD      | 2.9  | -     | 3.3  | 0.4   | 1.3   | 1.1 | -     | 5.3  | 3.4  | 2230  | 44  | 802   | 0.00   |
| Min     | 1.2  | 0.2   | 5.6  | 2.0   | 3.4   | 2.1 | 1.4   | 5.1  | 4.0  | 15100 | 229 | 5840  | 0.01   |
| Max     | 19.3 | 0.2   | 24.3 | 3.6   | 13.4  | 8.8 | 1.4   | 42.3 | 24.2 | 25700 | 436 | 10600 | 0.02   |
| Median  | 4.4  | 0.2   | 16.5 | 2.4   | 10.1  | 4.9 | 1.4   | 18.8 | 13.9 | 22300 | 360 | 7240  | 0.01   |

\*Not included in statistical analyses of Mean, SD, Min, Max and Median.

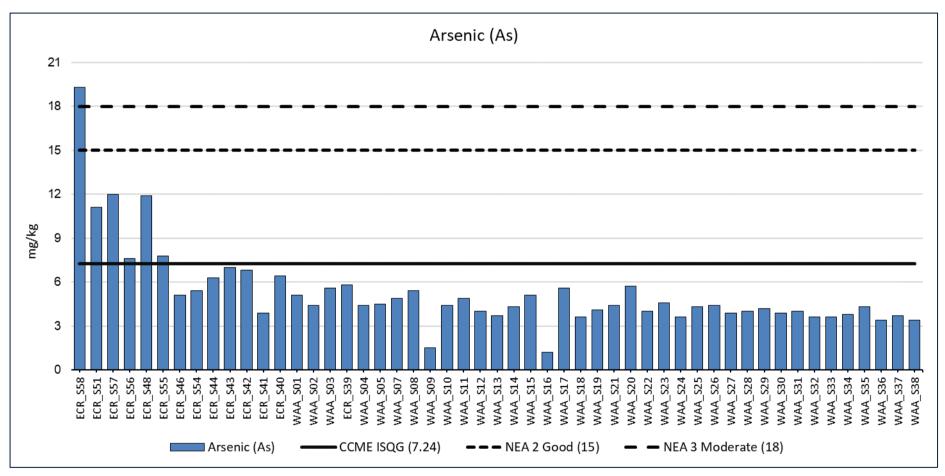



Figure 16 Arsenic (As) levels (mg/kg dry weight) from grab samples with threshold values, sorted by increasing easting.





### 5.4.2 Organics and Moisture

Total organic matter (TOM) and total organic carbon (TOC) both varied slightly across the survey area, with a mean content of 1.3 % (SD=0.3) and 0.18 % (SD=0.07), respectively (Table 26). Both TOM and TOC had notably higher values at site ECR\_S44, which is situated centrally within the offshore ECR.

| Table 26 Total organic matter, | total organic carbon, | and moisture content in samples. |
|--------------------------------|-----------------------|----------------------------------|
|                                |                       |                                  |

| Analyte            | Total Organic Matter   | Total Organic Carbon | Total Moisture @ 120 °C |
|--------------------|------------------------|----------------------|-------------------------|
| Method             | Loss On Ignition (LOI) | WSLM59               | ASC/SOP/303             |
| Limit of Detection | 0.2                    | 0.02                 | 0.2                     |
| Units              | %                      | %                    | %                       |
| WAA_S01            | 1.4                    | 0.13                 | 26.1                    |
| WAA_S02            | 1.2                    | 0.15                 | 29.7                    |
| WAA_S03            | 1.5                    | 0.16                 | 31.1                    |
| WAA_S04            | 1.7                    | 0.13                 | 28.3                    |
| WAA_S05            | 1.5                    | 0.28                 | 26.5                    |
| WAA_S07            | 1.1                    | 0.14                 | 24.2                    |
| WAA_S08            | 1.4                    | 0.11                 | 28.3                    |
| WAA_S09            | 1.6                    | 0.18                 | 30.0                    |
| WAA_S10            | 1.5                    | 0.16                 | 28.1                    |
| WAA_S11            | 1.3                    | 0.19                 | 24.4                    |
| WAA_S12            | 1.9                    | 0.35                 | 29.5                    |
| WAA_S13            | 1.4                    | 0.16                 | 27.0                    |
| WAA_S14            | 1.1                    | 0.09                 | 33.2                    |
| WAA_S15            | 1.2                    | 0.16                 | 26.8                    |
| WAA_S16            | 1.6                    | 0.17                 | 28.9                    |
| WAA_S17            | 1.0                    | 0.10                 | 28.9                    |
| WAA_S18            | 1.2                    | 0.18                 | 26.6                    |
| WAA_S19            | 1.3                    | 0.16                 | 28.6                    |
| WAA_S20            | 0.9                    | 0.12                 | 25.2                    |
| WAA_S21            | 0.9                    | 0.13                 | 26.5                    |
| WAA_S22            | 1.1                    | 0.16                 | 31.2                    |
| WAA_S23            | 1.4                    | 0.16                 | 31.3                    |
| WAA_S24            | 1.3                    | 0.13                 | 29.6                    |
| WAA_S25            | 1.6                    | 0.14                 | 30.1                    |
| WAA_S26            | 0.9                    | 0.14                 | 25.0                    |
| WAA_S27            | 1.3                    | 0.17                 | 16.0                    |
| WAA_S28            | 1.2                    | 0.16                 | 23.8                    |
| WAA_S29            | 2.0                    | 0.18                 | 30.1                    |
| WAA_S30            | 1.7                    | 0.21                 | 31.3                    |
| WAA_S31            | 1.1                    | 0.18                 | 28.3                    |
| WAA_S32            | 1.6                    | 0.12                 | 28.1                    |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Analyte | Total Organic Matter | Total Organic Carbon | Total Moisture @ 120 °C |
|---------|----------------------|----------------------|-------------------------|
| WAA_S33 | 1.5                  | 0.21                 | 25.5                    |
| WAA_S34 | 0.9                  | 0.17                 | 27.4                    |
| WAA_S35 | 1.4                  | 0.25                 | 30.2                    |
| WAA_S36 | 1.3                  | 0.21                 | 31.2                    |
| WAA_S37 | 1.9                  | 0.21                 | 31.9                    |
| WAA_S38 | 1.5                  | 0.22                 | 31.3                    |
| ECR_S39 | 1.1                  | 0.15                 | 28.2                    |
| ECR_S40 | 1.2                  | 0.20                 | 26.5                    |
| ECR_S41 | 1.4                  | 0.29                 | 34.9                    |
| ECR_S42 | 1.2                  | 0.19                 | 30.7                    |
| ECR_S43 | 1.2                  | 0.19                 | 31.2                    |
| ECR_S44 | 2.4                  | 0.46                 | 30.0                    |
| ECR_S46 | 0.7                  | 0.11                 | 29.5                    |
| ECR_S48 | 0.9                  | 0.13                 | 17.2                    |
| ECR_S51 | 1.1                  | 0.21                 | 21.5                    |
| ECR_S54 | 1.0                  | 0.11                 | 23.4                    |
| ECR_S55 | 0.7                  | 0.10                 | 28.1                    |
| ECR_S56 | 0.9                  | 0.12                 | 23.8                    |
| ECR_S57 | 1.4                  | 0.24                 | 14.9                    |
| ECR_S58 | 1.8                  | 0.19                 | 16.4                    |
| Mean    | 1.3                  | 0.18                 | 27.4                    |
| SD      | 0.3                  | 0.07                 | 4.3                     |
| Min     | 0.7                  | 0.09                 | 14.9                    |
| Max     | 2.4                  | 0.46                 | 34.9                    |
| Median  | 1.3                  | 0.16                 | 28.3                    |



#### 5.4.3 Total Hydrocarbons

Total Hydrocarbon (THC) concentrations were low but variable across the survey area and did not exceed the Dutch RIVM intervention values at any grab sample site (Table 27).

The concentration of THCs was generally higher in the WAA compared to the ECR, with the lowest concentrations recorded at the sites towards the western end of the survey area.

Total oil concentrations were tested for correlations with depth, easting, and sediment fractions (Table 27). Silt, followed by Mud and Easting, had the strongest correlation with Total oil, with R<sup>2</sup>-values of 0.35, 0.35 and 0.34, respectively. However, note that depth, easting, and sediment fractions correlate with each other to a variable degree (Table 22 and Table 23).

| Variable #1 | Variable #2 | R <sup>2</sup> value | Relationship |
|-------------|-------------|----------------------|--------------|
| Total Oil   | Silt        | 0.35                 | Positive     |
| Total Oil   | Mud         | 0.35                 | Positive     |
| Total Oil   | Easting     | 0.34                 | Positive     |
| Total Oil   | Clay        | 0.31                 | Positive     |
| Total Oil   | Gravel      | 0.25                 | Negative     |
| Total Oil   | Depth       | 0.25                 | Positive     |
| Total Oil   | Sand        | 0.01                 | Negative     |

Table 27 Summary of correlation results for Total Oil.

Table 28 THC concentrations ( $\mu$ g/kg dry weight) in samples.

| Analyte            | Total Oil | Total n alkanes | Carbon Preference<br>Index | Pristane | Phytane | Pristane /<br>phytane ratio |
|--------------------|-----------|-----------------|----------------------------|----------|---------|-----------------------------|
| Limit of Detection | 100       | 28              | 1                          | 1        | 1       | 1                           |
| Dutch RIVM         | 5000000   | -               | -                          | -        | -       | -                           |
| Units              | µg/kg     | µg/kg           | μg/kg                      | µg/kg    | µg/kg   | μg/kg                       |
| WAA_S01            | 1930      | 52.1            | 2.56                       | 6.97     | <1*     | _*                          |
| WAA_S02            | 1720      | 63.5            | 2.25                       | 5.80     | <1*     | -*                          |
| WAA_S03            | 2200      | 82.6            | 2.86                       | 8.60     | <1*     | _*                          |
| WAA_S04            | 3100      | 77.3            | 2.40                       | 8.67     | <1*     | _*                          |
| WAA_S05            | 6490      | 260             | 1.81                       | 40.1     | 1.49    | 26.9                        |
| WAA_S07            | 4850      | 171             | 2.12                       | 12.5     | <1*     | _*                          |
| WAA_S08            | 1830      | 53.8            | 2.69                       | 6.61     | <1*     | _*                          |
| WAA_S09            | 4800      | 178             | 2.66                       | 12.4     | 6.57    | 1.88                        |
| WAA_S10            | 5310      | 157             | 1.88                       | 15.4     | <1*     | _*                          |
| WAA_S11            | 3520      | 127             | 1.73                       | 7.82     | <1*     | _*                          |
| WAA_S12            | 5790      | 176             | 2.52                       | 13.2     | <1*     | _*                          |
| WAA_S13            | 4660      | 155             | 1.78                       | 13.4     | <1*     | _*                          |
| WAA_S14            | 6990      | 220             | 2.02                       | 14.0     | <1*     | _*                          |
| WAA_S15            | 3750      | 117             | 2.50                       | 8.56     | <1*     | _*                          |
| WAA_S16            | 1180      | 49.6            | 1.78                       | 4.21     | <1*     | _*                          |
| WAA_S17            | 2360      | 83.6            | 1.94                       | 2.94     | <1*     | _*                          |
| WAA_S18            | 5650      | 178             | 1.51                       | 65.4     | <1*     | _*                          |
| WAA_S19            | 4990      | 148             | 2.29                       | 11.3     | <1*     | -*                          |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Analyte  | Total Oil | Total n alkanes | Carbon Preference<br>Index | Pristane | Phytane | Pristane /<br>phytane ratio |
|----------|-----------|-----------------|----------------------------|----------|---------|-----------------------------|
| WAA_S20  | 2100      | 59.0            | 2.15                       | 1.97     | <1*     | _*                          |
| WAA_S21  | 2790      | 88.8            | 2.31                       | 5.32     | <1*     | _*                          |
| WAA_S22  | 4830      | 153             | 2.05                       | 11.1     | 1.30    | 8.57                        |
| WAA_S23  | 7440      | 314             | 1.73                       | 14.4     | 3.28    | 4.40                        |
| WAA_S24  | 3620      | 96.6            | 1.72                       | 12.4     | <1*     | _*                          |
| WAA_S25  | 5060      | 134             | 2.43                       | 9.64     | 1.02    | 9.43                        |
| WAA_S26  | 2480      | 88.1            | 1.79                       | 4.90     | <1*     | _*                          |
| WAA_S27  | 4670      | 152             | 1.96                       | 14.1     | <1*     | _*                          |
| WAA_S28  | 3970      | 133             | 2.07                       | 9.39     | <1*     | _*                          |
| WAA_S29  | 4700      | 127             | 2.17                       | 10.9     | 1.30    | 8.39                        |
| WAA_S30  | 5700      | 147             | 2.72                       | 14.0     | 1.04    | 13.5                        |
| WAA_S31  | 3710      | 128             | 2.80                       | 8.56     | <1*     | _*                          |
| WAA_S32  | 6460      | 217             | 1.67                       | 15.4     | 4.47    | 3.44                        |
| WAA_S33  | 3190      | 73.8            | 2.55                       | 8.25     | <1*     | _*                          |
| WAA_S34  | 4820      | 147             | 2.23                       | 14.0     | <1*     | *                           |
| WAA_\$35 | 5340      | 182             | 2.02                       | 20.0     | 2.42    | 8.27                        |
| WAA_S36  | 5030      | 146             | 2.78                       | 14.9     | 1.64    | 9.09                        |
| WAA_S37  | 6490      | 175             | 2.14                       | 18.9     | 2.01    | 9.41                        |
| WAA_S38  | 6020      | 125             | 3.06                       | 25.5     | 1.01    | 25.2                        |
| ECR_S39  | 2250      | 76.7            | 2.53                       | 5.89     | <1*     | _*                          |
| ECR_S40  | 2810      | 73.4            | 2.13                       | 4.55     | <1*     | _*                          |
| ECR_S41  | 4150      | 121             | 2.16                       | 7.47     | <1*     | _*                          |
| ECR_S42  | 5260      | 207             | 3.01                       | 9.76     | 2.38    | 4.11                        |
| ECR_S43  | 4250      | 139             | 2.90                       | 11.6     | <1*     | _*                          |
| ECR_S44  | 4880      | 177             | 2.65                       | 12.3     | <1*     | _*                          |
| ECR_S46  | 1220      | 39.5            | 4.29                       | 3.33     | <1*     | _*                          |
| ECR_S48  | 1130      | 48.4            | 2.61                       | 5.02     | <1*     | _*                          |
| ECR_S51  | 1120      | <28             | 2.23                       | 2.24     | <1*     | _*                          |
| ECR_S54  | 5110      | 187             | 2.07                       | 17.3     | 4.39    | 3.95                        |
| ECR_S55  | 1400      | 45.0            | 1.91                       | 3.14     | <1*     | _*                          |
| ECR_S56  | 771       | 28.9            | 2.92                       | 1.19     | <1*     | _*                          |
| ECR_S57  | 658       | <28*            | 2.83                       | 1.42     | <1*     | _*                          |
| ECR_S58  | 1620      | 62.7            | 2.08                       | 3.79     | <1*     | _*                          |
| Mean     | 3846      | 127.4           | 2.31                       | 11.38    | 2.45    | 9.75                        |
| SD       | 1820      | 61.3            | 0.49                       | 10.23    | 1.66    | 7.59                        |
| Min      | 658       | 28.9            | 1.51                       | 1.19     | 1.01    | 1.88                        |
| Max      | 7440      | 314.0           | 4.29                       | 65.40    | 6.57    | 26.90                       |
| Median   | 4150      | 128.0           | 2.23                       | 9.64     | 1.83    | 8.48                        |

\*Not included in statistical analyses of Mean, SD, Min, Max and Median.



CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

#### 5.4.4 Polycyclic Aromatic Hydrocarbons

Polycyclic Aromatic Hydrocarbons (PAH) concentrations were overall low but variable across the survey area. The concentration of PAHs was generally higher in the WAA compared to the ECR.

Threshold values were exceeded at five (5) sites (Table 30). These sites are summarised below:

- WAA\_S09: seven (7) individual congeners and the sum of the 16 EPA PAHs (Σ16PAH) exceeded the lower threshold of NEA's class 2 – Good, and one individual congener exceeded the lower threshold of NEA's class 3 – Moderate.
- WAA\_S16: twelve (12) individual congeners and the Σ16PAH exceeded the lower threshold of NEA's class
   2 Good, and one individual congener exceeded the lower CCME ISQG threshold at site
- WAA\_S23: one (1) individual congener exceeded the lower threshold of NEA's class 2 Good.
- WAA\_S32: two (2) individual congeners and the Σ16PAH exceeded the lower threshold of NEA's class 2 – Good.
- WAA\_S37: the Σ16PAH exceeded the lower threshold of the NEA's class 2 Good.

 $\Sigma$ 16PAH concentrations were tested for correlations with depth, easting, and sediment fractions (Table 29). Whilst weak, depth had the strongest correlation with  $\Sigma$ 16PAH, with an R<sup>2</sup>-value of 0.19, with the other variables exhibiting no correlations. However, note that depth, easting, and sediment fractions correlate with each other to a variable degree (Table 22 and Table 23).

| Variable #1 | Variable #2 | R <sup>2</sup> value | Relationship |
|-------------|-------------|----------------------|--------------|
| Σ16ΡΑΗ      | Depth       | 0.19                 | Positive     |
| Σ16ΡΑΗ      | Silt        | 0.03                 | Positive     |
| Σ16ΡΑΗ      | Silt        | 0.03                 | Positive     |
| Σ16ΡΑΗ      | Clay        | 0.03                 | Positive     |
| Σ16ΡΑΗ      | Gravel      | 0.03                 | Negative     |
| Σ16ΡΑΗ      | Easting     | 0.02                 | Positive     |
| Σ16ΡΑΗ      | Sand        | 0.00                 | Negative     |

Table 29 Summary of correlation results for  $\Sigma$ 16PAH.



Analyte

Limit of Detection

NEA 1 Background

NEA 3 Moderate

NEA 5 Very Poor

NEA 2 Good

NEA 4 Poor

OSPAR ERL

Cefas AL1

CCME PEL

CCME ISQG

WAA\_S01

**WAA S02** 

WAA\_S03

WAA\_S04

WAA\_S05

**WAA S07** 

**WAA\_S08** 

**WAA\_S09** 

WAA\_S10

WAA\_S11

WAA\_S12

WAA\_S13

WAA\_S14

WAA\_S15

WAA\_S16

WAA\_S17

**WAA\_S18** 

WAA\_S19

WAA\_S20

WAA\_S21

WAA\_S22

WAA\_S23

WAA\_S24

WAA\_S25

WAA\_S26

**WAA S27** 

Units

# CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD

## ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

Table 30 PAH concentrations (µg/kg dry weight) in samples. Highlighted cells and their colour indicates where and which threshold values have been exceeded.

Anthracene

1

0

1.2

4.8

30

295

85

100

245

46.9

µg/kg

<1

<1

<1

<1

<1

<1

<1

8.00

<1

<1

<1

<1

<1

<1

3.97

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

Fluoranthene

1

0

8

400

2000

600

100

1494

113

µg/kg

<1

<1

<1

<1

1.78

1.12

<1

34.9

1.57

<1

1.30

1.15

1.43

<1

22.9

<1

1.32

2.17

<1

<1

<1

2.10

<1

1.29

<1

1.20

Pyrene

1

0

5.2

84

840

8400

665

100

1398

153

µg/kg

<1

<1

<1

<1

1.57

<1

<1

36.7

1.24

<1

1.07

<1

1.16

<1

20.6

<1

1.06

1.77

<1

<1

<1

1.61

<1

1.10

<1

<1

Dibenzothiophene

1

-

-

-

190

100

-

µg/kg

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

6.99

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

Phenanthrene

1

0

6.8

780

2500

25000

240

100

544

86.7

µg/kg

<1

<1

<1

<1

1.50

1.04

<1

25.5

1.31

<1

1.21

1.18

1.26

<1

73.5

<1

1.50

1.03

<1

<1

1.82

3.36

1.19

1.57

<1

1.33

Fluorene

1

0

6.8

150

694

34700

-

100

144

21.2

µg/kg

<1

<1

<1

<1

<1

<1

<1

2.15

<1

<1

<1

<1

<1

<1

4.85

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

Acenaphthylene

1

0

1.6

33

85

8500

-

100

128

5.87

µg/kg

<1

<1

<1

<1

<1

<1

<1

3.99

<1

<1

<1

<1

<1

<1

3.05

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

Naphthalene

1

0

2

27

1754

8769

160

100

391

34.6

µg/kg

<1

<1

<1

<1

<1

<1

<1

1.98

<1

<1

<1

<1

<1

<1

22.4

<1

<1

<1

<1

<1

1.27

2.45

<1

<1

<1

<1

Acenaphthene

1

0

2.4

96

195

19500

100

88.9

6.71

µg/kg

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

4.61

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

## **OCEAN INFINITY**<sup>®</sup>

| WAA_S28 | <1   | <1 | <1 | <1 | <1   | <1 | <1   | <1   | <1   | <1   | <1   | 1.85 | 1.44 | 1.28 | <1   | 1.02 | 2.51 | <1 | 2.45 | 5.80  |
|---------|------|----|----|----|------|----|------|------|------|------|------|------|------|------|------|------|------|----|------|-------|
| WAA_S29 | <1   | <1 | <1 | <1 | 2.03 | <1 | <1   | 1.07 | <1   | <1   | <1   | 2.07 | 1.58 | 1.32 | <1   | <1   | 2.66 | <1 | 2.54 | 9.41  |
| WAA_S30 | <1   | <1 | <1 | <1 | 1.21 | <1 | <1   | 1.23 | 1.04 | <1   | <1   | 2.29 | 1.88 | 1.79 | 1.06 | 1.39 | 3.48 | <1 | 3.43 | 12.19 |
| WAA_S31 | <1   | <1 | <1 | <1 | <1   | <1 | <1   | <1   | <1   | <1   | <1   | 1.50 | 1.45 | 1.12 | <1   | <1   | 2.25 | <1 | 2.39 | 5.20  |
| WAA_S32 | 1.32 | <1 | <1 | <1 | 6.16 | <1 | 1.67 | 7.37 | 7.66 | 3.44 | 3.54 | 3.80 | 3.99 | 3.15 | 4.01 | 1.98 | 4.85 | <1 | 4.63 | 47.81 |
| WAA_S33 | <1   | <1 | <1 | <1 | <1   | <1 | <1   | <1   | <1   | <1   | <1   | 1.64 | 1.52 | 1.05 | <1   | <1   | 2.30 | <1 | 2.19 | 5.46  |
| WAA_S34 | 1.13 | <1 | <1 | <1 | 2.24 | <1 | <1   | 1.20 | 1.03 | <1   | <1   | 2.40 | 1.61 | 1.56 | <1   | 1.36 | 3.03 | <1 | 2.94 | 12.64 |
| WAA_S35 | 1.49 | <1 | <1 | <1 | 3.01 | <1 | <1   | 1.93 | 1.66 | <1   | 1.58 | 2.97 | 2.47 | 2.28 | 1.33 | 1.81 | 4.36 | <1 | 4.12 | 20.80 |
| WAA_S36 | <1   | <1 | <1 | <1 | 1.91 | <1 | <1   | 1.35 | 1.17 | <1   | 1.00 | 2.69 | 2.04 | 1.73 | <1   | 1.49 | 3.49 | <1 | 3.42 | 13.65 |
| WAA_S37 | <1   | <1 | <1 | <1 | 3.05 | <1 | <1   | 5.28 | 4.37 | 2.66 | 3.06 | 4.82 | 4.21 | 3.14 | 2.79 | 2.27 | 5.82 | <1 | 5.33 | 36.06 |
| WAA_S38 | <1   | <1 | <1 | <1 | 1.59 | <1 | <1   | 1.62 | 1.31 | <1   | 1.15 | 2.98 | 2.75 | 2.12 | 1.12 | 1.82 | 4.48 | <1 | 4.20 | 17.00 |

Indeno[123,cd]pyren6

1

0

20

63

2300

240

100

µg/kg

1.37

1.23

1.63

2.11

4.43

2.91

1.33

13.0

2.93

2.14

3.89

2.53

4.24

2.50

61.4

1.24

3.08

3.06

1.11

1.59

2.59

3.38

1.54

2.40

1.74

2.76

Perylene\*\*

1

-

100

-

µg/kg

1.36

1.50

<1

1.16

2.87

1.68

<1

5.72

2.19

1.42

2.54

1.18

2.75

1.20

46.4

<1

1.40

1.53

<1

<1

1.34

2.25

1.07

1.94

1.11

1.44

enzo[a,h]anthra

hip

1

0

12

27

273

2730

-

100

135

6.22

µg/kg

<1

<1

<1

<1

<1

<1

<1

1.99

<1

<1

<1

<1

<1

<1

8.93

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

Benzo[k]fluoranthe

1

0

90

135

7400

100

µg/kg

<1

1.69

1.03

1.24

2.47

1.94

<1

11.3

1.74

1.20

1.99

1.87

2.23

1.53

24.6

<1

1.91

2.45

<1

1.33

1.53

2.65

<1

1.04

<1

2.20

ızo[b]fluoranth

Ben

1

0

90

140

10600

100

µg/kg

<1

1.74

1.15

1.32

2.83

1.94

<1

11.8

2.50

1.34

2.79

1.98

2.47

1.61

45.9

<1

2.33

2.56

<1

1.34

1.85

3.05

1.33

1.57

1.23

1.98

Chrysene

1

0

4.4

-

280

2800

384

100

846

108

µg/kg

<1

<1

<1

<1

1.32

<1

<1

13.4

1.01

<1

1.05

<1

<1

<1

20.3

<1

<1

1.46

<1

<1

<1

1.40

<1

<1

<1

<1

Benzo[a]anthra

1

0

3.6

60

501

50100

-

100

693

74.8

µg/kg

<1

<1

<1

<1

<1

<1

<1

13.6

<1

<1

<1

<1

<1

<1

11.9

<1

<1

1.16

<1

<1

<1

<1

<1

<1

<1

<1

Benzo[e]pyrene\*

1

-

-

-

100

-

µg/kg

<1

<1

<1

<1

2.11

1.30

<1

10.1

1.60

<1

1.73

1.35

1.90

1.07

30.9

<1

1.46

1.74

<1

<1

1.34

2.11

<1

1.29

<1

1.55

Benzo[a]pyrene

1

0

6

183

230

13100

430

100

763

88.8

µg/kg

<1

<1

<1

<1

1.34

<1

<1

16.6

<1

<1

<1

<1

1.04

<1

14.7

<1

<1

1.38

<1

<1

<1

1.43

<1

<1

<1

<1

Benzo[ghi]perylene

1

0

18

-

84

1400

85

100

-

µg/kg

1.45

1.19

1.55

1.97

4.11

2.66

1.38

13.5

2.94

1.91

3.52

2.52

3.83

2.09

54.2

1.29

2.90

3.19

1.23

1.76

2.62

3.72

1.47

2.36

1.61

2.84

SUM (EPA 16)

-

0

30

2000

6000

20000

\_

-

-

-

µg/kg

1.37

4.66

3.81

4.67

17.24

8.95

1.33

194.91

12.30

4.68

13.30

8.71

13.83

5.64

343.61

1.24

11.20

17.04

1.11

4.26

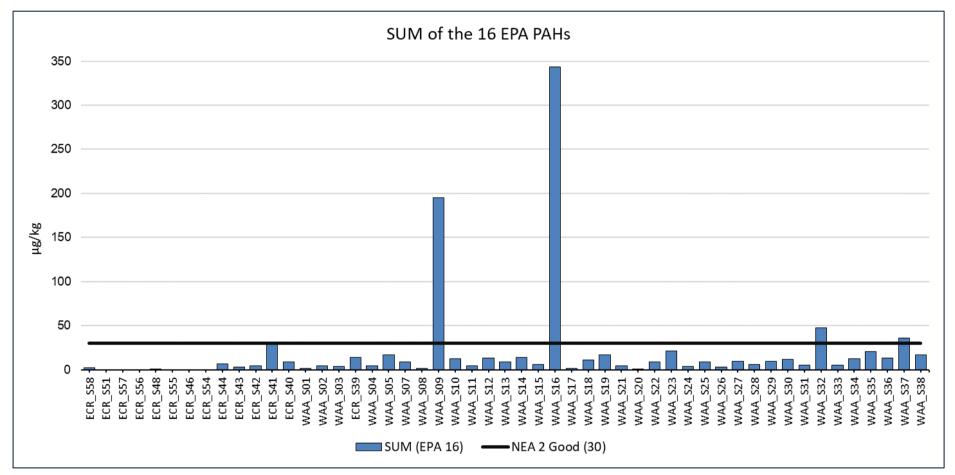
9.06

21.43

4.06

8.97

2.97


9.47



| Analyte | Naphthalene | Acenaphthylene | Acenaphthene | Fluorene | Phenanthrene | Dibenzothiophene** | Anthracene | Fluoranthene | Pyrene | Benzo[a]anthracene | Chrysene | Benzo[b]fluoranthene | Benzo[k]fluoranthene | Benzo[e]pyrene** | Benzo[a]pyrene | Perylene** | Indeno[123,cd]pyrene | Dibenzo[a,h]anthracene | Benzo[ghi]perylene | SUM (EPA 16) |
|---------|-------------|----------------|--------------|----------|--------------|--------------------|------------|--------------|--------|--------------------|----------|----------------------|----------------------|------------------|----------------|------------|----------------------|------------------------|--------------------|--------------|
| ECR_S39 | <1          | <1             | <1           | <1       | 1.28         | <1                 | <1         | 1.33         | 1.11   | <1                 | <1       | 2.63                 | 2.32                 | 1.70             | 1.13           | 1.83       | 3.87                 | <1                     | 3.24               | 13.67        |
| ECR_S40 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | 1.15         | <1     | <1                 | <1       | 2.37                 | 1.64                 | 1.48             | <1             | 1.83       | 3.39                 | <1                     | 2.95               | 8.55         |
| ECR_S41 | <1          | <1             | <1           | <1       | 3.75         | <1                 | <1         | 4.10         | 3.66   | 1.92               | 2.55     | 3.92                 | 2.08                 | 2.88             | 2.24           | 3.00       | 5.25                 | <1                     | 4.70               | 29.47        |
| ECR_S42 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | 1.41                 | 1.07                 | <1               | <1             | <1         | 1.97                 | <1                     | 1.66               | 4.45         |
| ECR_S43 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | 1.18                 | <1                   | <1               | <1             | 1.12       | 1.72                 | <1                     | 1.41               | 2.90         |
| ECR_S44 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | 1.20         | 1.27   | <1                 | <1       | 1.55                 | 1.00                 | <1               | <1             | <1         | 1.61                 | <1                     | 1.41               | 6.63         |
| ECR_S46 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S48 | 1.16        | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 1.16         |
| ECR_S51 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S54 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S55 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S56 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S57 | <1          | <1             | <1           | <1       | <1           | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 0.00         |
| ECR_S58 | 1.17        | <1             | <1           | <1       | 1.16         | <1                 | <1         | <1           | <1     | <1                 | <1       | <1                   | <1                   | <1               | <1             | <1         | <1                   | <1                     | <1                 | 2.33         |

\*Not included in statistical analyses of Mean, SD, Min, Max and Median.

\*\*Not included in the EPA 16 PAHs.









## 5.5 Statistical Analyses

### 5.5.1 Non-Colonial Fauna from Grab Samples

The non-colonial epifauna was identified to the lowest taxonomic level possible and the individuals were enumerated. The infauna and non-colonial epifauna were combined and analysed together. When analysing phyletic composition, the following phyla: Chordata, Cnidaria, Hemichordata, Nematoda, Phoronida and Platyhelminthes were combined into the group "Others".

Samples were obtained at 52 grab sample sites. The colonial epifauna was identified to the lowest taxonomic level possible. The sessile colonial epifauna was recorded as Presence (P) of taxa per square meter (ind./ $m^2$ ) and analysed separately. The results are presented in Section 5.5.6.

A full list of species from the grab samples is presented in Appendix E.

### 5.5.2 Phyletic Composition

The phyletic composition of the non-colonial fauna identified from the grab samples is illustrated in Figure 18 and Figure 19, and summarised in Table 31. Annelida had the highest relative percentage abundance, followed by Mollusca and Echinodermata. These three phyla contributed to 83 % of the recorded individuals. Annelida had the highest number of taxa, followed by Arthropoda and Mollusca. These three phyla contributed to 90 % of the recorded taxa.

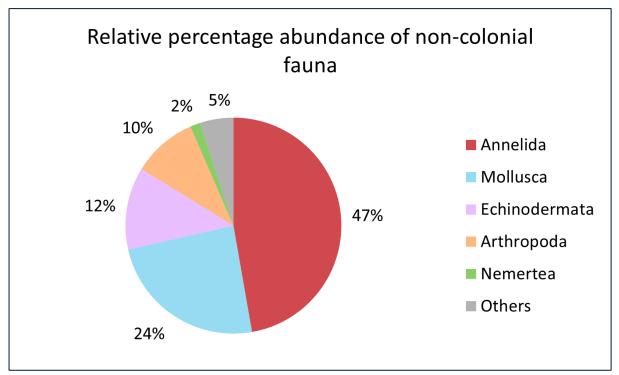



Figure 18 Relative percentage abundance of non-colonial fauna from grab samples.

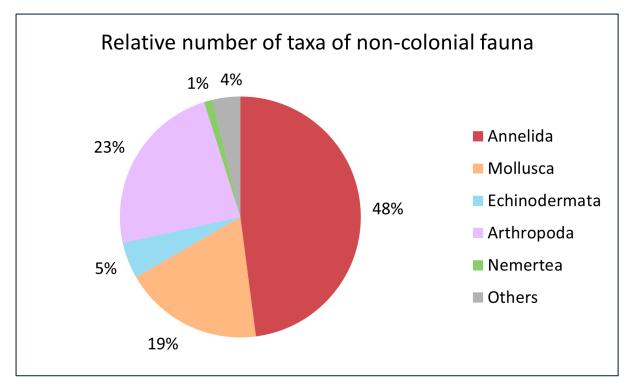



Figure 19 Relative percentage number of non-colonial fauna from grab samples.

Table 31 Phyletic composition of non-colonial fauna from grab samples.

| Phylum        | Number of Taxa | Abundance (Total Number of Individuals) |
|---------------|----------------|-----------------------------------------|
| Annelida      | 128            | 1696                                    |
| Mollusca      | 50             | 868                                     |
| Echinodermata | 13             | 444                                     |
| Arthropoda    | 63             | 348                                     |
| Nemertea      | 3              | 54                                      |
| Others        | 10             | 180                                     |
| Total         | 267            | 3590                                    |

A list of the ten (10) most abundant taxa, with total abundance and frequency of occurrence, is presented in Table 32. The most abundant taxon is the mollusc *Kurtiella bidentata*, with a total of 203 individuals recorded, and the species occurred in 52 % of the grab samples.

Table 32 The ten most abundant taxa from grab samples, together with frequency of occurrence.

| Phylum        | Таха                  | Total<br>Abundance | Mean<br>Abundance | SD    | Frequency of<br>Occurrence (%) |
|---------------|-----------------------|--------------------|-------------------|-------|--------------------------------|
| Mollusca      | Kurtiella bidentata   | 203                | 3.90              | 8.19  | 52                             |
| Annelida      | Scoloplos armiger     | 154                | 2.96              | 2.71  | 73                             |
| Echinodermata | Ophiactis balli       | 145                | 2.79              | 14.15 | 8                              |
| Echinodermata | Echinocyamus pusillus | 138                | 2.65              | 3.30  | 81                             |
| Echinodermata | Amphiura filiformis   | 123                | 2.37              | 2.92  | 73                             |
| Annelida      | Paradoneis lyra       | 114                | 2.19              | 8.98  | 27                             |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.ENVIRONMENTA

L BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Phylum   | Таха                              | Total<br>Abundance | Mean<br>Abundance | SD   | Frequency of<br>Occurrence (%) |
|----------|-----------------------------------|--------------------|-------------------|------|--------------------------------|
| Mollusca | Antalis entalis                   | 111                | 2.13              | 2.21 | 69                             |
| Annelida | Spiophanes kroyeri                | 108                | 2.08              | 2.04 | 73                             |
| Mollusca | Abra prismatica                   | 101                | 1.94              | 1.53 | 81                             |
| Annelida | Lumbrineris cingulata (aggregate) | 90                 | 1.73              | 3.94 | 46                             |

A list of the ten (10) most frequently occurring taxa, with total abundance, is presented in Table 33. The most frequently occurring taxon was the sea urchin *Echinocyamus pusillus*, which occurred in 81% of the grab samples, with a total abundance of 138 individuals.

Table 33 The ten most frequently occurring taxa from grab samples, together with total abundance.

| Phylum        | Таха                  | Frequency of Occurrence (%) | Total Abundance |
|---------------|-----------------------|-----------------------------|-----------------|
| Echinodermata | Echinocyamus pusillus | 81                          | 138             |
| Mollusca      | Abra prismatica       | 81                          | 101             |
| Annelida      | Scoloplos armiger     | 73                          | 154             |
| Echinodermata | Amphiura filiformis   | 73                          | 123             |
| Annelida      | Spiophanes kroyeri    | 73                          | 108             |
| Mollusca      | Antalis entalis       | 69                          | 111             |
| Mollusca      | Ennucula tenuis       | 60                          | 87              |
| Phoronida     | Phoronis              | 58                          | 61              |
| Annelida      | Owenia                | 56                          | 65              |
| Annelida      | Phascolion strombus   | 56                          | 53              |

#### 5.5.3 Univariate Statistical Analyses

Univariate analyses were performed to assess the non-colonial faunal richness, diversity, evenness and dominance. The results of the univariate analyses are presented in Table 34.

The number of Taxa (S) per site varied with a mean of 28.48 (SD= 9.67) where site ECR\_S41 contained the highest number of Taxa (68 different taxa) and ECR\_S54 the lowest (14 different taxa). An overview of the number of Taxa (S) identified per grab sample site in the survey area is presented in Figure 20.

The number of individuals (N) per site (expressed per  $0.1 \text{ m}^2$ ) varied with a mean of 69.04 (SD= 70.24) where ECR\_S41 contained the highest number of individuals (506 individuals) and WAA\_S19 the lowest with 24 individuals. An overview of the number of Individuals (N) identified per grab sample site in the survey area is presented in Figure 21.

The species richness measured with Margalef's diversity index (D) varied between 3.79 and 10.76, with grab sample ECR\_S41 having the highest value of 10.76. Pielou's evenness index (J') ranged from 0.7 to 0.98, with grab sample WAA\_S36 having the highest value of 0.98.

Simpson's index of dominance  $(1-\lambda)$  ranged from 0.83 to 0.99, with site WAA\_S36 having the highest value of 0.99.

The Shannon-Wiener index (H') varied from 2.28 to 3.53, with grab sampling site ECR\_43 having the highest value of 3.53. An overview of the Shannon-Wiener index (H') identified per grab sample site in the survey area is presented in Figure 22.



| Sample ID | Number of<br>Taxa (S) | Number of<br>Individuals (N) | Margalef's<br>Richness Index (D) | Pielou's<br>Evenness | Shannon-<br>Wiener Index | Simpson's<br>Index of<br>Dominance |
|-----------|-----------------------|------------------------------|----------------------------------|----------------------|--------------------------|------------------------------------|
|           |                       |                              |                                  | Index (J')           | <b>(</b> H')             | (1-۸)                              |
| ECR_S39   | 28                    | 62                           | 6.54                             | 0.92                 | 3.07                     | 0.96                               |
| ECR_S40   | 54                    | 235                          | 9.71                             | 0.70                 | 2.78                     | 0.83                               |
| ECR_S41   | 68                    | 506                          | 10.76                            | 0.79                 | 3.35                     | 0.94                               |
| ECR_S42   | 25                    | 37                           | 6.65                             | 0.98                 | 3.15                     | 0.98                               |
| ECR_S43   | 45                    | 90                           | 9.78                             | 0.93                 | 3.53                     | 0.97                               |
| ECR_S44   | 31                    | 56                           | 7.45                             | 0.92                 | 3.17                     | 0.96                               |
| ECR_S46   | 23                    | 59                           | 5.40                             | 0.80                 | 2.52                     | 0.88                               |
| ECR_S48   | 34                    | 100                          | 7.17                             | 0.90                 | 3.17                     | 0.95                               |
| ECR_S51   | 23                    | 79                           | 5.03                             | 0.86                 | 2.69                     | 0.91                               |
| ECR_S54   | 14                    | 31                           | 3.79                             | 0.87                 | 2.31                     | 0.90                               |
| ECR_S55   | 18                    | 44                           | 4.49                             | 0.85                 | 2.46                     | 0.90                               |
| ECR_S56   | 23                    | 62                           | 5.33                             | 0.86                 | 2.69                     | 0.92                               |
| ECR_S57   | 21                    | 79                           | 4.58                             | 0.75                 | 2.28                     | 0.83                               |
| ECR_S58   | 49                    | 135                          | 9.79                             | 0.88                 | 3.42                     | 0.95                               |
| WAA_S01   | 32                    | 61                           | 7.54                             | 0.95                 | 3.29                     | 0.97                               |
| WAA_S02   | 38                    | 102                          | 8.00                             | 0.92                 | 3.33                     | 0.96                               |
| WAA_S03   | 37                    | 76                           | 8.31                             | 0.91                 | 3.28                     | 0.96                               |
| WAA_S04   | 33                    | 57                           | 7.91                             | 0.94                 | 3.29                     | 0.97                               |
| WAA_S05   | 28                    | 59                           | 6.62                             | 0.91                 | 3.05                     | 0.95                               |
| WAA_S06   | 33                    | 63                           | 7.72                             | 0.92                 | 3.21                     | 0.96                               |
| WAA_S07   | 22                    | 42                           | 5.62                             | 0.93                 | 2.87                     | 0.95                               |
| WAA_S08   | 20                    | 30                           | 5.59                             | 0.97                 | 2.90                     | 0.97                               |
| WAA_S09   | 28                    | 60                           | 6.59                             | 0.90                 | 3.01                     | 0.95                               |
| WAA_S10   | 26                    | 41                           | 6.73                             | 0.94                 | 3.07                     | 0.97                               |
| WAA_S11   | 18                    | 32                           | 4.91                             | 0.97                 | 2.79                     | 0.96                               |
| WAA_S12   | 26                    | 43                           | 6.65                             | 0.96                 | 3.11                     | 0.97                               |
| WAA_S13   | 33                    | 49                           | 8.22                             | 0.96                 | 3.35                     | 0.98                               |
| WAA_S14   | 21                    | 36                           | 5.58                             | 0.96                 | 2.91                     | 0.97                               |
| WAA_S15   | 34                    | 97                           | 7.21                             | 0.75                 | 2.65                     | 0.84                               |
| WAA_S16   | 27                    | 52                           | 6.58                             | 0.90                 | 2.97                     | 0.94                               |
| WAA_S17   | 24                    | 49                           | 5.91                             | 0.92                 | 2.92                     | 0.95                               |

Table 34 Univariate indices of species richness, diversity, and evenness for fauna in grab samples.

## **OCEAN INFINITY**<sup>®</sup>



| Sample ID | Number of<br>Taxa (S) | Number of<br>Individuals (N) | Margalef's<br>Richness Index (D) | Pielou's<br>Evenness<br>Index (J') | Shannon-<br>Wiener Index<br>(H') | Simpson's<br>Index of<br>Dominance<br>(1-A) |
|-----------|-----------------------|------------------------------|----------------------------------|------------------------------------|----------------------------------|---------------------------------------------|
| WAA_S18   | 40                    | 71                           | 9.15                             | 0.95                               | 3.49                             | 0.98                                        |
| WAA_S19   | 20                    | 24                           | 5.98                             | 0.97                               | 2.90                             | 0.98                                        |
| WAA_S20   | 26                    | 56                           | 6.21                             | 0.92                               | 3.01                             | 0.96                                        |
| WAA_S21   | 20                    | 35                           | 5.34                             | 0.93                               | 2.78                             | 0.95                                        |
| WAA_S22   | 29                    | 68                           | 6.64                             | 0.83                               | 2.80                             | 0.89                                        |
| WAA_S23   | 24                    | 39                           | 6.28                             | 0.96                               | 3.05                             | 0.97                                        |
| WAA_S24   | 27                    | 86                           | 5.84                             | 0.78                               | 2.57                             | 0.85                                        |
| WAA_S25   | 35                    | 64                           | 8.18                             | 0.92                               | 3.28                             | 0.96                                        |
| WAA_S26   | 23                    | 41                           | 5.92                             | 0.96                               | 3.01                             | 0.97                                        |
| WAA_S27   | 20                    | 39                           | 5.19                             | 0.91                               | 2.73                             | 0.94                                        |
| WAA_S28   | 28                    | 101                          | 5.85                             | 0.82                               | 2.74                             | 0.89                                        |
| WAA_S29   | 24                    | 42                           | 6.15                             | 0.94                               | 2.99                             | 0.96                                        |
| WAA_S30   | 26                    | 49                           | 6.42                             | 0.90                               | 2.92                             | 0.94                                        |
| WAA_S31   | 20                    | 38                           | 5.22                             | 0.93                               | 2.77                             | 0.95                                        |
| WAA_S32   | 26                    | 53                           | 6.30                             | 0.89                               | 2.90                             | 0.93                                        |
| WAA_S33   | 21                    | 39                           | 5.46                             | 0.94                               | 2.86                             | 0.96                                        |
| WAA_S34   | 28                    | 49                           | 6.94                             | 0.93                               | 3.09                             | 0.96                                        |
| WAA_S35   | 35                    | 61                           | 8.27                             | 0.93                               | 3.32                             | 0.97                                        |
| WAA_S36   | 29                    | 35                           | 7.88                             | 0.98                               | 3.30                             | 0.99                                        |
| WAA_S37   | 18                    | 39                           | 4.64                             | 0.96                               | 2.77                             | 0.96                                        |
| WAA_S38   | 26                    | 37                           | 6.92                             | 0.96                               | 3.14                             | 0.98                                        |
| Mean      | 28.48                 | 69.04                        | 6.67                             | 0.90                               | 2.98                             | 0.94                                        |
| SD        | 9.67                  | 70.24                        | 1.50                             | 0.06                               | 0.29                             | 0.04                                        |
| Min       | 14.00                 | 24.00                        | 3.79                             | 0.70                               | 2.28                             | 0.83                                        |
| Max       | 68.00                 | 506.00                       | 10.76                            | 0.98                               | 3.53                             | 0.99                                        |
| Median    | 26.00                 | 54.50                        | 6.56                             | 0.92                               | 3.00                             | 0.96                                        |



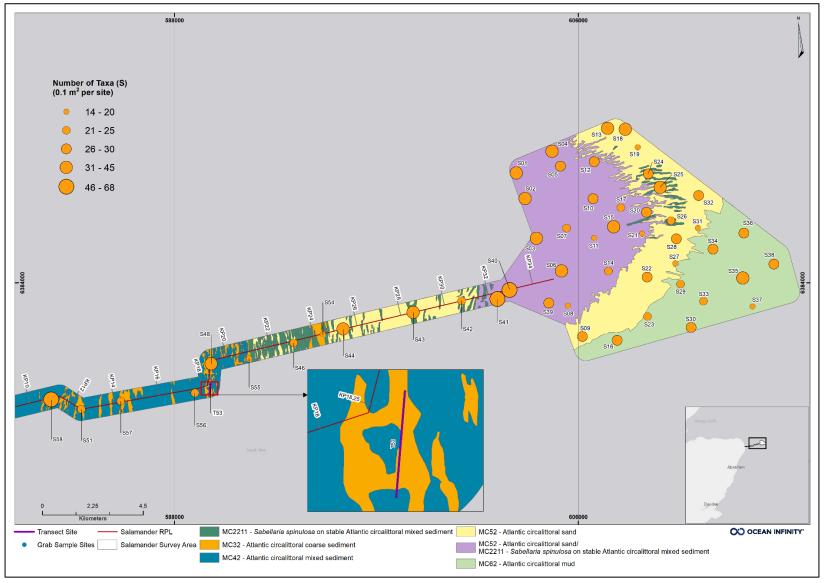



Figure 20 Overview of the Number of Taxa (S) per grab sample site.



CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

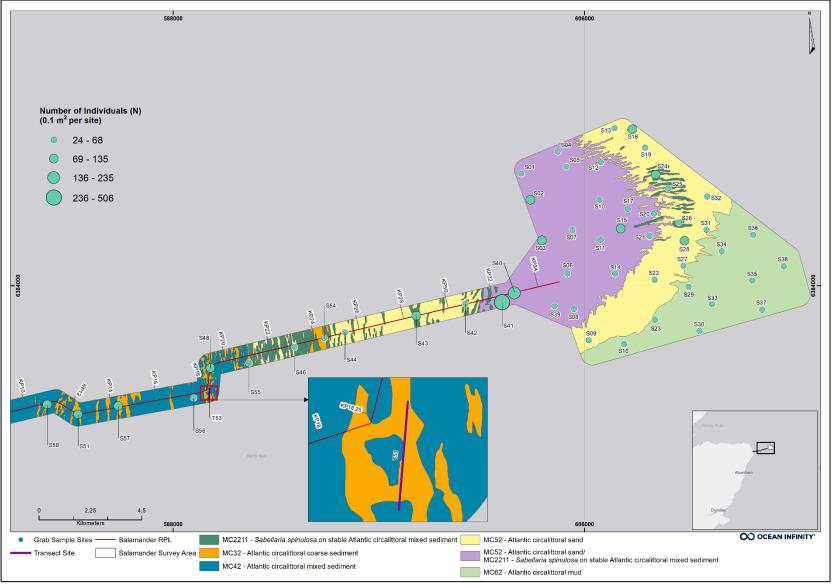



Figure 21 Overview of the Number of Individuals (N) per grab sample site.



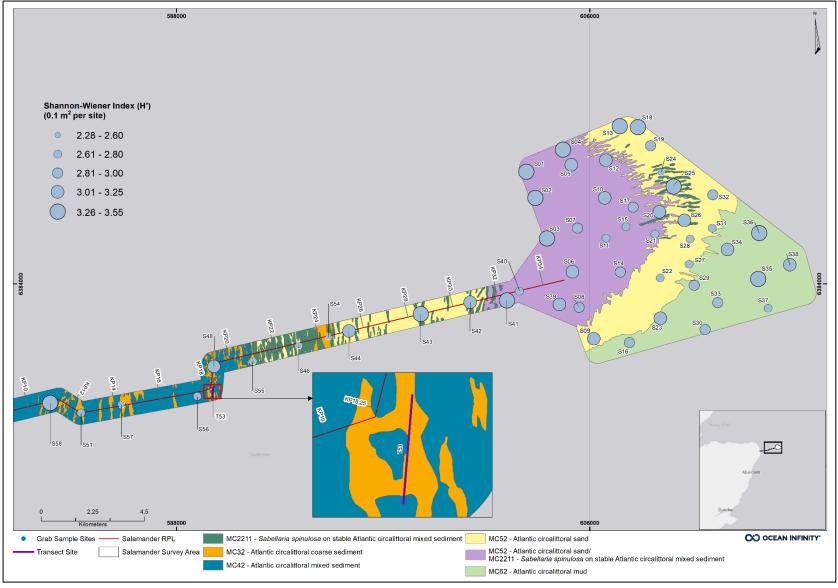



Figure 22 Overview of the Shannon-Wiener Index (H') per grab sample site.

## **OCEAN INFINITY**<sup>®</sup>



### 5.5.4 Multivariate Analyses

Square root transformation was applied to the dataset before calculating the Bray-Curtis similarity measures in the SIMPROF and SIMPER analyses. The transformation was applied to prevent abundant species from influencing the Bray-Curtis similarity index measures excessively and to take the rarer species into account species (Clarke, 2015). The statistical analyses were based on macrofaunal data derived from the taxonomic analyses of the grab samples. Significance level for the cluster analysis was set to 5 %.

### 5.5.4.1 Simprof Cluster Analysis

The SIMPROF analysis of the non-colonial faunal composition produced five (5) statistically distinct groups (black lines) and presented in a hierarchical dendrogram in Figure 23.



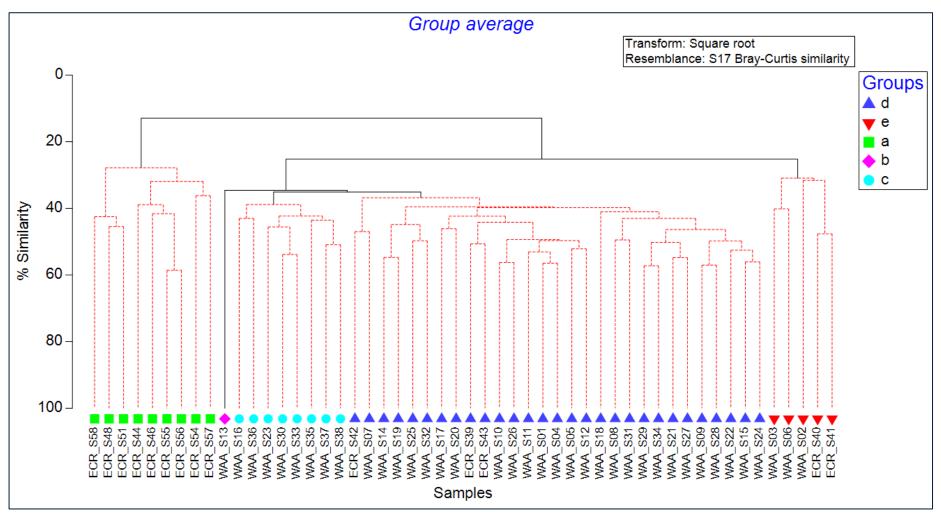



Figure 23 SIMPROF dendrogram of non-colonial faunal composition from grab samples.



### 5.5.4.2 Non-Metric Multi-Dimensional Scaling

Sample similarity is further explored in the Non-Metric Multi-Dimensional Scaling plot (nMDS), presented in Figure 24. The nMDS-plot reflects the dendrogram and displays the similarity between grab sample sites at 20 % to highlight homogenous species composition.

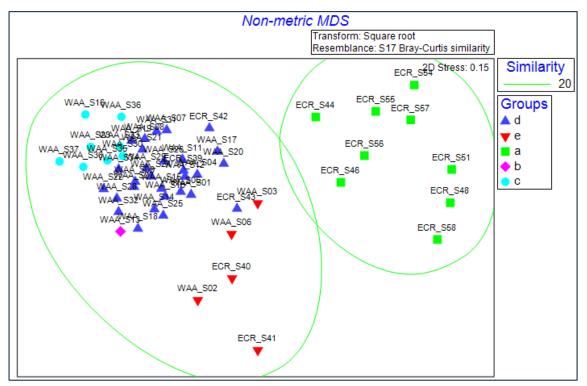



Figure 24 nMDS-plot of non-colonial faunal composition from grab samples with group based on the SIMPROF analysis.

#### 5.5.4.3 SIMPER Results

A SIMPER test, displaying the percentage contribution of the most important species seen in the Bray-Curtis similarities test is presented in Table 35 with species abundance for each SIMPROF group. Average abundance refers to the square root transformed data and is expressed per 0.1 m<sup>2</sup> within the multivariate groups.

An overview of the five (5) distinct groups produced in the SIMPROF dendrogram is presented in the survey area in Figure 25.

| Group                                | Sample ID                                                                            | Depth (m)                                          | Species                                                                                                                                                                                                       | Average<br>Abundance                                                         | Contribution<br>(%)                                                           |
|--------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| a<br>Average<br>similarity:<br>32.82 | ECR_S44<br>ECR_S46<br>ECR_S51<br>ECR_S55<br>ECR_S55<br>ECR_S56<br>ECR_S57<br>ECR_S58 | 87<br>79<br>80<br>82<br>85<br>72<br>81<br>85<br>75 | Echinocyamus pusillus<br>Nematoda<br>Ophelia borealis<br>Polycirrus<br>Asbjornsenia pygmaea<br>Goodallia triangularis<br>Notomastus<br>Glycera lapidum (aggregate)<br>Chaetozone christiei<br>Eulalia mustela | 2.63<br>2.24<br>1.58<br>1.58<br>1.70<br>1.30<br>1.17<br>1.39<br>1.24<br>0.88 | 17.86<br>8.69<br>7.24<br>6.89<br>6.55<br>6.28<br>5.86<br>4.97<br>3.80<br>2.42 |

Table 35 Summary of characteristics of the non-colonial faunal groups from grab samples derived from the SIMPER test.

# **OCEAN INFINITY**<sup>®</sup>



#### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Group                                     | Sample ID                                                                                                                                                                                                                                          | Depth (m)                                                                                                                                                                                                                                | Species                                                                                                                                                                                                                                                                                        | Average<br>Abundance                                                                                                 | Contribution<br>(%)                                                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| b<br>Single<br>Sample                     | WAA_S13                                                                                                                                                                                                                                            | 92                                                                                                                                                                                                                                       | Less than 2 samples in group                                                                                                                                                                                                                                                                   | -                                                                                                                    | -                                                                                                                    |
| c<br>Average<br>similarity:<br>41.88<br>d | WAA_S16<br>WAA_S23<br>WAA_S30<br>WAA_S33<br>WAA_S35<br>WAA_S36<br>WAA_S37<br>WAA_S37<br>WAA_S38<br>ECR_S39, ECR_S42,<br>ECR_S43, WAA_S01,<br>WAA_S04, WAA_S05,<br>WAA_S07, WAA_S05,<br>WAA_S09, WAA_S10,<br>WAA_S11, WAA_S12,<br>WAA_S14, WAA_S15, | 106<br>102<br>103<br>99<br>101<br>97<br>102<br>103<br>97, 97,<br>87, 97,<br>98, 97,<br>96, 98,<br>108, 93<br>92, 93,<br>92, 93,<br>92, 93,<br>92, 93,<br>91, 90,<br>91, 98,<br>90, 89,<br>90, 89,<br>90, 96,<br>94, 97,<br>92, 88,<br>94 | Scoloplos armiger<br>Harpinia antennaria<br>Spiophanes kroyeri<br>Thyasira flexuosa<br>Abra prismatica<br>Diplocirrus glaucus<br>Nephtys hombergii<br>Phascolion strombus<br>Sthenelais limicola<br>Phoronis<br>Scoloplos armiger<br>Amphiura filiformis<br>Antalis entalis<br>Ennucula tenuis | 1.90<br>1.44<br>1.59<br>1.34<br>1.27<br>1.14<br>0.98<br>1.12<br>1.04<br>0.97<br>1.71<br>1.59<br>1.63<br>1.43<br>1.38 | 9.84<br>8.01<br>7.80<br>7.59<br>7.53<br>5.96<br>5.77<br>5.52<br>4.57<br>3.26<br>9.06<br>9.04<br>8.64<br>7.39<br>6.83 |
| Average<br>similarity:<br>41.34           | WAA_S17, WAA_S18,<br>WAA_S19, WAA_S20,<br>WAA_S21, WAA_S22,<br>WAA_S24, WAA_S22,<br>WAA_S26, WAA_S27,<br>WAA_S28, WAA_S29,<br>WAA_S31, WAA_S32,<br>WAA_S34                                                                                         |                                                                                                                                                                                                                                          | Abra prismatica<br>Spiophanes kroyeri<br>Kurtiella bidentata<br>Echinocyamus pusillus<br>Phoronis<br>Owenia                                                                                                                                                                                    | 1.38<br>1.29<br>1.88<br>1.11<br>1.02<br>1.03                                                                         | 6.83<br>6.43<br>5.93<br>5.44<br>4.41<br>3.94                                                                         |
| e<br>Average<br>similarity:<br>33.69      | ECR_S40<br>ECR_S41<br>WAA_S02<br>WAA_S03<br>WAA_S06                                                                                                                                                                                                | 94<br>94<br>92<br>97<br>94                                                                                                                                                                                                               | Lumbrineris cingulata (aggregate)<br>Paradoneis lyra<br>Echinocyamus pusillus<br>Antalis entalis<br>Amphiura filiformis<br>Spiophanes kroyeri<br>Nereis zonata<br>Ophiactis balli<br>Sabellaria spinulosa<br>Verruca stroemia                                                                  | 3.13<br>3.55<br>1.84<br>1.70<br>2.06<br>1.62<br>1.74<br>3.74<br>2.71<br>2.15                                         | 10.48<br>6.88<br>6.47<br>6.01<br>4.36<br>4.25<br>3.49<br>3.40<br>3.38<br>1.37                                        |



### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

SIMPROF group **a** comprised of nine (9) sites (ECR\_S44, ECR\_S46, ECR\_S48, ECR\_S51, ECR\_S54 - ECR\_S58) all distributed along the ECR within a depth range of 72 - 87 m (Figure 25). These sites were located in **MC32** - Atlantic circalittoral coarse sediment and **MC52** - Atlantic circalittoral sand. The pea urchin *Echinocyamus pusillus* was the most abundant species and had the highest contribution (17.86 %) within group **a**.

SIMPROF group **b** comprised one (1) site WAA\_S13, located in the north WAA at a depth of 92 m, in **MC52** - Atlantic circalittoral sand. The amphipod *Harpinia antennaria* was the most abundant species and had the highest contribution (10.20 %) within group **b**. Additionally, *Scoloplos armiger, Paradoneis lyra, Owenia* and *Amphiura filiformis* were some of the more abundant taxa within the group.

Group **c** comprised eight (8) sites (WAA\_S16, WAA\_S23, WAA\_S30, WAA\_S33, WAA\_S35 - WAA\_S38) all distributed in the southeast WAA within a depth range of 97 - 106 m. These sites were all located in the same habitat **MC62** - Atlantic circalittoral mud. The polychaete *Scoloplos armiger* was the most abundant species and had the highest contribution (9.84 %) within group **c**.

SIMPROF group **d** comprised 29 sites (ECR\_S39, ECR\_S42, ECR\_S43, WAA\_S01, WAA\_S04, WAA\_S05, WAA\_S07, WAA\_S08 - WAA\_S12, WAA\_S14, WAA\_S15, WAA\_S17 - WAA\_S22, WAA\_S24 - WAA\_S29, WAA\_S31, WAA\_S32, WAA\_S34) located at the eastern end of ECR and within WAA, within a depth range of 87 - 108 m. These sites were located in four (4) habitats **MC52/ MC2211** - Atlantic circalittoral sand/ *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment, **MC52** - Atlantic circalittoral mud. A majority of the samples within group **d** were located in the habitat **MC52/ MC2211** - Atlantic circalittoral sand/ *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment. **S.** *armiger* had the highest contribution (9.06 %) and the mollusc *Kurtiella bidentata* was the most abundant species within group **d**.

Group **e** consisted of a total of five (5) sites (ECR\_S40, ECR\_S41, WAA\_S02, WAA\_S03, WAA\_S06), which were situated at the eastern end of ECR and in the western WAA within a depth range of 92 - 97 m. These sites were all located in the habitat **MC52/ MC2211** - Atlantic circalittoral sand/ *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment. The polychaetes *Lumbrineris cingulata* had the highest contribution (10.48 %) and *Paradoneis lyra* was the most abundant species within group **e**.



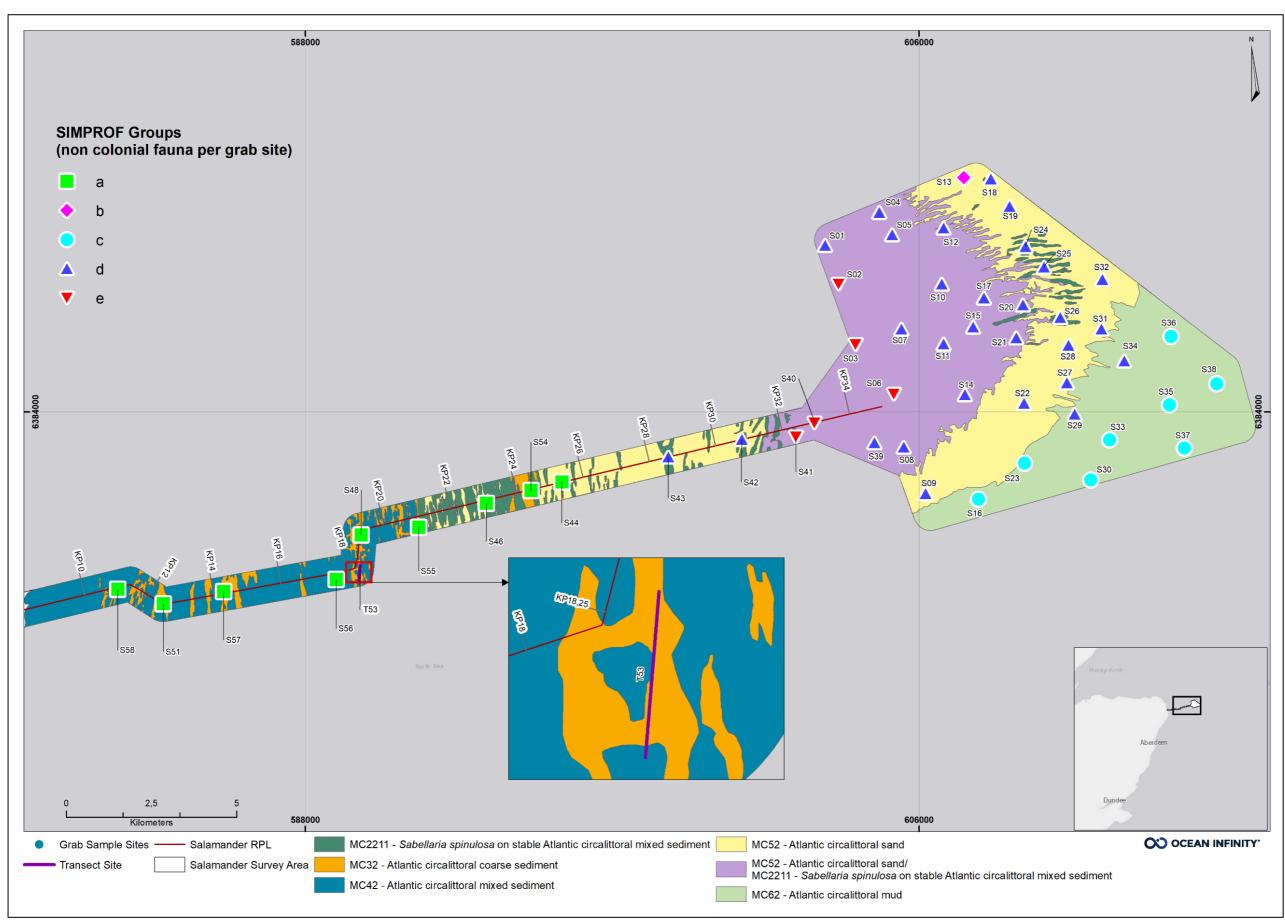



Figure 25 Spatial overview of groups produced in SIMPROF dendrogram of non-colonial faunal composition.

# **OCEAN INFINITY**<sup>®</sup>



### 5.5.5 Relationship Between Physical and Biological Data

The relationship between physical and biological data was assessed by applying the BEST analysis from PRIMER suite. The BEST test identifies which of the variables best explains macrofaunal distribution in the survey area. Square root transformation was applied to the faunal abundance data (expressed per  $0.1 \text{ m}^2$ ) before calculating the Bray-Curtis similarity measures. Normalisation was applied to the physical variables before calculating the Euclidean distance. A total of 51 sample sites were selected for the BEST analysis, including physical and biological data. Selected variables in the BEST test included depth, PSA, Arsenic (As) and  $\Sigma$ 16PAH. Among the contaminants the metal Arsenic was the most distinguishing variable and thus selected for the BEST analysis.

Results of the BEST analysis for single and Multiple variables are presented in Table 36.

Results presented for single variables gave a global correlation ( $\sigma$ ) of 0.649 for gravel. The significance level was 1 % which means that the null hypothesis of 'no agreement in multivariate pattern between physical and biological data' can be rejected at p<1 %. The variables Arsenic (As) and mud followed with a correlation ( $\sigma$ ) of 0.571 and 0.532 respectively.

Results presented for the multiple variables gave a global correlation ( $\sigma$ ) of 0.689 for the combined variables depth, Arsenic (As), gravel and mud. The significance level was 1 % which means that the null hypothesis of 'no agreement in multivariate pattern between physical and biological data' can be rejected at p<1 %.

| Max nr of trail variables                    | Number of<br>variables | Spearman<br>correlation (σ) | Physical Variables      |
|----------------------------------------------|------------------------|-----------------------------|-------------------------|
|                                              | 1                      | 0.649                       | Gravel                  |
|                                              | 1                      | 0.571                       | As                      |
| Single variables<br>Global Test (σ): 0.649   | 1                      | 0.532                       | Mud                     |
| Significance: 1%                             | 1                      | 0.523                       | Depth                   |
|                                              | 1                      | 0.186                       | Sand                    |
|                                              | 1                      | 0.175                       | Σ16ΡΑΗ                  |
|                                              | 4                      | 0.689                       | Depth, As, Gravel, Mud  |
|                                              | 3                      | 0.687                       | As, Gravel, Mud         |
| Multiple variables<br>Global Test (σ): 0.689 | 2                      | 0.683                       | As, Gravel              |
| Significance: 1%                             | 3                      | 0.678                       | Depth, As, Gravel       |
|                                              | 3                      | 0.664                       | Depth, Gravel, Mud      |
|                                              | 4                      | 0.664                       | Depth, As, Gravel, Sand |

Table 36 Results of BEST test between physical data and biological data for single and multiple variables.

### 5.5.6 Sessile Colonial Epifauna from Grab Samples

The phyletic composition of sessile colonial epifauna identified from grab samples is summarised in Table 37 and illustrated in Figure 26.

The Frequency of Occurrence was dominated by Bryozoa, being present at a total of 29 sites represented by 20 different taxa. Penetrantiidae, *Omalosecosa ramulosawas* and *Tubulipora* were among the most dominant taxa within the bryozoans. Cnidaria was present at 28 sites and represented by 13 taxa. The hydroid Filifera was the most dominant taxon within the cnidarians. Ciliophora was present at 25 sites and represented by one single taxon, Folliculinidae.



Entoprocta occurred at 10 sites with a total of three taxa, *Loxosomella murmanica*, *Loxosomella atkinsae* and *Pedicellina*. Porifera was present at 9 sites with two taxa identified, one colony of *Leucosolenia* present and the other colonies identified as Porifera.

The sessile colonial epifauna dataset was recorded as Presence (P) of taxa per square meter (ind./m<sup>2</sup>).

Table 37 Phyletic composition of colonial epifauna from grab samples.

| Phylum     | Number of Taxa | Number of Sites | Frequency of Occurrence (%) |
|------------|----------------|-----------------|-----------------------------|
| Bryozoa    | 20             | 29              | 56                          |
| Cnidaria   | 13             | 28              | 54                          |
| Ciliophora | 1              | 25              | 48                          |
| Entoprocta | 3              | 10              | 19                          |
| Porifera   | 2              | 9               | 17                          |
| Total      | 39             |                 |                             |

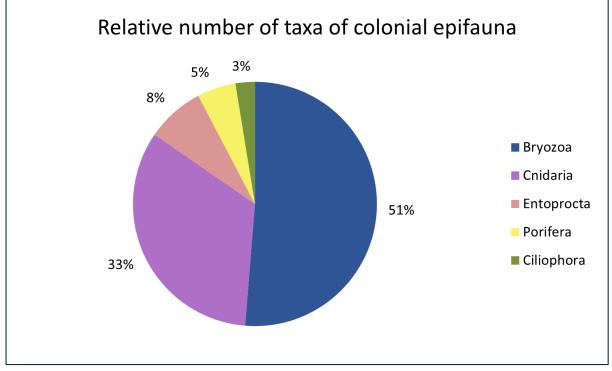



Figure 26 Relative number of taxa of colonial epifauna from grab samples.

### 5.6 Biomass

The non-colonial species biomass expressed as blotted wet weight (g per 0.1 m<sup>2</sup>) is illustrated in Figure 27 and Figure 28 and summarised in Table 38. Biomass was grouped into the major phyla Mollusca, Echinodermata, Annelida, Chordata and "Others".

The group "Others" included the phyla Cnidaria, Nemertea, Phoronida, Platyhelminthes, Nematoda and Hemichordata. Following the NMBAQC Taxonomic Discrimination Protocol, Ascidiacea were not weighted and included in the biomass analysis (Worsfold, Hall, & O'Reilly, 2010).

The biomass was dominated by Mollusca, which accounted for 48 % of the total biomass. This was primarily due to the presence of bivalves *Acanthocardia echinata* in sample WAA\_S18\_F2, *Dosinia lupinus* in sample ECR\_S43 and *Arctica islandica* in WAA\_S34. Together these three individuals constituted 37 % of the total mollusc weight. The *A. islandica* specimen in sample WAA\_S34 had a weight of 7.8453 g. The second largest group was



Echinodermata, accounting for 29 % of the total biomass. Two large urchins *Echinocardium penntifidum* in sample WAA\_S06 and *Echinocardium cordatum* in WAA\_S34 accounted for 75 % of the total echinoderm biomass. Annelida accounted for 16 % of the total biomass, followed by Chordata with 6 %, Arthropoda with 1 % and "Others" with 1 %, respectively.

Within the group "Others", Cnidaria comprised 0.261 %, Nemertea 0.248 %, Phoronida 0.192 %, Platyhelminthes 0.025 %, Nematoda 0.007 % and Hemichordata 0.004 %, respectively of the total biomass. The non-colonial fauna biomass varied between 0.2143 g/0.1 m<sup>2</sup> in sample WAA\_S30 to 21.3083 g/0.1 m<sup>2</sup> in sample WAA\_S34. The mean biomass across all sites was 2.9884 g/0.1 m<sup>2</sup> (SD=4.5452). The spatial distribution of biomass across the survey area is illustrated in Figure 29.

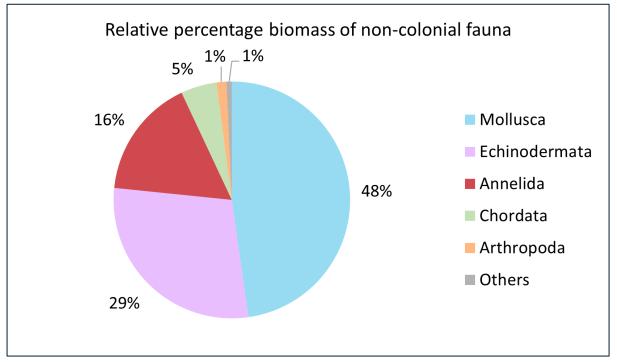



Figure 27 Relative percentage of total biomass  $(g/0.1 m^2)$  of major phyla.



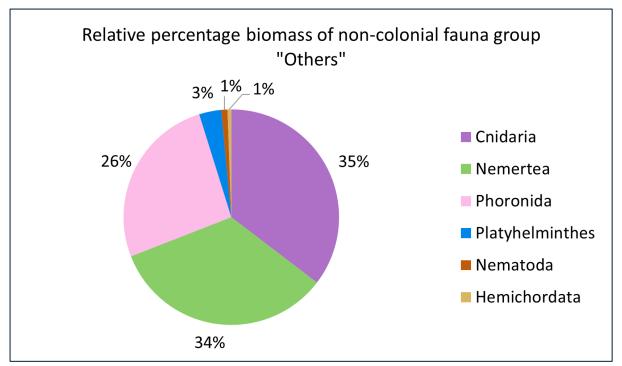



Figure 28 Relative percentage of total biomass (g/0.1 m<sup>2</sup>) of "Others".

| Table 38 Biomass (blotted wet weight in g/0.1 m²). |          |            |          |               |          |        |         |
|----------------------------------------------------|----------|------------|----------|---------------|----------|--------|---------|
| Sample ID                                          | Annelida | Arthropoda | Mollusca | Echinodermata | Chordata | Others | Total   |
| ECR_S39                                            | 1.2101   | 0.0046     | 0.9010   | 0.2304        | 0.0000   | 0.0200 | 2.3658  |
| ECR_S40                                            | 0.6938   | 0.8389     | 1.8313   | 1.4002        | 0.0000   | 0.0100 | 4.7743  |
| ECR_S41                                            | 1.2785   | 0.0468     | 4.8957   | 1.8995        | 0.0000   | 0.0720 | 8.1927  |
| ECR_S42                                            | 0.2705   | 0.0298     | 0.2677   | 0.1011        | 0.0000   | 0.0000 | 0.6691  |
| ECR_S43                                            | 1.0327   | 0.0183     | 11.0615  | 0.2932        | 0.0000   | 0.0650 | 12.4708 |
| ECR_S44                                            | 0.1968   | 0.0317     | 0.0087   | 0.0168        | 0.0000   | 0.0180 | 0.2722  |
| ECR_S46                                            | 0.1972   | 0.0025     | 0.3308   | 0.0181        | 0.0000   | 0.0000 | 0.5490  |
| ECR_S48                                            | 1.4609   | 0.0108     | 0.0157   | 0.0659        | 0.0978   | 0.0000 | 1.6512  |
| ECR_S51                                            | 0.1005   | 0.0027     | 0.0437   | 0.1313        | 0.0000   | 0.0030 | 0.2807  |
| ECR_S54                                            | 0.1011   | 0.0033     | 0.0118   | 0.0381        | 0.6779   | 0.0120 | 0.8438  |
| ECR_S55                                            | 0.1115   | 0.0028     | 1.2351   | 0.0139        | 0.0000   | 0.0000 | 1.3635  |
| ECR_S56                                            | 0.1738   | 0.0075     | 0.0126   | 0.0583        | 0.0000   | 0.0060 | 0.2578  |
| ECR_S57                                            | 0.1069   | 0.0000     | 0.1451   | 0.0162        | 3.5664   | 0.0580 | 3.8924  |
| ECR_S58                                            | 0.6730   | 0.0634     | 4.9371   | 0.0892        | 3.2893   | 0.0130 | 9.0654  |
| WAA_S01                                            | 0.1279   | 0.0070     | 1.2819   | 0.2107        | 0.0000   | 0.0080 | 1.6350  |
| WAA_S02                                            | 2.9188   | 0.5665     | 2.5190   | 0.0704        | 0.0000   | 0.0000 | 6.0747  |
| WAA_S03                                            | 1.1599   | 0.0805     | 0.4665   | 0.3286        | 0.0000   | 0.0060 | 2.0414  |
| WAA_S04                                            | 0.7286   | 0.0034     | 2.2718   | 0.1506        | 0.0000   | 0.0240 | 3.1780  |



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Sample ID | Annelida | Arthropoda | Mollusca | Echinodermata | Chordata | Others | Total   |
|-----------|----------|------------|----------|---------------|----------|--------|---------|
| WAA_S05   | 0.1759   | 0.0035     | 0.5378   | 0.4868        | 0.0000   | 0.0710 | 1.2750  |
| WAA_S06   | 0.2355   | 0.0210     | 0.0802   | 20.6722       | 0.0000   | 0.0120 | 21.0208 |
| WAA_S07   | 0.5426   | 0.0079     | 0.4896   | 0.0748        | 0.0000   | 0.0000 | 1.1149  |
| WAA_S08   | 0.1663   | 0.0206     | 0.0340   | 0.0411        | 0.0000   | 0.0020 | 0.2636  |
| WAA_S09   | 0.5651   | 0.0070     | 0.6918   | 1.1973        | 0.0000   | 0.0150 | 2.4765  |
| WAA_S10   | 0.2183   | 0.0124     | 0.5017   | 0.1433        | 0.0000   | 0.0430 | 0.9188  |
| WAA_S11   | 0.1056   | 0.0017     | 0.3979   | 0.1286        | 0.0000   | 0.0000 | 0.6339  |
| WAA_S12   | 1.8905   | 0.0018     | 0.0573   | 0.0463        | 0.0000   | 0.0140 | 2.0094  |
| WAA_S13   | 0.3306   | 0.0397     | 0.8532   | 0.1263        | 0.0000   | 0.0190 | 1.3685  |
| WAA_S14   | 0.3577   | 0.0096     | 0.7437   | 0.1719        | 0.0000   | 0.0320 | 1.3148  |
| WAA_S15   | 0.5281   | 0.0012     | 2.2764   | 0.1795        | 0.0000   | 0.0090 | 2.9939  |
| WAA_S16   | 0.6057   | 0.0327     | 2.0705   | 0.0157        | 0.0000   | 0.0300 | 2.7547  |
| WAA_S17   | 0.2397   | 0.0024     | 1.6546   | 0.0527        | 0.0000   | 0.0050 | 1.9540  |
| WAA_S18   | 0.2538   | 0.0118     | 10.7458  | 0.3040        | 0.0000   | 0.0010 | 11.3160 |
| WAA_S19   | 0.1361   | 0.0038     | 0.1346   | 0.0736        | 0.0000   | 0.0180 | 0.3657  |
| WAA_S20   | 0.1238   | 0.0027     | 0.9150   | 0.1476        | 0.0000   | 0.0120 | 1.2014  |
| WAA_S21   | 0.1505   | 0.0051     | 0.1816   | 0.0121        | 0.0000   | 0.0180 | 0.3676  |
| WAA_S22   | 0.2224   | 0.0098     | 1.2253   | 0.1606        | 0.0000   | 0.0560 | 1.6737  |
| WAA_S23   | 0.3346   | 0.0045     | 0.1493   | 0.0103        | 0.0000   | 0.0030 | 0.5020  |
| WAA_S24   | 0.4194   | 0.0115     | 0.8180   | 0.1607        | 0.0000   | 0.0040 | 1.4133  |
| WAA_S25   | 0.1595   | 0.0073     | 0.9125   | 0.0119        | 0.0000   | 0.0160 | 1.1067  |
| WAA_S26   | 0.1349   | 0.0012     | 0.9243   | 0.0428        | 0.0000   | 0.0120 | 1.1148  |
| WAA_S27   | 0.0936   | 0.0072     | 0.7107   | 0.0107        | 0.0000   | 0.0030 | 0.8250  |
| WAA_S28   | 1.2540   | 0.0086     | 3.1307   | 0.1562        | 0.0000   | 0.0470 | 4.5960  |
| WAA_S29   | 0.1197   | 0.0030     | 0.1487   | 0.0225        | 0.0000   | 0.0170 | 0.3108  |
| WAA_S30   | 0.1387   | 0.0081     | 0.0191   | 0.0210        | 0.0000   | 0.0270 | 0.2143  |
| WAA_S31   | 0.1726   | 0.0020     | 0.5066   | 0.1202        | 0.0000   | 0.0000 | 0.8015  |
| WAA_S32   | 0.2377   | 0.0100     | 0.2648   | 1.8078        | 0.0000   | 0.0050 | 2.3248  |
| WAA_S33   | 0.1650   | 0.0017     | 0.6446   | 0.0953        | 0.0000   | 0.0090 | 0.9159  |
| WAA_S34   | 0.3188   | 0.0158     | 7.9903   | 12.9704       | 0.0000   | 0.0130 | 21.3083 |
| WAA_S35   | 0.6266   | 0.0149     | 0.1329   | 0.0025        | 0.0000   | 0.0070 | 0.7841  |
| WAA_S36   | 0.3887   | 0.0432     | 0.0460   | 0.1101        | 0.0000   | 0.0060 | 0.5942  |
| WAA_S37   | 1.3078   | 0.0104     | 1.0198   | 0.0160        | 0.0000   | 0.0000 | 2.3540  |



ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Sample ID | Annelida | Arthropoda | Mollusca | Echinodermata | Chordata | Others | Total    |
|-----------|----------|------------|----------|---------------|----------|--------|----------|
| WAA_S38   | 0.2184   | 0.0139     | 0.9644   | 0.1254        | 0.0000   | 0.3090 | 1.6306   |
| Total     | 25.4807  | 2.0785     | 74.2108  | 44.8507       | 7.6314   | 1.1453 | 155.3974 |
| Mean      | 0.4900   | 0.0400     | 1.4271   | 0.8625        | 0.1468   | 0.0220 | 2.9884   |
| SD        | 0.5481   | 0.1375     | 2.4096   | 3.3377        | 0.6699   | 0.0448 | 4.5452   |
| Min       | 0.0936   | 0.0000     | 0.0087   | 0.0025        | 0.0000   | 0.0000 | 0.2143   |
| Max       | 2.9188   | 0.8389     | 11.0615  | 20.6722       | 3.5664   | 0.3085 | 21.3083  |
| Median    | 0.2387   | 0.0080     | 0.6682   | 0.1056        | 0.0000   | 0.0116 | 1.3660   |



CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD. ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

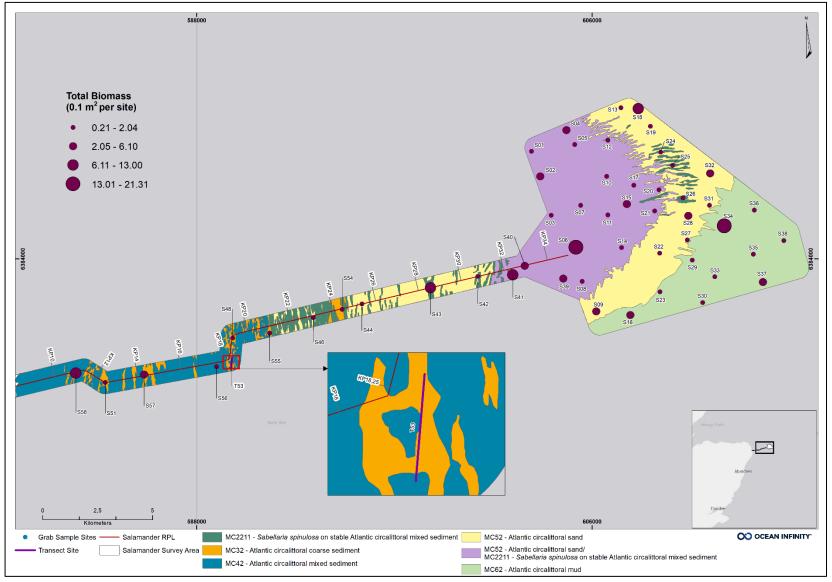



Figure 29 Overview of total biomass  $(g/0.1 m^2)$  per grab sample site.



### 5.7 Epibenthic Fauna from Visual Survey

The results from the analyses of the stills from grab sample sites presented habitats generally dominated by sandy and mixed sediments with a presence of *Sabellaria spinulosa aggregations*. Further information regarding *S. spinulosa* and Biogenic Reefs is presented in Section 5.8.2. Noticeable fauna included Cnidaria and Arthropoda, mostly associated with sandy and mixed substrates. Three (3) out of the total 57 grab sample sites had no fauna recorded in the stills acquired (WAA\_S23, WAA\_S27 and WAA\_S31), habitats comprising of circalittoral mud (WAA\_S23) and circalittoral sand (WAA\_S27 and WAA\_S31).

The top ten (10) sites comprising the highest number of taxa, with assigned habitats, are presented in Table 39. The most frequent habitat identified at the top ten (10) sites was habitat complex **MC52** - Atlantic circalittoral sand/ **MC2211** - *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment. The average number of taxa was eight (8) per site.

Figure 30 presents a still photo from ECR\_S52, which had the highest number of taxa of all sites. Transect ECR\_T53 was not included in the statistical analyses in Section 5.7.

| Site ID/Phylum | ECR_S52 | ECR_S47 | ECR_S50 | WAA_512         | ECR_S45 | ECR_S49 | WAA_506         | ECR_S40         | WAA_S24 | WAA_S25 |
|----------------|---------|---------|---------|-----------------|---------|---------|-----------------|-----------------|---------|---------|
| Habitat Code   | MC42    | MC2211  | MC42    | MC52/<br>MC2211 | MC2211  | MC42    | MC52/<br>MC2211 | MC52/<br>MC2211 | MC2211  | MC2211  |
| Annelida       | 4       | 2       | 1       | 2               | 2       | 2       | 2               | 3               | 2       | 2       |
| Arthropoda     | 7       | 6       | 4       | 3               | 5       | 3       | 4               | 3               | 4       | 4       |
| Bryozoa        | 5       | 3       | 5       | 1               | 1       | 5       | 1               | 1               |         |         |
| Chordata       | 3       | 1       | 1       |                 | 1       |         |                 |                 |         |         |
| Cnidaria       | 5       | 5       | 6       | 9               | 4       | 2       | 7               | 5               | 5       | 4       |
| Echinodermata  | 2       | 1       | 2       | 1               | 2       | 3       |                 | 1               | 2       |         |
| Mollusca       | 4       | 4       | 3       | 1               | 2       | 1       |                 | 1               |         | 2       |
| Porifera       |         | 1       |         | 1               |         |         |                 |                 |         |         |
| Grand Total    | 30      | 23      | 22      | 18              | 17      | 16      | 14              | 14              | 13      | 12      |

Table 39 Top 10 sites with the highest number of taxa and assigned habitats.



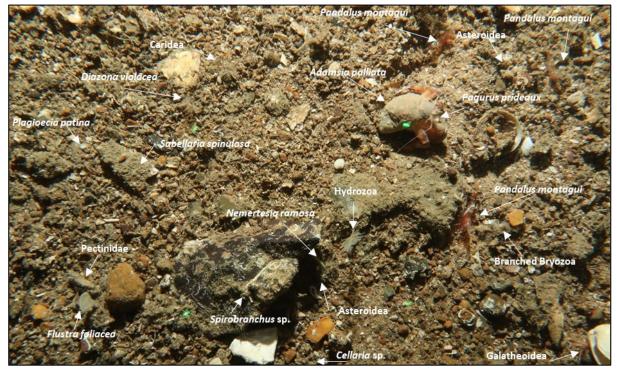



Figure 30 Site photo still from ECR\_S52 showing Adamsia palliata, Asteroidea, Caridea, Diazona violacea, Galatheoidea, Gobiidae, Pagurus prideaux, Pandalus montagui, Pectinidae, Plagioecia patina, Spirobranchus sp.

### 5.7.1 Non-Colonial Epibenthic Fauna in Site Stills

The relative percentage abundance of the number of individuals recorded from the different phyla from the stills acquired is presented in Figure 31.

The most abundant phylum in the epibenthic fauna was Arthropoda, which contributed 33 % of all individuals recorded in the stills. Most of the abundance within the arthropods was represented by Paguridae, which constituted 34 %, followed by Caridea with 17 % of the abundance within the phylum. Caridea followed with 17 % of the abundance within the arthropods.

The second most abundant phylum was Cnidaria, with 22 % of all individuals recorded in the stills. The hydroid *Tubularia indivisa* constituted 66 % of the total abundance within the cnidarians.

The Annelida phylum contributed 19 % of all individuals recorded in the stills. The most abundant taxa within the annelids were *Lanice conchilega* which constituted 94 % of the total abundance.

The Echinodermata phylum contributed with 12 % of all individuals recorded in the stills. The phylum constituted manly of the different species of Asteroidea and Ophiurida.

The Mollusca phylum contributed with 7 % of all individuals recorded in the stills. Gastropoda was the most abundant taxa with 41 % total abundance within the phylum.

The phyla Chordata and Bryozoa contributed with 5 % and 2 % of all individuals recorded in the stills respectively.



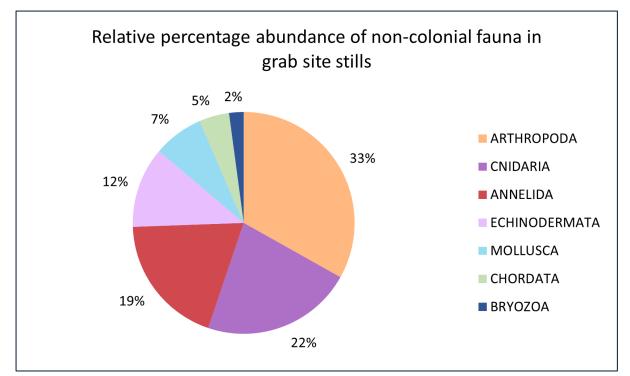



Figure 31 Relative percentage abundance of non-colonial fauna in grab site stills.

The top 10 most frequently occurring non-colonial taxa across all sites is presented in Table 40. Transect ECR\_T53 was included when calculating the frequency of occurrences presented below.

The sand mason worm, *L. conchilega* was the overall most frequently occurring taxa, with the frequency of 59 % per site and 16 % per still. In total *L. conchilega* occurred 34 sites and 65 stills.

Table 40 Top 10 most frequently occurring non-colonial taxa across all sites.

| Phylum        | Таха               | Number of<br>Sites of<br>Occurrence | Frequency of<br>Occurrence (%) | Number of<br>Stills of<br>Occurrence | Frequency of<br>Occurrence (%) |
|---------------|--------------------|-------------------------------------|--------------------------------|--------------------------------------|--------------------------------|
| Annelida      | Lanice conchilega  | 34                                  | 59                             | 65                                   | 16                             |
| Arthropoda    | Paguridae          | 26                                  | 45                             | 55                                   | 13                             |
| Cnidaria      | Tubularia indivisa | 20                                  | 34                             | 29                                   | 7                              |
| Arthropoda    | Caridea            | 14                                  | 24                             | 25                                   | 6                              |
| Arthropoda    | Galatheoidea       | 12                                  | 21                             | 12                                   | 3                              |
| Echinodermata | Ophiurida          | 12                                  | 21                             | 13                                   | 3                              |
| Arthropoda    | Gastropoda         | 10                                  | 17                             | 11                                   | 3                              |
| Echinodermata | Asteroidea         | 8                                   | 14                             | 21                                   | 5                              |
| Echinodermata | <i>Ophiura</i> sp. | 8                                   | 14                             | 9                                    | 2                              |
| Arthropoda    | Pandalus montagui  | 8                                   | 14                             | 15                                   | 4                              |

The average non-colonial fauna density (ind./m<sup>2</sup>) for each grab sample site are presented per phylum in Figure 32.The average density, expressed as individuals per square meter (ind./m<sup>2</sup>), varied from zero (0) (ind./m<sup>2</sup>) at grab sample sites WAA\_S23, WAA\_S27 and WAA\_S31 to 50 (ind./m<sup>2</sup>) at grab sample site ECR\_S52. The average non-colonial fauna density per grab sample site was ten (10) (SD=10) (ind./m<sup>2</sup>).

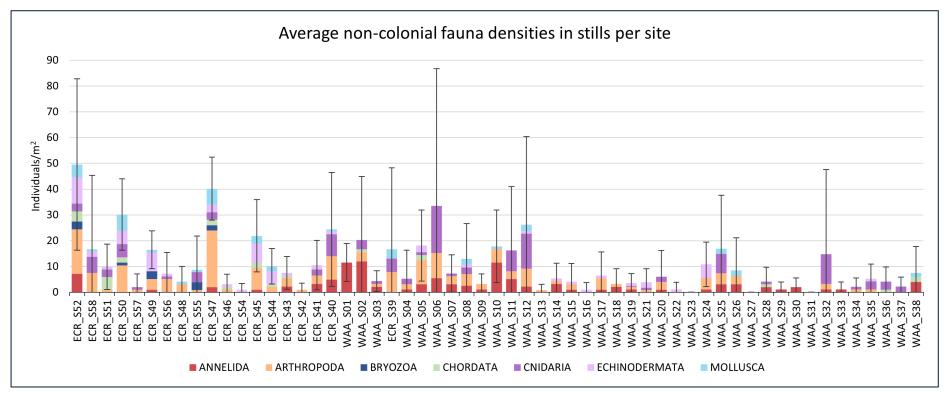



Figure 32 Average non-colonial faunal densities (ind./m<sup>2</sup>) in stills per grab sample site. Error bars represent ± SD for the total faunal density per still (ind./m<sup>2</sup>) per site.

### **OCEAN INFINITY**<sup>®</sup>



### 5.7.2 Colonial Epifauna in Site Stills

The relative percentage proportions total coverage of colonial species, recorded in the grab site stills is presented in Figure 33. The phylum Annelida represented the phylum with the taxa covering the largest surface area, with a total contribution of 87 %. Cnidaria and Bryozoa contributed 10 % and 3 % of the recorded taxa respectively, followed by Porifera with <1 %.

The Ross worm *Sabellaria spinulosa* represented the entire constitution of colonial annelids in site stills. S. spinulosa was recorded at 28 out of the total 57 sites (49 %) with site ECR\_S47 having the highest coverage of all sites. The phylum Cnidaria was recorded at 35 out of the total 57 sites (61 %). Different species of Hydrozoans were the most common taxa within the cnidarians. The phylum Bryozoa was recorded at 20 out of the total 57 sites (35 %). The most common taxa in the bryozoans were *Flustra foliacea* recorded in the western ECR, with site ECR\_S56 having the highest coverage of all sites.

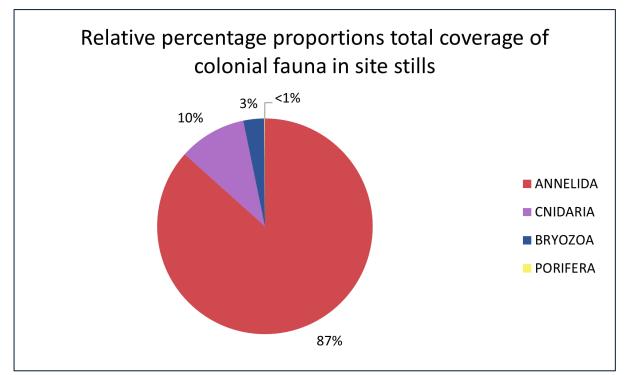



Figure 33 Relative percentage of total coverage of colonial fauna in grab site stills.

The top 10 most frequently occurring colonial taxa across all sites is presented in Table 41. Transect ECR\_T53 was included when calculating the frequency of occurrences presented below.

Hydrozoa was the most frequently occurring colonial taxa identified per site, with the frequency of 60 % and occurred in 35 sites. *S. spinulosa* was the most frequently occurring taxa per still, with the frequency of 22 % and occurred in a total of 93 stills.

| Phylum   | Таха                 | Number of<br>Sites of<br>Occurrence | Frequency of<br>Occurrence (%) | Number of<br>Stills of<br>Occurrence | Frequency of<br>Occurrence (%) |
|----------|----------------------|-------------------------------------|--------------------------------|--------------------------------------|--------------------------------|
| Cnidaria | Hydrozoa             | 35                                  | 60                             | 76                                   | 18                             |
| Annelida | Sabellaria spinulosa | 28                                  | 48                             | 93                                   | 22                             |
| Cnidaria | Nemertesia ramosa    | 14                                  | 24                             | 22                                   | 5                              |
| Cnidaria | Plumulariidae        | 11                                  | 19                             | 19                                   | 5                              |



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Phylum   | Таха                 | Number of<br>Sites of<br>Occurrence | Frequency of<br>Occurrence (%) | Number of<br>Stills of<br>Occurrence | Frequency of<br>Occurrence (%) |
|----------|----------------------|-------------------------------------|--------------------------------|--------------------------------------|--------------------------------|
| Bryozoa  | Branched Bryozoa     | 10                                  | 17                             | 27                                   | 6                              |
| Bryozoa  | Flustra foliacea     | 8                                   | 14                             | 16                                   | 4                              |
| Cnidaria | Hydrallmania falcata | 7                                   | 12                             | 8                                    | 2                              |
| Bryozoa  | Encrusting Bryozoa   | 6                                   | 10                             | 13                                   | 3                              |
| Cnidaria | Alcyonium digitatum  | 5                                   | 9                              | 5                                    | 1                              |
| Cnidaria | Lafoea dumosa        | 4                                   | 7                              | 4                                    | 1                              |

The average coverage of colonial fauna varied from 0 % to 78 % (ECR\_S47), presented in Figure 34. The average colonial faunal coverage expressed per site was 8.08 % (SD= 19.09). The average percentage coverage was overall highest along the ECR sites compared to the WAA sites and Annelida was the dominating phylum at most of the sites.

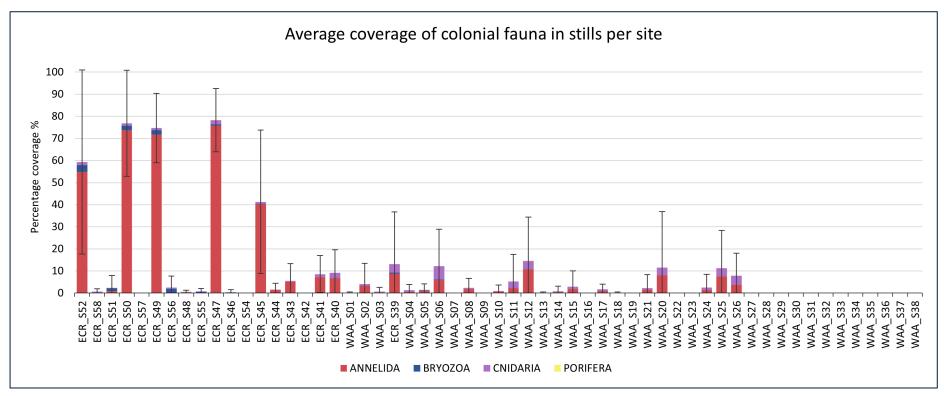



Figure 34 Average percentage coverage per m<sup>2</sup> for colonial fauna in stills per grab site. Error bars represent ± SD for the total faunal coverage per still (m2) per site.



### 5.8 Potential Areas and Species of Conservation Importance

The habitats and species corresponding to those defined in the EC's Habitats Directive, the OSPAR List of threatened and/or Declining Species and Habitats, Scottish PMF, and SBL are listed in Table 42 and Table 43

Areas and species of conservation importance identified within the ECR, and WAA are presented in (Table 42). The delineations are based on the findings with regard to descriptive qualifiers outlined by designators.

The assessments are considered in conjunction with reported information on the presence of habitats and the conservation status of habitat types and species by the UK, to the Habitats Directive as required by Article 17 (JNCC, 2019).

Areas comprising aggregations of *S. spinulosa* assessed as "Not a reef" are delineated as "*S. spinulosa* aggregations presence" in maps to further provide contextual information on potential distribution patterns.

| Habitat Image | Note                                                             | PMF/SBL/<br>OSPAR/Annex I                                                                | Designated<br>Sites | Site ID                                                                                                                                                |
|---------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                  |                                                                                          |                     | Potential Aggregations:<br>WAA_S03 - WAA_S05,<br>WAA_S08, WAA_S10,<br>WAA_S14, WAA_S17,<br>WAA_S21, WAA_S25,<br>ECR_S44, ECR_S47,<br>ECR_S49 - ECR_S52 |
|               | Exemplified<br>Potential to<br>Low and<br>Medium<br>Aggregations | -                                                                                        | -                   | Low Aggregations:<br>WAA_S02, WAA_S06,<br>WAA_S11, WAA_S12,<br>WAA_S15, WAA_S25,<br>ECR_S39, ECR_S40,<br>ECR_S43, ECR_S45                              |
|               |                                                                  |                                                                                          |                     | Medium Aggregations:<br>WAA_S06, WAA_S12,<br>WAA_S20, WAA_S26,<br>ECR_S39                                                                              |
|               | -                                                                | PMF<br>Offshore<br>Subtidal sands<br>and gravels<br>SBL<br>Subtidal Sands<br>and Gravels | -                   | WAA_S01 - WAA_S15,<br>WAA_S17 - WAA_S18,<br>WAA_S19 - WAA_S22,<br>ECR_S39 - ECR_S42,<br>ECR_S44 - ECR_S46,<br>ECR_S48 - ECR_S58                        |

Table 42 Habitats of conservation interest within the ECR and WAA.

### **OCEAN INFINITY**<sup>®</sup>

# CO

#### CLIENT: SALAMANDER OFFSHORE WIND COMPANY LTD.

#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Habitat Image | Note               | PMF/SBL/<br>OSPAR/Annex I | Designated<br>Sites | Site ID |
|---------------|--------------------|---------------------------|---------------------|---------|
|               | Stony Reefs<br>Low | -                         | -                   | ECR_S47 |

Table 43 Species of conservation interest within the ECR and WAA.

| Species              | Annex I | PMF/SBL/OSPAR | Site ID                                                    |
|----------------------|---------|---------------|------------------------------------------------------------|
| Ammodytes sp.        | -       | PMF and SBL   | ECR_S48, ECR_S54,<br>ECR_S57, ECR_S58                      |
| Arctica islandica    | -       | OSPAR and PMF | WAA_S04, WAA_S30,<br>WAA_S37, WAA_S38                      |
| Pennatula phosphorea | -       | SBL           | WAA_S19, WAA_S28,<br>WAA_S34, WAA_S35,<br>WAA_S36, WAA_S37 |

### 5.8.1 Rocky Reefs

Bedrock and Stony Reefs are listed as subtypes within the EC Habitats Directive Annex I (1170) – Reefs comprising reefs of geogenic and biogenic origin. Geogenic reefs are further sub-divided into Bedrock and Stony Reefs (EUR 28, 2013).

The stony reef areas were assessed in accordance with the criteria as outlined in JNCC Report No.432 (2009) and JNCC Report No.656 by Golding *et al* (2020) and Brazier (2020). Guidance for standardising an approach to the assessment criteria is introduced by the JNCC in Report No 656 (2020) to align the interpretation of Composition, Elevation, Extent and Biota, with regards to the application of Annex I to Stony Reefs. Stony reefs are generally divided into Clast supported (cobbles neighbouring cobbles) and Matrix supported (intermediate fine sediments are present) reefs.

An area comprising boulders and cobbles was identified in the ground truthing data at grab sample site S47. Site S47, located within the ECR, was classified as **MC2211** and due to the presence of *Sabellaria spinulosa* crusts no grab sampling was attempted.

The composition matches the qualifying descriptors of low 'reefiness' based on the cobble and boulder size composition being larger than 64 mm. The elevation is interpreted to be higher or equal to 64 mm. However, these were most often matrix supported individual cobbles and boulders. The cobbles and boulders were partly buried by the intermediated sediments and the composition is assessed as low. Biota showed mainly epifaunal species and encrusting *Sabellaria spinulosa*.

In line with the guidance outlined in JNCC Report No.432 (2009), a strong justification is required for an area to be considered as Annex I - Stony Reefs should the area score a "low" resemblance in any of the four categories. Site S47 scored predominantly Low and would thus not qualify as an Annex I habitat.

A detailed assessment of each acquired still against the four qualifying criteria, Composition, Elevation and Extent is presented in Table 44.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

Table 44 Stony Reef assessment at site S47.

| Photo ID   | Elevation | Composition | Area >25m <sup>2</sup> | Final Assessment |
|------------|-----------|-------------|------------------------|------------------|
| ECR_S47_01 | Low       | Potential   | Y                      | Potential        |
| ECR_S47_02 | Low       | Low         | Y                      | Low              |
| ECR_S47_03 | Low       | Low         | Y                      | Low              |
| ECR_S47_04 | Low       | Low         | Y                      | Low              |
| ECR_S47_05 | Low       | Low         | Y                      | Low              |
| ECR_S47_06 | Low       | Low         | Y                      | Low              |
| ECR_S47_07 | Low       | Potential   | Y                      | Potential        |

No features qualifying as Annex I (1170) – Reefs, subtypes Bedrock Reefs and Stony Reefs, were identified within the ECR and WAA.

#### 5.8.2 **Biogenic Reefs**

Biogenic Reefs are listed as a subtype within the EC Habitats Directive Annex I (1170) – Reefs comprising reefs of geogenic and biogenic origin (EUR 28, 2013). The Ross-worm Sabellaria spinulosa qualifies for conservation interest when it forms reef features, and the species occurs commonly on sand with shell gravel.

The assessment procedure (Collins, 2010) used within this report presented in Section 4.6. S. spinulosa reefs are described as defined areas with a distinct elevation variance, from the surrounding seabed. The spatial extent can be large and complex and growth form can be either patchy or cohesive creating a hard stable surface with an internal maze of cavities promoting diversity.

Aggregations of S. spinulosa were observed at 31 out of the 58 surveyed sites, where 17 were located within the WAA and 14 sites were distributed along the ECR. The 'reefiness' assessment combined with the interpretation of geophysical data resulted in the delineation of several areas of S. spinulosa. Individual stills acquired were classified as of Low and Medium reefiness, and it cannot be excluded that potential reef features could be present within these delineated areas.

Findings of *S. spinulosa*, as identified in the grab samples (expressed per/ 0.1 m<sup>2</sup>), are summarised in Table 45. S. spinulosa was identified in the samples acquired at ten (10) grab sample sites where ECR\_S40 and ECR\_S41 comprised the highest abundance with 12 and 54 individual specimens, respectively. Images of the grab samples taken at sites ECR\_S40 and ECR\_S41 (Figure 35 and Figure 36) show S. spinulosa tube clusters within the samples. Images from the remaining eight (8) sites had a minor number of individual tubes after sieving.

The spatial distribution of *S. spinulosa* quantities per grab sample site is further illustrated in Figure 37.

| Site ID | Ahunda |
|---------|--------|

Table 45 Summary of S spinulosa quantities per arab sample site

| Site ID | Abundance of Sabellaria spinulosa / 0.1 m <sup>2</sup> |
|---------|--------------------------------------------------------|
| ECR_S40 | 12                                                     |
| ECR_S41 | 54                                                     |
| ECR_S43 | 1                                                      |
| ECR_S46 | 1                                                      |
| ECR_S48 | 1                                                      |
| ECR_S51 | 1                                                      |
| ECR_S58 | 1                                                      |
| WAA_S02 | 3                                                      |

## **OCEAN INFINITY**<sup>®</sup>



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Site ID | Abundance of <i>Sabellaria spinulosa</i> / 0.1 m <sup>2</sup> |
|---------|---------------------------------------------------------------|
| WAA_S03 | 1                                                             |
| WAA_S05 | 1                                                             |



Figure 35 ECR\_S40 sample before sieving.



Figure 36 ECR\_S41 sample before sieving.



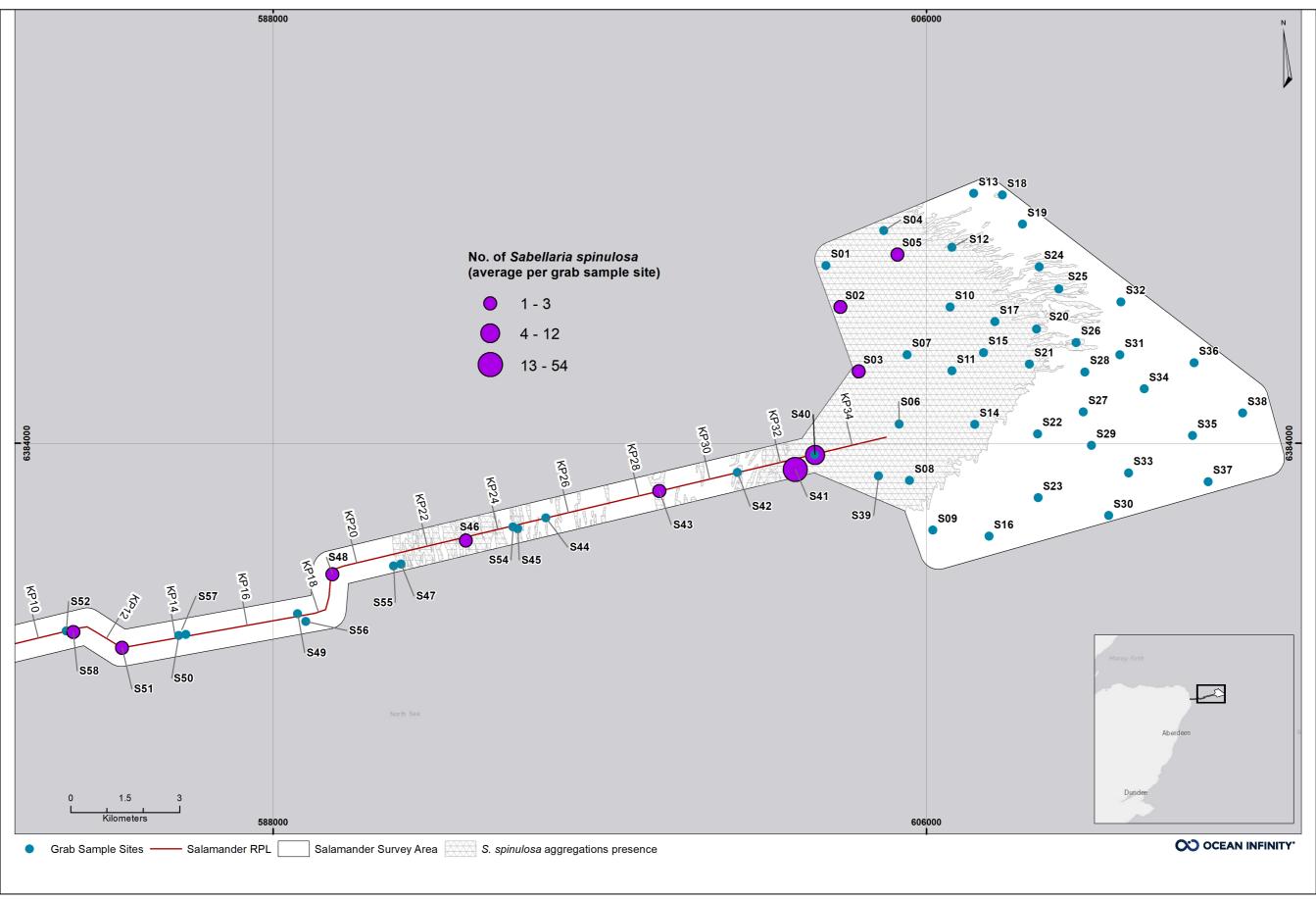



Figure 37 Distribution of S. spinulosa quantities per grab sample site.

## $\textbf{OCEAN INFINITY}^{\circ}$



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

*Sabellaria spinulosa* aggregation findings as identified from the stills acquired (expressed per still/per grab site) are summarised in Table 46 and presented in Figure 38. *Sabellaria spinulosa* aggregations were identified at 28 grab sites and ECR\_S47, ECR\_S49 and ECR\_S50 presented the highest average coverage with 76 %, 72 % and 74 % respectively. The spatial distribution of *S. spinulosa* percentage coverage per square meter is further illustrated in Figure 39.

| Site ID | lmage 1 | Image 2 | Image 3 | Image 4 | Image 5 | Image 6 | Image 7 | AVG | SD |
|---------|---------|---------|---------|---------|---------|---------|---------|-----|----|
| WAA_S02 | 0       | 0       | 0       | 3       | 19      | 1       | 0       | 3   | 7  |
| WAA_S03 | 2       | 0       | 0       | 0       | 0       | 0       | 0       | 0   | 1  |
| WAA_S04 | 0       | 0       | 3       | 0       | 1       | 0       | 0       | 1   | 1  |
| WAA_S05 | 0       | 2       | 0       | 6       | 0       | 0       | 0       | 1   | 2  |
| WAA_S06 | 11      | 0       | 0       | 0       | 1       | 0       | 29      | 6   | 11 |
| WAA_S08 | 0       | 5       | 8       | 0       | 0       | 0       | 0       | 2   | 3  |
| WAA_S10 | 5       | 0       | 0       | 0       | 0       | 0       | 0       | 1   | 2  |
| WAA_S11 | 0       | 0       | 15      | 0       | 0       | 0       | 1       | 2   | 6  |
| WAA_S12 | 14      | 0       | 39      | 0       | 0       | 22      | 0       | 11  | 15 |
| WAA_S14 | 0       | 0       | 0       | 0       | 0       | 0       | 3       | 0   | 1  |
| WAA_S15 | 0       | 0       | 0       | 0       | 0       | 0       | 13      | 2   | 5  |
| WAA_S17 | 2       | 0       | 4       | 0       | 1       | 0       | 0       | 1   | 2  |
| WAA_S20 | 0       | 0       | 48      | 0       | 9       | 0       | 0       | 8   | 18 |
| WAA_S21 | 0       | 0       | 0       | 11      | 0       | 0       | 0       | 2   | 4  |
| WAA_S24 | 0       | 0       | 0       | 0       | 0       | 10      | 0       | 1   | 4  |
| WAA_S25 | 0       | 0       | 29      | 0       | 2       | 19      | 3       | 8   | 12 |
| WAA_S26 | 0       | 20      | 0       | 4       | 0       | 0       | 3       | 4   | 7  |
| ECR_S39 | 1       | 15      | 0       | 0       | 0       | 45      | 1       | 9   | 17 |
| ECR_S40 | 0       | 21      | 3       | 1       | 13      | 10      | 0       | 7   | 8  |
| ECR_S41 | 21      | 13      | 5       | 0       | 12      | 0       | 0       | 7   | 8  |
| ECR_S43 | 7       | 1       | 2       | 0       | 3       | 2       | 21      | 5   | 7  |
| ECR_S44 | 0       | 6       | 0       | 0       | 0       | 0       | 4       | 1   | 3  |
| ECR_S45 | 94      | 64      | 47      | 38      | 19      | 3       | 16      | 40  | 31 |
| ECR_S47 | 58      | 88      | 72      | 76      | 56      | 84      | 96      | 76  | 15 |
| ECR_S49 | 51      | 57      | 77      | 79      | 79      | 96      | 63      | 72  | 16 |
| ECR_S50 | 91      | 91      | 42      | 38      | 83      | 84      | 87      | 74  | 23 |
| ECR_S51 | 0       | 0       | 0       | 6       | 0       | 0       | 1       | 1   | 2  |
| ECR_S52 | 18      | 3       | 88      | 89      | 91      | 12      | 83      | 55  | 41 |

Table 46 Percentage coverage per square meter of S. spinulosa from grab site stills, with avg coverage and SD.

#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

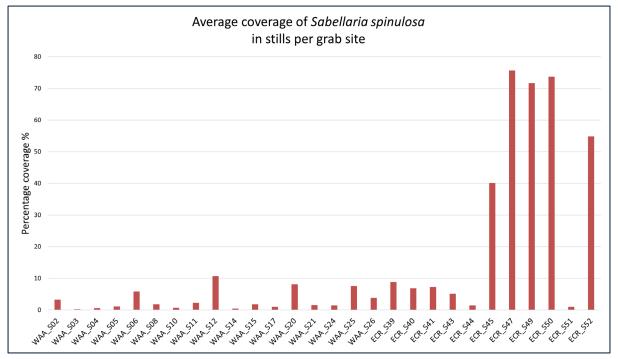



Figure 38 Average percentage coverage per  $m^2$  of S. spinulosa from stills.

The presence of *S. spinulosa* aggregations was identified in stills acquired at 28 sites: WAA\_S02, WAA\_S03 to WAA\_S06, WAA\_S08, WAA\_S10 to WAA\_S12, WAA\_S14, WAA\_S15, WAA\_S17, WAA\_S20, WAA\_S21, WAA\_S24, WAA\_S25, WAA\_S26, ECR\_S39, ECR\_S40, ECR\_S41, ECR\_S43, ECR\_S44, ECR\_S45, ECR\_S47, ECR\_S49, ECR\_S50, ECR\_S51, ECR\_S52.

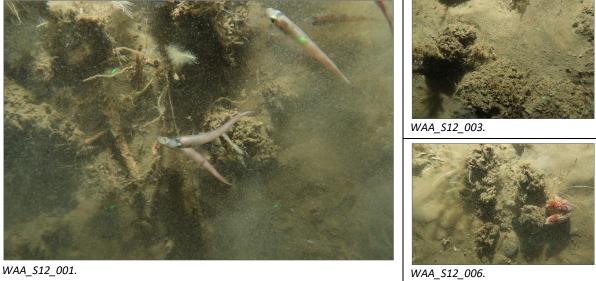

Visibility in the video and stills was generally good. Example stills of identified *S. spinulosa* are presented in Table 47 to Table 52.



Table 47 Example stills from WAA\_S06.

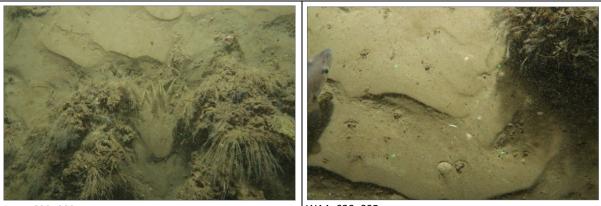



Table 48 Example stills from WAA\_S12.



WAA\_\$12\_001.

Table 49 Example stills from WAA\_S20.



WAA\_\$20\_003.

WAA\_\$20\_005.

Table 50 Example stills from WAA\_S25.

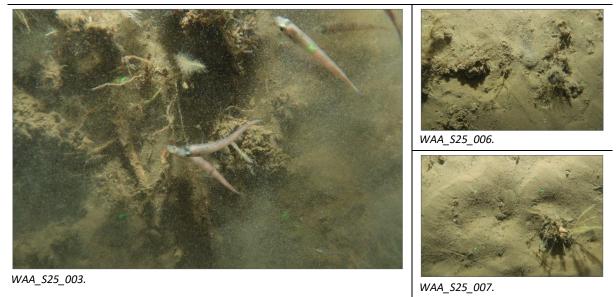
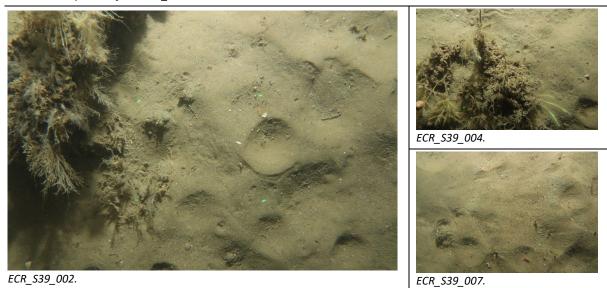





Table 51 Example stills from WAA\_S26.






WAA\_\$26\_004.



WAA\_\$26\_002.

Table 52 Example stills from ECR\_S39.





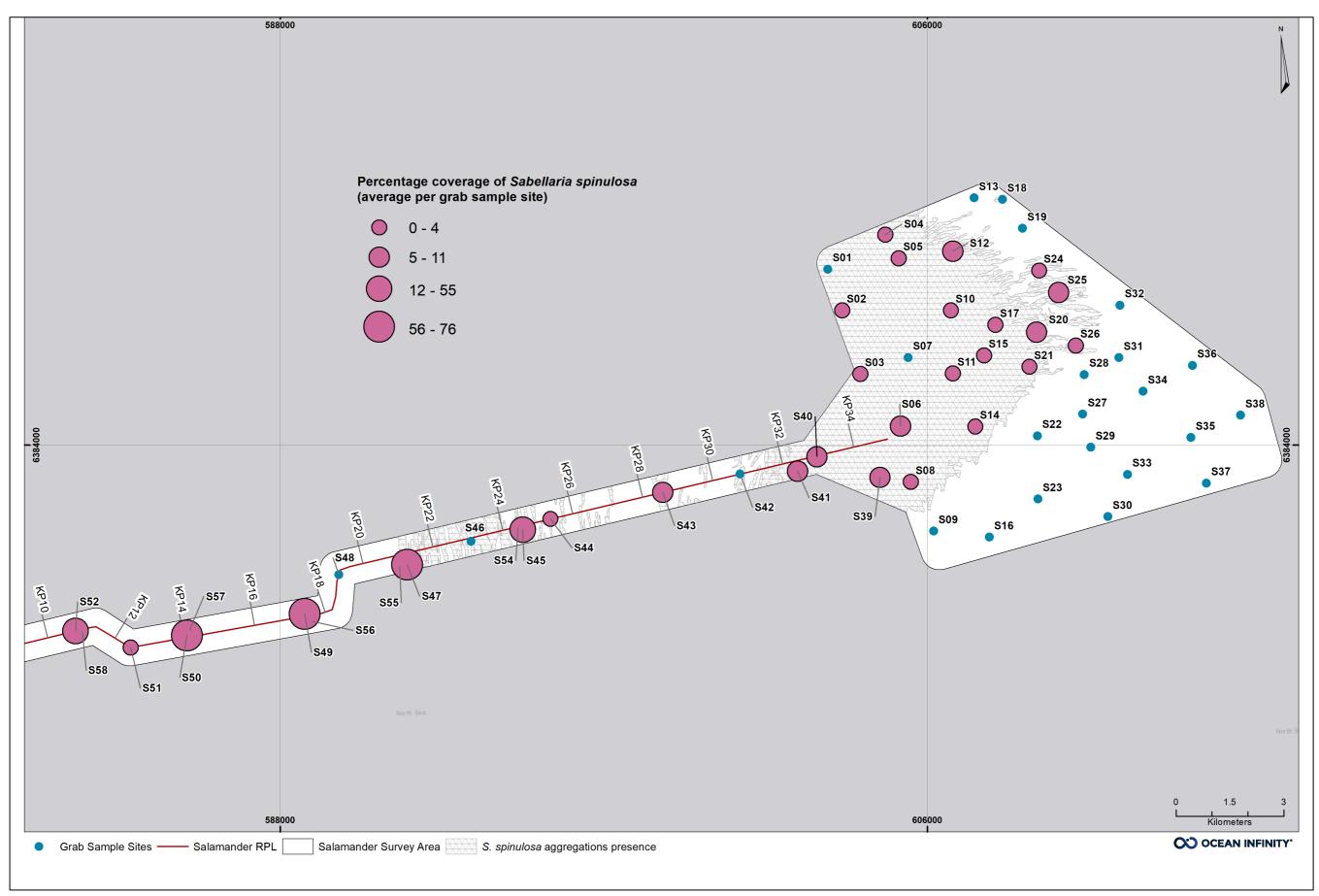


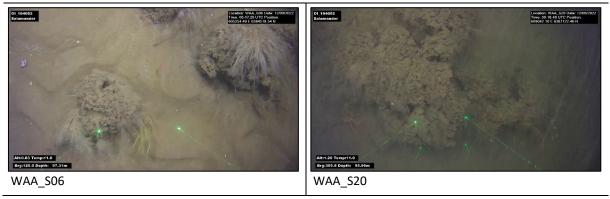

Figure 39 Distribution of S. spinulosa percentage coverage per square meter.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

Each acquired still image, where *S. spinulosa* aggregations were noted present, were assessed on an individual level against the qualifying criteria in addition to a collective assessment for each site. The assessment is further exemplified in Table 54 and the detailed results are listed in Table 55. The table includes Image ID, Elevation, Patchiness, Area and Final 'reefiness' for all images where S. spinulosa aggregations are present.

A short summary is presented below:

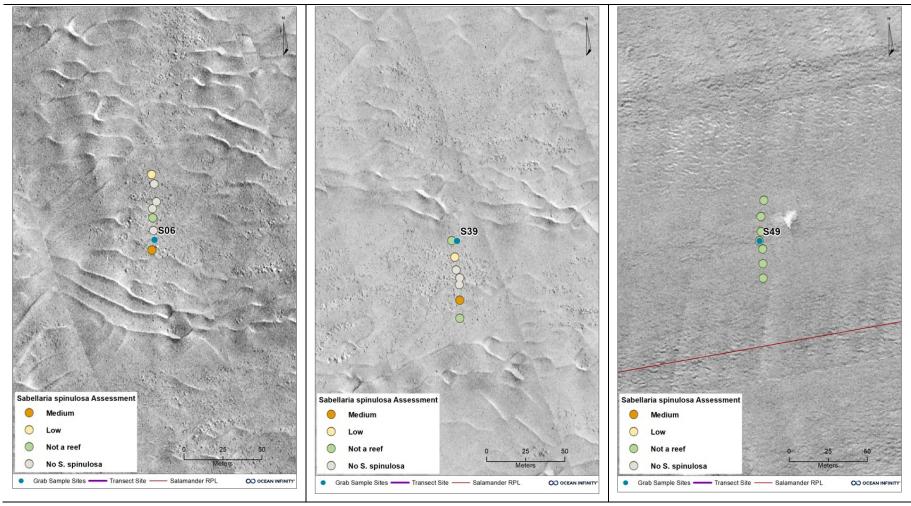

Sites: WAA\_S02, WAA\_S11, WAA\_S15, WAA\_S24, ECR\_S40, ECR\_S41, ECR\_S43, and ECR\_S45 comprise individual stills which were assessed to meet the criteria of Annex I (1170) – Biogenic Reef of Low 'reefiness'.

Sites: WAA\_S06, WAA\_S12, WAA\_S20, WAA\_S25, WAA\_S26, and ECR\_S39 comprise individual stills which were assessed to meet the criteria of Annex I (1170) – Biogenic Reef of Medium 'reefiness'.

Sites: WAA\_S03, WAA\_S04, WAA\_S05, WAA\_S08, WAA\_S10, WAA\_S14, WAA\_S17, WAA\_S21, ECR\_S44, ECR\_S47, ECR\_S49, ECR\_S50, ECR\_S51, ECR\_S52 comprise individual stills which were assessed to meet the criteria of Potential Annex I (1170) – Biogenic Reef.

Review of the video and high-resolution acoustic data shows high patchiness of 'Bommies', a new sub-type *S. spinulosa* reefs. This sub type forms in fine mobile sediments (Pearce, 2020) with a distance between each patch often exceeding 1 metre. Example images of 'Bommies' noted at sites WAA\_S06 and WAA\_S20 are presented in Table 53.

Table 53 Example screen shots from video of 'Bommies'.




The collective assessment of data from each site concluded that none of the ground-truthed sites qualify as Annex I (1170) – Biogenic Reefs mainly due to a lack of sufficient extent. Areas comprising *S. spinulosa* aggregations have been delineated based on presence and the spatial distribution is presented in Figure 40 - Figure 42.

Note: The stills were acquired along a linear transect centred on the grab sample site. However, due to the scale of the overview maps in Figure 40 - Figure 42 and due to the dense interval at which images were acquired, the symbols are plotted in a ring as an alternative. This was done to illustrate and present the outcome and distribution of each individual assessment more easily.

## **OCEAN INFINITY**<sup>®</sup>

Table 54 Example of S. spinulosa assessment per grab sample site/ per still acquired.



## **OCEAN INFINITY**<sup>®</sup>



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

#### Table 55 Sabellaria spinulosa 'reefiness' assessment.

| Transect ID | Image ID     | Elevation       | Patchiness      | Area            |
|-------------|--------------|-----------------|-----------------|-----------------|
| WAA_S02     | WAA S02 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S02     | WAA \$02 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S02     | WAA \$02 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S02     | WAA \$02 004 | Not a reef      | Not a reef      | High            |
| WAA_S02     | WAA \$02 005 | Low             | Low             | High            |
| WAA_S02     | WAA S02 006  | Not a reef      | Not a reef      | High            |
| WAA_S02     | WAA \$02 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S03     | WAA \$03 001 | Not a reef      | Not a reef      | High            |
| WAA_S03     | WAA S03 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S03     | WAA \$03 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$03    | WAA \$03 004 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$03    | WAA \$03 005 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$03    | WAA \$03 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$03    | WAA \$03 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$04    | WAA \$04 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$04    | WAA \$04 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$04    | WAA \$04 003 | Low             | Not a reef      | High            |
| WAA_S04     | WAA S04 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$04    | WAA \$04 005 | Not a reef      | Not a reef      | High            |
| WAA_\$04    | WAA \$04 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S04     | WAA \$04 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S05     | WAA \$05 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S05     | WAA \$05 002 | Low             | Not a reef      | High            |
| WAA_S05     | WAA \$05 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S05     | WAA \$05 004 | Low             | Not a reef      | High            |
| WAA_S05     | WAA \$05 005 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S05     | WAA \$05 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S05     | WAA \$05 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$06    | WAA S06 001  | Low             | Low             | High            |
| WAA_S06     | WAA S06 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S06     | WAA S06 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S06     | WAA S06 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S06     | WAA S06 005  | Low             | Not a reef      | High            |
| WAA_S06     | WAA S06 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
|             |              |                 |                 |                 |

| Final 'Reefiness' |
|-------------------|
| No S. spinulosa   |
| No S. spinulosa   |
|                   |
| No S. spinulosa   |
| Not a reef        |
| Low               |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| No S. spinulosa   |
| No S. spinulosa   |
| Low               |
| No S. spinulosa   |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
|                   |



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Transect ID | Image ID     | Elevation       | Patchiness      | Area            |
|-------------|--------------|-----------------|-----------------|-----------------|
| WAA_\$06    | WAA S06 007  | Medium          | Medium          | High            |
| WAA_\$08    | WAA S08 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$08    | WAA S08 002  | Medium          | Not a reef      | High            |
| WAA_\$08    | WAA S08 003  | Low             | Not a reef      | High            |
| WAA_\$08    | WAA S08 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$08    | WAA S08 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$08    | WAA S08 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$08    | WAA S08 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA \$10 001 | Low             | Not a reef      | High            |
| WAA_S10     | WAA \$10 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA \$10 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA S10 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA S10 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA S10 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S10     | WAA S10 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 003  | Medium          | Low             | High            |
| WAA_S11     | WAA S11 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S11     | WAA S11 007  | Low             | Not a reef      | High            |
| WAA_S12     | WAA \$12 001 | Medium          | Low             | High            |
| WAA_S12     | WAA S12 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S12     | WAA S12 003  | Medium          | High            | High            |
| WAA_S12     | WAA \$12 004 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S12     | WAA \$12 005 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S12     | WAA \$12 006 | Medium          | Medium          | High            |
| WAA_S12     | WAA \$12 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA \$14 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA S14 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA \$14 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA S14 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA S14 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |

## **OCEAN INFINITY**°

| Final 'Reefiness' |
|-------------------|
| Medium            |
| No S. spinulosa   |
| Not a reef        |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| Low               |
| No S. spinulosa   |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |
| Low               |
| No S. spinulosa   |
| Medium            |
| No S. spinulosa   |
| No S. spinulosa   |
| Medium            |
| No S. spinulosa   |
| No S spinulosa    |

No S. spinulosa



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Transect ID | Image ID     | Elevation       | Patchiness      | Area            |
|-------------|--------------|-----------------|-----------------|-----------------|
| WAA_S14     | WAA S14 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S14     | WAA S14 007  | Medium          | Not a reef      | High            |
| WAA_\$15    | WAA \$15 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 004 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 005 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$15    | WAA \$15 007 | Medium          | Low             | High            |
| WAA_\$17    | WAA \$17 001 | Low             | Not a reef      | High            |
| WAA_\$17    | WAA \$17 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$17    | WAA \$17 003 | Low             | Not a reef      | High            |
| WAA_\$17    | WAA \$17 004 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_517     | WAA S17 005  | Not a reef      | Not a reef      | High            |
| WAA_517     | WAA S17 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_517     | WAA S17 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$20    | WAA S20 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$20    | WAA S20 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$20    | WAA S20 003  | Medium          | High            | High            |
| WAA_\$20    | WAA S20 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$20    | WAA S20 005  | Medium          | Not a reef      | High            |
| WAA_\$20    | WAA S20 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_\$20    | WAA S20 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_521     | WAA S21 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S21     | WAA S21 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S21     | WAA S21 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S21     | WAA S21 004  | Not a reef      | Low             | High            |
| WAA_S21     | WAA S21 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S21     | WAA S21 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S21     | WAA S21 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S24     | WAA S24 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S24     | WAA S24 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S24     | WAA S24 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S24     | WAA S24 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |

## **OCEAN INFINITY**°

| Final 'Reefiness'                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No S. spinulosa                                                                                                                                                                  |
| Not a reef                                                                                                                                                                       |
| No S. spinulosa                                                                                                                                                                  |
| Low                                                                                                                                                                              |
| Not a reef                                                                                                                                                                       |
| No S. spinulosa                                                                                                                                                                  |
| Not a reef                                                                                                                                                                       |
| No S. spinulosa                                                                                                                                                                  |
| Not a reef                                                                                                                                                                       |
| No S. spinulosa                                                                                                                                                                  |
|                                                                                                                                                                                  |
| Medium                                                                                                                                                                           |
| No S. spinulosa                                                                                                                                                                  |
|                                                                                                                                                                                  |
| No S. spinulosa                                                                                                                                                                  |
| No S. spinulosa<br>Not a reef                                                                                                                                                    |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa                                                                                                                                 |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa                                                                                                              |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa                                                                                           |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa                                                                        |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa                                                     |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa                                  |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>Not a reef<br>No S. spinulosa                    |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>Not s. spinulosa                   |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa |
| No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa<br>Not a reef<br>No S. spinulosa<br>No S. spinulosa<br>No S. spinulosa |

No S. spinulosa



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Transect ID | Image ID     | Elevation       | Patchiness      | Area            |
|-------------|--------------|-----------------|-----------------|-----------------|
| WAA_S24     | WAA S24 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S24     | WAA S24 006  | Low             | Low             | Medium          |
| WAA_S24     | WAA S24 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S25     | WAA S25 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S25     | WAA S25 002  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S25     | WAA \$25 003 | Medium          | Medium          | Medium          |
| WAA_S25     | WAA S25 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S25     | WAA \$25 005 | Low             | Not a reef      | Medium          |
| WAA_S25     | WAA \$25 006 | Low             | Low             | Medium          |
| WAA_S25     | WAA \$25 007 | Low             | Not a reef      | Medium          |
| WAA_S26     | WAA S26 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S26     | WAA S26 002  | Medium          | Medium          | Medium          |
| WAA_S26     | WAA S26 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S26     | WAA S26 004  | Low             | Not a reef      | Medium          |
| WAA_S26     | WAA S26 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S26     | WAA S26 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| WAA_S26     | WAA S26 007  | Low             | Not a reef      | Medium          |
| ECR_S39     | ECR \$39 001 | Not a reef      | Not a reef      | High            |
| ECR_S39     | ECR S39 002  | Medium          | Low             | High            |
| ECR_S39     | ECR S39 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S39     | ECR S39 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S39     | ECR S39 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S39     | ECR S39 006  | Medium          | High            | High            |
| ECR_S39     | ECR S39 007  | Not a reef      | Not a reef      | High            |
| ECR_S40     | ECR 540 001  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S40     | ECR \$40 002 | Low             | Medium          | High            |
| ECR_S40     | ECR 540 003  | Not a reef      | Not a reef      | High            |
| ECR_S40     | ECR 540 004  | Not a reef      | Not a reef      | High            |
| ECR_S40     | ECR S40 005  | Low             | Low             | High            |
| ECR_S40     | ECR S40 006  | Low             | Low             | High            |
| ECR_S40     | ECR S40 007  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S41     | ECR S41 001  | Low             | Medium          | Medium          |
| ECR_S41     | ECR 541 002  | Low             | Low             | Medium          |
| ECR_S41     | ECR 541 003  | Low             | Not a reef      | Medium          |
|             |              |                 |                 |                 |

## $\textbf{OCEAN INFINITY}^{\circ}$

| Final 'Reefiness'                                                                                |
|--------------------------------------------------------------------------------------------------|
| No S. spinulosa                                                                                  |
| Low                                                                                              |
| No S. spinulosa                                                                                  |
| No S. spinulosa                                                                                  |
| No S. spinulosa                                                                                  |
| Medium                                                                                           |
| No S. spinulosa                                                                                  |
| Not a reef                                                                                       |
| Low                                                                                              |
| Not a reef                                                                                       |
| No S. spinulosa                                                                                  |
| Medium                                                                                           |
| No S. spinulosa                                                                                  |
| Not a reef                                                                                       |
| No S. spinulosa                                                                                  |
| No S. spinulosa                                                                                  |
| Not a reef                                                                                       |
| Not a reef                                                                                       |
| Low                                                                                              |
| No S. spinulosa                                                                                  |
| No S. spinulosa                                                                                  |
| No S. spinulosa                                                                                  |
|                                                                                                  |
| Medium                                                                                           |
| Medium<br>Not a reef                                                                             |
|                                                                                                  |
| Not a reef                                                                                       |
| Not a reef<br>No S. spinulosa                                                                    |
| Not a reef<br>No S. spinulosa<br>Low                                                             |
| Not a reef         No S. spinulosa         Low         Not a reef                                |
| Not a reef         No S. spinulosa         Low         Not a reef         Not a reef             |
| Not a reef         No S. spinulosa         Low         Not a reef         Not a reef         Low |
| Not a reefNo S. spinulosaLowNot a reefNot a reefLowLowLowLow                                     |
| Not a reefNo S. spinulosaLowNot a reefNot a reefLowLowNot a reefNot a reefNot a reefNot a reef   |



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Transect ID | Image ID     | Elevation       | Patchiness      | Area            |
|-------------|--------------|-----------------|-----------------|-----------------|
| ECR_S41     | ECR 541 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S41     | ECR S41 005  | Not a reef      | Low             | Medium          |
| ECR_S41     | ECR \$41 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S41     | ECR \$41 007 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S43     | ECR \$43 001 | Not a reef      | Not a reef      | Medium          |
| ECR_S43     | ECR \$43 002 | Not a reef      | Not a reef      | Medium          |
| ECR_S43     | ECR \$43 003 | Not a reef      | Not a reef      | Medium          |
| ECR_S43     | ECR \$43 004 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S43     | ECR \$43 005 | Not a reef      | Not a reef      | Medium          |
| ECR_S43     | ECR \$43 006 | Not a reef      | Not a reef      | Medium          |
| ECR_S43     | ECR \$43 007 | Low             | Medium          | Medium          |
| ECR_S44     | ECR \$44 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S44     | ECR \$44 002 | Low             | Not a reef      | Low             |
| ECR_S44     | ECR S44 003  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S44     | ECR S44 004  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S44     | ECR S44 005  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S44     | ECR S44 006  | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S44     | ECR \$44 007 | Low             | Not a reef      | Low             |
| ECR_S45     | ECR \$45 001 | Not a reef      | High            | Medium          |
| ECR_S45     | ECR \$45 002 | Not a reef      | High            | Medium          |
| ECR_S45     | ECR \$45 003 | Low             | High            | Medium          |
| ECR_S45     | ECR \$45 004 | Low             | High            | Medium          |
| ECR_S45     | ECR \$45 005 | Not a reef      | Low             | Medium          |
| ECR_S45     | ECR \$45 006 | Not a reef      | Not a reef      | Medium          |
| ECR_S45     | ECR \$45 007 | Not a reef      | Low             | Medium          |
| ECR_S47     | ECR \$47 001 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 002 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 003 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 004 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 005 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 006 | Not a reef      | High            | Medium          |
| ECR_S47     | ECR \$47 007 | Not a reef      | High            | Medium          |
| ECR_S49     | ECR \$49 001 | Not a reef      | High            | High            |
| ECR_S49     | ECR \$49 002 | Not a reef      | High            | High            |

| Final 'Reefiness' |
|-------------------|
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |
| Not a reef        |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| Not a reef        |
| Low               |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| Not a reef        |
| Not a reef        |
| Not a reef        |
| Low               |
| Low               |
| Not a reef        |



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

| Transect ID | Image ID    | Elevation       | Patchiness      | Area            |
|-------------|-------------|-----------------|-----------------|-----------------|
| ECR_S49     | ECR S49 003 | Not a reef      | High            | High            |
| ECR_S49     | ECR S49 004 | Not a reef      | High            | High            |
| ECR_S49     | ECR S49 005 | Not a reef      | High            | High            |
| ECR_S49     | ECR S49 006 | Not a reef      | High            | High            |
| ECR_S49     | ECR S49 007 | Not a reef      | High            | High            |
| ECR_\$50    | ECR S50 001 | Not a reef      | High            | Medium          |
| ECR_S50     | ECR 550 002 | Not a reef      | High            | Medium          |
| ECR_S50     | ECR S50 003 | Not a reef      | High            | Medium          |
| ECR_\$50    | ECR 550 004 | Not a reef      | High            | Medium          |
| ECR_S50     | ECR S50 005 | Not a reef      | High            | Medium          |
| ECR_S50     | ECR S50 006 | Not a reef      | High            | Medium          |
| ECR_S50     | ECR S50 007 | Not a reef      | High            | Medium          |
| ECR_S51     | ECR 551 001 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S51     | ECR 551 002 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S51     | ECR 551 003 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S51     | ECR 551 004 | Not a reef      | Not a reef      | Medium          |
| ECR_S51     | ECR S51 005 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S51     | ECR 551 006 | No S. spinulosa | No S. spinulosa | No S. spinulosa |
| ECR_S51     | ECR 551 007 | Not a reef      | Not a reef      | Medium          |
| ECR_S52     | ECR 552 001 | Not a reef      | Low             | High            |
| ECR_S52     | ECR 552 002 | Not a reef      | Not a reef      | High            |
| ECR_S52     | ECR 552 003 | Not a reef      | High            | High            |
| ECR_S52     | ECR 552 004 | Not a reef      | High            | High            |
| ECR_S52     | ECR 552 005 | Not a reef      | High            | High            |
| ECR_S52     | ECR 552 006 | Not a reef      | Low             | High            |
| ECR_S52     | ECR S52 007 | Not a reef      | High            | High            |

| Final 'Reefiness' |
|-------------------|
| Not a reef        |
| No S. spinulosa   |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |
| No S. spinulosa   |
| No S. spinulosa   |
| Not a reef        |



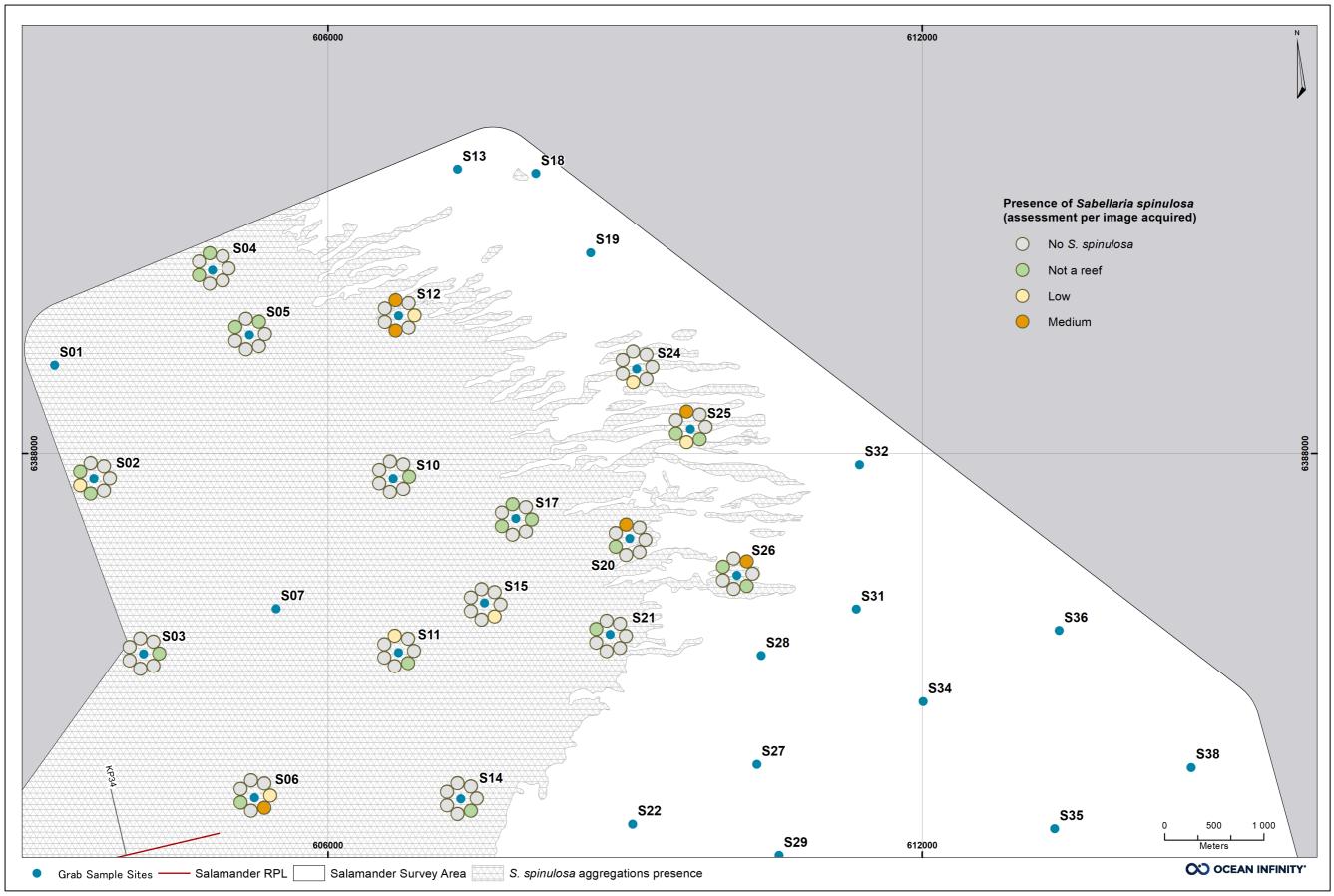



Figure 40 Distribution of individual stills with S. spinulosa reefiness assessment within the WAA.



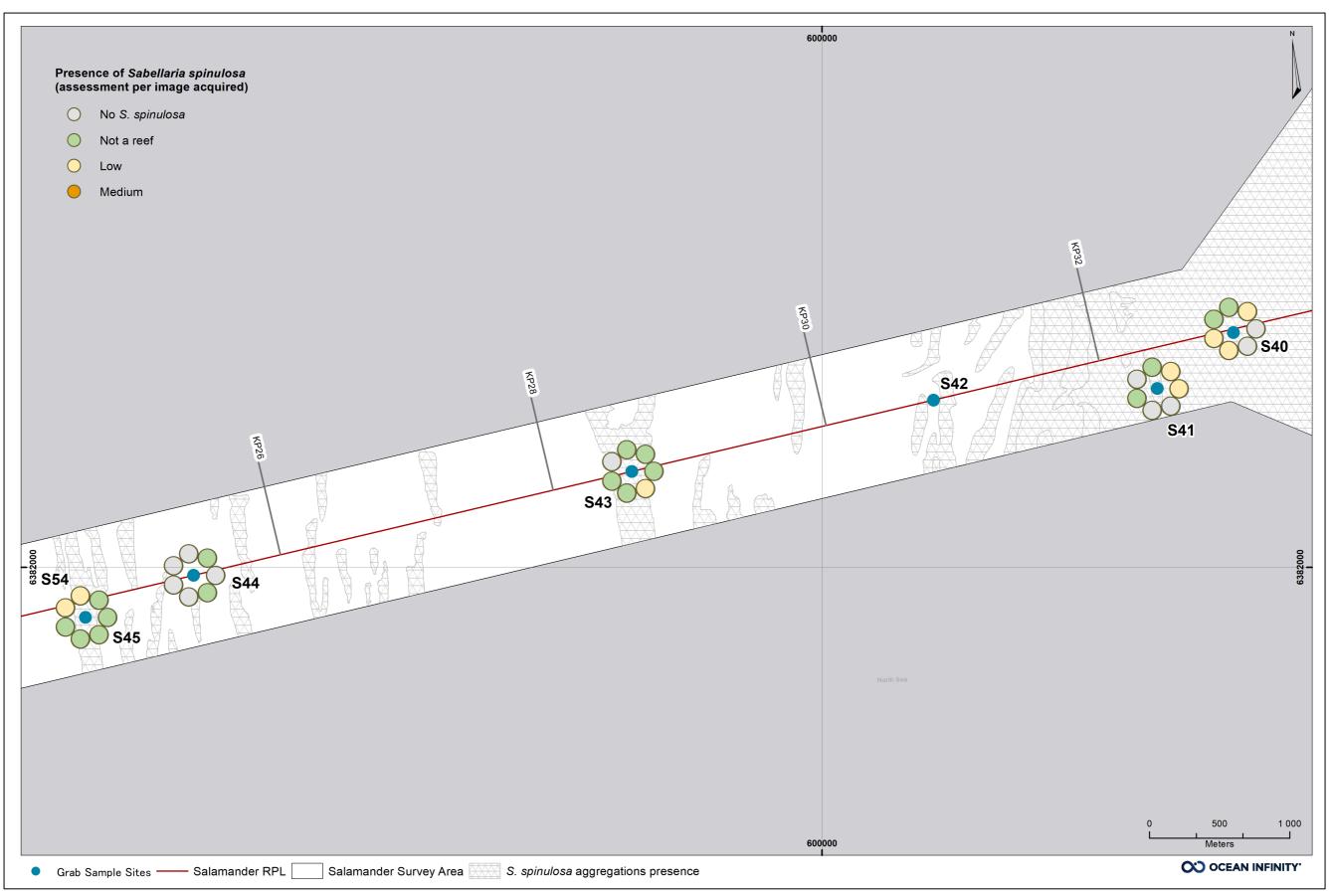



Figure 41 Distribution of individual stills with S. spinulosa reefiness assessment within the ECR, east.



### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

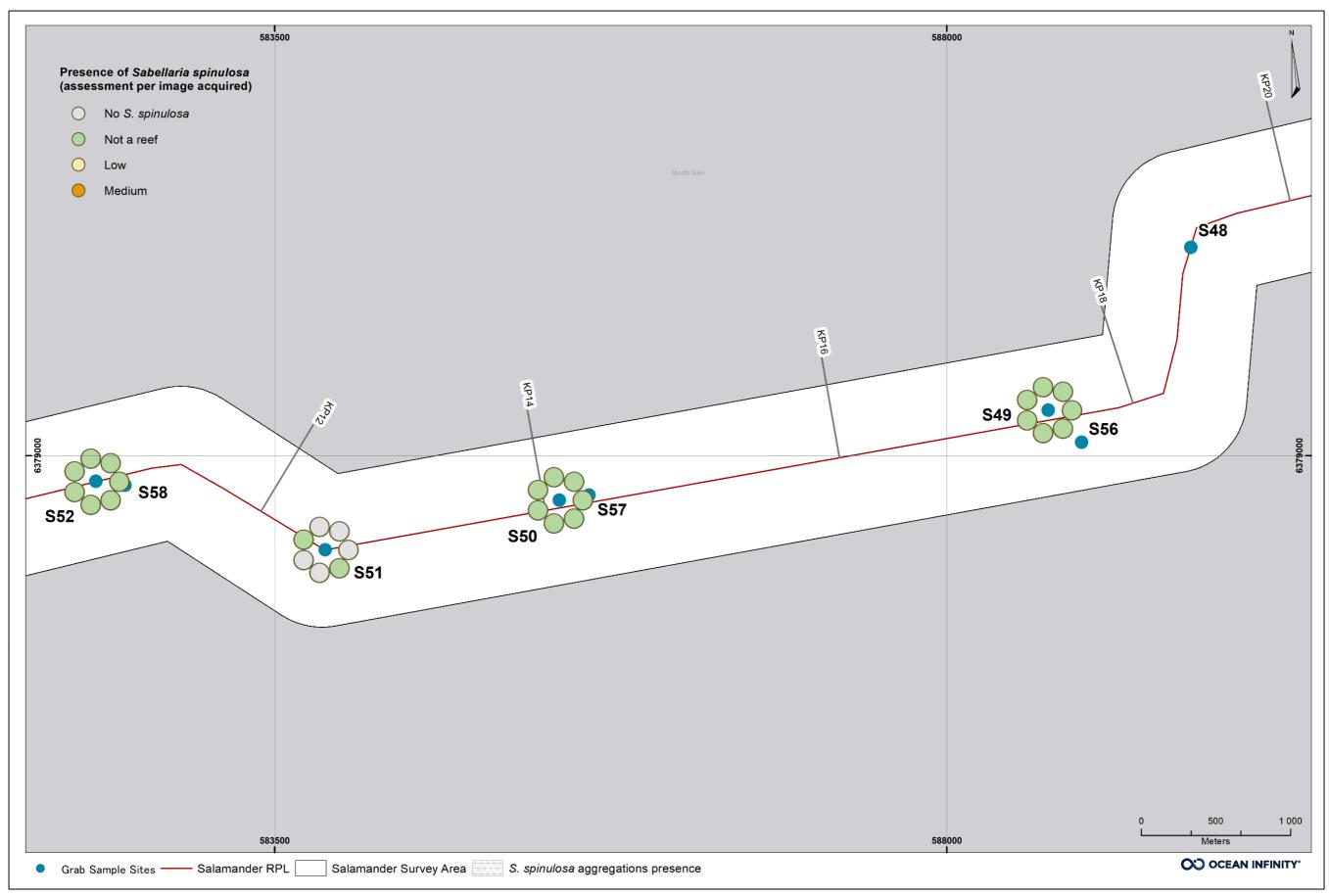



Figure 42 Distribution of individual stills with S. spinulosa reefiness assessment within the ECR, west.



### 5.8.3 Offshore Subtidal Sands and Gravels

The habitats PMF habitat Offshore Subtidal Sands and Gravels as well as the SBL habitat Subtidal sands and gravels were identified across parts of the survey area (Tyler-Walters, et al., 2016; SBL, 2009). It is the most common subtidal habitat around the British Isles and includes a wide variety of sediments across a wide depth range. All subtype habitats of **MC32** - Atlantic circalittoral coarse sediment and **MC52** - Atlantic circalittoral sand including habitat complexes where such habitats are included have been interpreted to qualify as Subtidal Sands and Gravels.

#### 5.8.4 Notable Taxa

#### **Invasive and Non-Native Taxa**

No invasive or non-native species were identified with the ECR and WAA samples.

#### **Rarely Recorded Taxa**

Three (3) rarely recorded species were identified in the grab samples (Table 56). The three species identified were all molluscs: *Ceratia proxima, Euspira fusca* and *Jordaniella trunculata*.

| Table FC Cassies was |                     | III identified  | direction of the answer and |
|----------------------|---------------------|-----------------|-----------------------------|
| Table 56 Species rar | ely recoraea in the | ' UK laentifiea | auring the survey.          |

| Rarely Recorded        | Sample Site | Abundance / 0.1m <sup>2</sup> |
|------------------------|-------------|-------------------------------|
| Ceratia proxima        | WAA_S13     | 1                             |
| Euspira fusca          | WAA_S37     | 1                             |
| Jordaniella truncatula | ECR_S41     | 1                             |

#### Sandeels (PMF & SBL)

Sandeel *Ammodytes* sp. is a taxon of commercial importance as well as a PMF and SBL (Tyler-Walters, et al., 2016; SBL, 2009) listed species. A total of nine (9) individual specimens were identified at four (4) grab sample sites; ECR\_S48, ECR\_S54, ECR\_S57 and ECR\_S58.

#### Ocean quahog (PMF & OSPAR)

Ocean quahog *Arctica islandica*, which is generally found in fine sand and muddy substrates throughout the North Sea, is a PMF (Tyler-Walters, et al., 2016), and is considered under threat and/or decline in region II, i.e., the Greater North Sea under OSPAR (OSPAR, 2008).

A total of four (4) individual specimens were identified at four (4) different grab sample sites; WAA\_S04, WAA\_S30, WAA\_S37 and WAA\_S38.

#### Sea-Pen and Burrowing Megafauna (OSPAR) & Burrowed Mud (PMF)

The sea pen *Pennatula phosphorea* was identified in the video and still photos from sample sites WAA\_S19, WAA\_S28, WAA\_S34, WAA\_S35, WAA\_S36, and WAA\_S37. The species is characteristic of the OSPAR habitat Sea-Pen and Burrowing Megafauna, and PMF habitat Burrowed Mud. The absence of frequent burrows or mounds and the absence of other key components such as Norway lobster *Nephrops norvegicus* in addition to the more overall sandy composition of the seabed within the survey area indicates neither of the habitats is present.

### **Octocorallia (SBL)**

Two species of Octocorallia were identified. The first species was *Alcyonium digitatum* identified in the video and stills from sample sites ECR\_S40, ECR\_S45, ECR\_S49, ECR\_S50, ECR\_T53. The second species was the sea pen



*P. phosphorea* identified in the video and still photos from sample sites WAA\_S19, WAA\_S28, WAA\_S34, WAA\_S35, WAA\_S36, and WAA\_S37.



## 6. Discussion

Despite the limited variation in sediment composition, there was a trend with the WAA samples containing more Mud compared to the ECR samples which contained more Gravel. This trend was supported by Mud having a positive correlation ( $R^2$ =0.48) with the eastings of the samples, whilst Gravel had a negative correlation ( $R^2$ =0.65). It is worth noting that the depth of the samples did correlate with easting ( $R^2$ =0.56) but yielded lower  $R^2$ -values compared to easting. Sand did not correlate with either easting ( $R^2$ =0.02) or depth ( $R^2$ =0.00). Silt and Clay, the two sediment fractions comprising Mud, had similar trends and correlations as those found with Mud.

Threshold values were exceeded for arsenic at six (6) sites which all were located along the ECR, with the highest concentrations (19.3 mg/kg) recorded in the sample for the site closest to the coast. When plotting arsenic concentration against the eastings of the samples, a negative correlation ( $R^2$ =0.67) was observed, indicating that the sediment closer to the coast has higher concentrations of arsenic compared to the sites located further offshore. Whilst overall higher in the WAA compared to the ECR, neither THC nor  $\Sigma$ 16PAH had any strong correlation to sample site eastings, with  $R^2$ -values of 0.34 and 0.02, respectively.

The Total Organic Matter (TOM) and Total Organic Carbon (TOC) analyses results indicate a low fraction of TOM and TOC in the sediment at all grab sample sites. TOC levels were within the expected range of surface sediments of 0 - 2 % (Smeaton, Hunt, Turrell, & Austin, 2021). The highest levels of TOM, >= 2 %, was identified at sites WAA\_S29 and, highest, at ECR\_S44.

Pielou's Evenness index, Shannon-Wiener index, and Simpson's Index of Dominance presented a limited variation, which can be seen in the indices listed in Table 34. Simpson's Index of Dominance presented a mean value close to 1 (0.94) indicating a more evenly species distribution. The standard deviation for Simpson's Index of Dominance presented a significant value (SD=0.04) indicating that data values are reliable and closely clustered around the mean. The low variation seen in the univariate indices listed above could partly be explained by the limited variation in the sediment composition.

The number of taxa and the number of individuals presented notably higher values in ECR\_S40 and ECR\_S41. These were also the sites that contained the highest abundance (per/  $0.1 \text{ m}^2$ ) of *S. spinulosa* identified per grab sample site (Table 45).

The SIMPROF analysis produced five (5) statistical groups. These groups were based on grab samples that were spatially relatively close to each other within the survey area (Figure 25), and classified in similar habitats, indicating the possibility of some between-site homogeneity.

The similarity between SIMPROF groups is further reflected in the nMDS-plot where two larger clusters can be identified with 20 % similarity. First cluster (Figure 24) constitutes four (4) groups **b**, **c**, **d** and **e** with a majority of the sites located in the WAA area. This cluster is likely driven by similarities in species composition, substrate and depth range. The second cluster (Figure 24) constituted group **a**, all sites located along the ECR located at a shallower depth range when compared to the WAA sites. A majority of these sites were located in **MC32** - Atlantic circalittoral coarse sediment except for the two sites ECR\_S44 and ECR\_S46. These two sites were located in the habitat **MC52** - Atlantic circalittoral sand and positioned closer to the second cluster in the nMDS-plot.

SIMPROF group **b** was the only group that contained one site (WAA\_S13). Group **b** was separated from the other groups not solely by its habitat, but also by the species composition, which included a greater number of *Harpinia antennaria*. This confirms the results of the SIMPROF analysis and the classification of site WAA\_S13 as a separate group. By analysing the nMDS-plot, it is evident that group **b** is closely positioned to cluster group **d** and lies within the 20 % similarity level. Looking at the spatial overview (Figure 25) it is evident that group **b** is located in close proximity to the group **d** sites. This indicates that there are some similarities between group **b** and cluster group **d**.

The main driving variables for the faunal assemblage appears to be Gravel, Arsenic, Mud and Depth, as these variables together constituted the best correlation (0.689) with the macrofaunal distribution in the survey area, which is presented in the multiple variables BEST analysis in Section 5.5.5.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

In theory, strongly correlated variables tend to increase or decrease together (Taylor, 1990). The relationship between sediment composition and the faunal communities has long been known (Sanders, 1958). Gravel presented the best correlation both in the single and multiple variables test, emphasising how sediment composition plays a major role in forming faunal communities. Both the single and multiple variables test presented the same four main variables.

The presence of *Sabellaria spinulosa* tube aggregates is widespread throughout both the ECR and the WAA based on the grab sample site data acquired. It is present in sand and coarser sediments with pebbles and cobbles, as well as in areas where the sediment units are more mixed. In areas of coarser sediments *S. spinulosa* tube aggregates are noted only in video and stills. In areas of finer sediments, large tube aggregates were seen in video and stills and on some locations in the side scan sonar data.

Minor clusters of tube aggregations were found after sieving the grab samples, indicating that the mobile sediments in the area had covered them, and the taxonomic analyses results showed the presence of live *S. spinulosa* in ten (10) samples in total. ECR\_S40 with 12 individuals and ECR\_S41 with 54 individuals. The sites comprising *S. spinulosa* aggregations, showed a high number of taxa and individuals as detailed in Section 5.5. It is not uncommon to find *S. spinulosa* when sampling in areas where *S. spinulosa* is known to be distributed and may be buried beneath sediments (Gubbay, 2007).

The overall health of the aggregations is hard to estimate but the data indicates a highly stressed environment due to the presence of sand waves indicates a highly mobile sediment. The long-clawed porcelain crab *Pisidia longicornis* is commonly found in high abundance at *S. spinulosa* reefs (Fariñas-Franco, et al., 2014) yet no specimens of *P. longicornis* were identified in the samples.

The majority of the sampled sites share components, to a varying degree, of subtypes to **MC521** - Faunal communities of Atlantic circalittoral sand, in different complexes with **MC2211** - *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment, as well as **MC621** - Faunal communities of Atlantic circalittoral mud and **MC421** - Faunal communities of Atlantic circalittoral mixed sediment.

There is minor variation in the sediment composition at the respective sites between areas, as detailed by the PSA results and the species composition is overlapping, with some variation in composition and abundance between the sites.

Each of the grab sample sites was further classified individually and to a higher level where possible. It was deemed most appropriate to present these high-level classifications overlaid on the extrapolated lower-level classifications.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

## 7. Conclusions

A total of 57 grab sample sites and one (1) standalone video transect were surveyed as part of the Benthic Survey for the Salamander Offshore Wind Farm, located approximately 35 km east of Peterhead, Scotland.

The eastern WAA comprised muddy featureless sediment, which transitioned to sandy and mixed sediments in the central and western WAA, with the ECR comprising more complex heterogenic mixed and coarse sediments.

The sediment composition had limited variation across the survey area, with sand being the dominant sediment fraction. The PCA grouped the samples, nearly equally weighted, based on the gravel-to-mud ratio and sand content.

Metal concentrations were generally low, with threshold values exceeded at seven (7) sites, out of which six (6) were due to elevated arsenic levels and one (1) due to elevated cadmium levels. Arsenic levels correlated with distance to shore as sample concentrations decreased with increased eastings of the sample sites. Carbon and organic content generally had limited variation whereas hydrocarbon concentrations were variable, with concentrations of PAHs exceeding threshold values at five (5) sites. Hydrocarbons were generally higher at the WAA sites, but no evident correlation was identified.

The phyletic composition from grab samples, both regarding the total number of taxa and abundance, was dominated by Annelida. The two most abundant taxa were the mollusc *Kurtiella bidentata* and the annelid *Scoloplos armiger*. *K. bidentata* had a total abundance of 203 individuals and occurred in 52 % of the grab samples. *S. armiger* had a total abundance of 154 individuals and occurred in 73 % of the grab samples.

The univariate indices Pielou's Evenness index, Shannon-Wiener index, and Simpson's Index of Dominance had a limited variation, were as Margalef's Richness Index presented a slightly higher variation across the grab samples. The number of taxa and the number of individuals varied between 14 - 68 taxa and 24 - 506 (ind./m<sup>2</sup>), respectively per grab sample site. Four key sites were identified when analysing the univariate indices. Grab sample site ECR\_S54, identified in habitat **MC32** - Atlantic circalittoral coarse sediment, presented the lowest number of taxa as well as the lowest value of Margalef's Richness Index. Grab sample site ECR\_S57, identified in habitat **MC32** - Atlantic circalittoral coarse sediment, presented the lowest value of Shannon-Wiener index as well as Simpson's Index of Dominance. Grab sample site ECR\_S41, identified in habitat **MC2211** - *Sabellaria spinulosa* on stable Atlantic circalittoral mixed sediment, presented the highest number of taxa, number of individuals and the largest value of Margalef's Richness Index. Grab sample site WAA\_S36, identified in habitat **MC62** - Atlantic circalittoral mud, presented the largest values of Pielou's Evenness index and Simpson's Index of Dominance.

The SIMPROF analysis of the non-colonial faunal composition produced five (5) statistically distinct groups. The sample similarity explored in the nMDS-plot presented a stress value of 0.15.

In the results of the BEST analysis limited to a single variable, Gravel was the most distinguished variable with a global correlation ( $\sigma$ ) of 0.649 and was the statistically significant variable for the distribution of the biological data. The strength of this correlation is considered moderate (Taylor, 1990).

In the results of the BEST analysis using multiple variables, Depth, Arsenic, Gravel and Mud together were the most distinguished variables with a global correlation ( $\sigma$ ) of 0.689 and were statistically significant variables for the distribution of the biological data. The strength of this correlation is considered high (Taylor, 1990).

Bryozoa followed by Cnidaria, had the highest frequency of occurrence and presented the highest number of different taxa in the sessile colonial epifauna. The biomass was dominated by Mollusca with 48 % of the total biomass, followed by Echinodermata with 29 %. The total non-colonial fauna biomass varied between 0.2143 (g/0.1 m<sup>2</sup>) in sample WAA\_S30, to 21.3083 (g/0.1 m<sup>2</sup>) in sample WAA\_S34. The mean biomass across all sites was 2.9884 (g/0.1 m<sup>2</sup>) (SD=4.5452).

Grab sampling site ECR\_S52 presented the highest number of taxa from the analysis of the stills, with a total of 30 different taxa.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

The most abundant phyla of non-colonial fauna were Arthropoda with 33 %, followed by Cnidaria and Annelida with 22 % and 19 %, respectively. The sand mason worm, *L. conchilega* was the overall most frequently occurring taxa, with the frequency of 59 % per site and 16 % per still.

The average density of non-colonial fauna varied from zero (0) (ind./m<sup>2</sup>) at grab sample sites WAA\_S23, WAA\_S27 and WAA\_S31 to 50 (ind./m<sup>2</sup>) at grab sample site ECR\_S52. The average non-colonial fauna abundance per grab sample site still was ten (10) (SD=10) (ind./m<sup>2</sup>).

Annelida represented the phylum with taxa covering the largest surface area, with 87 %. Cnidaria and Bryozoa contributed 10 % and 3 % of the recorded taxa in stills, respectively, followed by Porifera with <1 %.

Hydrozoa was the most frequently occurring colonial taxa identified per site, with the frequency of 60 % and occurred in 35 sites. *S. spinulosa* was the most frequently occurring taxa per still, with the frequency of 22 % and occurred in a total of 93 stills. The average coverage of colonial fauna from stills varied from 0 % to 78 % (ECR\_S47). The average cover of fauna was 8.08 % (SD= 19.9). The average percentage coverage was overall highest along the ECR sites compared to the WAA sites and Annelida was the dominating phylum in a majority of the sites.

A total of six (6) broad scale habitats, including one (1) habitat complex were identified within the survey area. Additionally, taxonomic assemblages from the acquired grab sample data further indicates the presence of 11 species-specific habitats, including seven (7) habitat complexes. One PMF habitat, Offshore subtidal sands and gravels, and one SBL habitat, Subtidal sands and gravels, were also noted present. Although *S. spinulosa* aggregations are frequently present along the ECR and throughout the WAA, the low elevation combined with the high patchiness, none of the ground-truthed sites qualify as Annex I (1170) – Biogenic Reefs.

Three taxa of conservation value were identified within the survey area. These were sandeel *Ammodytes* sp., identified at four (4) sites in the ECR, ocean quahog *A. islandica*, identified at four (4) sites in the WAA and sea pen *Pennatula phosphorea* identified at six (6) sites in the ECR.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

### 8. Reservations

The results in this report are based on the data derived from the faunal grab sampling and still imagery data together with sediment and contaminant analyses from each sample site investigated within this survey, together with interpretations of geophysical data obtained during the geophysical survey conducted in conjunction with the benthic survey. It should be considered that there is a natural limitation in the accuracy of interpretation. Where considered applicable, the sampling results have been extrapolated to constitute a base for verifications also in the surroundings.

The definition of a "Reef" is not defined within the EC Habitats Directive. Areas interpreted as stony reefs in this report are based on methods defined in the JNCC Reports No. 432 "The identification of the main characteristics of stony reef habitats under the Habitats Directive" (Irving, 2009) and JNCC Report No. 656 "Refining the criteria for defining areas with a 'low resemblance' to Annex I stony reef" (Golding, Albrecht, & McBreen, 2020).

The JNCC Report No. 405 "Defining and managing *Sabellaria spinulosa* reefs: Report of an inter-agency workshop1-2 May" (Gubbay, 2007), presents methods for defining *S. spinulosa* reef structures and setting different criteria to assess the quality of the reef. The report stated the following as the baseline for the definition of *S. spinulosa* reefs:

"The simplest definition of Sabellaria spinulosa reef in the context of the Habitats Directive was considered to be an area of Sabellaria spinulosa which is elevated from the seabed and has a large spatial extent. Colonies may be patchy within an area defined as reef and show a range of elevations."

A number of evaluation criteria were agreed upon in this report to be considered as "a starting point for wider discussion rather than accepted and fully agreed thresholds for *Sabellaria spinulosa* reef identification" (Gubbay, 2007).

00

ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

### 9. References

- Blott, J. S., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Science Processes and Landforms, 26*, 1237-1248.
- Brazier, P. (2020). *Defining 'Reefiness' inclusion of 'low stony reef' as Annex I Reef feature*. Working paper by Natural Resources Wales NRW.
- British Standard. (2010). Methods of test for soils for civil engineering purposes 1377-2:1990. BSI.
- CCME. (1995). Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic *life.*
- CCME. (2001). Canadian sediment quality guidelines for the protection of aquatic life: Introduction. Updated.
- Clarke, K. R. (2015). PRIMER v7: User Manual/Tutorial. Plymouth: Plymouth Marine Labratory.
- Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation. (2nd). Plymouth: Plymouth Marine Labratory.
- Collins, P. (2010). Modified EC Habitats Directive Modified EC Habitats Directive Annex I Sabellaria spinulosa Reefiness Assessment Method (after Gubbay, 2007).
- Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., . . . Vincent, M. (2001). *Marine Monitoring Handbook.* Peterborough: JNCC.
- EEA. (2022, 06 30). European Environment Agency (EEA). Retrieved from EUNIS habitat classification: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1
- EUR 28. (2013). Interpretation manual of European Union Habitats. COMMISSION, EUROPEAN.
- Fariñas-Franco, J., Pearce, B., Porter, J., Harries, D., Mair, J., Woolmer, A., & Sanderson, W. (2014). Marine Strategy Framework Directive Indicators for Biogenic Reefs formed by Modiolus modiolus, Mytilus edulis and Sabellaria spinulosa. Part 1: Defining and validating the indicators, JNCC Report No. 523. Peterborough: JNCC.
- Golding, N., Albrecht, J., & McBreen, F. (2020). *Refining criteria for defining areas with a 'low resemblance' to Annex I stony reef; Workshop Report.* Peterborough: JNCC Report No. 656.
- Gubbay, S. (2007). Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency workshop Report of an inter-agency workshop. Joint Nature Conservation Committee.
- Hin, J. A., Osté, L. A., & Schmidt, C. A. (2010). *Guidance document for Sediment Assessment*. Ministry of Infrastructure and the Environment.
- Holt, T., Rees, E., Hawkings, S., & Seed, R. (1998). *Biogenic Reefs (volume IX). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs.* Scottish Association for Marine Science (UK Marine SACs Project).
- Irving, R. (2009). The identification of the main characteristics of stony reef habitats under the Habitats Directive. Summary report of an inter-agency workshop 26-27 March 2008. Peterborough: JNCC Report No.432.
- JNCC. (2019). Article 17 Habitats Directive Report 2019.
- Long, D. (2006). BGS detailed explanaton of seabed.
- Lurton, X., Lamarche, G., Brown, C., Lucieer, V. L., RIce, G., Schimel, A., & Weber, T. (2015). Backscatter measurements by seafloor-mapping sonars: guidelines and recommendations. A collective report by members of the GeoHab Backscatter Working Group. Retrieved from http://geohab.org/wpcontent/uploads/2014/05/BSWG-REPORT-MAY2015.pdf
- Mason, C. (2022). NMBAQC Guidelines for Particle Size Analysis for Supporting Biological Analysis. NMBAQC.
- MMO. (2015). High level review of current UK action level guidance. A report produced for the Marine. *MMO Project No. 1053*.



#### ENVIRONMENTAL BASELINE REPORT | 104052-SBE-OI-SUR-REP-ENVSURRE

- NEA. (2016, revised 2020). *Grenseverdier for klassifisering av vann, sediment of biota. report M-608.* Norwegian Environmental Authority (Miljødirektoratet).
- OSPAR. (2008). Case Reports for the OSPAR List of Threatened and/or Declining Species and Habitats.
- OSPAR. (2011). CEMP 2011 assessment report.
- Pearce, B. a. (2020). The Status of Sabellaria spinulosa Reef off the Moray Firth and Aberdeenshire Coasts and Guidance for Conservation of the Species off the Scottish East Coast. *Scottish Marine and Freshwater Science*.
- Sanders, H. L. (1958). Benthic Studies in Buzzards Bay. I. Animal-Sediment Relationships. *Limnology and Oceanography*, 245-258.
- SBL. (2009). *Biodiversity Scotland*. Retrieved from Scottish Biodiversity List: http://www.biodiversityscotland.gov.uk/
- Smeaton, C., Hunt, A. C., Turrell, R. W., & Austin, E. W. (2021, 03 07). Marine Sedimentary Carbon Stocks of the<br/>United Kingdom's Exclusive Economic Zone.<br/>https://www.frontiersin.org/articles/10.3389/feart.2021.593324/full.<br/>Retrieved from Frontiers:<br/>https://www.frontiersin.org/articles/10.3389/feart.2021.593324/full
- Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. *Journal of diagnostic medical sonography*, 35-39.
- Tyler-Walters, H., James, B., Carruthers, M. (., Wilding, C., Durkin, O., & Lacey, C. (2016, January 10). *Descriptions* of Scottish Priority Marina Features (PMFs). Scottish Natural Heritage Commissioned Report No. 406. Retrieved from http://www.snh.gov.uk/: http://www.snh.gov.uk/docs/A1327320.pdf
- Worsfold, T., Hall, D., & O'Reilly, M. (2010). *Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol.* NMBAQC.



Appendix A Geophysical Overview of Sample Locations

Appendix B Sample Position List

Appendix C Environmental Field Report

Appendix D Photo Identification Results

Appendix E Grab Identification Results

Appendix F Particle Size Analysis Results

Appendix G Chemical Analyses Results

Appendix H GIS Database