

Appendix H.1: Tarbert Ferry Terminal – Subtidal Benthic Ecology Survey Report

Tarbert Ferry Terminal - Subtidal Benthic Ecology Survey Report Aspect Land & Hydrographic Surveys Ltd. APEM Ref P00002178 January 2018

Redacted

Client:	Aspect Land & Hydrographic Surveys Ltd.
Address:	Unit 1, Thornhouse Business Centre Ballot Road Irvine KA12 0HW Ayrshire
Project reference:	P00002178
Date of issue:	31 st January 2018

Project Director: Redacted

Project Manager: Redacted

APEM Ltd The Technopole Centre Milton Bridge Nr Penicuik Midlothian EH26 0PJ

> Tel: 0131 526 3186 Fax: 0161 432 6083

Registered in England No. 02530851

Report should be cited as:

"Tarbert Ferry Terminal - Subtidal Benthic Ecology Survey Report (January, 2018). APEM Scientific Report P000002178a. Aspect Land & Hydrographic Surveys Ltd. 15pp."

Revision and Amendment Register

Version Number	Date	Section(s)	Page(s)	Summary of Changes	Approved by
1	25/01/2018	All	All	Document creation	Re
2	31/01/2018	2	All	Amendment following ALHS review	Re

Contents

1.	Intro	oduct	tion1
2.	Met	hodo	logy2
2	.1	Field	d survey2
	2.1.	1	Underwater video survey2
	2.1.	2	Grab sampling survey5
2	.2	Sam	nple analysis7
	2.2.	1	Macrobenthic analysis of grab samples7
	2.2.	2	PSD analysis of grab samples8
	2.2.	3	Imagery analysis of underwater video capture8
3.	Res	ults.	
3	3.1 Macrobenthic analysis data10		
3	3.2 PSD analysis data10		
3	3.3 Underwater video data13		
3	.4	Tark	pert Harbour biotope mapping15
4.	Ref	erend	ces16
Ар	pend	ix 1	Macrobenthic data from grab samples
Ар	Appendix 2 PSD data from grab samples		

Appendix 3 Underwater video analysis log

List of Figures and Tables

Figure 2-1 The survey vessel Remote Sensor used for the Tarbert Ferry Terminal subtidal benthic ecology surveys
Figure 2-2 Tarbert Ferry Terminal transect location specification for underwater video survey4
Figure 2-3 Location of the underwater video transect routes, with arrows indicating the transect direction flow, and location of the grab sampling stations
Table 2-1 Start and end point coordinates for each underwater video transect. Coordinates are presented in the Ordnance Survey/British National Grid Project Coordinate System format.

Table 2-2 Coordinates for each grab sample station. Coordinates are presented in theOrdnance Survey/British National Grid Project Coordinate System format
Figure 2-4 Unsieved grab sample from Station 4 in Tarbert Harbour7
Figure 2-5 Folk sediment classification pyramid (Folk, 1954)8
Table 3-1 Prevailing water depth and salinity conditions at the time of collection of each macrobenthic grab sample
Table 3-2 Biotopes assigned to macrobenthic grab samples
Table 3-3 Prevailing water depth and salinity conditions at the time of collection of each PSD grab sample
Table 3-4 Visual descriptions and Folk (1954) classifications of PSD grab samples11
Figure 3-1 Sediment classification distribution graphs for each sample station
Figure 3-2 SS.SMu.IFiMu – Infralittoral fine mud13
Figure 3-3 SS.SMx – Sublittoral mixed sediment13
Figure 3-4 LR.LLR.F.Fser.X – <i>Fucus serratus</i> on full salinity lower eulittoral mixed substrata
Figure 3-5 Transect routes with mapped biotopes overlaid14
Figure 3-6 Tarbert Harbour mapped subtidal benthic biotopes

1. Introduction

APEM Ltd has been commissioned to undertake a survey of the subtidal benthic ecological habitats and species present in Tarbert Harbour on the Isle of Harris, on behalf of Aspect Land & Hydrographic Surveys (ALHS) and Caledonian Maritime Assets Ltd (CMAL). Tarbert Ferry Terminal is located in a sheltered bay on the east coast of the Isle of Harris, and provides a direct ferry link to the Isle of Skye. This survey will provide data to enable an Environmental Impact Assessment (EIA) of proposed improvements to Tarbert Ferry Terminal (the proposed development) to be conducted.

In accordance with Saunders et al. (2011), this survey will gather information for the EIA process by identifying whether there are any benthic habitats or species of note present (i.e. priority, rare, protected or invasive) and identify the spatial distribution and abundance of these species in the area. This will allow an assessment to be conducted of how these habitats or species will be affected by the proposed development and the significance or implications of any damage or loss incurred, which is beyond the scope of this survey report but it is understood will be conducted by CMAL and Affric Ltd. for the proposed development.

The aim of the survey was to collect underwater video and grab samples to provide data on the subtidal benthic ecology habitats, community composition and sediment composition within the area of the proposed development, to enable the subtidal benthic ecology of Tarbert Harbour to be characterised, and the effect of the improvements to Tarbert Ferry Terminal to be assessed.

This report provides a full description of the survey and analysis conducted by APEM Ltd. to obtain the data for characterisation, and the complete datasets for use along with a summary description of the datasets obtained.

2. Methodology

2.1 Field survey

All survey permissions, including a Marine Licence Exemption and Crown Estate Consent, were obtained by CMAL prior to the survey commencing.

The survey operations were conducted in December 2017 from the vessel Remote Sensor, operated by ALHS and shown in Figure 2-1 below. Remote Sensor is an 8.4m catamaran survey vessel (MCA Cat III) with high manoeuvrability, which was an essential requirement due to the constrained characteristics of the survey area.

The survey was overseen by an attending marine ecologist from Affric Ltd., on behalf of CMAL, who conducted quality assurance during the survey and specified grab sample locations whilst on-site using the footage from the underwater video.

The methodologies for collection of the underwater video and grab samples are provided in Sections 2.1.1 and 2.1.2 below respectively.

Figure 2-1 The survey vessel Remote Sensor used for the Tarbert Ferry Terminal subtidal benthic ecology surveys

2.1.1 Underwater video survey

The underwater video survey was conducted on the 12th December 2017 in daylight hours.

Although not yet operational at the time of the survey, a new floating pontoon had been installed shortly prior to the survey. The pontoon anchorage and other entanglement hazards likely to be present in the area as a result of the new pontoon were considered in the survey design phase, leading to the requirement for use of a Remote Operated Vehicle (ROV) for the underwater video survey, rather than a Drop Down Video (DDV) camera.

APEM's methodology was discussed with Scottish Natural Heritage (SNH), who confirmed that they were content with the use of a video system, and that there was not a requirement to use a camera system capable of taking independent still photographs. Instead, SNH requested pauses in the transects to allow capture of the seabed:

"The proposed benthic baseline monitoring grid at Tarbert looks suitable and I'd be content that the transects are taken between the months you have indicated - please ensure there is sufficient lighting and the operator makes frequent 'pauses' in the footage to allow the camera to capture a 'still' of the seabed (approximately every 20-30 metres). The pauses should be long enough to let any sediment plume disperse and allow the camera focus (if on auto) to perform. Should the survey discover any sensitive habitat or species of conservation interest it'd be helpful to chart its full character and extent by adapting the methodology at the time of survey. This would avoid any possible requirement to re-survey should anything of conservation importance be found (unlikely as that may be)."

APEM was provided with a specification of transect routes for the underwater video survey, shown in Figure 2-2, which had been discussed and agreed with Scottish Natural Heritage (SNH) by CMAL and Affric Ltd. prior to the pontoon being constructed. APEM was therefore allowed dispensation to adapt the transect routes whilst on-site to avoid the pontoon and pontoon anchorage if required due to accessibility or entanglement risk, whilst still maintaining a series of transects across the site (approximately south west to north east) and a single transect down the site and seabed contours (approximately south east to north west).

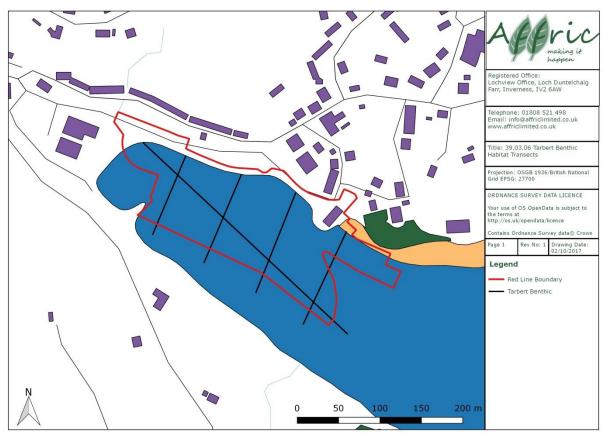


Figure 2-2 Tarbert Ferry Terminal transect location specification for underwater video survey

The underwater video transects were completed using Subsea Technology and Rental's (STR) "BlueROV2", a small hand-launch 6-thruster ROV with a high-definition 1080p resolution camera. The ROV was flown by a trained ROV pilot provided by STR, and the transect routes flown are shown in Figure 2-3, with grid coordinates of the start and end points of each transect given in Table 2-1. Whilst APEM had to make small adjustments to the transect routes to avoid entanglement, these were limited given the choice of a manoeuvrable vessel and ROV system, and so the transects were obtain in a similar layout to the required specification.

Although most of the underwater video transects were conducted from south west to north east, Transect 4 was repeated in the opposite direction due to some bottom low visibility on the first attempt. The second attempt collected enough data to integrate with the first passage.

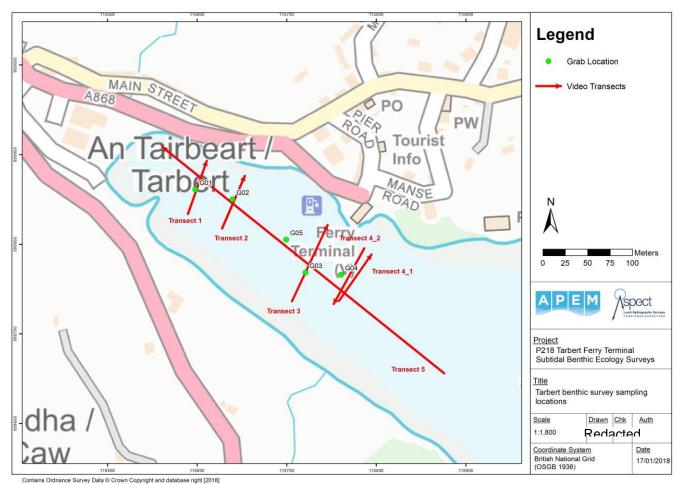


Figure 2-3 Location of the underwater video transect routes, with arrows indicating the transect direction flow, and location of the grab sampling stations.

presented in the Ordnance Survey/British National Ord Project Coordinate System for				
Underwater video	Start coordinates		End coordinates	
transect	X	Y	X	Y
Transect 1	115589	899833	115611	899893
Transect 2	115628	899818	115653	899876
Transect 3	115706	899736	115746	899821
Transect 4_1 (original)	115758	899737	115795	899789
Transect 4_2 (repeated)	115787	899785	115752	899733
Transect 5	115788	899656	115561	899908

Table 2-1 Start and end point coordinates for each underwater video transect. Co	oordinates are
presented in the Ordnance Survey/British National Grid Project Coordinate Syste	tem format.

2.1.2 Grab sampling survey

The subtidal grab sampling survey was conducted on the 13th December 2017 in daylight hours.

No specification for the number or location of the grab sampling stations was provided by CMAL or Affric Ltd. prior to the survey, as the grab sampling stations were to be sited by Affric Ltd.'s attending marine ecologist based on the findings of the underwater video survey conducted on 12th December 2017.

During the survey design phase, it was specified by CMAL and Affric Ltd. that there was no requirement to obtain replicate grab samples for macrobenthic analysis. It was stated that the purpose of the survey was to characterise the subtidal benthic ecology habitats, community composition and PSD to assess the habitat and species types that may be lost as a result of the proposed development. As the habitats surveyed will be lost under the footprint of the proposed development they will be subject to a direct effect, and so there is no requirement to obtain replicate grab samples for compilation of a baseline dataset upon which a future monitoring programme for indirect effects could be defined. This also meant that there was no requirement to conduct formal *a priori* statistical power analysis to define the number of samples required by the survey, as the data collected prior to construction would not be quantitatively compared to any data collected post-construction and as such the statistical power of the survey design was not a relevant consideration.

Following review of the underwater video survey outputs, APEM proposed five grab sampling station locations within Tarbert Harbour that were agreed with Affric Ltd., and these are shown on Figure 2-3 with coordinates provided in Table 2-2. At each of these stations, grab samples were collected for macrobenthic and Particle Size Distribution (PSD) analysis using a 0.1 m² Day Grab. A single grab sample was obtained for macrobenthic analysis, and a further separate single grab sample was obtained for PSD analysis as close as possible to the original macrobenthic grab sample location.

Table 2-2 Coordinates for each grab sample station. Coordinates are pres	sented in the
Ordnance Survey/British National Grid Project Coordinate System format	

Grab sample station	Site code	X	Y
Station 1	G01	115598	899861
Station 2	G02	115640	899850
Station 3	G03	115721	899768
Station 4	G04	115761	899766
Station 5	G05	115700	899805

Whilst conducting the grab sampling, a minimum sediment volume limit of 5 litres was defined as an acceptable size for a grab sample to be considered successful. If this minimum volume was not obtained then a further two attempts were to be made at the same location, followed by three attempts at a different location at least 50m from the original target. At station 3, the first PSD grab attempt was rejected due to a stone blocking the grab jaws. The second attempt retrieved a suitable size sample (>7I).

For each grab attempt the following information was recorded on the survey log-sheet:

- Survey name, location and project code;
- Survey Date;
- Survey Team staff;
- Site information including: site/replicate, sample position (lat/lon; WGS84), collection time, water depth, weather conditions;
- Sampling equipment including sieve mesh size;
- Salinity for later use in the WFD IQI calculation
- Sample description, including sediment description, grab depth in cm, volume, type, profile, concretions, surface features, burrows, algae, colour and colour changes, smell, etc.;

- Any obvious or notable (e.g. Annex 2 species) taxa observed;
- Notes (e.g. anoxia, anthropogenic debris, any problems encountered, etc.);
- Photograph of the unsieved sample (an example is presented in Figure 2-4 below).

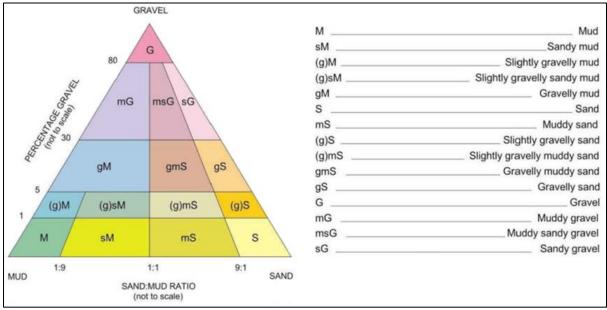
Figure 2-4 Unsieved grab sample from Station 4 in Tarbert Harbour.

Biological samples were sieved on board through a 1.0mm sieve as is standard for subtidal surveys in marine conditions. All material retained on the sieves was fixed with 4% buffered formaldehyde solution in seawater and stored in sealed crates.

2.2 Sample analysis

2.2.1 Macrobenthic analysis of grab samples

Samples were processed according APEM's in-house Standard Operating Procedures (SOP's) and in full compliance with North East Atlantic Marine Biological Analytical Quality Control Scheme (NMBAQC) guidance (Worsfold and Hall, 2010). To standardise the sizes of organisms and improve sorting efficiency, samples were sieved through a stack of sieves of 4.0, 2.0 and 1.0 mm meshes in a fume cupboard following UKTAG guidance for benthic invertebrate sample analysis for coastal waters (WFD-UKTAG, 2014). All biota retained in the sieves were then extracted under low power microscopes, identified and enumerated, where applicable.


Taxa were identified to the lowest possible practicable taxonomic level using the appropriate taxonomic literature. For certain taxonomic groups (e.g. nemerteans and, nematodes), higher taxonomic levels were used due to the widely acknowledged lack of appropriate identification tools for these groups. The NMBAQC Scheme has produced a Taxonomic Discrimination Protocol (TDP) (Worsfold and Hall 2010) which gives guidance on the most appropriate level to which different marine taxa should be identified, and this guidance was adhered to for the laboratory analysis. Where required, specimens were also compared with material maintained within the laboratory reference collection. Nomenclature followed the World Register of Marine Species (WoRMS), except where more recent revisions were known to supersede WoRMS.

At least one example of each taxon recorded from the surveys was set aside for inclusion in APEM's in-house reference collection. This collection acts as a permanent record of the biota recorded.

2.2.2 PSD analysis of grab samples

PSD analysis was performed in accordance with NMBAQC Scheme best practice guidance for PSA for supporting biological analysis (Mason, 2016). A combination of dry sieving and laser diffraction was used due to the range of particle sizes present in the samples.

The PSA data were entered into GRADISTAT (Blott and Pye, 2001) to produce sediment classifications, following Folk (1954) (Figure 2-5). Summary statistics were also calculated including mean particle size, sorting, skewness and kurtosis (following Blott and Pye, 2001).

2.2.3 Imagery analysis of underwater video capture

The underwater video was analysed by an experienced marine benthic taxonomist and image analyst to provide habitat/biotope extent and transition data and enable the identification of any small-scale habitats outside the subtidal grab sampling target habitats (such as rock outcrops).. The video captures for each transect were re-played in the laboratory and the biotopes and notable taxa along each transect identified and recorded.

The timing of the transitions between each habitat along the transects in the underwater video were also noted, and these were then related to the ROV and vessel position within the survey logs to identify the position of habitat transitions.

3. Results

3.1 Macrobenthic analysis data

The full suite of enumerated macrobenthic data from each grab sample is provided in Appendix 1. A summary of the prevailing conditions at the time of each macrobenthic grab sample is provided in Table 3-1 below, and the biotopes assigned to each grab sample are provided in Table 3-2. The most abundant species was the Polychaete *Lumbrineris cingulata* agg. with more than 300 individuals across 5 samples and an abundance peak of more than 160 individuals in Station 3. The most abundant Mollusc was the Gastropod *Philine quadripartita* with 82 individuals in Station 2.

Table 3-1 Prevailing water depth and salinity conditions at the time of collection of each	
macrobenthic grab sample	

Grab sample station	Collection time	Water depth (m)	Volume (l)	Salinity (ppm)
Station 1	10:06	0.7	10	35.66
Station 2	13:05	1.5	9.8	35.94
Station 3	12:19	4.2	10	35.96
Station 4	11:35	5.2	10	35.48
Station 5	13:46	3	7	35.67

Table 3-2 Biotopes assigned to macrobenthic grab samples

Grab sample station	Biotope	Description
Station 1	SS.SMu.ISaMu	Infralittoral sandy mud
Station 2	SS.SMu.IFiMu.PhiVir	Philine aperta and Virgularia mirabilis in soft stable infralittoral mud
Station 3	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel
Station 4	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel
Station 5	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel

3.2 **PSD** analysis data

The full suite of PSD analysis data from each grab sample is provided in Appendix 2. A summary of the prevailing conditions at the time of each PSD grab sample is provided in Table 3-3 below and the Folk (1954) classifications provided in Table 3-4. Finally, histograms of particle size classifications are presented in Figure 3-1 for each PSD grab sample.

grab sample				
Grab sample station	Time	Water depth (m)	Volume (l)	Salinity (ppm)
Station 1	10:37	0.7	10	35.66
Station 2	14:16	1.5	10	35.94
Station 3	12:55	4.2	7	35.96
Station 4	12:10	5.3	10	35.48
Station 5	14:07	3	9.8	35.67

Table 3-3 Prevailing water depth and salinity conditions at the time of collection of each PSD grab sample

Table 3-4 Visual descriptions and Folk (1954) classifications of PSD grab samples

Grab sample station	Visual description of >1 mm fraction	Folk (1954) classification
Station 1	Slag/cinders, shell and organics including peat	Gravelly Mud
Station 2	Very minor shell	Slightly Gravelly Sandy Mud
Station 3	Degraded shell, gravel/slag	Muddy Gravel
Station 4	Largely shell	Gravelly Mud
Station 5	Largely shell	Gravelly Mud

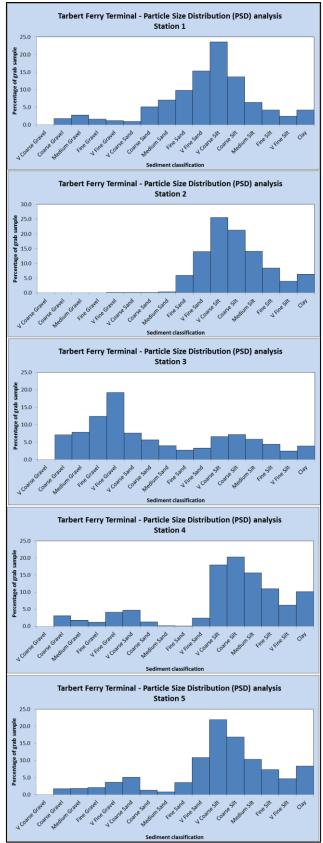


Figure 3-1 Sediment classification distribution graphs for each sample station

3.3 Underwater video data

The full suite of habitat classification data for each transect is provided in Appendix 3. The biotopes found to be present in Tarbert Harbour, with example images of each biotope from the underwater video survey, are provided in Figures 3-2, 3-3 and 3-4. The biotopes identified by the underwater video imagery have been mapped along each of the transect routes in Figure 3-5.

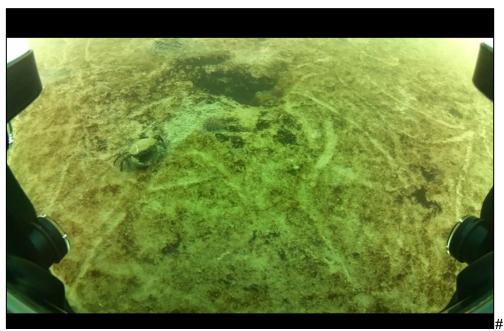


Figure 3-2 SS.SMu.IFiMu – Infralittoral fine mud

Figure 3-3 SS.SMx – Sublittoral mixed sediment

Figure 3-4 LR.LLR.F.Fser.X – *Fucus serratus* on full salinity lower eulittoral mixed substrata

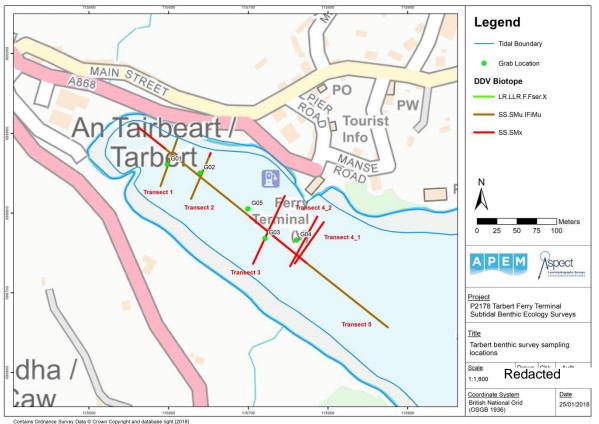


Figure 3-5 Transect routes with mapped biotopes overlaid

3.4 Tarbert Harbour biotope mapping

The macrobenthic count data, PSA data and underwater video biotope classification data has been compiled to allocate biotopes to each point along the underwater video transects and at the grab sample stations. Biotopes were allocated following JNCC's National Marine Habitat Classification for Britain and Ireland: Version 04.05 (Connor *et al.* 2004). EUNIS codes corresponding to each biotope have also been provided (JNCC 2010, Parry 2015).

As the survey coverage across Tarbert Harbour has transects running across the harbour and down the full length of the shore and at various depths, it has been possible to extrapolate between the known biotopes along the transects to provide a more complete biotope map of the harbour. This plan is shown in Figure 3-6. It is acknowledged that this is an extrapolation of the known data and so the biotope assignment away from the transects and grab sample locations is with a lower level of confidence to the biotope assignment at the grab sample stations and transects.

The biotope map presented in Figure 3-6 is an interpretive map based on an extrapolation of the raw data collected in the grab samples and along the underwater video transects, to delineate approximate habitat biotope boundaries within Tarbert Harbour. Following the approach set out by Saunders et al. (2011) the confidence in this biotope map would be enhanced by conducting a geophysical survey of the harbour to allow the grab sample point data and underwater video line data to act as reference points for the habitats in the rest of the harbour defined using the geophysical survey.

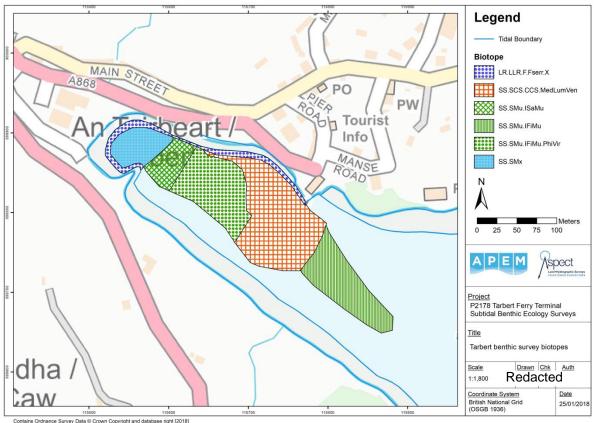
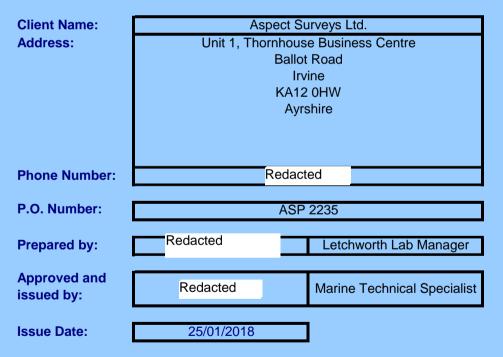


Figure 3-6 Tarbert Harbour mapped subtidal benthic biotopes

4. References

- Blott, S. J. & Pye, K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms* 26, 1237-1248.
- Connor, D. W., Allen J. H., Golding, N., Howell, K. L., Lieberknecht, L. M., Northen, K. O., Reker, J. B. 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough ISBN 1 861 07561 8 (internet version). Available <u>online</u>.
- Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. *Journal of Geology* 62(4): 344-359.
- JNCC, 2010. Handbook for Phase 1 habitat survey a technique for environmental audit, ISBN 0 86139 636 7.
- Mason, C. 2016. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 77pp, First published 2011, updated January 2016. Available <u>online.</u>
- Parry, M. E. V. 2015. Guidance on Assigning Benthic Biotopes using EUNIS or the Marine Habitat Classification of Britain and Ireland *JNCC report* No. 546.
- Proudfoot, R. K., Elliott, M., Dyer, M. F., Barnett, B. E., Allen, J. H., Proctor, N. L., Cutts, N., Nikitik, C., Turner, G., Breen, J., Hemmingway, K. L. & Mackie, T. 2003. Proceedings of the Humber Benthic Field Methods Workshop, Hull University 1997. Collection and processing macrobenthic samples from soft sediments: a best practice review. Environment Agency R&D Technical Report E1 – 13/TR, 128pp. Available online.
- Saunders, G., Bedford, G. S., Trendall, J. R., and Sotheran, I. 2011. Guidance on survey and monitoring in relation to marine renewables deployments in Scotland. Volume 5. Benthic Habitats. Unpublished draft report to Scottish Natural Heritage and Marine Scotland.
- Thomas, N. S. 2001. Procedural Guideline No. 3-9. Quantitative sampling of sublittortal sediment biotopes and species using remote-operated grabs. In: Marine Monitoring Handbook, ed. by J. Davies, J. Baxter, M. Bradley, D. Connor, J. Khan, E. Murray, W. Sanderson, C. Turnbull and M. Vincent, 275-283. Joint Nature Conservation Committee, Peterborough.
- WFD UKTAG. 2014. UKTAG Transitional and Coastal Water Assessment Method Benthic Invertebrate Fauna. Infaunal Quality Index.
- Worsfold, T. M., Hall, D. J. & O'Reilly, M. (Ed.) 2010. Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol: Version 1.0, June 2010. Unicomarine Report NMBAQCMbPRP to the NMBAQC Committee. 33pp. Available <u>online</u>.

Appendix 1 Macrobenthic data from grab samples



APEM Ltd. Diamond Centre Works Road Letchworth Herts, SG6 1LW

Marine Benthic Invertebrate Analysis Report

The analysis on adjacent tab(s) of this workbook has been carried out by APEM Ltd under method MINV-01.

If you have any comments or complaints regarding this or any other piece of work conducted by APEM Ltd, please contact Redacted

APEM Report No. P00002178-01

APEM Report No	. P00002178-01									
Sample Number	Sample Date	Sample Method	Watercourse	Site Description	Analysis Type	Analysis Date	Analyst	QC Date	APEM location	Notes
60531	13/12/2018	Day Grab	Isle of Harris	Grab St. 1	1.0mm mesh	08/01/2018	CA	08/01/2018	Letchworth	-
60532	13/12/2018	Day Grab	Isle of Harris	Grab St. 2	1.0mm mesh	04/01/2018	CA	04/01/2018	Letchworth	-
60533	13/12/2018	Day Grab	Isle of Harris	Grab St. 3	1.0mm mesh	08/01/2018	NP	08/01/2018	Letchworth	-
60534	13/12/2018	Day Grab	Isle of Harris	Grab St. 4	1.0mm mesh	04/01/2018	NP	04/01/2018	Letchworth	-
60535	13/12/2018	Day Grab	Isle of Harris	Grab St. 5	1.0mm mesh	04/01/2018	CA	05/01/2018	Letchworth	-

APEM Re	port No. P00002178-01				
	Sample Number		60531	60532	60533
	Sample Date		13/12/2018	13/12/2018	13/12/2018
	Sample Method		Day Grab	Day Grab	Day Grab
	Watercourse		Isle of Harris	Isle of Harris	Isle of Harris
	Site Description		Grab St. 1	Grab St. 2	Grab St. 3
	Analysis Type		1.0mm mesh	1.0mm mesh	1.0mm mesh
	Analysis Date		08/01/2018	04/01/2018	08/01/2018
	Analyst		CA	CA	NP
Code	Taxa ID	Qualifiers	60531	60532	60533
D0759	Edwardsiidae		-	-	2
F0002	Turbellaria		-	-	1
G0001	Nemertea		-	-	6
G0047	Lineidae		-	-	-
HD0001	Nematoda		-	2	8
K0030	Loxosomella murmanica		-	-	Р
N0014	Golfingia elongata		-	-	1
N0017	Golfingia vulgaris		-	-	2
N0034	Phascolion strombus		-	-	2
P0050	Malmgrenia darbouxi		-	-	12
P0065	Harmothoe impar	aggregate	-	-	4
P0067	Malmgrenia arenicolae		-	-	2
P0092	Pholoe baltica (sensu Petersen)		-	-	2
P0094	Pholoe inornata (sensu Petersen)		-	-	-
P0118	Eteone longa	aggregate	-	-	3
P0152	Eulalia bilineata		-	-	2
P0167	Eumida sanguinea	aggregate	-	-	15
P0176	Paranaitis kosteriensis		-	-	-
P0256	Glycera alba		-	-	-
P0260	Glycera lapidum	aggregate	-	-	5
P0268	Glycinde nordmanni		-	-	-
P0271	Goniada maculata		-	-	-
P0305	Psamathe fusca		-	-	8
P0312	Oxydromus pallidus		-	-	2
P0313	Oxydromus flexuosus		-	-	2
P0319	Podarkeopsis capensis		-	-	11
P0358	Syllis parapari		-	-	2
P0421	Parexogone hebes		-	-	2
P0494	Nephtys	juvenile	43	18	-
P0499	Nephtys hombergii		7	13	-
P0574	Lumbrineris cingulata	aggregate	-	-	138
P0638	Protodorvillea kefersteini		-	-	28
P0699	Paradoneis lyra		-	-	-
P0722	Aonides oxycephala		-	-	8
P0731	Laonice	juvenile	-	-	-
P0750	Dipolydora coeca		-	-	-
P0754	Dipolydora flava		-	-	1
P0761	Dipolydora saintjosephi		-	-	3
P0765	Prionospio fallax		2	1	-
P0790	Spio symphyta		-	-	-
P0804	Magelona alleni		-	-	4
P0806	Magelona minuta		-	-	-
P0827	Chaetozone vivipara		-	1	-
P0829	Caulleriella alata		-	-	-
P0832	Chaetozone elakata		-	-	-
P0840	Dodecaceria		-	-	-

Sample Number 60531 60532 60533 Sample Date 13/12/2018 13/12/2018 13/12/2018 Day Grab Sample Method Day Grab Day Grab Day Grab Day Grab Day Grab Site Description Grab St. 1 Grab St. 2 Grab St. 3 Grab St. 3 Analysis Date 0.00/12/018 CA CA NP Code Tax ID Qualifiers 60531 60532 60533 P0989 Macrochaeta - - 3 P0919 Mediomastus fragilis - - 93 P0262 Scalibregma inflatum - - 11 P1025 Scalibregma inflatum - - - P1026 Scalibregma inflatum - - - P1102 Amphintictere auricoma - - - P1124 Melinna palmata - - - P1124 Melinna palmata - - - P1124	APEM Re	port No. P00002178-01				
Sample Method Watercourse Site Description Analysis Type Day Grab Isle of Harris Grab St. 2 Day Grab Isle of Harris Grab St. 2 Day Grab Grab St. 3 Analysis Type 1.0mm mesh Analysis Date Analysis Date 1.0mm mesh 08/01/2018 0.00/01/2018 08/01/2018<		-		60531	60532	60533
Watercourse Site Description Analysis Date Isle of Harris Grab St. 2 Isle of Harris Grab St. 2 Grab St. 3 Grab St. 3 0.0001/2018 0.4001/2018 0.4001/2018 0.4001/2018 0.4001/2018 0.0000 Code Taxa ID Qualifiers 60631 60532 60533 0.0000 Capitella - - 3 0.0000 Capitella - - 931 0.0000 Capitella - - 11 0.022 Scalibregma cellium - - 11 0.023 Notomastus - - - - 0.024 Amphictene auricoma - - - - 0.024 Amphicties gracilis - - - - 0.021 Amphicties gracilis - - - - 0.021 Amphicties gracilis - - - - 0.021 Amphicties gracilis - - - - 0.121 <td></td> <td>Sample Date</td> <td></td> <td>13/12/2018</td> <td>13/12/2018</td> <td>13/12/2018</td>		Sample Date		13/12/2018	13/12/2018	13/12/2018
Site Description Analysis Type Analysis Date Analysis Date Grab St. 1 1.0mm mesh 08/01/2018 Grab St. 2 04/01/2018 Grab St. 2 04/01/2018 <td></td> <td>Sample Method</td> <td></td> <td>Day Grab</td> <td>Day Grab</td> <td>Day Grab</td>		Sample Method		Day Grab	Day Grab	Day Grab
Analysis Type Analysis Date 1.0mm mesh 08/01/2018 0.4/01/2018 0.4/01/2018 0.4/01/2018 0.0/01/2018 Analysis Date CA CA CA CA CA NP Code Taxa ID Qualifiers 60531 600532 60533 P0889 Macrochaeta - - - - P0919 Mediomastus fragilis - - 93 P0923 Notomastus - - 11 P1025 Scalibregma celiuum - - 11 P1026 Scalibregma celiuum - - - P1120 Amphitritides gracilis - - - P1121 Nicolea venustula juvenile - - - P1121 Nicolea venustula juvenile - - - P1216 Pista juvenile - - - P1217 Pista mediterranea - - - - P1216		Watercourse		Isle of Harris	Isle of Harris	Isle of Harris
Analysis Obs Obs <thobs< th=""> Obs <thobs< th=""> <thobs< <="" td=""><td></td><td>Site Description</td><td></td><td>Grab St. 1</td><td>Grab St. 2</td><td>Grab St. 3</td></thobs<></thobs<></thobs<>		Site Description		Grab St. 1	Grab St. 2	Grab St. 3
Analyst CA CA CA NP Code Taxa ID Qualifiers 60531 60532 60533 P0889 Macrochaeta - - 3 P0906 Capitella - - 93 P0923 Notomastus fragilis - - 11 P1026 Scalibregma celticum - - 6 P1026 Scalibregma celticum - - - P1127 Melinna palmata - - - - P1216 Melinna palmata - - - - P1217 Pista moditerranea - - - - P1217 Pista moditerranea -		Analysis Type		1.0mm mesh	1.0mm mesh	1.0mm mesh
Code Taxa ID Qualifiers 60531 60532 60533 P0889 Macrochaeta - - 3 P09906 Capitella - - 93 P09919 Mediomastus fragilis - - 93 P0923 Notomastus - - 11 P1025 Scalibregma inflatum - - 6 P1026 Scalibregma collicum - - 6 P1027 Scalibregma collicum - - 6 P1028 Scalibregma collicum - - 6 P1024 Amphitritides gracilis - - 3 P1174 Terebellides - - 1 P1210 Nicolea venustula - - 1 P1216 Pista mediterranea - - 1 P1215 Sabellidae - - - 2 P1325 Polycitrus - -		Analysis Date		08/01/2018	04/01/2018	08/01/2018
P0889 Macrochaeta - - 3 P0806 Capitella - - - 93 P0819 Mediomastus fragilis - - 93 P0823 Notomastus - - 11 P1025 Scalibregma celticum - - 6 P1026 Scalibregma celticum - - 6 P1120 Amphictene auricoma - - - P1124 Melinna palmata - - 6 P1174 Terebellides gracilis - - - - P11210 Nicolea venusula - - - - P1217 Pista moditerranea - - 1 2 P1235 Polycirus - - - - P1248 Chone fauveli - - - - P1340 Spirobranchus lamarcki - - - - P1341 Sp		Analyst		CA	CA	NP
P0006 Capitella - - - 93 P0019 Mediomastus fragilis - - 93 P0023 Notomastus - - 11 P1025 Scalibregma inflatum - - 6 P1026 Scalibregma cellicum - - - P1033 Galathowenia oculata - - 6 P1124 Melina palmata - - 6 P1124 Melina palmata - - 6 P1124 Melina palmata - - 3 P1125 Nicolea venusula - - 1 P1210 Nicolea venusula - - - P1217 Pista mediterranea - - - P1225 Sabelidae - - - - P1235 Polycirus - - - - P1340 Spirobranchus lamarcki - - -			Qualifiers	60531	60532	
P0919 Mediomastus fragilis - - 93 P0923 Notomastus - - 11 P1025 Scalibregma inflatum - - 6 P1026 Scalibregma celticum - - 1 P1093 Galathowenia oculata - - - P1024 Melina palmata - - 6 P1174 Terebellides - - 3 P1185 Amphiteritides gracilis - - - P1217 Nicolea venustula - - - 1 P1216 Pista mediterranea - - 1 - P1257 Sabellidae - - - - - P1324 Serpulidae - - - - - - P1324 Serpuloranchus lamarcki - - - - - - P1340 Spirobranchus lamarcki - - - - - - S0131 Perioculodes longimanus				-	-	3
P0223 Notomastus - - 11 P1026 Scalibregma inflatum - - 6 P1026 Scalibregma celticum - - 1 P1093 Galathowenia oculata - - - P1102 Amphitetne auricoma - - 6 P1114 Melinna palmata - - 6 P1114 Terebelides - - 3 P1126 Nicolea venustula - - - P1217 Pista mediterranea - - 12 P1235 Polycirrus - - 12 P1257 Sabelidae - - - P1245 Pseudopotamilla - - - P135 Pseudopotamilla - - - P1340 Spirobranchus Imarcki - - - P1341 Spirobranchus Ingueter - - - P1341 Spirobranchus Ingueter - - - P1341 Spirobranchus Im		•		-	-	-
P1025 Scalibregma inflatum - - 6 P1026 Scalibregma celticum - - 1 P1093 Galathowenia oculata - - - P1102 Amphictene auricoma - - - P1102 Amphictene auricoma - - - P1114 Terebellides - - 3 P1185 Amphirtitides gracilis - - 3 P1180 Nicolea venustula - - - 3 P1216 Pista mediterranea juvenile - - 12 P1235 Polycirrus - - 12 - P1246 Chone fauveli - - - - - P1355 Pseudopotamilla - - - - - - P1341 Spirobranchus fingueter - - - - - - - - - - - - - - - - - - - <t< td=""><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td></t<>		-		-	-	
P1026 Scalibregma celticum - - 1 P1023 Galathowenia oculata - - - P1102 Amphictene auricoma - - 6 P11124 Melinna palmata - - 6 P1174 Terebellides - - 3 P1185 Amphitritides gracilis - - 3 P1210 Nicolea venustula - - 3 P1216 Pista juvenile - - 1 P1235 Polycirrus - - 12 12 P1268 Chone fauveli - - - - - P1344 Serpulidae - - - - - P1344 Spirobranchus triqueter - - - - - P1344 Spirobranchus triqueter - <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td></td<>				-	-	
P1093 Galathowenia oculata - - - P1102 Amphictene auricoma - - - P1124 Melinna palmata - - - P1174 Terebellides - - 3 P1185 Amphitritides graciils - - - 3 P1210 Nicolea venustula - - - - P1217 Pista mediterranea - - 12 P1235 Polycirrus - - - - P1246 Chone fauveli - - - - P1257 Sabellidae - - - - P1345 Pseudopotamilla - - - - P1344 Spirobranchus triqueter - - - - P1341 Spirobranchus triqueter - - - - P1341 Spirobranchus triqueter - - 1 - S0503 Cheirocratus female - - 1		-		-	-	
P1102 Amphictene auricoma - - - P1124 Melinna palmata - - 6 P1174 Terebellides - - 3 P1185 Amphitritides gracilis - - 3 P11210 Nicolea venustula - - 3 P1216 Pista juvenile - - 1 P1237 Sabellidae - - 12 P1258 Sabellidae - - - - P1354 Pseudopotamilla - - - - P1354 Hydroides norvegica - - - - P1344 Hydroides norvegica - - - - P1344 Hydroides longimanus - - - - S0131 Perioculodes longimanus - 1 - - S0792 Canthidae juvenile - - 1 S1445 Paguridae juvenile - - 1 V00532 <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>1</td>				-	-	1
P1124 Melinna palmata - - 6 P1174 Terebellides - - 3 P1185 Amphitritides gracilis - - 3 P1210 Nicolea venustula - - 3 P1216 Pista juvenile - - 1 P1217 Pista mediterranea - - 1 2 P1257 Sabellidae - - - - - P1268 Chone fauveli - - - - - P1351 Pseudopotamilla - - - - - - P1343 Spirobranchus lamarcki - - - - - - P1341 Spirobranchus Imarcki - - - - - - - S0131 Perioculodes longimanus - - - - 2 - - - - - - - - - - - - - - -				-	-	-
P1174 Terebellides - - 3 P1185 Amphitritides gracilis - - - P1210 Nicolea venustula - - 3 P1216 Pista juvenile - - 1 P1217 Pista mediterranea - - 1 P1235 Sabellidae - - 12 P1268 Chone fauveli - - - P1324 Serpulidae - - - P1334 Hydroides norvegica - - - P1340 Spirobranchus tamarcki - - - - P1341 Spirobranchus triqueter - - - - - S0131 Perioculodes longimanus - - - - - - S1445 Paguridae juvenile - - - - - S1445 Paguridae juvenile - - - - - - - - - -		•		-	-	-
P1185 Amphitritides gracilis - - - P1210 Nicolea venustula - - 3 P1216 Pista juvenile - - 1 P1235 Polycirrus - - 12 P1257 Sabellidae - - 12 P1257 Sabellidae - - - P1258 Chone fauveli - - - P1258 Serpulidae - - - P1344 Spirobranchus lamarcki - - - P1344 Spirobranchus triqueter - - - P1341 Spirobranchus triqueter - - - S0131 Perioculodes longimanus - 1 - S0141 Paguridae juvenile - - 1 S1452 Paguridae juvenile - - 1 S1452 Paguridae juvenile - - 1 V01613 Gibbula magus - - 1		•		-	-	
P1210 Nicolea venustula - - 3 P1216 Pista juvenile - - - P1217 Pista mediterranea - - 1 P1225 Sabellidae - - 12 P1257 Sabellidae - - - P1268 Chone fauveli - - - P1315 Pseudopotamilla - - - P1334 Hydroides norvegica - - - P1334 Byirobranchus triqueter - - 51 P1340 Spirobranchus triqueter - - - S0131 Perioculodes longimanus - 1 - S0732 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 S0732 Cheirocratus female - - 1 S1472 Galathea intermedia juvenile				-	-	3
P1216 Pista mediterranea - - 1 P1217 Pista mediterranea - - 1 P1235 Polycirrus - - 12 P1257 Sabellidae - - 12 P1268 Chone fauveli - - - P1345 Pseudopotamilla - - - P1345 Serpulidae - - - P1344 Spirobranchus lamarcki - - - P1340 Spirobranchus triqueter - - - P1341 Spirobranchus triqueter - - - Prioculdoes longimanus - 1 - Soti31 Perioculdoes longimanus - 1 - Soti32 Cheirocratus female - 1 - Soti31 Perioculdoes longimanus - - 1 - Soti32 Galathea intermedia juvenile - - 1 Vi0053 Leptochiton asellus - - 2				-	-	-
P1217 Pista mediterranea - - 1 P1235 Polycirrus - - 12 P1257 Sabellidae - - - P1258 Chone fauveli - - - P1258 Sepulidae - - - P1315 Pseudopotamilla - - - P1324 Sepulidae - - - P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - - P1341 Spirobranchus triqueter - - - S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - - 2 S0792 Gnathiidae juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 V0159 Gibbula magus - -			,	-	-	3
P1235 Polycirrus - - 12 P1257 Sabellidae - - - P1268 Chone fauveli - - - P1355 Pseudopotamilla - - - P1334 Hydroides norvegica - - 22 P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - - P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - 1 W0053 Leptochiton asellus - - 2 2 W0163 Steromphala cineraria - 1 4 W0174 Jujubinus montagui - - 10 W0747 Tritia incrassata - - <			juvenile	-	-	-
P1257 Sabellidae - - - P1268 Chone fauveli - - - P1315 Pseudopotamilla - - - P1324 Serpulidae - - 22 P1334 Hydroides norvegica - - 22 P1340 Spirobranchus lamarcki - - 51 P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - - 1 S1445 Paguridae juvenile - - 1 S1445 Paguridae juvenile - - - S1445 Paguridae juvenile - - - S1445 Paguridae juvenile - - 1 W0053 Leptochiton asellus - - 1 4 W0164 Gibbula magus				-	-	
P1268 Chone fauveli - - - P1315 Pseudopotamilla - - - P1324 Serpulidae - - 22 P1334 Hydroides norvegica - - 22 P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - - 3 R2173 Melinnacheres terebellidis - - - - S0131 Perioculodes longimanus - - 1 - S0503 Cheirocratus female - - 2 S0503 Cheirocratus female - - 1 S1445 Paguridae juvenile - - 1 S1445 Paguridae juvenile - - 1 W0053 Leptochiton asellus - - 7 7 W0161 Gibbula tumida - - 10 4 W0371 Onoba semicostata - - 10 2				-	-	12
P1315 Pseudopotamilla - - - P1324 Serpulidae - - 22 P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - 51 P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0792 Gnathiidae juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 W0053 Leptochiton asellus - - 7 7 W0161 Gibbula magus - - 1 4 W0371 Onoba semicostata - - 10 W0747 Tritia incrassata - - - 10 W0748 Tritia pygmaea - - - 1				-	-	-
P1324 Serpulidae - - 22 P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - 51 P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - 3 Soli31 Perioculodes longimanus - 1 - S0503 Cheirocratus female - 2 S0792 Gnathiidae juvenile - - 1 S1472 Galathea intermedia juvenile - - 5 S1472 Galathea intermedia juvenile - - 1 W0053 Leptochiton asellus - - 7 7 W0161 Gibbula magus - - 1 4 W0174 Jujubinus montagui - - 10 W0747 Tritia incrassata - - - W0804 Mangelia costata - - - W1118 Elysia v				-	-	-
P1334 Hydroides norvegica - - - P1340 Spirobranchus lamarcki - - 51 P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - 3 S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - - 2 S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - 1 S0503 Leptochiton asellus - - 1 - W0159 Gibbula tumida - - 7 W0161 Gibbula tumida - - 1 W0163 Steromphala cineraria - 1 4 W0174 Jujubinus montagui - - 10 W0747 Tritia incrassata - - - - W0804 Mangelia costata - - - W1038 Philine quadripartita 1 82 - <td></td> <td>•</td> <td></td> <td>-</td> <td>-</td> <td>-</td>		•		-	-	-
P1340 Spirobranchus lamarcki - - 51 P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - 1 - S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - 1 S1445 Paguridae juvenile - - 1 W0053 Leptochiton asellus - - 7 7 W0161 Gibbula magus - - 2 2 W0174 Jujubinus montagui - - 1 4 W0174 Jujubinus montagui - - 10 10 W0747 Tritia incrassata - - - 10 W0748 Tritia pygmaea - - - 10 W1038 Philine quadripartita 1 82		•		-	-	
P1341 Spirobranchus triqueter - - 3 R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - - 2 S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - - S1472 Galathea intermedia juvenile - - 1 W0053 Leptochiton asellus - - 7 - W0159 Gibbula magus - - 2 - 7 W0163 Steromphala cineraria - 1 4 - 1 W0174 Jujubinus montagui - - 10 - - W0174 Jujubinus montagui - - - - - - </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>				-	-	
R2173 Melinnacheres terebellidis - - - S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - 2 S0792 Gnathiidae juvenile - - 2 S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - - S1445 Paguridae juvenile - - 1 W0053 Leptochiton asellus - - 5 5 W0159 Gibbula magus - - 1 4 W0161 Gibbula tumida - - 1 4 W0174 Jujubinus montagui - - 10 10 W0747 Tritia incrassata - - - 10 W0748 Tritia pygmaea - - - 1 W1038 Philine quadripartita 1 82 - - W1038 Philine quadripartita 1 82<		•		-	-	
S0131 Perioculodes longimanus - 1 - S0503 Cheirocratus female - - 2 S0792 Gnathiidae juvenile - - 1 S1445 Paguridae juvenile - - 1 S1472 Galathea intermedia juvenile - - 1 W0053 Leptochiton asellus - - 5 5 W0159 Gibbula magus - - 7 7 W0161 Gibbula tumida - - 1 4 W0174 Jujubinus montagui - - 10 W0747 Tritia incrassata - - - W0748 Tritia pygmaea - - - W0138 Philine quadripartita 1 82 - W1038 Philine quadripartita 1 82 - W1038 Philine quadripartita 1 82 - W118 Elysia viridis - - 1 W1569						
S0503Cheirocratusfemale2S0792Gnathiidaejuvenile1S1445PaguridaejuvenileS1472Galathea intermediajuvenile1W0053Leptochiton asellus5W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui10W0747Tritia incrassata10W0748Tritia pygmaeaW1038Philine quadripartita182-W1186Lysia viridis1W1569Nucula nitidosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-				_		
S0792Gnathiidaejuvenile1S1445PaguridaejuvenileS1472Galathea intermediajuvenile1W0053Leptochiton asellus5W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui10W0747Tritia incrassata10W0748Tritia pygmaeaW0138Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra nitida1211-W2061Abra nitida211-			female	_	-	
S1445PaguridaejuvenileS1472Galathea intermediajuvenile1W0053Leptochiton asellus5W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassata10W0748Tritia pygmaeaW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra nitida1211-W2061Abra nitida211-				-	-	
S1472Galathea intermediajuvenile1W0053Leptochiton asellus5W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassataW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-				-	-	-
W0053Leptochiton asellus5W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassataW0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-		-	•	-	-	1
W0159Gibbula magus7W0161Gibbula tumida2W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassata10W0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-			,	-	-	
W0161Gibbula tunida2W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassataW0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-		•		-	-	
W0163Steromphala cineraria-14W0174Jujubinus montagui1W0371Onoba semicostata10W0747Tritia incrassataW0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosa1W1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2059Abra alba1211-W2061Abra nitida211-	W0161			-	-	
W0371Onoba semicostata10W0747Tritia incrassataW0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosa1W1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0163	Steromphala cineraria		-	1	
W0371Onoba semicostata10W0747Tritia incrassataW0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosa1W1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0174	Jujubinus montagui		-	-	1
W0748Tritia pygmaeaW0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosa1W1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0371			-	-	10
W0804Mangelia costataW1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0747	Tritia incrassata		-	-	-
W1038Philine quadripartita182-W1118Elysia viridis1W1569Nucula nitidosaW1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0748	Tritia pygmaea		-	-	-
W1118Elysia viridis1W1569Nucula nitidosaW1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W0804	Mangelia costata		-	-	-
W1569Nucula nitidosaW1837Thyasira flexuosa1-W1906Kurtiella bidentata2-W2006Phaxas pellucidusW2059Abra alba1211W2061Abra nitida211	W1038	Philine quadripartita		1	82	-
W1837Thyasira flexuosa1W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W1118	•		-	-	1
W1906Kurtiella bidentata2-67W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-	W1569	Nucula nitidosa		-	-	-
W2006Phaxas pellucidusW2059Abra alba1211-W2061Abra nitida211-		•			-	-
W2059 Abra alba 12 11 - W2061 Abra nitida 2 11 -				2	-	67
W2061 Abra nitida 2 11 -		•		-	-	-
						-
W2098 Chamelea striatula juvenile				2	11	-
	W2098	Chamelea striatula	juvenile	-	-	-

APEM Re	port No. P00002178-01				
	Sample Number		60531	60532	60533
	Sample Date		13/12/2018	13/12/2018	13/12/2018
	Sample Method		Day Grab	Day Grab	Day Grab
	Watercourse		Isle of Harris	Isle of Harris	Isle of Harris
	Site Description		Grab St. 1	Grab St. 2	Grab St. 3
	Analysis Type		1.0mm mesh	1.0mm mesh	1.0mm mesh
	Analysis Date		08/01/2018	04/01/2018	08/01/2018
0 1	Analyst		CA	CA	NP
Code	Taxa ID	Qualifiers	60531	60532	60533
W2147	Mya truncata		-	-	-
W2147	Mya truncata	juvenile	-	-	1
ZA0003	Phoronis		-	-	-
ZB0018	Asteroidea	juvenile	-	-	1
ZB0161	Amphipholis squamata		-	-	12
ZB0165	Ophiuridae	juvenile	-	-	1
ZB0193	Psammechinus miliaris	iu u con il o	-	-	-
ZB0266	Cucumariidae	juvenile	- P	-	
ZM	Bryophyta		P	Р	-
ZM0002	Rhodophyta		-	-	- P
ZM0131	Cruoria		-	-	P
ZM0189	Hildenbrandia		-	-	- P
ZM0431	Gracilaria		-	-	P
ZM0554	Pterothamnion plumula		-	-	P
ZM0581	Heterosiphonia plumosa		-	Р	-
ZM0655 ZR0191	Polysiphonia Ralfsia verrucosa		-	-	P
ZR0191 ZR0288			-	-	- P
ZR0266 ZS0174	Sphacelaria Ulva		-	-	<u>Р</u>
230174	Uiva		-	-	Г

APEM Re	port No. P00002178-01			
	Sample Number		60534	60535
	Sample Date		13/12/2018	13/12/2018
	Sample Method		Day Grab	Day Grab
	Watercourse		Isle of Harris	Isle of Harris
	Site Description		Grab St. 4	Grab St. 5
	Analysis Type		1.0mm mesh	1.0mm mesh
	Analysis Date		04/01/2018	04/01/2018
	Analyst		NP	CA
Code	Taxa ID	Qualifiers	60534	60535
D0759	Edwardsiidae		-	1
F0002	Turbellaria		-	-
G0001	Nemertea		5	14
G0047	Lineidae		5	-
HD0001	Nematoda		5	-
K0030	Loxosomella murmanica		Р	-
N0014	Golfingia elongata		-	-
N0017	Golfingia vulgaris		-	-
N0034	Phascolion strombus		1	-
P0050	Malmgrenia darbouxi		-	-
P0065	Harmothoe impar	aggregate	1	-
P0067	Malmgrenia arenicolae		-	-
P0092	Pholoe baltica (sensu Petersen)		1	1
P0094	Pholoe inornata (sensu Petersen)		1	-
P0118	Eteone longa	aggregate	1	2
P0152	Eulalia bilineata		-	-
P0167	Eumida sanguinea	aggregate	-	1
P0176	Paranaitis kosteriensis		1	1
P0256	Glycera alba		-	9
P0260	Glycera lapidum	aggregate	3	-
P0268	Glycinde nordmanni		-	5
P0271	Goniada maculata		1	-
P0305	Psamathe fusca		2	-
P0312	Oxydromus pallidus		-	-
P0313	Oxydromus flexuosus		2	4
P0319	Podarkeopsis capensis		3	3
P0358	Syllis parapari		1	-
P0421	Parexogone hebes		-	1
P0494	Nephtys	juvenile	-	-
P0499	Nephtys hombergii		-	1
P0574	Lumbrineris cingulata	aggregate	164	52
P0638	Protodorvillea kefersteini		12	-
P0699	Paradoneis lyra		1	-
P0722	Aonides oxycephala	ما: د م د ا	35	2
P0731		juvenile	-	2
P0750	Dipolydora coeca		1	-
P0754	Dipolydora flava		-	-
P0761	Dipolydora saintjosephi		3	-
P0765	Prionospio fallax		-	36
P0790	Spio symphyta		-	2
P0804	Magelona alleni Magalona minuta		7	2
P0806	Magelona minuta		-	2
P0827	Chaetozone vivipara Caulleriella alata		- 2	- 2
P0829			۷	
P0832	Chaetozone elakata		- 2	1
P0840	Dodecaceria		Z	-

APEM Re	port No. P00002178-01			
	Sample Number		60534	60535
	Sample Date		13/12/2018	13/12/2018
	Sample Method		Day Grab	Day Grab
	Watercourse		Isle of Harris	Isle of Harris
	Site Description		Grab St. 4	Grab St. 5
	Analysis Type		1.0mm mesh	1.0mm mesh
	Analysis Date		04/01/2018	04/01/2018
	Analyst	-	NP	CA
Code	Taxa ID Macrochaeta	Qualifiers	60534	60535
P0889 P0906	Capitella		-	- 1
P0900 P0919	Mediomastus fragilis		47	32
P0913	Notomastus		20	25
P1025	Scalibregma inflatum		-	-
P1025	Scalibregma celticum		_	-
P1020	Galathowenia oculata		_	17
P11093	Amphictene auricoma		_	1
P1124	Melinna palmata		18	42
P1174	Terebellides		15	-
P1185	Amphitritides gracilis		5	-
P1210	Nicolea venustula		-	_
P1216	Pista	juvenile	-	1
P1217	Pista mediterranea	javenne	2	-
P1235	Polycirrus		13	_
P1257	Sabellidae		1	_
P1268	Chone fauveli		1	_
P1315	Pseudopotamilla		1	-
P1324	Serpulidae		48	-
P1334	Hydroides norvegica		1	-
P1340	Spirobranchus lamarcki		93	-
P1341	Spirobranchus triqueter		5	-
R2173	Melinnacheres terebellidis		2	_
S0131	Perioculodes longimanus		-	-
50503	Cheirocratus	female	-	-
50792	Gnathiidae	juvenile	-	-
S1445	Paguridae	juvenile	2	-
61472	Galathea intermedia	, juvenile	-	-
N0053	Leptochiton asellus	•	3	-
W0159	Gibbula magus		-	-
W0161	Gibbula tumida		-	-
W0163	Steromphala cineraria		4	-
W0174	Jujubinus montagui		-	-
W0371	Onoba semicostata		1	-
W0747	Tritia incrassata		1	-
W0748	Tritia pygmaea		2	-
W0804	Mangelia costata		1	-
W1038	Philine quadripartita		-	1
W1118	Elysia viridis		-	-
W1569	Nucula nitidosa		1	2
W1837	Thyasira flexuosa		-	12
W1906	Kurtiella bidentata		23	-
W2006	Phaxas pellucidus		-	2
W2059	Abra alba		-	25
W2061	Abra nitida		-	7
W2098	Chamelea striatula	juvenile	-	2

APEM Re	eport No. P00002178-01			
	Sample Number		60534	60535
	Sample Date		13/12/2018	13/12/2018
	Sample Method		Day Grab	Day Grab
	Watercourse		Isle of Harris	Isle of Harris
	Site Description		Grab St. 4	Grab St. 5
	Analysis Type		1.0mm mesh	1.0mm mesh
	Analysis Date		04/01/2018	04/01/2018
	Analyst		NP	CA
Code	Taxa ID	Qualifiers	60534	60535
W2147	Mya truncata		1	-
W2147	Mya truncata	juvenile	1	-
ZA0003	Phoronis		1	-
ZB0018	Asteroidea	juvenile	1	-
ZB0161	Amphipholis squamata		-	-
ZB0165	Ophiuridae	juvenile	-	3
ZB0193	Psammechinus miliaris		1	-
ZB0266	Cucumariidae	juvenile	-	1
ZM	Bryophyta		-	-
ZM0002	Rhodophyta		Р	-
ZM0131	Cruoria		Р	-
ZM0189	Hildenbrandia		Р	-
ZM0431	Gracilaria		-	-
ZM0554	Pterothamnion plumula		-	-
ZM0581	Heterosiphonia plumosa		-	-
ZM0655	Polysiphonia		-	-
ZR0191	Ralfsia verrucosa		Р	-
ZR0288	Sphacelaria		Р	-
ZS0174	Ulva		-	-

APEM Report No. P	00002178-01				
Sample Number	Sample Date	Site Description	Biotope	Description	EUNIS
60531	13/12/2018	Grab St. 1	SS.SMu.ISaMu	Infralittoral sandy mud	A5.33
60532	13/12/2018	Grab St. 2	SS.SMu.IFiMu.PhiVir	Philine aperta and Virgularia mirabilis in soft stable infralittoral mud	A5.343
60533	13/12/2018	Grab St. 3	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel	A5.142
60534	13/12/2018	Grab St. 4	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel	A5.142
60535	13/12/2018	Grab St. 5	SS.SCS.CCS.MedLumVen	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel	A5.142

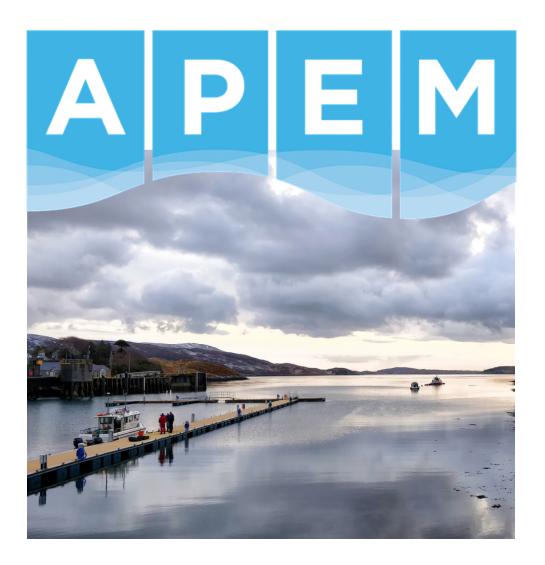
APEM Repo	ort No. P00002178-01		
Code	Taxa ID	Qualifiers	Notes
P0092	Pholoe baltica (sensu Petersen)		sensu Petersen, 1998;
P0094	Pholoe inornata (sensu Petersen)		sensu Petersen, 1998;
P0319	Podarkeopsis capensis		Traditional usage; but possibly a related species;
P0358	Syllis parapari		Not formally recorded from UK;
P0574	Lumbrineris cingulata	aggregate	(Previously recorded as Lumbrineris aniara/cingulata);
P0750	Dipolydora coeca		May include undescribed species;
P0754	Dipolydora flava		(Previously included in D. coeca agg.);
P0761	Dipolydora saintjosephi		(Previously included in D. coeca agg.);
P0790	Spio symphyta		(Previously recorded as Spio filicornis agg.); Not formally recorded from UK;
P0827	Chaetozone vivipara		Cryptogenic;
P0832	Chaetozone elakata		(Previously recorded as Chaetozone species D);
P0906	Capitella		Representative of organic enrichment;
P1174	Terebellides		(Previously recorded as Terebellides stroemii; might include additional species);
P1315	Pseudopotamilla		May include undescribed species;
W0748	Tritia pygmaea		Possibly close to northern limit of distribution
W1038	Philine quadripartita		(Previously recorded as Philine aperta);

Appendix 2 PSD data from grab samples

APEM Project P00002178 - Tarbert Ferry Terminal Subtidal Benthic Ecology survey PSD analysis results

Sample	Date	Visual description of >1																	V Coarse	Coarse N	Medium	Fine	V Fine V	V Coarse C	Coarse M	ledium	Fine	V Fine	V Coarse	Coarse	Medium		V Fine									
Sample	Date	mm fraction	Folk (1954)			Statistics	calculated using Folk ar	nd Ward (195	7) formulae			Primary	d10	d50	d90	Gravel	Sand	Mud	Gravel	Gravel	Gravel	Gravel	Gravel	Sand	Sand	Sand :	Sand	Sand	Silt	Silt	Silt	Fine Silt	Silt	Clay								
																	(63-2000		(32-64	(16-32	(8-16				(500- (2	50-500 (1	25-250	(63-125	(31-63	(16-31	(8-16											
	collected		classification	h	/lean		Sorting	Sker	wness	Ku	urtosis	Mode				(>2 mm)	μm)	(<63 µm)	mm)	mm)	mm)	(4-8 mm) (2-4 mm) ((1-2 mm) 10	100 μm)	μm)	μm)	μm)	μm)	μm)	μm)	(4-8 µm)	(2-4 µm)	(<2 µm)								
				(µm)	(description)	(µm)	(description)	(µm)	(description)	(µm)	(description)	(µm)	(µm)	(µm)	(µm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)								
Station 1	13/12/2017	slag/cinders, shell and			Very Fine				Coarse		Very																															
		organics including peat	Gravelly Mud	67.0	Sand	7.592	Very Poorly Sorted	0.203	Skewed	1.660	Leptokurtic	37.7	6.9	54.4	720.2	7.3	38.2	54.5	0.0	1.8	2.7	1.6	1.2	0.9	5.1	7.0	9.8	15.3	23.6	13.7	6.4	4.2	2.4	4.2								
Station 2	13/12/2017	very minor shell	Slightly Gravelly Sandy	24.0	Coarse Silt	3.777	Poorly Sorted	-0.243	Fine Skewed	1.207	Leptokurtic	37.7	3.8	27.9	103.5	0.1	20.4	79.5	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.4	5.9	14.0	25.5	21.3	14.1	8.4	3.9	6.3								
Station 2	12/12/2017	degraded shell, gravel/slag					Extremely Poorly		Very Fine																																	
5000115	13/11/2017	degraded men, gravely mag	Muddy Gravel	559.9	Coarse Sand	18.237	Sorted	-0.466	Skewed	0.753	Platykurtic	3400.0	7.1	1607.2	12359.7	46.5	23.2	30.3	0.0	7.0	7.9	12.4	19.2	7.6	5.6	4.0	2.7	3.3	6.6	7.2	5.9	4.4	2.4	3.9								
Station 4	13/12/2017	largely shell			Very Coarse				Very Coarse		Very																															
Station 4	15/12/2017	largely sileli	Gravelly Mud	36.9	Silt	14.842	Very Poorly Sorted	0.308	Skewed	1.995	Leptokurtic	26.7	1.9	20.3	2063.9	10.2	8.7	81.1	0.0	3.1	1.8	1.2	4.1	4.7	1.3	0.2	0.1	2.4	17.9	20.3	15.6	11.0	6.1	10.2								
Station F	13/12/2017	largely shell			Very Coarse				Coarse		Very																															
Stations	15/12/2017	largely sileli	Gravelly Mud	37.4	Silt	9.864	Very Poorly Sorted	0.117	Skewed	1.704	Leptokurtic	37.7	2.6	33.6	1783.8	9.1	21.5	69.4	0.0	1.7	1.8	2.0	3.6	5.1	1.3	0.8	3.5	10.8	21.9	16.9	10.3	7.3	4.6	8.3								
																																										_
Sample														Pero	entages of	the distrib	ution in ear	ch 'half-ph	i' size inter	al, expresse	ed in µm																					
	>63000	45000	31500	22400	16000	11200	8000	5600	4000	2800	2000	1400	1000	710	500	355	250	180	125	90	63	44.19	31.25	22.097 1	15.625 1	1.049	7.813	5.524	3.906	2.762	1.953	1.381	0.977	0.691	0.488	0.345	0.244	0.173	0.122 0	.086 0.0	061 0.043	
		to 63000	to 45000	to 31500	to 22400	to 16000	to 11200	to 8000	to 5600	to 4000	to 2800	to 2000	to 1400	to 1000	to 710	to 500	to 355	to 250	to 180	to 125	to 90	to 63 1	o 44.19 1	to 31.25 to	22.097 to	15.625 to	11.049	to 7.813	to 5.524	to 3.906	to 2.762	to 1.953	to 1.381	to 0.977	to 0.691	to 0.488	to 0.345	to 0.244 t	to 0.173 to 1	0.122 to 0	0.086 to 0.061	
Station 1	0.0	0.0	0.0	0.6	1.2	1.4	1.4	0.8	0.8	0.7	0.5	0.5	0.4	1.8	3.3	4.0	3.0	3.7	6.1	6.9	8.2	11.4	12.4	8.5	5.2	3.6	2.8	2.3	1.9	1.4	1.0	0.8	0.7	0.6	0.5	0.4	0.4	0.3	0.2	0.2 0	0.1 0.0	
Station 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.3	1.5	4.3	6.1	7.7	11.6	14.2	11.9	9.3	7.7	6.3	4.9	3.5	2.3	1.6	1.2	0.9	0.8	0.8	0.7	0.6	0.5	0.4	0.3 0	0.1 0.0	1
Station 3	0.0	0.0	0.0	4.5	2.6	4.1	3.8	5.1	7.4	11.1	8.1	5.7	1.8	2.6	3.1	2.4	1.5	1.3	1.4	1.4	1.8	2.8	3.9	3.8	3.4	3.1	2.8	2.4	2.0	1.4	1.0	0.7	0.6	0.6	0.5	0.4	0.4	0.3	0.2	0.1 0	0.0 0.0	1
Station 4	0.0	0.0	0.0	2.3	0.8	1.5	0.4	0.4	0.8	1.8	2.3	2.7	2.0	1.0	0.3	0.1	0.1	0.0	0.0	0.0	2.2	7.3	10.8	10.9	9.4	8.3	7.3	6.1	4.9	3.6	2.6	2.0	1.7	1.4	1.3	1.1	0.9	0.7	0.5	0.3 0	0.1 0.0	
Station 5	0.0	0.0	0.0	0.3	1.4	1.3	0.5	0.8	1.2	1.8	1.8	2.7	2.4	1.0	0.3	0.1	0.7	1.1	2.4	4.5	6.1	10.0	12.2	9.7	7.2	5.6	4.7	4.0	3.3	2.6	2.0	1.6	1.4	1.2	1.1	0.9	0.7	0.5	0.4	0.2 0	0.1 0.0	

Appendix 3 Underwater video analysis log


APEM Project P00002178 - Tarbert Ferry Terminal Benthic Ecology Survey video imagery analysis results

Transect	Transect biotope assignment	Start time End Time	Video track time	Assigned Biotope (MNCR Code)	Classification (Exact copy of MNCR descriptor)	Notes
Transect 1	Tr 1 - 2017-12-12_11.32.08_Biotope 1	11:32:08 11:54:0	9 00:22:01	SS.SMu.IFiMu	Infralittoral fine mud	
	Tr 2 - 2017-12-12_10.51.27_Biotope 1	10:51:27 11:10:5	5 00:19:28	SS.SMu.IFiMu	Infralittoral fine mud	
Transect 2	Tr 2 - 2017-12-12_10.51.27_Biotope 2	11:10:55 11:13:0	7 00:21:40	SS.SMx	Sublittoral mixed sediment	
	Tr 2 - 2017-12-12_10.51.27_Biotope 3	11:13:07 11:14:1	5 00:22:48	LR.LLR.F.Fser.X	Fucus serratus on full salinity lower eulittoral mixed substrata	Area exposed at low tide
Transect 3	Tr 3 - 2017-12-12_13.59.08_Biotope 1	13:59:08 14:12:0	5 00:12:57	SS.SMx	Sublittoral mixed sediment	Small patches of Mytilus edulis present
Transect 4_:	1 Tr 4.1 - 2017-12-12_14.17.54_Biotope 1	14:17:54 14:25:1	0 00:07:16	SS.SMx	Sublittoral mixed sediment	Small patches of Mytilus edulis present
Transect 4_2	2 Tr 4.2 - 2017-12-12_14.28.47_Biotope 1	14:28:47 14:37:1	0 00:08:23	SS.SMx	Sublittoral mixed sediment	Small patches of Mytilus edulis present
	Tr 5 - 2017-12-12_12.59.36_Biotope 1	12:59:36 13:15:1	6 00:15:40	SS.SMu.IFiMu	Infralittoral fine mud	
	Tr 5 - 2017-12-12_12.59.36_Biotope 2	13:15:16 13:27:4	6 00:28:10	SS.SMx	Sublittoral mixed sediment	
Transect 5	Tr 5 - 2017-12-12_12.59.36_Biotope 3	13:27:46 13:39:3	1 00:39:55	SS.SMu.IFiMu	Infralittoral fine mud	
	Tr 5 - 2017-12-12_12.59.36_Biotope 4	13:39:31 13:43:2	6 00:43:50	SS.SMx	Sublittoral mixed sediment	
	Tr 5 - 2017-12-12_12.59.36_Biotope 5	13:43:26 13:43:5	3 00:44:17	LR.LLR.F.Fser.X	Fucus serratus on full salinity lower eulittoral mixed substrata	Area exposed at low tide

Appendix H.2: Tarbert Ferry Terminal – Subtidal Benthic Ecology Re-visit Survey Report

Tarbert Ferry Terminal - Subtidal Benthic Ecology Re-visit Survey Report

Aspect Land & Hydrographic Surveys Ltd.

APEM Ref P00002258a

June 2018

Redacted

Client:	Aspect Land & Hydrographic Surveys Ltd.
Address:	Unit 1, Thornhouse Business Centre Ballot Road Irvine KA12 0HW Ayrshire
Project reference:	P00002258
Date of issue:	4 th June 2018

Project Director: Redacted

Project Manager: Redacted

APEM Ltd The Technopole Centre Milton Bridge Nr Penicuik Midlothian EH26 0PJ

> Tel: 0131 526 3186 Fax: 0161 432 6083

Registered in England No. 02530851

Report should be cited as:

"Tarbert Ferry Terminal - Subtidal Benthic Ecology Re-visit Survey Report (June, 2018). APEM Scientific Report P000002258a. Aspect Land & Hydrographic Surveys Ltd. 14pp."

Revision and Amendment Register

Version Numbe r	Date	Section(s)	Page(s)	Summary of Changes	Approved by
1	04/06/2018	All	All	Document creation	Re

Contents

1.	Intro	oduct	ion1
2.	Met	hodo	logy2
2	.1	Field	d survey2
	2.1.	1	Underwater video survey2
	2.1.	2	Grab sampling survey4
2	.2	Sam	ple analysis6
	2.2.	1	Macrobenthic analysis of grab samples6
	2.2.	2	Imagery analysis of underwater video capture7
3.	Res	ults	
3	.1	Mac	robenthic analysis data8
3	.2	Und	erwater video data8
3	.3	Tarb	pert Harbour biotope mapping11
4.	Cor	nclusi	ons13
5.	Ref	erenc	zes14
Арр	pendi	x 1	Macrobenthic data from grab samples1
Арр	pendi	x 2	Underwater video analysis log2

List of Figures and Tables

Figure 2-1 The survey vessel Remote Sensor used for the Tarbert Ferry Terminal subtidal benthic ecology re-visit survey (Photo from APEM's survey at Tarbert Ferry Terminal in April 2018)2	
Figure 2-2 The Imenco 'Tiger Shark' subsea camera and Imenco 'Lantern Shark' flash as mounted onto the ALHS frame which was deployed from the davit of the Remote Sensor3	
Figure 2-3 Location of the underwater video transect routes, with arrows indicating the transect direction flow, and location of the grab sampling stations	
Table 2-1 Start and end point coordinates for each underwater video transect. Coordinates are presented in the Ordnance Survey/British National Grid Projected Coordinate System format.	

Table 2-2 Coordinates for each grab sample station. Coordinates are presented in the Ordnance Survey/British National Grid Projected Coordinate System format
Figure 2-4 Unsieved grab sample from Station 3 in Tarbert Harbour (attempt 2)6
Table 3-1 Prevailing water and depth conditions at the time of collection of each macrobenthic grab sample
Table 3-2 Biotopes assigned to macrobenthic grab samples
Figure 3-1 SS.SMx.CMx.OphMx: Ophiothrix fragilis andor Ophiocomina nigra brittlestar beds on sublittoral mixed sediment
Figure 3-2 SS.SMp.KSwSS.LsacR: Laminaria saccharina and red seaweeds on infralittoral sediments9
Figure 3-3 Transect 3- SS.SMp.KSwSS.LsacR.Mu: Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments
Figure 3-4 SS.SMu.IFiMu: Infralittoral fine mud10
Figure 3-5 Transect routes with mapped biotopes overlaid11
Figure 2.6 Terbert Herbeur menned subtidel benthis biotenes (Pietene ende references)

Figure 3-6 Tarbert Harbour mapped subtidal benthic biotopes (Biotope code references: SS.SMp.KSwSS.LsacR.Mu: *Laminaria saccharina* with red and brown seaweeds on lower muddy mixed sediments. SS.SMp.KSwSS.LsacR: *Laminaria saccharina* and red seaweeds on infralittoral sediments SS.SMx.CMx.OphMx: *Ophiothrix fragilis* and/or *Ophiocomina nigra* brittlestar beds on sublittoral mixed sediment. SS.SMu.IFiMu: Infralittoral fine mud)......12

1. Introduction

APEM Ltd has been commissioned to undertake a further survey of the subtidal benthic ecological habitats and species present in Tarbert Harbour on the Isle of Harris, on behalf of Aspect Land & Hydrographic Surveys (ALHS) and Caledonian Maritime Assets Ltd (CMAL). This survey is of an area to the east of the original survey conducted by APEM in December 2017 (APEM, 2018). Tarbert Ferry Terminal is located in a sheltered bay on the east coast of the Isle of Harris, and provides a direct ferry link to the Isle of Skye. The aim of this survey is to provide data to enable an Environmental Impact Assessment (EIA) of proposed improvements to Tarbert harbour to be conducted.

In accordance with Saunders et al. (2011), this survey will gather information for the EIA process by identifying whether there are any benthic habitats or species of note present (i.e. priority, rare, protected or invasive) and identify the spatial distribution and abundance of these species in the area. This will allow an assessment to be conducted of how these habitats or species will be affected by the proposed development and the significance or implications of any damage or loss incurred, which is beyond the scope of this survey report but it is understood will be conducted by CMAL and Affric Ltd. for the proposed development.

The aim of the survey was to collect underwater video and grab samples to provide data on the subtidal benthic ecology habitats and community composition within the area of the proposed development, to enable the subtidal benthic ecology of Tarbert Harbour to be characterised, and the effect of the improvements to Tarbert Ferry Terminal to be assessed.

This report provides a full description of the survey and analysis conducted by APEM Ltd. to obtain the data for characterisation, and the complete datasets for use along with a summary description of the datasets obtained.

2. Methodology

2.1 Field survey

All survey permissions, including a Marine Licence Exemption and Crown Estate Consent, were obtained by CMAL prior to the survey commencing.

The survey operations were conducted in April 2018 from the vessel Remote Sensor, operated by ALHS and shown in Figure 2-1 below. Remote Sensor is an 8.4m catamaran survey vessel (MCA Cat III) with high manoeuvrability.

The survey was overseen by an attending marine ecologist from Affric Ltd., on behalf of CMAL, who conducted quality assurance during the survey and specified grab sample locations whilst on-site using the footage from the underwater video.

The methodologies for collection of the underwater video and grab samples are provided in Sections 2.1.1 and 2.1.2 below respectively.

Figure 2-1 The survey vessel Remote Sensor used for the Tarbert Ferry Terminal subtidal benthic ecology re-visit survey (Photo from APEM's survey at Tarbert Ferry Terminal in April 2018)

2.1.1 Underwater video survey

The underwater video survey was conducted on the 9th April 2018 in daylight hours.

APEM was provided with a specification of three transect routes for the underwater video survey by CMAL. These transect routes were not in the vicinity of the new pontoon in Tarbert Harbour and therefore a Drop Down Video (DDV) camera system could be used.

The three underwater video transects (plus an additional fourth transect) were completed using an Imenco 'Tiger Shark' underwater stills camera. This was mounted onto a frame along with a flash, lighting and multiplexer equipment as shown in Figure 2-2. A video recording device was used on the vessel to capture the video outputs of the DDV camera. The DDV camera was deployed from the Remote Sensor and captured imagery of the seabed looking vertically downward as the Remote Sensor navigated along the transects. The transects, as shown in Figure 2-3 and Table 2-1, are considered to provide a good coverage of the area of interest.

Figure 2-2 The Imenco 'Tiger Shark' subsea camera and Imenco 'Lantern Shark' flash as mounted onto the ALHS frame which was deployed from the davit of the Remote Sensor.

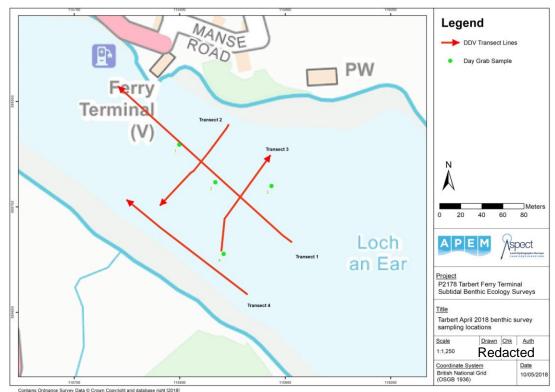


Figure 2-3 Location of the underwater video transect routes, with arrows indicating the transect direction flow, and location of the grab sampling stations.

es	esented in the Ordnance Survey/British National Grid Projected Coordinate System formati							
	Underwater video	Start coo	ordinates	End coordinates				
	transect	X	Y	X	Y			
	Transect 1	115906.47	899669.87	115741.40	899817.97			
	Transect 2	115846.54	899781.97	115781.11	899704.72			
	Transect 3	115839.41	899661.32	115886.08	899752.73			
	Transect 4	115864.39	899620.48	115749.51	899710.32			

 Table 2-1 Start and end point coordinates for each underwater video transect. Coordinates are presented in the Ordnance Survey/British National Grid Projected Coordinate System format.

2.1.2 Grab sampling survey

The subtidal grab sampling survey was conducted on the 10th April 2018 in daylight hours.

Four pre-defined grab sample station locations were specified by CMAL prior to the survey, as shown in Figure 2-3 and Table 2-2. At these sample stations, it was specified that macrobenthic samples were to be taken but there was no requirement to obtain samples for Particle Size Distribution (PSD) analysis. At each of these stations, grab samples were collected for macrobenthic analysis using a 0.1m² Day Grab.

Grab sample station	Site code	x	Y
Station 1	G01	115793.66	899768.33
Station 2	G02	115826.98	899728.55
Station 3	G03	115892.46	899729.18
Station 4	G04	115844.14	899662.19

 Table 2-2 Coordinates for each grab sample station. Coordinates are presented in the Ordnance

 Survey/British National Grid Projected Coordinate System format.

Whilst conducting the grab sampling, a minimum sediment volume limit of 5 litres was defined as an acceptable size for a grab sample to be considered successful. If this minimum volume was not obtained then a further two attempts were to be made at the same location, followed by three attempts at a different location at least 50m from the original target. The first two attempts at station 1 collected an insufficient volume due to the presence of cobbles causing incomplete closure of the grab's jaws. Furthermore, the first attempt at station 3 captured large debris but no sediments and so the sample was discarded. Subsequent attempts at both station 1 and station 3 successfully collected an appropriate sample.

For each grab attempt the following information was recorded on the survey log-sheet:

- Survey name, location and project code;
- Survey Date;
- Survey Team staff;
- Site information including: site/replicate, sample position (lat/lon; WGS84), collection time, water depth, weather conditions;
- Sampling equipment including sieve mesh size;
- Salinity for later use in the WFD IQI calculation
- Sample description, including sediment description, grab depth in cm, volume, type, profile, concretions, surface features, burrows, algae, colour and colour changes, smell, etc.;
- Any obvious or notable (e.g. Annex 2 species) taxa observed;
- Notes (e.g. anoxia, anthropogenic debris, any problems encountered, etc.);
- Photograph of the unsieved sample (an example is presented in Figure 2-4 below).

Figure 2-4 Unsieved grab sample from Station 3 in Tarbert Harbour (attempt 2).

Biological samples were sieved on board through a 1.0mm sieve as is standard for subtidal surveys in marine conditions. All material retained on the sieves was fixed with 4% buffered formaldehyde solution in seawater and stored in sealed crates.

2.2 Sample analysis

2.2.1 Macrobenthic analysis of grab samples

Samples were processed according APEM's in-house Standard Operating Procedures (SOP's) and in full compliance with North East Atlantic Marine Biological Analytical Quality Control Scheme (NMBAQC) guidance (Worsfold and Hall, 2010). To standardise the sizes of organisms and improve sorting efficiency, samples were sieved through a stack of sieves of 4.0, 2.0 and 1.0 mm meshes in a fume cupboard following UKTAG guidance for benthic invertebrate sample analysis for coastal waters (WFD-UKTAG, 2014). All biota retained in the sieves were then extracted under low power microscopes, identified and enumerated, where applicable.

Taxa were identified to the lowest possible practicable taxonomic level using the appropriate taxonomic literature. For certain taxonomic groups (e.g. nemerteans and, nematodes), higher taxonomic levels were used due to the widely acknowledged lack of appropriate identification tools for these groups. The NMBAQC Scheme has produced a Taxonomic Discrimination Protocol (TDP) (Worsfold and Hall 2010) which gives guidance on the most appropriate level to which different marine taxa should be identified, and this guidance was adhered to for the

laboratory analysis. Where required, specimens were also compared with material maintained within the laboratory reference collection. Nomenclature followed the World Register of Marine Species (WoRMS), except where more recent revisions were known to supersede WoRMS.

At least one example of each taxon recorded from the surveys was set aside for inclusion in APEM's in-house reference collection. This collection acts as a permanent record of the biota recorded.

2.2.2 Imagery analysis of underwater video capture

The underwater video was analysed by an experienced marine benthic taxonomist and image analyst to provide habitat/biotope extent and transition data and enable the identification of any small-scale habitats outside the subtidal grab sampling target habitats (such as rock outcrops). The video captures for each transect were re-played in the laboratory and the biotopes and notable taxa along each transect identified and recorded. The timing of the transitions between each habitat along the transects in the underwater video were also noted, and these were then related to the vessel position within the survey logs to identify the position of habitat transitions.

3. Results

3.1 Macrobenthic analysis data

The full suite of enumerated macrobenthic data from each grab sample is provided in Appendix 1. A summary of the prevailing conditions at the time of each macrobenthic grab sample is provided in Table 3-1 below, and the biotopes assigned to each grab sample are provided in Table 3-2. The most abundant species (> 100 individuals) were Polychaetes *Lumbrineris cingulata* agg. (n=166) and *Kurtiella bidentate* (n=118) recorded across stations 1 to 3; and *Capitella* (n=106) only recorded at station 4. Other species present in appreciable numbers included *Spirobranchus lamarcki* (n=43), *Melinna palmate* (n=42), *Nematoda* (n=32), *Mediomastus fragilis* (n=32), *Polycirrus* (n=23), *Leptochiton asellus* (n=20), *Dodecaceria* (n=19) and *Magelona alleni* (n=11).

Table 3-1 Prevailing water and depth conditions at the time of collection of each macrobenthic grab sample

Grab sample station	Collection time	Water depth (m)	Volume (l)	Salinity (ppm)
Station 1	9:37	9.3	5	26.17
Station 2	10:14	10.9	9	26.40
Station 3	10:51	11.6	8	26.66
Station 4	11:05	10.5	9	27.45

Table 3-2 Biotopes assigned to macrobenthic grab samples

Grab sample station	Biotope	Description
Station 1	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments
Station 2	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments.
Station 3	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments.
Station 4	SS.SMu.IFiMu	Infralittoral fine mud.

3.2 Underwater video data

The full suite of habitat classification data for each transect is provided in Appendix 2. The biotopes found to be present in Tarbert Harbour, with example images of each biotope from the underwater video survey, are provided in Figures 3-1, 3-2, 3-3 and 3-4. The biotopes identified by the underwater video imagery have been mapped along each of the transect routes in Figure 3-5.

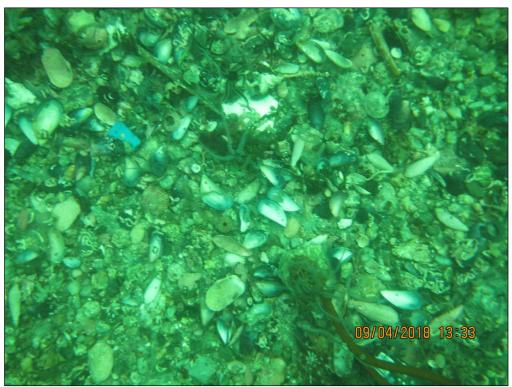


Figure 3-1 SS.SMx.CMx.OphMx: Ophiothrix fragilis andor Ophiocomina nigra brittlestar beds on sublittoral mixed sediment

Figure 3-2 SS.SMp.KSwSS.LsacR: Laminaria saccharina and red seaweeds on infralittoral sediments

Figure 3-3 Transect 3- SS.SMp.KSwSS.LsacR.Mu: Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments

Figure 3-4 SS.SMu.IFiMu: Infralittoral fine mud

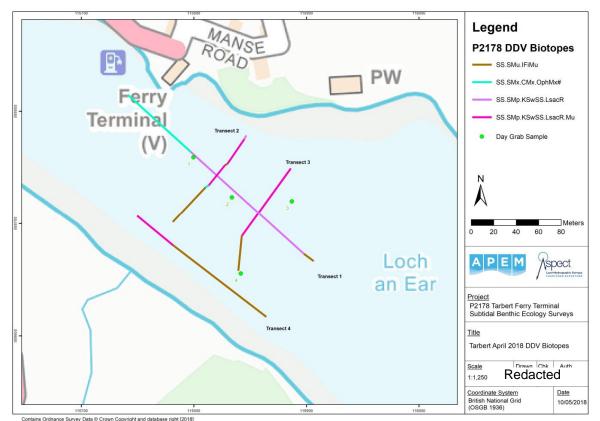


Figure 3-5 Transect routes with mapped biotopes overlaid

3.3 Tarbert Harbour biotope mapping

The macrobenthic count data and underwater video biotope classification data has been compiled to allocate biotopes to each point along the underwater video transects and at the grab sample stations. Biotopes were allocated following JNCC's National Marine Habitat Classification for Britain and Ireland: Version 04.05 (Connor *et al.* 2004). EUNIS codes corresponding to each biotope have also been provided (JNCC, 2010; Parry, 2015).

As the survey coverage across Tarbert Harbour has transects running both across and down the full extent of the survey area and at a representative range of depths, it has been possible to extrapolate between the known biotopes along the transects to provide a more complete biotope map of the harbour. This plan is shown in Figure 3-6. It is acknowledged that this is an extrapolation of the known data and so the biotope assignment away from the transects and grab sample locations is with a lower level of confidence to the biotope assignment at the grab sample stations and transects.

The biotope map presented in Figure 3-6 is an interpretive map based on an extrapolation of the raw data collected in the grab samples and along the underwater video transects, to delineate approximate habitat biotope boundaries within Tarbert Harbour. Following the approach set out by Saunders et al. (2011) the confidence in this biotope map would be enhanced by conducting a geophysical survey of the harbour to allow the grab sample point data and underwater video line data to act as reference points for the habitats in the rest of the harbour defined using the geophysical survey.

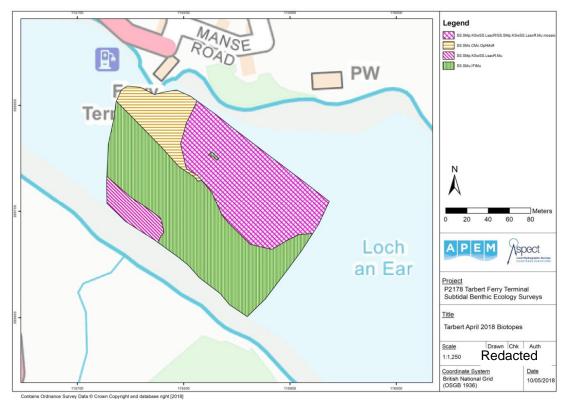


Figure 3-6 Tarbert Harbour mapped subtidal benthic biotopes (Biotope code references: SS.SMp.KSwSS.LsacR.Mu: *Laminaria saccharina* with red and brown seaweeds on lower muddy mixed sediments. SS.SMp.KSwSS.LsacR: *Laminaria saccharina* and red seaweeds on infralittoral sediments SS.SMx.CMx.OphMx: *Ophiothrix fragilis* and/or *Ophiocomina nigra* brittlestar beds on sublittoral mixed sediment. SS.SMu.IFiMu: Infralittoral fine mud)

4. Conclusions

APEM's survey of the subtidal benthic ecological habitats and species present in Tarbert Harbour identified the following biotopes to be present on the seabed:

- **SS.SMx.CMx.OphMx:** Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment.
- **SS.SMp.KSwSS.LsacR**: Laminaria saccharina and red seaweeds on infralittoral sediments.
- **SS.SMp.KSwSS.LsacR.Mu:** Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments.
- **SS.SMu.IFiMu:** Infralittoral fine mud.

A full species list of individuals recorded within the grab samples in Tarbert Harbour is provided in Appendix 1.

Biotopes SS.SMp.KSwSS.LsacR and SS.SMp.KSwSS.LsacR.Mu fall under the Scottish Priority Marine Feature (PMF) 'Kelp and seaweed communities on sublittoral sediment', which encompasses all biotopes under SS.SMp.KSwSS apart from SS.SMp.KSwSS.Tra (Mats of *Trailliella* on infralittoral muddy gravel) and SS.SMp.KSwSS.FilG (Filamentous green seaweeds on low salinity infralittoral mixed sediment or rock).

None of the other biotopes or species identified are designated as Scottish Priority Marine Features (PMFs), or designated under the Conservation (Natural Habitats, &c.) Regulations 1994 and Conservation of Habitats and Species Regulations 2010.

A single *Sabellaria spinulosa* individual and single *Serpula vermicularis* individual were recorded at Station 3, but no evidence of reef habitat formed by these species was found during the survey. Three *Mytilus edulis* individuals were recorded in Station 1 and Station 3.

Within the genus of red algae *Gracilaria* found to be present at Station 1 and Station 3, there is the potential for invasive non-native species (INNS) to be present, including those listed by the GB non-native species secretariat (NNSS), *Gracilaria multipartite* and *Gracilaria vermiculophylla*.

5. References

- APEM (2018) Tarbert Ferry Terminal Subtidal Benthic Ecology Survey Report. APEM Scientific Report P000002178a. Aspect Land & Hydrographic Surveys Ltd. 17pp.
- Blott, S. J. & Pye, K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms* 26, 1237-1248.
- Connor, D. W., Allen J. H., Golding, N., Howell, K. L., Lieberknecht, L. M., Northen, K. O., Reker, J. B. 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough ISBN 1 861 07561 8 (internet version). Available <u>online</u>.
- Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. *Journal of Geology* 62(4): 344-359.
- JNCC, 2010. Handbook for Phase 1 habitat survey a technique for environmental audit, ISBN 0 86139 636 7.
- Mason, C. 2016. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 77pp, First published 2011, updated January 2016. Available <u>online.</u>
- Parry, M. E. V. 2015. Guidance on Assigning Benthic Biotopes using EUNIS or the Marine Habitat Classification of Britain and Ireland *JNCC report* No. 546.
- Proudfoot, R. K., Elliott, M., Dyer, M. F., Barnett, B. E., Allen, J. H., Proctor, N. L., Cutts, N., Nikitik, C., Turner, G., Breen, J., Hemmingway, K. L. & Mackie, T. 2003. Proceedings of the Humber Benthic Field Methods Workshop, Hull University 1997. Collection and processing macrobenthic samples from soft sediments: a best practice review. Environment Agency R&D Technical Report E1 – 13/TR, 128pp. Available online.
- Saunders, G., Bedford, G. S., Trendall, J. R., and Sotheran, I. 2011. Guidance on survey and monitoring in relation to marine renewables deployments in Scotland. Volume 5. Benthic Habitats. Unpublished draft report to Scottish Natural Heritage and Marine Scotland.
- Thomas, N. S. 2001. Procedural Guideline No. 3-9. Quantitative sampling of sublittortal sediment biotopes and species using remote-operated grabs. In: Marine Monitoring Handbook, ed. by J. Davies, J. Baxter, M. Bradley, D. Connor, J. Khan, E. Murray, W. Sanderson, C. Turnbull and M. Vincent, 275-283. Joint Nature Conservation Committee, Peterborough.
- WFD UKTAG. 2014. UKTAG Transitional and Coastal Water Assessment Method Benthic Invertebrate Fauna. Infaunal Quality Index.
- Worsfold, T. M., Hall, D. J. & O'Reilly, M. (Ed.) 2010. Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol: Version 1.0, June 2010. Unicomarine Report NMBAQCMbPRP to the NMBAQC Committee. 33pp. Available <u>online</u>.

Appendix 1 Macrobenthic data from grab samples

APEM Ltd. Diamond Centre Works Road Letchworth Herts, SG6 1LW Marine Benthic Invertebrate Analysis Report The analysis on adjacent tab(s) of this workbook has been carried out by APEM Ltd under method MINV-01.							
Client Name:	•	urveys Ltd.					
Address:		e Business Centre t Road					
		vine 2 OHW					
		shire					
Phone Number:	Redact	ted					
P.O. Number:							
Prepared by:	Redacted	Senior Marine Scientist					
Approved and issued by:	Redacted	Letchworth Lab Manager					
Issue Date:	09/05/2018]					
	If you have any comments or complaints regarding this or any other piece of work conducted by APEM Ltd, please contact Redacted						
		APEM Report No. P00002258a-v1					

APEM Report No. I	P00002258a-v1									
Sample Number	Sample Date	Sample Method	Watercourse	Site Description	Analysis Type	Analysis Date	Analyst	QC Date	APEM location	Notes
61006	10/04/2018	Day Grab	Isle of Harris	St 1	1.0mm mesh	03/05/2018	Re	03/05/2018	Letchworth	-
61007	10/04/2018	Day Grab	Isle of Harris	St 2	1.0mm mesh	26/04/2018		26/04/2018	Letchworth	-
61008	10/04/2018	Day Grab	Isle of Harris	St 3	1.0mm mesh	30/04/2018	Re	30/04/2018	Letchworth	-
61009	10/04/2018	Day Grab	Isle of Harris	St 4	1.0mm mesh	24/04/2018		24/04/2018	Letchworth	-

	Sample Number		61006	61007	61008	61009
	Sample Date Sample Method		10/04/2018 Day Grab	10/04/2018 Day Grab	10/04/2018 Day Grab	10/04/2018 Day Grab
	Watercourse Site Description		Isle of Harris St 1	Isle of Harris St 2	Isle of Harris St 3	Isle of Harris St 4
	Analysis Type		1.0mm mesh	1.0mm mesh	1.0mm mesh	1.0mm mesh
	Analysis Date Analyst		03/05/2018 GBJ	26/04/2018 RHS	30/04/2018 RHS	24/04/2018 RHS
Code A5050	Taxa ID Folliculinidae	Qualifiers	61006	61007	61008 P	61009
D0216	Filifera			Р		
D0272 D0759	Hydractinia Edwardsiidae			Р	8	
F0002 G0001	Turbellaria Nemertea		3	1 2	3	
G0039	Cerebratulus Nematoda		2	2	5	
K0015 N0017	Loxosomella Golfingia vulgaris		Р		1	
P0050	Malmgrenia darbouxi		1 3		2	
P0058 P0064	Harmothoe extenuata Harmothoe imbricata		2 1			
P0065 P0092	Harmothoe impar Pholoe baltica (sensu Petersen)	aggregate	3		3 3	1
P0151 P0167	Eulalia aurea Eumida sanguinea	oggrogato	- 1		1	
P0174	Notophyllum foliosum	aggregate	1		-	
P0176 P0256	Paranaitis kosteriensis Glycera alba		1 1		5	
P0260 P0268	Glycera lapidum Glycinde nordmanni	aggregate	4		1	
P0271 P0305	Goniada maculata Psamathe fusca		1	1	5 1	
P0311	Nereimyra punctata		1			
P0312 P0319	Oxydromus pallidus Podarkeopsis capensis		2		1	
P0358 P0475	Syllis armillaris Eunereis longissima	aggregate	1	2	2	
P0499 P0502	Nephtys hombergii Nephtys kersivalensis				2	2
P0574	Lumbrineris cingulata	aggregate	70	13	83	
P0638 P0664	Protodorvillea kefersteini Orbinia latreillii		3		1	
P0693 P0699	Levinsenia gracilis Paradoneis lyra				1	
P0719 P0722	Uncispio reesi Aonides oxycephala		1	1 3	5	
P0751	Dipolydora caulleryi	aggregate	1	3		
P0761 P0766	Dipolydora saintjosephi Aurospio banyulensis				3 1	
P0771 P0796	Pseudopolydora species A Spiophanes kroyeri				3 1	
P0804	Magelona alleni			1	10	
P0806 P0840	Magelona minuta Dodecaceria				2 19	
P0906 P0919	Capitella Mediomastus fragilis		21	7	4	106
P0923 P1014	Notomastus Ophelina acuminata		1	1	3	1
P1025	Scalibregma inflatum Scalibregma celticum		3 1			
P1026 P1117	Sabellaria spinulosa		1		1	
P1124 P1139	Melinna palmata Ampharete lindstroemi			2	40 7	
P1174 P1182	Terebellides Amphitrite cirrata		1		6 2	
P1217 P1235	Pista mediterranea Polycirrus		1 13		10	
P1268	Chone fauveli		13		1	
P1287 P1307	Jasmineira Perkinsiana rubra				2 1	
P1324 P1334	Serpulidae Hydroides norvegica		1		6 1	
P1340 P1343	Spirobranchus lamarcki Serpula vermicularis		25	1	17 1	
P1489	Tubificoides amplivasatus				1	
Q0044 R0041	Anoplodactylus petiolatus Verruca stroemia				1 6	
S0429 S0503	Ampelisca diadema Cheirocratus	female			6	1
S1419 S1445	Upoqebia deltaura Paguridae	juvenile	1	1		
S1472	Galathea intermedia Leptochiton asellus	juvenile	19		1	
W0079	Lepidochitona cinerea		1		1	
W0081 W0223	Tonicella marmorea Testudinalia testudinalis		1			
W0330	Rissoa lilacina Alvania punctura				1 1	
W0371	Onoba semicostata				1	
W0377	Pusillina inconspicua Pusillina sarsii				1	1
W0748	Buccinum undatum Tritia pygmaea	juvenile	2	1	1	
W0861	Raphitoma linearis Nucula nitidosa		1 1			3
W1696	Mytilus edulis	juvenile	1		2	v
W1805	Modiolula phaseolina Anomiidae	juvenile		1	1	
W1906	Thyasira flexuosa Kurtiella bidentata		1 51	14	3 53	3
W1942	Acanthocardia echinata Parvicardium pinnulatum		1		1	
W2006	Phaxas pellucidus				2	
W2061	Abra alba Abra nitida				3	1 6
W2113	Polititapes rhomboides Mya truncata	juvenile	1 1			
W2147	Mya truncata Corbula dibba	juvenile	4		1	
W2166	Hiatella arctica		I	~	1 9	
Y0153	Barnea candida Aetea	juvenile		2	Р	
ZB0148	Amphiuridae Amphiura filiformis	juvenile			1	1
ZB0161	Amphipholis squamata	in	1		1	
ZB0193	Camarodonta Psammechinus miliaris	juvenile juvenile	1		1	
ZC0012	Cucumariidae Enteropneusta	juvenile			1	
	Dendrodoa grossularia Rhodothamniella				2 P	
	Corallinaceae				P	
ZM0181 ZM0194	Phyllophora		Р		P P	
ZM0181 ZM0194 ZM0406 ZM0431	Gracilaria				Р	
ZM0181 ZM0194 ZM0406 ZM0431 ZM0443	Gracilaria Plocamium cartilagineum Lomentaria clavellosa				Р	
ZM0181 ZM0194 ZM0406 ZM0431 ZM0443 ZM0456 ZM0471	Plocamium cartilagineum Lomentaria clavellosa Aglaothamnion			P	P	
ZM0181 ZM0194 ZM0406 ZM0431 ZM0443 ZM0456 ZM0471 ZM0507 ZM0554	Plocamium cartilagineum Lomentaria clavellosa Aglaothamnion Ceramium Pterothamnion plumula			P P	P P P	
ZM0181 ZM0194 ZM0406 ZM0431 ZM0443 ZM0456 ZM0471 ZM0507 ZM0554 ZM0554 ZM0594 ZM0616	Plocamium cartilagineum Lomentaria clavellosa Aglaothamnion Ceramium Pterothamnion plumula Delesseria sanguinea Phycodrys rubens				P P P P	
ZM0181 ZM0194 ZM0406 ZM0431 ZM0443 ZM0456 ZM0471 ZM0507 ZM0554 ZM0594 ZM0616 ZM0628 ZM0655	Plocamium cartilagineum Lomentaria clavellosa Aglaothamnion Ceramium Pterothamnion plumula Delesseria sanguinea				P P P	Ρ

APEM Report No. P	00002258a-v1				
Sample Number	Sample Date	Site Description	Biotope	Description	EUNIS
61006	10/04/2018	Grab St. 1	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments	A5.521
61007	10/04/2018	Grab St. 2	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments.	A5.521
61008	10/04/2018	Grab St. 3	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments.	A5.5214
61009	10/04/2018	Grab St. 4	SS.Smu.IFiMu	Infralittoral fine mud.	A5.34

APEM R	eport No. P00002258a-v1		
Code	Taxa ID	Qualifiers	Notes
P0319	Podarkeopsis capensis		Traditional usage; but possibly a related species;
P0719	Uncispio reesi		Rarely recorded;
P0771	Pseudopolydora species A		Undescribed species;
P0906	Capitella		Representative of organic enrichment;
P1117	Sabellaria spinulosa		Represents priority habitat, if reef-forming
P1182	Amphitrite cirrata		Possible undescribed species;
P1343	Serpula vermicularis		Represents priority habitat, if reef-forming
W0081	Tonicella marmorea		Northern species in UK;
W0223	Testudinalia testudinalis		Northern species in UK;
W0708	Buccinum undatum	juvenile	Commercially important;
W0748	Tritia pygmaea		Possibly close to northern limit of distribution;
W1696	Mytilus edulis	juvenile	Commercially important;
ZM0431	Gracilaria		May include non-native species;

Appendix 2 Underwater video analysis log

Station	Start time	End Time	Video track time	Start Lat	Start Long	End Lat	End Long	Assigned Biotope (MNCR Code)	Classification (Exact copy of MNCR descriptor)	Notes
Tr 1 - 2018-04-09_14.14.50_Biotope 1	14:15:11	14:16:04	00:00:53	5753.73875N	00647.77719W	5753.74192N	00647.78647W	SS.SMu.IFiMu	Infralittoral fine mud	
Tr 1 - 2018-04-09_14.14.50_Biotope 2	14:16:04	14:31:20	00:15:16	5753.74192N	00647.78647W	5753.78701N	00647.89454W	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments	
Tr 1 - 2018-04-09_14.14.50_Biotope 3	14:31:20	14:37:56	00:06:36	5753.78701N	00647.89454W	5753.81198N	00647.95429W	poss. SS.SMx.CMx.OphMx	Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment	A small number of brittlestars seen in localised patches. Pebbles and cobbles have <i>Spirobranchus</i> tubes covering the surfaces and there is comparativley little algal growth.
Tr 2 - 2018-04-09_15.02.19_Biotope 1	15:02:39	15:03:09	00:00:30	5753.79666N	00647.84567W	5753.79479N	00647.84727W	SS.SMp.KSwSS.LsacR	Laminaria saccharina and red seaweeds on infralittoral sediments	Algal growth is dense (<i>Laminaria</i> and <i>Ulva</i>) and predominantly on boulders or hard substrata.
Tr 2 - 2018-04-09_15.02.19_Biotope 2	15:03:09	15:07:10	00:04:01	5753.79479N	00647.84727W	5753.78236N	00647.86088W	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments	Algal growth is more sproradic with pebbles as attachment points or isolated boulders. Algae is often heavily silted with a greater proportion of the visible substrate being infralittoral mud.
Tr 2 - 2018-04-09_15.02.19_Biotope 3	15:07:10	15:07:22	00:00:12	5753.78236N	00647.86088W	5753.78183N	00647.86284W	SS.SMu.IFiMu	Infralittoral fine mud	
Tr 2 - 2018-04-09_15.02.19_Biotope 2	15:07:22	15:11:31	00:04:09	5753.78183N	00647.86284W	5753.77151N	00647.87614W	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments	
Tr 2 - 2018-04-09_15.02.19_Biotope 4	15:11:31	15:15:31	00:04:00	5753.77151N	00647.87614W	5753.77055N	00647.87881W	poss. SS.SMx.CMx.OphMx	Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment	
Tr 2 - 2018-04-09_15.02.19_Biotope 3	15:15:31	15:23:15	00:07:44	5753.77055N	00647.87881W	5753.75268N	00647.90612W	SS.SMu.IFiMu	Infralittoral fine mud	
r 3 - 2018-04-09_15.53.24_Biotope 1	15:53:45	16:03:02	00:09:17	5753.73160N	00647.84421W	5753.74833N	00647.84328W	SS.SMu.IFiMu	Infralittoral fine mud	Targets: Boulder with macro algal growth 14:56:41.81, 15:00:39.79
r 3 - 2018-04-09_15.53.24_Biotope 2	16:03:02	16:15:25	00:12:23	5753.74833N	00647.84328W	5753.78247N	00647:80369W	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments	
Tr 4 - 2018-04-09_15.29.27_Biotope 1	15:29:47	15:45:48	00:16:01	5753.71062N	00647.81608W	5753.74161N	00647.90422W	SS.SMu.IFiMu	Infralittoral fine mud	Aditional transect behind trot line.
Tr 4 - 2018-04-09_15.29.27_Biotope 2	15:45:48	15:48:25	00:02:37	5753.74161N	00647.90422W	5753.75448N	00647.93839W	SS.SMp.KSwSS.LsacR.Mu	Laminaria saccharina with red and brown seaweeds on lower muddy mixed sediments	

Appendix J.1: Baseline Noise Level Data

SYSTEMS MEASUREMENT

SCALOLS

CERTIFICATE OF CALIBRATION

Certificate Number: TCRT17/1025

Page 1 of 2 Pages Approved Signatory Redacted

Date of Issue: 25 January 2017 Issued by: ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems

Customer

TNEI Services Ltd Milburn House Dean Street Newcastle Upon Tyne NE1 1LE

Order No. Description	PO 5001 Sound Level Met	er / Pre-am	o / Micropho	ne / Associa	ated C	alibrator
Identification	Manufacturer	Instrument		Туре		Serial No. / Version
	Rion	Sound Lev	el Meter	NA-28		00680882
	Rion	Firmware				2.0
	Rion	Pre Amplifi	er	NH-23		80933
	Rion	Microphon	Э	UC-59		01056
	Rion	Calibrator		NC-74		34762316
		Calibrator a	adaptor type	if applicable	е	NC-74-002
Performance Class	1					
Test Procedure	TP 2.SLM 61672	-3 TPS-49				
	Procedures from 1	EC 61672-3:2	2006 were us	ed to perform	the pe	eriodic tests.
Type Approved to IEC	61672-1:2002	Yes	Approval N	lumber	21.21	1/07.01
	If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003					
Date Received	23 January 2017		ANV	Job No.	TRA	C17/01008
Date Calibrated	25 January 2017					

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory				
	05 November 2015	TCRT15/1303	ANV Measurement Systems				
This certificate provides traceability of measurement to recognised national standards, and to units of measurement							
realised at the National Physical Laboratory or other recognised national standards laboratories. This certificate may							
not be reproduced other than in full, except with the prior written approval of the issuing laboratory.							

CERTIFICATE OF CALIBRATION

Certificate Number TCRT17/1025

Page 2 of 2 Pages

Sound Level Meter Ins	truction manual ar	d data used to a	djust tl	he sound lev	els ind	dicated		
SLM instruction manual t								
SLM instruction manual r		06-11						
SLM instruction manual s	ource	Manufactur	er					
Internet download date if		N/A						
Case corrections available	e	Yes			5.112	1 mil		
Uncertainties of case cor	rections	Yes						
Source of case data		Manufactur	er					
Wind screen corrections		Yes			59 <u>19 19</u>			
Uncertainties of wind scre		Yes						
Source of wind screen da		Manufactur	er					
Mic pressure to free field		Yes						
Uncertainties of Mic to F.	그는 것을 물었는 것이 없는 것이 많은 것이 없는 것이 없다.	Yes						
Source of Mic to F.F. con		Manufacture						
Total expanded uncertain			72-1:2	002 Yes				
Specified or equivalent C		Specified						
Customer or Lab Calibrat		Customers Cali						
Calibrator adaptor type if	applicable	NC-74-002						
Calibrator cal. date		24 January 20	017					
Calibrator cert. number		UCRT17/1033						
Calibrator cal cert issued	by Lab	7623						
Calibrator SPL @ STP		94.02	dB	Calibration	referen	ice sour	nd pressur	e level
Calibrator frequency		1002.52	Hz	Calibration	check f	requen	cy	
Reference level range		20 - 120	dB		- 10 ⁻¹	·		
Accessories used or corre	ected for during calib	oration - Wind	Shield	ł				
Note - if a pre-amp extens					he pre-	amp.		
Environmental conditions		Start	T	End	٦ '			
	Temperature	23.31		23.32		0.20	°C	
	Humidity	36.0		35.5	<u>±</u>	the second s	%RH	
	Ambient Pressure	101.54		101.54	+ <u>+</u>			
Description			<u> </u>		<u> </u>	0.03	кра	
Response to associated (
Initial indicated level		dB Ad	usted i	ndicated leve	1	94.0	dB	
The uncertainty of the ass	ociated calibrator su	ipplied with the sou	nd leve	el meter ±		0.10	dB	
Self Generated Noise	This test is currently		this La	b.				
Microphone installed (if re				N/A	dB	A Weig	hting	
Uncertainty of the microph	none installed self ge	enerated noise ±		N/A	dB			1000 (1000)
Microphone replaced with	electrical input device	ce - UR =	Under	Range indica	ated	1		
Weighting	A	Ċ			Z	••••••		
The second	.7 dB UR	14.1 dB	UR	21.0	dB	UR		
Uncertainty of the electric	al self generated noi	se ±		0.12	dB			
The reported expanded up	ncertainty is based o	n a standard uncer	taintv r	nultiplied by a	cover	age fact	tor k=2. pr	ovidina a
coverage probability of ap								

coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with the Guide to the Expression of Uncertainty in Measurement published by ISO.

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

Calibrated by: Redacted	•••••	END	
Additional Comments			R 2
None			

Certificate of Calibration

Equipment Details

Instrument Manufacturer	Cirrus Research plc
Instrument Type	CR:171B
Description	Sound Level Meter
Serial Number	G078532

Calibration Procedure

The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IEC 61672-1:2013, IEC 61672-1:2002, IEC 60651:1979, IEC 60804:2001, IEC 61260:1995, IEC 60942:2003, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable.

Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration.

Calibration Traceability

The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research plc. These are traceable to International Standards {A.0.6}. The standards are:

Microphone Type	B&K 4192	Serial Number	1920791	Calibration Ref.	S6450
Pistonphone Type	B&K 4220	Serial Number	613843	Calibration Ref.	S6388

Redacted

Calibrated by

Calibration Date Calibration Certificate Number 26 September 2017 252819

This Calibration Certificate is valid for 12 months from the date above.

Cirrus Research plc, Acoustic House, Bridlington Road, Hunmanby, North Yorkshire, YO14 0PH Telephone: +44 (0) 1723 891655 Fax: +44 (0) 1723 891742 Email: sales@cirrusresearch.co.uk

Certificate of Calibration

Certificate Number: 114121

Date of Issue: 26 September 2017

Microphone Capsule

Manufacturer:	Cirrus Research plc	Serial Number:	206546A
Model Number:	MK:224		

Calibration Procedure

The microphone capsule detailed above has been calibrated to the published data as described in the operating manual of the associated sound level meter (where applicable).

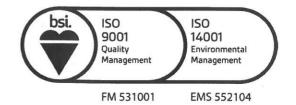
The frequency response was measured using an electrostatic actuator in accordance with BS EN 61094-6:2005 with the free-field response derived via standard correction data traceable to the National Physical Laboratory, Middlesex, UK.

The absolute sensitivity at 1 kHz was measured using an acoustic calibrator conforming to IEC 60942:2003 Class 1.

Date of Calibration:	25 September 2017
Open Circuit	54.7 mV/Pa
Sensitivity at 1 kHz:	-25.2 dB rel 1 V/Pa

Environmental Conditions

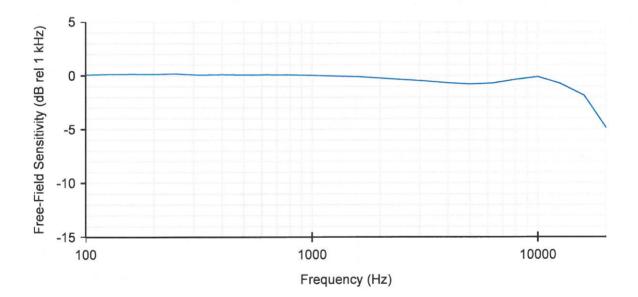
Pressure:	101.50 kPa
Temperature:	24.0 °C
Humidity:	54.0 %


Calibration Laboratory

Laboratory:

Cirrus Research plc Acoustic House, Bridlington Road, Hunmanby North Yorkshire, YO14 0PH, United Kingdom Redacted

Test Engineer:


Cirrus Research plc, Acoustic House, Bridlington Road Hunmanby, North Yorkshire, YOI4 0PH, United Kingdom Telephone: 0845 230 2434 Int: +44 1723 891655 Email: sales@cirrusresearch.co.uk Web: www.cirrusresearch.co.uk UK Registration No. 987160

dedicated to no

Free-Field Frequency Response

Frequency (Hz)	Free-Field Sensitivity (dB rel 1 kHz)	Actuator Response (dB)		
100	0.07	0.19		
125	0.11	0.21		
160	0.11	0.22		
200	200 0.11 0.23			
250	250 0.15 0.			
315	0.05	0.15		
400	0.07	0.16		
500	0.05	0.14		
630	630 0.06			
800	0.05	0.08		
1 000	0.00	0.02		
1 250	-0.07	-0.09		
1 600	-0.14	-0.22		
2 000	-0.27	-0.45		
2 500	-0.40	-0.74		
3 150	-0.53	-1.15		
4 000	-0.71	-1.70		
5 000	-0.82	-2.32		
6 300	-0.74	-3.00		
8 000	-0.40	-3.72		
10 000	-0.15	-5.00		
12 500	-0.76	-6.93		
16 000	-1.88	-9.72		
20 000	-4.90	-13.98		

14

Certificate of Calibration

Certificate Number: **114119**Date of Issue: **26 September 2017**

Instrument

Manufacturer:	Cirrus Research plc
Model Number:	CR:515

Calibration Procedure

The sound calibrator detailed above has been calibrated to the published data as described in the operating manual and in the half-inch configuration. The procedures and techniques used are as described in IEC 60942:2003 Annex B – Periodic Tests and three determinations of the sound pressure level, frequency and total distortion were made.

Serial Number:

78219

The sound pressure level was measured using a WS2F condenser microphone type MK:224 manufactured by Cirrus Research plc.

The results have been corrected to the reference pressure of 101.33 kPa using the manufacturer s data.

Date of Calibration: 26 September 2017

Calibration Results

Measurement	Level (dB)	Frequency (Hz)	Distortion (% THD + Noise)
1	94.01	1000.3	0.31
2	94.00	1000.3	0.31
3	94.02	1000.3	0.31
Average	94.01	1000.3	0.31
Uncertainty	± 0.13	± 0.1	± 0.10

The reported uncertainties of measurement are expanded by a coverage factor of k=2, providing a 95% confidence level.

Cirrus Research plc, Acoustic House, Bridlington Road Hunmanby, North Yorkshire, YO14 0PH, United Kingdom Telephone: 0845 230 2434 Int: +44 1723 891655 Email: sales@cirrusresearch.co.uk Web: www.cirrusresearch.co.uk UK Registration No. 987160

Page 1 of 2

Environmental Conditions

Pressure:	101.60 kPa
Temperature:	23.9 °C
Humidity:	52.2 %

Evidence of Pattern Approval

The manufacturer's product information indicates that this model of sound calibrator has been formally pattern approved to IEC 60942:2003 Annex A to Class 1. This has been confirmed with the PhysikalischTechnische Bundesanstalt (PTB).

Statement of Calibration

As public evidence was available, from a testing organisation responsible for approving the results of pattern evaluation tests, to demonstrate that the model of sound calibrator fully conformed to the requirements for pattern evaluation described in Annex A of IEC 60942:2003, the sound calibrator tested is considered to conform to all the Class 1 requirements of IEC 60942:2003.

Calibration Laboratory

Laboratory:

Cirrus Research plc Acoustic House, Bridlington Road, Hunmanby North Yorkshire, YO14 0PH, United Kingdom Redacted

Test Engineer:

Appendix J.2: Construction Noise Assessment Data

			Construction P	hases			
Phase No.	Phase	Duration	Estimated Start	Estimated Proposed End Working Hours		Plant Type	Make and Model
							Volvo EC250EL
1	Reclaim Area up to	4	07/05/2010	02/06/201	912hrs / Day	Excavator	JCB 220LC
1	Linkspan Approach	Weeks	07/05/2019	03/06/201	912IIIS / Day	Dumper	Bell B30E
						Roller	Bomag BW 213DH
							Volvo EC250EL
						Excavator	JCB 220LC
2	Construct RC Walls and			15/07/201	912hrs / Day	Dumper	Bell B30E
2	Backfill	b weeks	04/06/2019	15/07/201	912IIIS / Day	Roller	Bomag BW 213DH
						Concrete Lorry	Hymix P2 Series
						Generator	Clarke FG5100ES 5.5kVA
3	Pontoon Relocation	2 Weeks	30/09/2019	11/10/201	912hrs / Day	Work Boat	Multicat

			Construction P	hases			
Phase No.	Phase	Duration	Estimated Start	Estimated End	Proposed Working Hours	Plant Type	Make and Model
						Dredger (THSD)	Sospan Dau
4	Drodging	10	14/10/2019	20/12/201	912hrs / Day -	Dredger (BHD)	Backhoe on Floating Platform
4	Dredging	Weeks	14/10/2019	20/12/201	912IIIS / Day	Barge (SHB)	Frigg & Rind
						Excavator	JCB 220LC
5	Pontoon Reinstatement	2 Weeks	06/01/2020	17/01/202	012hrs / Day	Work Boat	Multicat
							Volvo EC250EL
						Excavator	Sany SY335C
	Rock Armour/	25					JCB 220LC
6	Earthworks/ Services / Surfacing	Weeks	28/10/2019	05/05/202	012hrs / Day -	Dumper	Bell B30E
						Roller	Bomag BW 213DH
						Road Planer	Wirtgen W 150CFi
_	Establish Temporary	6				Generator	Clarke FG5100ES 5.5kVA
7	Establish Temporary Terminal Building	Weeks	16/07/2019	26/08/201	912hrs / Day -	60t Mobile Crane	LTM 1060-3.1

			Construction P	hases			
Phase No.	Phase	Duration	Estimated Start	Estimated Proposed End Working Hours		Plant Type	Make and Model
						Generator	Clarke FG5100ES 5.5kVA
						Hand tools	Hand Held Circular Saw
8	Demolish Terminal Building	2 weeks	27/08/2019	09/09/2019	12hrs / Day	Dumper	Bell B30E
						Excavator	JCB 220LC
						60t Mobile Crane	LTM 1060-3.1
		10	10/09/2019	02/12/2019		Generator	Clarke FG5100ES 5.5kVA
	Install Temporary Pier					Excavator	JCB 220LC
9	Works	Weeks			12hrs / Day	Work Boat	Multicat
						100t Crawler Crane	Kobelco CKE1100G
						Generator	Clarke FG5100ES 5.5kVA
10	Pier Demolition	12 Weeks	10/09/2019	02/12/2019	12hrs / Day	Excavator	JCB 220LC
						100t Crawler Crane	Kobelco CKE1100G

			Construction P	hases			
Phase No.	Phase	Phase Duration		Estimated End	Proposed Working Hours	Plant Type	Make and Model
						Tube Vibro Hammer	PVE 40VM
						Tube Impact Hammer	BSP CG300
11	Building Foundation - Piling and RC Slab	8 Weeks	05/11/2019	13/01/2020	12hrs / Day	Concrete Lorry	Hymix P2 Series
						Generator	Clarke FG5100ES 5.5kVA
						100t Crawler Crane	Kobelco CKE1100G
		16 Weeks	03/12/2019	06/04/2020		Tube Vibro Hammer	PVE 40VM
12	Pier Piling				12hrs / Day	Tube Impact Hammer	BSP CG300
						100t Crawler Crane	Kobelco CKE1100G
						Concrete Lorry	Hymix P2 Series
12	Diar Daak	20	17/12/2010	20/05/2020	12hrs / Day	Generator	Clarke FG5100ES 5.5kVA
13	Pier Deck	Weeks	17/12/2019	20/05/2020	12hrs / Day	Excavator	JCB 220LC
						100t Crawler Crane	Kobelco CKE1100G

			Construction P	hases			
Phase No.	Phase	Duration	Estimated Start	Estimated Start Estimated I		Plant Type	Make and Model
						Generator	Clarke FG5100ES 5.5kVA
14	Fendering	4 Weeks	30/04/2020	27/05/2020	12hrs / Day	Work Boat	Multicat
						100t Crawler Crane	Kobelco CKE1100G
	15 Cathodic Protection					Work Boat	Multicat
15		4 Weeks	07/05/2020	03/06/2020	0 12hrs / Day	Generator	Clarke FG5100ES 5.5kVA
						60t Mobile Crane	LTM 1060-3.1
						Generator	Clarke FG5100ES 5.5kVA
	Remove Temporary	3		03/06/2020		Excavator	JCB 220LC
16	Pier Works	Weeks	14/05/2020		12hrs / Day	Work Boat	Multicat
						100t Crawler Crane	Kobelco CKE1100G
					Generator	Clarke FG5100ES 5.5kVA	
17	New Terminal Building Works	42 Weeks	23/07/2020	28/05/2021	. 12hrs / Day	Excavator	JCB 220LC
	Building Works					60t Mobile Crane	LTM 1060-3.1

	В	С	D	E	F	G				
2			Plar	nt Used per Scenario						
3				·						
	No.	Phase	Plant Type	Make and Model	Number on Site	Estimated % on Time				
4 5			Scenario 01: Place	ment of Rock Armour and Ea	rthworks					
6				Volvo EC250EL	1	60				
7			Excavator	Sany SY335C	1	60				
8		Rock Armour/ Earthworks/		JCB 220LC	1	60				
9	6	Services / Surfacing	Dumper	Bell B30E	1	60				
10			Roller	Bomag BW 213DH	1	20				
11			Road Planer	Wirtgen W 150CFi	1	10				
12			Scenario 02: De	emolition of the Terminal Building						
13			Generator	Clarke FG5100ES 5.5kVA	2	60				
14			Hand tools	Hand Held Circular Saw	2	25				
15	8	Demolish Terminal Building	Dumper	Bell B30E	1	25				
16			Excavator	JCB 220LC	1	20				
17			60t Mobile Crane	LTM 1060-3.1	1	10				

	В	С	D	E	F	G						
2			Plai	nt Used per Scenario								
5												
	No.	Phase	Plant Type	Make and Model	Number on Site	Estimated % on Time						
4												
18		Scenario 03: Preliminary Pier Works plus Activities Within Marshalling Area and Dredging										
19			Dredger (THSD)	Sospan Dau	1	30						
20	4	Dredging	Dredger (BHD)	Backhoe on Floating Platform	1	50						
21			Barge (SHB)	Frigg & Rind	1	50						
22			Excavator	JCB 220LC	1	10						
23				Volvo EC250EL	1	60						
24 25 26			Excavator	Sany SY335C	1	60						
25				JCB 220LC	1	60						
26	6	Rock Armour/ Earthworks/	Dumper	Bell B30E	1	60						
27	0	Services / Surfacing	Roller	Bomag BW 213DH	1	20						
28			Road Planer	Wirtgen W 150CFi	1	10						
29			Generator	Clarke FG5100ES 5.5kVA	1	100%						
30		Install Temporary Pier Works	Excavator	JCB 220LC	1	50						
31			Work Boat	Multicat	1	25						
32	9,10,11		100t Crawler Crane	Kobelco CKE1100G	2	100						
33		Pier Demolition	Tube Vibro Hammer	PVE 40VM	1	5						
34		Building Foundation - Piling	Tube Impact Hammer	BSP CG300	1	5						
35		and RC Slab	Concrete Lorry	Hymix P2 Series	1	5						

	В	С	D	E	F	G
2			Plar	nt Used per Scenario		
4	No.	Phase	Plant Type	Make and Model	Number on Site	Estimated % on Time
36		Scenario 0	4: Terminal Building Construe	ction plus Activities Within Ma	arshalling Area and Dredging	
37			Dredger (THSD)	Sospan Dau	1	30
38	4	Dredging	Dredger (BHD)	Backhoe on Floating Platform	1	50
38 39			Barge (SHB)	Frigg & Rind	1	50
40			Excavator	JCB 220LC	1	10
41				Volvo EC250EL	1	60
42			Excavator	Sany SY335C	1	60
43				JCB 220LC	1	60
44	6	Rock Armour/ Earthworks/	Dumper	Bell B30E	1	60
45	0	Services / Surfacing	Roller	Bomag BW 213DH	1	20
46			Road Planer	Wirtgen W 150CFi	1	10
47		Building Foundation - Piling and RC Slab	Drop Hammer Pile Rig Power Pack	BS5228-1 Annex C - C3.5	1	5
48			Hydraulic Hammer Rig	BS5228-1 Annex C - C3.3	1	5
49	ľ		Concrete Lorry	Hymix P2 Series	1	15
50	11, 12, 13	Pier Piling	Generator	Clarke FG5100ES 5.5kVA	1	10
51		Pier Deck	100t Crawler Crane	Kobelco CKE1100G	2	100
52		The Beek	Excavator	JCB 220LC	1	10

	В	С	D	E	F	G
2			Plan	t Used per Scenario		
3						
4	No.	Phase	Plant Type	Make and Model	Number on Site	Estimated % on Time
4 53			Scenario 05: Pier Construc	tion plus Activities Within N	larshalling Area	
				Volvo EC250EL	1	60
54 55 56 57			Excavator	Sany SY335C	1	60
56				JCB 220LC	1	60
57	6	Rock Armour/ Earthworks/	Dumper	Bell B30E	1	60
58	0	Services / Surfacing	Roller	Bomag BW 213DH	1	20
59			Road Planer	Wirtgen W 150CFi	1	10
60		Piling and RC Slab	Drop Hammer Pile Rig Power Pack	BS5228-1 Annex C - C3.5	1	5
61			Hydraulic Hammer Rig	BS5228-1 Annex C - C3.3	1	5
62	11 12 12		Concrete Lorry	Hymix P2 Series	1	15
63	11, 12, 13	Pier Piling	Generator	Clarke FG5100ES 5.5kVA	1	10
64		Pier Deck	100t Crawler Crane	Kobelco CKE1100G	2	100
65			Excavator	JCB 220LC	1	10

	В	С	D	E	F	G								
2			Plar	nt Used per Scenario										
4	No.	Phase	Plant Type	Make and Model	Number on Site	Estimated % on Time								
66	Scenario 06: Completion of Pier Works plus Activities Within Marshalling Area													
67				Volvo EC250EL	1	60								
68			Excavator	Sany SY335C	1	60								
69 70		Rock Armour/ Earthworks/		JCB 220LC	1	60								
70	6		Dumper	Bell B30E	1	60								
71	0	Services / Surfacing	Roller	Bomag BW 213DH	1	20								
72			Road Planer	Wirtgen W 150CFi	1	10								
73		Pier Deck	Concrete Lorry	Hymix P2 Series	1	10								
74		Fendering	Fendering Generator		2	80								
75	13,14,15,1 6	Cathodic Protection	Excavator	JCB 220LC	1	60								
76	6	Bomovo Tomporony Dior	100t Crawler Crane	Kobelco CKE1100G	2	65								
77		Remove Temporary Pier Works	Work Boat	Multicat	1	100								
78		WOIKS	60t Mobile Crane	LTM 1060-3.1	1	10								

Noise Source Library used within Noise Model															
Nerre	10	Turne					Octave Spe	ectrum (dB)					li.e.	Course
Name	ID	Туре	Weight.	31.5	63	125	250	500	1000	2000	4000	8000	A	lin	Source
Tracked excavator Volvo EC250EL	C2.3	Lw (c)			105.1	108.1	101.1	98.1	97.1	95.1	94.1	91.1	103	111.1	BS 5228-1:2009+A1:2014: Annex C
Tracked Excavator Sany 335C	C2.15	Lw (c)			105	113	98	101	98	96	91	85	104	114.2	BS 5228-1:2009+A1:2014: Annex C
Articulated Dump Truck (tipping fill) Bell B30E	C2.32	Lw (c)			108	104	101	98	97	94	91	86	102	110.6	BS 5228-1:2009+A1:2014: Annex C
Lorry Rock armour delivery Lorry	C2.34	Lw (c)			101	106	106	106	102	101	96	94	108.1	112.2	BS 5228-1:2009+A1:2014: Annex C
Roller Bomag BW 213DH	C2.38	Lw (c)			108	103	105	100	95	90	82	74	101.6	111.1	BS 5228-1:2009+A1:2014: Annex C
Diesel generator Clarke 5100	C.4.76	Lw (c)			115.6	109.6	92.6	89.6	88.6	83.6	80.6	72.6	97	116.6	BS 5228-1:2009+A1:2014: Annex C
Tug Boat Multicat	TUG01	Lw	А					87					87	90.2	Aberdeen Harbour Expansion ES App. 20 d
Mobile telescopic crane Liebherr LTM 1060-3.1	C.4.45	Lw (c)			118	109	106	102	105	104	97	89	109.4	119.2	BS 5228-1:2009+A1:2014: Annex C
Hydraulic Hammer Rig	C3.3	Lw (c)			118	124	116	118	114	111	106	103	119.5	126.6	BS 5228-1:2009+A1:2014: Annex C
Drop Hammer Pile Rig Power Pack	C3.5	Lw (c)			107	93	88	87	94	91	81	74	96.8	107.6	BS 5228-1:2009+A1:2014: Annex C
Tracked mobile crane Kobelco CKE1100G	C.3.28	Lw (c)			109	105	94	90	87	85	79	74	94.5	110.6	BS 5228-1:2009+A1:2014: Annex C
Tracked excavator JCB220LC	C2.3b	Lw (c)			108	111	104	101	100	98	97	94	105.9	114	BS 5228-1:2009+A1:2014: Annex C
Road Planer Wirtgen W 150CFi	C5.7	Lw (c)			109	115	107	105	105	102	98	95	109.7	117.3	BS 5228-1:2009+A1:2014: Annex C
Suction Dredger Vessel	SDV01	Lw	А					99.9					99.9	103.1	Internoise_2010_Rob_Witte_N oise_from_moored_ships
Hand-held circular saw (petrol- cutting concrete blocks)	C4.72	Lw (c)		28	97	103	105	102	99	98	102	97	107.2	110.3	BS 5228-1:2009+A1:2014: Annex C
Sand Pump Output	SPO01	Lw		51.9	63.3	70.9	78.9	91.9	98.9	94.9	85.9	74.9	101.1		SET-T Module (Spec taken from Boskalis Argonaut dredger)
Jet Pump Output	JPO01	Lw		49.7	61.1	68.7	76.7	89.7	96.7	92.7	83.7	72.7	98.9		SET-T Module (Spec taken from Boskalis Argonaut dredger)
Pump Ashore Output	PAO01	Lw		56.5	67.9	75.5	83.5	96.5	103.5	99.5	90.5	79.5	105.8		SET-T Module (Spec taken from Boskalis Argonaut dredger)

Modelling Scenario 1										
				SWL	Operating Time	Height	Coordinates			
Name	ID	(dBA)	Туре	ID	(min)	(m)	Х	Y		
			(11111)	(111)	(m)	(m)				
Bell B30E	!0201!DUMP01	102	Lw	C2.32	432	1.5	115636.7	899888.4		
Volvo EC250EL	!0201!EXCAV01	103	Lw	C2.3	432	1.5	115636.9	899890.4		
Sany SY335C	!0201!EXCAV02	104	Lw	C2.15	432	1.5	115725.6	899870.2		
JCB 220LC	!0201!EXCAV03	105.9	Lw	C2.3b	432	1.5	115665.3	899897.8		
Wirtgen W 150CFi	!0201!PLANER01	109.7	Lw	C5.7	72	1.5	115661.4	899899.1		
Bomag BW 213DH	!0201!ROLL01	101.6	Lw	C2.38	144	1.5	115599.9	899904.7		

	Modelling Scenario 2											
				SWL	Operating Time	Height	Coord	inates				
Name	ID	(dBA)	Туре		(min) (n		Х	Y				
			.0	(11111)	(,,,)	(m)	(m)					
LTM 1060-3.1	!0202!CRANE01	109.4	Lw	C.4.45	72	1.5	115794.5	899848.8				
Bell B30E	!0202!DUMP02	102	Lw	C2.32	180	1.5	115796.1	899850.8				
JCB 220LC	!0202!EXCAV04	105.9	Lw	C2.3b	144	1.5	115792.4	899850.4				
Clarke FG5100ES	!0202!GEN01	97	Lw	C.4.76	432	0.5	115794.3	899852.5				
Hand Tools	!0202!HT01	107.2	Lw	C4.72	180	1.5	115794.5	899850.5				
Hand Tools	!0202!HT02	107.2	Lw	C4.72	180	1.5	115794.0	899851.0				

	Modelling Scenario 3												
				SWL	Operating Time	Height	Coord	inates					
Name	ID	(dBA)	Туре	ID	(min)	(m)	X	Y					
Floating Platform (Backhoe Dredger)	!0203!BHD01	87	Lw	TUG01	360	1.5	(m) 115636.38	(m) 899841.05					
Excavator (Backhoe Dredger)	!0203!BHD02	105.9	Lw	C2.3b	72	1.5	115637.07	899840.73					
Kobelco CKE1100G	!0203!CRANE02	94.5	Lw	C.3.28	720	1.5	115803.49	899798.53					
Bell B30E	!0203!DUMP03	102	Lw	C2.32	432	1.5	115636.74	899888.37					
Volvo EC250EL	!0203!EXCAV05	103	Lw	C2.3	432	1.5	115636.94	899890.39					
Sany SY335C	!0203!EXCAV06	104	Lw	C2.15	432	1.5	115725.44	899870.13					
JCB 220LC	!0203!EXCAV07	105.9	Lw	C2.3b	432	1.5	115665.07	899897.72					
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115774.37	899826.12					
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115775.91	899824.7					
Impact Hammer	!0203!IMPHAM01	119.5	Lw	C3.3	36	3.5	115787.07	899838.64					
Impact Hammer Power Pack	!0203!IMPP01	96.8	Lw	C3.5	36	1.5	115787.21	899835.17					
Hymix P2 Series	!0203!LORRY01	108.1	Lw	C2.34	36	1.5	115787.7	899843.44					
Wirtgen W 150CFi	!0203!PLANER02	109.7	Lw	C5.7	72	1.5	115661.31	899899.05					
Bomag BW 213DH	!0203!ROLL02	101.6	Lw	C2.38	144	1.5	115600.03	899904.66					

		ſ	Modelli	ng Scenar	io 3			
				SWL	Operating Time	Height	Coord	inates
Name	ID	(dBA)	Туре	ID	(min)	(m)	X	Y
Sospan Dau (Engine)	!0203!SD01	99.9	Lw	SDV01	216	1.5	(m) 115638.07	(m) 899843.17
Sospan Dau (Sand Pump)	!0203!SD02	101.1	Lw	SPO01	216	1.5	115637.01	899843.03
Sospan Dau (Jet Pump)	!0203!SD03	98.9	Lw	JPO01	216	1.5	115637.81	899842.72
Sospan Dau (Pump Ashore)	!0203!SD04	105.8	Lw	PAO01	216	1.5	115638.54	899842.41
Work Boat	!0203!WB01	87	Lw	TUG01	180	1.5	115807.44	899803.91
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115789.2	899835.15
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115805.08	899797.2
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115801.2	899800.04
Kobelco CKE1100G	!0203!CRANE02	94.5	Lw	C.3.28	720	1.5	115777.74	899840.83
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115806.1	899796.08
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115807.63	899794.65
Floating Platform (Backhoe Dredger)	!0203!BHD01	87	Lw	TUG01	360	1.5	115636.38	899841.05
Excavator (Backhoe Dredger)	!0203!BHD02	105.9	Lw	C2.3b	72	1.5	115637.07	899840.73

		ſ	Modelli	ng Scenar	rio 3			
				SWL	Operating Time	Height	Coordinates	
Name	ID	(dBA)	Туре	ID	(min)	(m)	X	Y
Kobelco CKE1100G	!0203!CRANE02	94.5	Lw	C.3.28	720	1.5	(m) 115803.49	(m) 899798.53
Bell B30E	!0203!DUMP03	102	Lw	C2.32	432	1.5	115636.74	899888.37
Volvo EC250EL	!0203!EXCAV05	103	Lw	C2.3	432	1.5	115636.94	899890.39
Sany SY335C	!0203!EXCAV06	104	Lw	C2.15	432	1.5	115725.44	899870.13
JCB 220LC	!0203!EXCAV07	105.9	Lw	C2.3b	432	1.5	115665.07	899897.72
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115774.37	899826.12
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115775.91	899824.7
Impact Hammer	!0203!IMPHAM01	119.5	Lw	C3.3	36	3.5	115787.07	899838.64
Impact Hammer Power Pack	!0203!IMPP01	96.8	Lw	C3.5	36	1.5	115787.21	899835.17
Hymix P2 Series	!0203!LORRY01	108.1	Lw	C2.34	36	1.5	115787.7	899843.44
Wirtgen W 150CFi	!0203!PLANER02	109.7	Lw	C5.7	72	1.5	115661.31	899899.05
Bomag BW 213DH	!0203!ROLL02	101.6	Lw	C2.38	144	1.5	115600.03	899904.66
Sospan Dau (Engine)	!0203!SD01	99.9	Lw	SDV01	216	1.5	115638.07	899843.17

	Modelling Scenario 3											
				SWL Operating Time		Height	Coord	linates				
Name	ID	(dBA)	Type ID (min)	(m)	Х	Y						
					('''''')	(''')	(m)	(m)				
Sospan Dau (Sand Pump)	!0203!SD02	101.1	Lw	SPO01	216	1.5	115637.01	899843.03				
Sospan Dau (Jet Pump)	!0203!SD03	98.9	Lw	JPO01	216	1.5	115637.81	899842.72				
Sospan Dau (Pump Ashore)	!0203!SD04	105.8	Lw	PAO01	216	1.5	115638.54	899842.41				
Work Boat	!0203!WB01	87	Lw	TUG01	180	1.5	115807.44	899803.91				
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115789.2	899835.15				
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115805.08	899797.2				
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115801.2	899800.04				
Kobelco CKE1100G	!0203!CRANE02	94.5	Lw	C.3.28	720	1.5	115777.74	899840.83				
JCB 220LC	!0203!EXCAV08	105.9	Lw	C2.3b	360	1.5	115806.1	899796.08				
Clarke FG5100ES	!0203!GEN02	97	Lw	C.4.76	72	0.5	115807.63	899794.65				

			Modelli	ing Scena	rio 4			
	10		_	SWL	Operating Time	Height	Coord	inates
Name	ID	(dBA)	Туре	ID	(min)	(m)	X (m)	Y (m)
Excavator (Backhoe Dredger)	!0204!BHD03	105.9	Lw	C2.3b	72	1.5	115637.07	899840.73
Floating Platform (Backhoe Dredger)	!0204!BHD04	87	Lw	TUG01	360	1.5	115636.38	899841.05
Kobelco CKE1100G	!0204!CRANE03	94.5	Lw	C.3.28	720	2.5	115781.83	899826.7
Bell B30E	!0204!DUMP04	102	Lw	C2.32	432	1.5	115636.74	899888.37
JCB 220LC	!0204!EXCAV09	105.9	Lw	C2.3b	360	1.5	115772.36	899830.63
Sany SY335C	!0204!EXCAV11	104	Lw	C2.15	432	1.5	115725.12	899870.34
Volvo EC250EL	!0204!EXCAV12	103	Lw	C2.3	432	1.5	115636.94	899890.39
Clarke FG5100ES	!0204!GEN03	97	Lw	C.4.76	72	0.5	115770.72	899830.05
Impact Hammer	!0204!IMPHAM02	119.5	Lw	C3.3	36	3.5	115777.36	899824.77
Impact Hammer Power Pack	!0204!IMPP02	96.8	Lw	C3.5	36	1.5	115777.84	899823.05
Hymix P2 Series	!0204!LORRY02	108.1	Lw	C2.34	36	1.5	115774.66	899831.23
Wirtgen W 150CFi	!0204!PLANER03	109.7	Lw	C5.7	72	1.5	115660.99	899899.16
Bomag BW 213DH	!0204!ROLL03	101.6	Lw	C2.38	144	1.5	115600.03	899904.35
Sospan Dau (Pump Ashore)	!0204!SD05	105.8	Lw	PAO01	216	1.5	115638.54	899842.41

Modelling Scenario 4										
Name ID	10		-	SWL	Operating Time	Height	Coord	inates		
	טו	(dBA)	Туре	ID	(min)	(m)	Х	Y		
					((((((((((((((((((((((((((((((((((((((((111)	(m)	(m)		
Sospan Dau (Jet Pump)	!0204!SD06	98.9	Lw	JPO01	216	1.5	115637.81	899842.72		
Sospan Dau (Sand Pump)	!0204!SD07	101.1	Lw	SPO01	216	1.5	115637.01	899843.03		
Sospan Dau (Engine)	!0204!SD08	99.9	Lw	SDV01	216	1.5	115638.07	899843.17		

	Modelling Scenario 5											
				SWL	Operating Time	Height	Coord	linates				
Name	ID	(dBA)	Туре	ID	(min)	(m)	Х	Y				
					()	()	(m)	(m)				
JCB 220LC	!0205!EXCAV10	105.9	Lw	C2.3b	432	1.5	115665.07	899897.61				
Kobelco CKE1100G	!0205!CRANE03	94.5	Lw	C.3.28	720	3	115812.98	899798.91				
JCB 220LC	!0205!EXCAV09	105.9	Lw	C2.3b	360	1.5	115803.67	899796.91				
Clarke FG5100ES	!0205!GEN03	97	Lw	C.4.76	72	0.5	115800.7	899792.73				
Impact Hammer	!0205!IMPHAM02	119.5	Lw	C3.3	36	3.5	115809.09	899794.73				
Impact Hammer Power Pack	!0205!IMPP02	96.8	Lw	C3.5	36	1.5	115809.57	899793				
Hymix P2 Series	!0205!LORRY02	108.1	Lw	C2.34	36	1.5	115801.71	899795.92				
Sany SY335C	!0205!EXCAV11	104	Lw	C2.15	432	1.5	115725.12	899870.24				
Bomag BW 213DH	!0205!ROLL04	101.6	Lw	C2.38	144	1.5	115600.03	899904.24				
Wirtgen W 150CFi	!0205!PLANER04	109.7	Lw	C5.7	72	1.5	115661.31	899898.95				
Volvo EC250EL	!0205!EXCAV13	103	Lw	C2.3	432	1.5	115636.94	899890.39				
Bell B30E	!0205!DUMP05	102	Lw	C2.32	432	1.5	115636.74	899888.37				

			Modell	ing Scena	rio 6			
				SWL	Operating Time	Height	Coord	dinates
Name	ID	(dBA)	Туре	ID	(min)	(m)	X	Y
							(m)	(m)
LTM 1060-3.1	102061CRANE	109.4	Lw	C.4.45	36	1.5	115793.25	899808.64
Kobelco CKE1100G	!0206!CRANE02	94.5	Lw	C.3.28	720	1.5	115810.05	899794.97
Bell B30E	!0206!DUMP05	102	Lw	C2.32	432	1.5	115636.74	899888.37
JCB 220LC	!0206!EXCAV08	105.9	Lw	C2.3b	360	1.5	115807.9	899796.17
JCB 220LC	!0206!EXCAV11	105.9	Lw	C2.3b	432	1.5	115665.07	899897.72
Sany SY335C	!0206!EXCAV12	104	Lw	C2.15	432	1.5	115724.91	899870.34
Volvo EC250EL	!0206!EXCAV13	103	Lw	C2.3	432	1.5	115636.94	899890.39
Clarke FG5100ES	!0206!GEN02	97	Lw	C.4.76	72	0.5	115773.09	899823.31
Hymix P2 Series	!0206!LORRY01	108.1	Lw	C2.34	36	1.5	115774.69	899822.03
Wirtgen W 150CFi	!0206!PLANER04	109.7	Lw	C5.7	72	1.5	115661.31	899898.95
Bomag BW 213DH	!0206!ROLL04	101.6	Lw	C2.38	144	1.5	115600.03	899904.24
Work Boat	!0206!WB01	87	Lw	TUG01	180	1.5	115800.59	899782.95
Kobelco CKE1100G	!0206!CRANE02	94.5	Lw	C.3.28	720	1.5	115777.66	899840.83
Clarke FG5100ES	!0206!GEN02	97	Lw	C.4.76	72	0.5	115792.6	899807.85

Modelling Scenario 6									
Name ID			SWL	Operating Time	Height	Coord	linates		
	(dBA) Type	ID	(min)	(m)	Х	Y			
					(11111)	(''')	(m)	(m)	
Clarke FG5100ES	!0206!GEN02	97	Lw	C.4.76	72	0.5	115808.65	899797.44	

Appendix K.1: Underwater Noise Technical Report

Unclassified. Not to be cited without author's permission.

Submitted to:

Redacted Affric Limited Lochview Office Loch Duntelchaig Farr Inverness IV2 6AW

Redacted

Redac Redacted Website: www.affriclimited.co.uk Submitted by:

Redacted Subacoustech Environmental Ltd Chase Mill Winchester Road Bishop's Waltham Hampshire SO32 1AH

Redacted

Redacted Website: www.subacoustech.com

Underwater noise propagation modelling at the Tarbert ferry terminal, Isle of Harris, Scotland

Redacted

11th October 2018

Subacoustech Environmental Report No. P220R1103

Document No.	Date	Written	Approved	Distribution	
P220R1101 P220R1102	10/01/2018 10/09/2018	Redacted	Redac	Redacted	
P220R1103	11/10/2018	Redacted Redacted	Redac Redac	Redacted Redacted	

This report is a controlled document. The report documentation page lists the version number, record of changes, referencing information, abstract and other documentation details.

List of contents

List of co	ontents	1
1 Intro	oduction	1
1.1	Survey area	1
1.2	Impact piling	1
1.3	Other noise sources	2
1.4	Assessment overview	2
2 Mea	asurement of underwater noise	3
2.1	Units of measurement	3
2.2	Quantities of measurement	3
3 Moo	delling methodology	6
3.1	Detailed modelling inputs	6
3.2	Simple modelling	9
3.3	Assessment criteria	9
4 Mod	delling results	15
4.1	Impact piling	15
4.2	Vibro piling and rock breaking (simple modelling)	23
4.3	Other noise sources	24
4.4	Discussion	24
5 Sun	nmary and conclusions	25
Reference	ces	26
Report d	locumentation page	27

1 Introduction

Subacoustech Environmental have been instructed by Affric Limited to undertake acoustic propagation modelling for impact piling and other related noise-making operations linked to the proposed upgrade at the Tarbert ferry terminal.

The purpose of the modelling is to estimate the received sound pressure levels in the region, with particular concern for the impacts on marine mammals and fish. This report has been prepared by Subacoustech Environmental Ltd for Affric and presents the results and findings of the modelling assessment.

1.1 Survey area

Figure 1-1 details the Tarbert ferry terminal site on the south-east coast of the Isle of Harris, Scotland. As the area of operational activity for the works is relatively small, a single representative modelling location has been selected (approximate coordinates: 57.8968°N, 006.7986°W), this is shown by the red marker in the figure below.

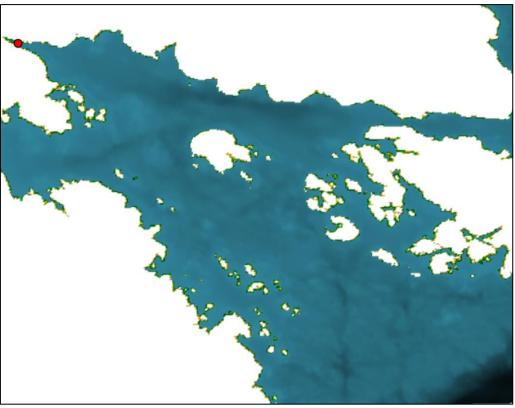


Figure 1-1 Image showing the location of Tarbert ferry terminal and the surrounding bathymetry (bathymetry supplied by Find Mapping Ltd - © British Crown and OceanWise, 2017. All rights reserved. Not to be used for Navigation.)

1.2 Impact piling

Three types of pile are expected to be installed at the ferry terminal; fender piles measuring 762 mm and 910 mm in diameter, bearing/raking piles measuring 610 mm in diameter, and temporary works piles measuring approximately 508 mm in diameter. The piles will be installed using a hammer such as a BSP CX hydraulic piling hammer with expected blow energies of between 50 and 150 kJ. The 34 temporary works piles are expected to be installed over a period of 1 month, and 12 fender piles and 51 bearing/raking piles are expected to be installed within a further month. It is expected that each pile should take between 30 minutes and 1 hour to install depending on conditions.

1.3 Other noise sources

In addition to impact piling, there is the possibility of using vibratory hammer (vibro piling) to install the piles. Rock breaking using a machine mounted pecker is also being considered for removal of rocks. The activities have been considered using a high-level, simple modelling approach based on a conservative worst case.

Backhoe dredging and vessel movements are also expected during the terminal upgrades, however due to the low level of noise from these activities, they have only been assessed qualitatively.

1.4 Assessment overview

This report presents a detailed assessment of the potential underwater noise from works at the Tarbert ferry terminal and covers the following:

- Review of background information on the units for measuring and assessing underwater noise
- Discussion of the approach, input parameters and assumptions for the noise modelling undertaken;
- Presentation of detailed subsea noise modelling using unweighted metrics and interpretation of the results using suitable noise metrics and criteria; and
- Summary and conclusions

2 Measurement of underwater noise

Sound travels much faster in water (approximately 1,500 ms⁻¹) than in air (340 ms⁻¹). Since water is a relatively incompressible, dense medium, the pressures associated with underwater sound tend to be much higher than in air. As an example, background levels of sea noise of approximately 130 dB re 1 μ Pa for UK coastal waters are not uncommon (Nedwell *et al*, 2003 and 2007). This level equates to about 100 dB re 20 μ Pa in the units that would be used to describe a sound level in air.

2.1 Units of measurement

Sound measurements underwater are usually expressed using the decibel (dB) scale, which is a logarithmic measure of sound. A logarithmic scale is used because rather than equal increments of sound having an equal increase in effect, typically a constant ratio is required for this to be the case. That is, each doubling of sound level will cause a roughly equal increase in "loudness".

Any quantity expressed in this scale is termed a "level". If the unit is sound pressure, expressed on the dB scale, it will be termed a "Sound Pressure Level". The fundamental definition of the dB scale is given by:

$$Level = 10 \times \log_{10} \left(\frac{Q}{Q_{ref}} \right)$$

where Q is the quantity being expressed on the scale, and Q_{ref} is the reference quantity.

The dB scale represents a ratio and, for instance, 6 dB really means "twice as much as…" (such as a doubling of peak or RMS pressure, exposure etc). It is, therefore, used with a reference unit, which expresses the base from which the ratio is expressed. The reference quantity is conventionally smaller than the smallest value to be expressed on the scale, so that any level quoted is positive. For instance, a reference quantity of 20 μ Pa is used for sound in air, since this is the threshold of human hearing.

A refinement is that the scale, when used with sound pressure, is applied to the pressure squared rather than the pressure. If this were not the case, when the acoustic power level of a source rose by 10 dB the Sound Pressure Level would rise by 20 dB. So that variations in the units agree, the sound pressure must be specified in units of root mean square (RMS) pressure squared. This is equivalent to expressing the sound as:

Sound Pressure Level =
$$20 \times \log_{10} \left(\frac{P_{RMS}}{P_{ref}} \right)$$

For underwater sound, typically a unit of one micropascal (μ Pa) is used as the reference unit; a Pascal is equal to the pressure exerted by one Newton over one square metre; one micropascal equals one millionth of this.

2.2 Quantities of measurement

Sound may be expressed in many ways depending upon the type of noise, and the parameters of the noise that allow it to be evaluated in terms of a biological effect. These are described in more detail below.

2.2.1 <u>Sound pressure level (SPL)</u>

The Sound Pressure Level is normally used to characterise noise and vibration of a continuous nature such as drilling, boring, continuous wave sonar, or background sea and river noise levels. To calculate the SPL, the variation in sound pressure is measured over a specific time period to determine the Root Mean Square (RMS) level of the time varying sound. The SPL can therefore be considered a measure of the average unweighted level of sound over the measurement period.

Where an SPL is used to characterise transient pressure waves such as that from seismic airguns, underwater blasting or impact piling, it is critical that the period over which the RMS level is calculated is quoted. For instance, in the case of pile strike lasting, say, a tenth of a second, the mean taken over a tenth of a second will be ten times higher than the mean taken over one second. Often, transient sounds such as these are quantified using "peak" SPLs.

2.2.2 Peak sound pressure level (SPL_{peak})

Peak SPLs are often used to characterise sound transients from impulsive sources, such as percussive impact piling and seismic airgun sources. A peak SPL is calculated using the maximum variation of the pressure from positive to zero within the wave. This represents the maximum change in positive pressure (differential pressure from positive to zero) as the transient pressure wave propagates.

A further variation of this is the peak-to-peak SPL where the maximum variation of the pressure from positive to negative within the wave is considered. Where the wave is symmetrically distributed in positive and negative pressure, the peak-to-peak level will be twice the peak level, or 6 dB higher.

2.2.3 <u>Sound exposure level (SEL)</u>

When assessing the noise from transient sources such as blast waves, impact piling or seismic airgun noise, the issue of the period of the pressure wave is often addressed by measuring the total acoustic energy (energy flux density) of the wave. This form of analysis was used by Bebb and Wright (1953, 1954a, 1954b and 1955), and later by Rawlins (1987) to explain the apparent discrepancies in the biological effect of short and long-range blast waves on human divers. More recently, this form of analysis has been used to develop criteria for assessing the injury range from fish for various noise sources (Popper *et al*, 2014).

The Sound Exposure Level (SEL) sums the acoustic energy over a measurement period, and effectively takes account of both the SPL of the sound source and the duration the sound is present in the acoustic environment. Sound Exposure (SE) is defined by the equation:

$$SE = \int_{0}^{T} p^{2}(t) dt$$

where p is the acoustic pressure in Pascals, T is the duration of the sound in seconds, and t is the time in seconds. The Sound Exposure is a measure of the acoustic energy and, therefore, has units of Pascal squared seconds (Pa²s).

To express the Sound Exposure on a logarithmic scale by means of a dB, it is compared with a reference acoustic energy level (P^{2}_{ref}) and a reference time (T_{ref}). The SEL is then defined by:

$$SEL = 10 \times \log_{10} \left(\frac{\int_0^T p^2(t) dt}{P_{ref}^2 T_{ref}} \right)$$

By selecting a common reference pressure P_{ref} of 1 µPa for assessments of underwater noise, the SEL and SPL can be compared using the expression:

$$SEL = SPL + 10 \times \log_{10} T$$

Where the SPL is a measure of the average level of the broadband noise, and the SEL sums the cumulative broadband noise energy.

This means that, for continuous sounds of less than one second, the SEL will be lower than the SPL. For periods greater than one second the SEL will be numerically greater than the SPL (i.e. for a sound of ten seconds duration, the SEL will be 10 dB higher than the SPL, for a sound of 100 seconds duration the SEL will be 20 dB higher than the SPL, and so on).

Weighted metrics for marine mammals have been proposed by the National Marine Fisheries Service (NMFS) (2016), these assign a frequency response to groups of marine mammals, and are discussed in detail in the following section.

3 Modelling methodology

Three modelling methodologies have been used for this assessment based on the likely severity of impact of each noise source based on noise levels previously measured by Subacoustech.

- High noise sources (impact piling) have been assessed using detailed modelling considering all environmental parameters;
- Moderate sources (vibro piling and rock breaking) use a simple modelling approach based on a conservative worst case; and
- Low noise sources (dredging and vessel movements) have been considered qualitatively based on previously measured data.

3.1 Detailed modelling inputs

To estimate the likely noise levels from impact piling operations, modelling has been carried out using an approach that is widely used and accepted by the acoustics community, in combination with publicly available environmental data and information provided by Affric. The approach is described in more detail below.

Modelling has been undertaken at one representative location to predict the levels of underwater noise from the impact piling activities. The modelling location is shown in Figure 1-1.

Modelling of underwater noise is complex and can be approached in several different ways. Subacoustech have chosen to use a numerical approach that is based on two different solvers:

- A parabolic equation (PE) method for lower frequencies (12.5 Hz to 250 Hz); and
- A ray tracing method for higher frequencies (315 Hz to 100 kHz).

The PE method is widely used within the underwater acoustics community but has computational limitations at high frequencies. Ray tracing is more computationally efficient at higher frequencies but is not suited to low frequencies (Etter, 1991). This study utilises the dBSea implementation of these numerical solutions.

These solvers account for a wide array of input parameters, including bathymetry, sediment data, sound speed and source frequency content to ensure as detailed results as possible. These input parameters are described in the following sections.

3.1.1 <u>Bathymetry</u>

The bathymetry data used in the modelling was supplied by Find Mapping Ltd; this data has a resolution of 1 arc second (a grid of squares measuring approximately 30 m by 60 m). A high tide of 4.8 m (Mean High Water Springs) has been used throughout the modelling as this represents a conservative approach with regards to noise propagation.

3.1.2 Sound speed profile

The speed of sound in the water, shown in Figure 3-1, has been calculated using temperature and salinity data from Marine Scotland (Bresnan *et al.* 2016) and the underwater sound speed equation from Mackenzie (1981).

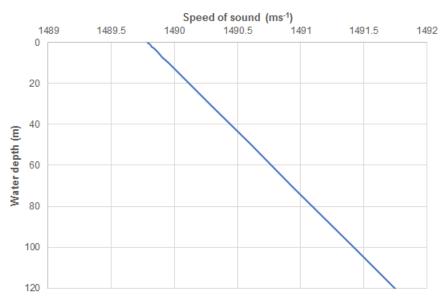


Figure 3-1 Sound speed profile used for modelling

3.1.3 <u>Seabed properties</u>

Based on data from the Marine Environment Mapping Programme (MAREMAP) the seabed properties used for modelling were assumed to be predominantly gravel and sand. Geo-acoustic properties for the seabed were based on available data from Jensen *et al.* (2011), and are provided in Table 3-1.

Seabed type	Compressive sound speed in substrate (ms⁻¹)	Density profile in substrate (kg/m³)	Attenuation profile in substrate (dB/wavelength)
Sand	1650	1900	0.8
Gravel	1800	2000	0.6

Table 3-1 Seabed geo-acoustic properties used for modelling

3.1.4 Impact piling source levels

The proposed impact piling operations at Tarbert include three pile sizes, as detailed in section 1.2, driven using a hammer blow energy of between 50 and 150 kJ. In order to cover a range of the likely noise levels; two pile sizes have been modelled (914 mm and 508 mm), and both 50 kJ and 150 kJ blow energies have been modelled.

The source levels used for the modelling of these two pile sizes and hammer energies are based on Subacoustech's extensive database of impact piling noise, with the predicted source level calculated from the blow energy and water depth of a piling location. These have been shown to be the primary factors determining the subsea noise levels produced. The size of the pile has been used to determine the frequency content of the noise. As the model assumes that the noise source acts as a single point, the water depth at the noise source (accounting for tide) has been used to adjust the source level to allow for the length of the pile in contact with the water.

The unweighted SPL_{peak} source levels estimated for Tarbert are:

- 197.1 dB re 1 µPa SPL_{peak} (50 kJ blow energy)
- 205.4 dB re 1 µPa SPL_{peak} (150 kJ blow energy)

These source levels equate to single strike SEL source levels of 173.2 dB re 1 μ Pa²s for a 50 kJ hammer and 181.6 dB re 1 μ Pa²s for a 150 kJ hammer

The third octave levels used for modelling are illustrated in Figure 3-2 and Figure 3-3. As the frequency content is determined by the dimensions of the pile, the shape of the two spectra are the same for both blow energies, with the overall source levels adjusted.

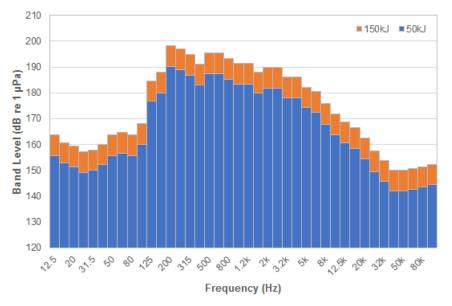


Figure 3-2 Source third octave band levels to be used to model impact piling for a 910 mm diameter pile (SPL_{peak})

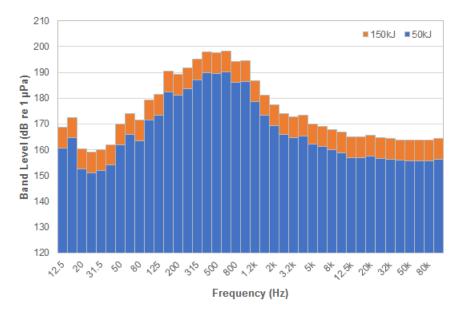


Figure 3-3 Source third octave band levels to be used to model impact piling for a 508 mm diameter pile (SPL_{peak})

It is likely that the energy and strike rate of the piling hammer will slowly increase (ramp-up) over time, due to how hydraulic piling hammers work, however due to the limited information available, this modelling has assumed the same blow energy and strike rate (1 strike per second) over the entire duration of 1 hour. If a ramp-up or soft start were introduced it would likely act as a mitigating factor to the overall noise levels.

3.2 Simple modelling

Modelling of noise from vibro piling and rock breaking have been undertaken using a simple modelling approach; Subacoustech's SPEAR model. This methodology has been chosen due to either low levels of noise or limited data availability. This simple modelling methodology comprises of using existing measurement data from similar activities taken by Subacoustech and modifying the source level to best match the scenario being modelled.

3.2.1 <u>Vibro piling and rock breaking source levels</u>

Source levels used for vibro piling have been based on third octave band measurements undertaken by Subacoustech of the vibro piling of sheet piles. Although tubular piles are being considered for these works, these measurements are considered comparable.

Source levels used for rock breaking are based on data from a report by Marshall Day Acoustics (Lawrence, 2016) and is, at the time of writing, the best available information on underwater noise levels from rock breaking activities. The proposed methodology does differ in that the measurements are of a ripper device, which penetrates the rock and pulls in up, whereas a peckering device is proposed for Tarbert. The differences between the rock breaking methods have been acknowledged and accounted for by modifying the source levels based on the differences in power outputs of the machinery.

The unweighted RMS source levels (1 s SEL) used for the SPEAR modelling are given in Table 3-2.

	Vibro piling	Rock breaking	
RMS Source level @ 1 m	188.0 dB re 1 µPa	175.4 dB re 1 µPa	
	Table 3-2 Unweighted RMS source levels used for SPEAR modelling		

The simple modelling is based on a simple geometric spreading model of the form $N \log_{10} R - \alpha R$ where R is the range and values for N and α are based on approximations from field measurements taken by Subacoustech. In contrast, the PE / Ray tracing solution is based on a physical approximations of underwater wave propagation and considers variations in bathymetry, seabed type and sound speed profile for multiple depths and for each frequency band. With the simple methodology these factors are intrinsic to the conditions of the measurements. In practice, the complex numerical modelling is extremely resource intensive and a single scenario can take over 48 hours to complete and it is common practice to use different modelling techniques according to the source being modelled and the anticipated impact range.

3.2.2 Other noise sources

The low-level noise sources (backhoe dredging and vessel movements) have been assessed qualitatively in this report using measured noise levels from the Subacoustech noise measurement database.

3.3 Assessment criteria

3.3.1 <u>Background</u>

Over the past 20 years it has become increasingly evident that noise from human activities in and around underwater environments can have an impact on the marine species in the area. The extent to which intense underwater sound might cause an adverse environmental impact in a species is dependent upon the incident sound level, sound frequency, duration of exposure, and/or repetition rate of the sound wave (see for example Hastings and Popper, 2005). As a result, scientific interest in the hearing abilities of aquatic animal species has increased. These studies are primarily based on evidence from high level sources of underwater noise such as blasting or impact piling, as these sources are likely to have the greatest environmental impact and therefore the clearest observable effects.

The impacts of underwater sound can be broadly summarised into three categories:

• Physical traumatic injury and fatality;

- Auditory injury (either permanent or temporary); and
- Disturbance.

The following sections discussed the agreed upon criteria for assessing these impacts in key marine species. The metrics and criteria that have been used in this study to assess environmental effect come from the latest guidance from the U.S. National Marine and Fisheries Service (NMFS) concerning underwater noise and its effects on marine mammals (NMFS (2016)) and Popper *et al* (2014) for the impacts of noise on species of fish.

3.3.2 Marine mammals

Since it was published, Southall *et al* (2007) has been the source of the most widely used criteria to assess the effects of noise on marine mammals. NMFS (2016) was co-authored by many of the same academics from the Southall *et al* (2007) paper, and effectively updates it. In the updated guidelines, the frequency weightings have changed along with the criteria. As a result, the criteria have generally become more strict and potential impact ranges may increase substantially in some cases.

The NMFS (2016) guidance groups marine mammals into functional hearing groups and applies filters to the unweighted noise to approximate the hearing response of the receptor. The hearing groups given in the NMFS (2016) are summarised in Table 3-3.

Hearing group	Example species	Generalised hearing range
Low Frequency (LF) Cetaceans	Baleen Whales	7 Hz to 35 kHz
Mid Frequency (MF) Cetaceans	Dolphins, Toothed Whales, Beaked Whales, Bottlenose Whales (including Bottlenose Dolphin)	150 Hz to 160 kHz
High Frequency (HF) Cetaceans	True Porpoises (including Harbour Porpoise)	275 Hz to 160 kHz
Phocid Pinnipeds (PW) (underwater)	True Seals (including Harbour Seal)	50 Hz to 86 kHz

The auditory weighting functions for each hearing group are provided in Figure 3-4.

Table 3-3 Marine mammal hearing groups (from NMFS, 2016)

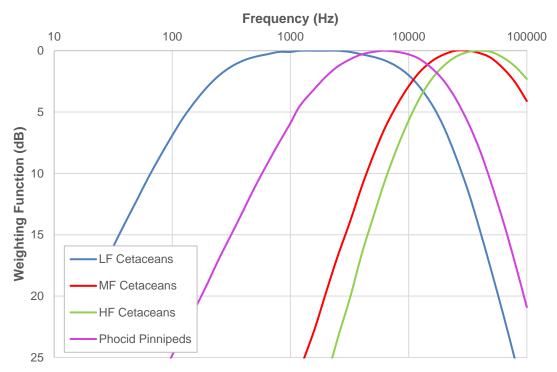
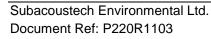


Figure 3-4 Auditory weighting functions for low frequency (LF) cetaceans, mid frequency (MF) cetaceans, high frequency (HF) cetaceans, phocid pinnipeds (PW) (underwater) (from NMFS, 2016)


Based on the species of marine mammal located near the ferry terminal works only the first four weighting groups (LF Cetacean, MF Cetacean, HF Cetacean, and Phocid Pinnipeds) have been considered in this study. Further discussion of the species weightings applied for this study are given in section 3.3.4.

NMFS (2016) presents unweighted peak criteria (SPL_{peak}) and cumulative, weighted sound exposure criteria (SEL_{cum}) for both permanent threshold shift (PTS) where unrecoverable hearing damage may occur and temporary threshold shift (TTS) where a temporary reduction in hearing sensitivity may occur in individual receptors. Table 3-4 and Table 3-5 summarise the NMFS (2016) criteria for onset of risk of PTS and TTS for each of the key marine mammal hearing groups for impulse and non-impulsive noise.

In the assessment of cumulative SEL values, a stationary animal model has been used assuming as a worst case, that the receptor stays at the same range from a noise source for its entire duration.

Impulsive noise	TTS criteria		PTS criteria	
Functional Group	SEL _{cum} (weighted) dB re 1 μPa ² s	SPL _{peak} (unweighted) dB re 1 μPa	SEL _{cum} (weighted) dB re 1 µPa ² s	SPL _{peak} (unweighted) dB re 1 µPa²s
LF Cetaceans	168	213	183	219
MF Cetaceans	170	224	185	230
HF Cetaceans	140	196	155	202
PW Pinnipeds	170	212	185	218

 Table 3-4 Assessment criteria for marine mammals from NMFS (2016) for impulsive noise (impact piling)

Non-impulsive noise	TTS criteria	PTS criteria
Functional Group	SEL _{cum} (weighted) dB re 1 µPa²s	SEL _{cum} (weighted) dB re 1 μPa²s
LF Cetaceans	179	199
MF Cetaceans	178	198
HF Cetaceans	153	173
PW Pinnipeds	181	201

 Table 3-5 Assessment criteria for marine mammals from NMFS (2016) for non-impulsive noise (vibro piling and rock breaking)

3.3.3 <u>Fish</u>

The effects of noise on fish have been assessed using criteria from Popper *et al.* (2014), which gives specific criteria for mortality and potential mortal injury, recoverable injury and TTS, masking and behaviour from various stimuli, including impact piling and continuous noises. Species of fish are grouped by whether or not they have a swim bladder and whether than swim bladder is involved in its hearing. The criteria are given as unweighted SPL_{peak}, RMS, and SEL_{cum} values and are summarised in Table 3-6 and Table 3-7.

Impact Piling	Mortality & potential	Impairment	
Type of animal	mortal injury	Recoverable injury	TTS
Fish: no swim bladder	> 219 dB SEL _{cum}	> 216 dB SEL _{cum}	>> 186 dB SEL _{cum}
	> 213 dB SPL _{peak}	> 213 dB SPL _{peak}	>> TOO UB SELcum
Fish: swim bladder not	210 dB SEL _{cum}	203 dB SEL _{cum}	> 186 dB SEL _{cum}
involved in hearing	> 207 dB SPL _{peak}	> 207 dB SPL _{peak}	> TOO UB SELcum
Fish: swim bladder	207 dB SEL _{cum}	203 dB SEL _{cum}	186 dB SEL _{cum}
involved in hearing	> 207 dB SPL _{peak}	> 207 dB SPL _{peak}	

Table 3-6 Assessment criteria for species of fish from Popper et al. (2014) for impact piling noise

Shipping and other continuous noise	Mortality & potential	Impairment	
Type of animal	mortal injury	Recoverable injury	TTS
Fish: no swim bladder	-	-	-
Fish: swim bladder not involved in hearing	-	-	-
Fish: swim bladder involved in hearing	-	170 dB RMS for 48 hours	158 dB RMS for 12 hours

 Table 3-7 Assessment criteria for species of fish from Popper et al. (2014) for shipping and other continuous noises

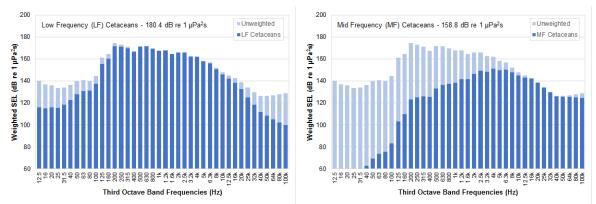
Where insufficient data is available (shown by a dash in the previous tables), qualitative criteria have been given, summarising the effect of the noise as having either a high, moderate or low effect on an individual in either the near-field (tens of metres), intermediate-field (hundreds of metres), or far-field (thousands of metres). This also includes information for masking and behavioural effect. These qualitative effects are reproduced in Table 3-8 to Table 3-9.

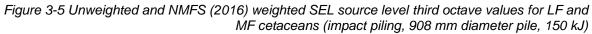
Impact Piling Type of animal	Recoverable injury	TTS	Masking	Behaviour
Fish: no swim bladder	-	-	(N) Moderate (I) Low (F) Low	(N) High (I) Moderate (F) Low
Fish: swim bladder not involved in hearing	-	-	(N) Moderate (I) Low (F) Low	(N) High(I) Moderate(F) Low
Fish: swim bladder involved in hearing	-	-	(N) High (I) High (F) Moderate	(N) High (I) High (F) Moderate

 Table 3-8 Summary of the qualitative effects on fish from impact piling noise from Popper et al. (2014)

 (N=Near-field, I=Intermediate-field, F=Far-field)

Shipping and other continuous noise	Recoverable	TTS	Masking	Behaviour
Type of animal	injury		_	
Fish: no swim bladder	(N) Low	(N) Moderate	(N) High	(N) Moderate
FISH. HO SWITT DIAUUEI	(I) Low	(I) Low	(I) High	(I) Moderate
	(F) Low	(F) Low	(F) Moderate	(F) Low
Fish: swim bladder not	(N) Low	(N) Moderate	(N) High	(N) Moderate
	(I) Low	(I) Low	(I) High	(I) Moderate
involved in hearing	(F) Low	(F) Low	(F) Moderate	(F) Low
Fish: owim bladder			(N) High	(N) High
Fish: swim bladder	-	-	(I) High	(I) Moderate
involved in hearing			(F) High	(F) Low


 Table 3-9 Summary of the qualitative effects on fish from shipping and other continuous noises from


 Popper et al. (2014) (N=Near-field, I=Intermediate-field, F=Far-field)

3.3.4 <u>Weighted source levels</u>

To undertake the modelling for the NMFS (2016) criteria with regards to the weighted criteria, the source levels were first adjusted using the auditory weighting functions shown in Figure 3-4. This significantly alters the source level for each functional group as shown in Figure 3-5 and Figure 3-6.

Noise from impact piling is predominantly low frequency in nature and reduces significantly at frequencies above 1 kHz. The impact piling source levels for the 910 mm pile, 150 kJ modelling are given in Figure 3-5 and Figure 3-6 show that the weighting makes only a modest difference to source levels for LF cetaceans when frequency weightings are applied and a significant reduction for other functional groups. The source levels for the other noise sources show a similar pattern, a summary of the weighted source levels is given in Table 3-10 and Table 3-12.

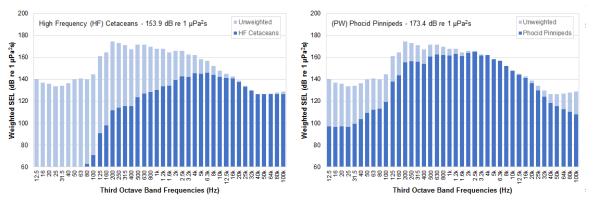


Figure 3-6 Unweighted and NMFS (2016) weighted SEL source level third octave values for HF cetaceans and phocid pinnipeds (impact piling, 908 mm diameter pile, 150 kJ)

910 mm pile	Impact piling source level (50 kJ) (single pulse SEL)	Impact piling source level (150 kJ) (single pulse SEL)
Unweighted	173.2 dB re 1 µPa ² s	181.6 dB re 1 µPa ² s
LF Cetaceans	172.0 dB re 1 µPa²s	180.4 dB re 1 µPa ² s
MF Cetaceans	150.4 dB re 1 µPa²s	158.8 dB re 1 µPa²s
HF Cetaceans	145.5 dB re 1 µPa²s	153.9 dB re 1 µPa ² s
Phocid Pinnipeds	165.0 dB re 1 µPa ² s	173.4 dB re 1 µPa ² s

 Table 3-10 Summary of the NMFS (2016) weighted source levels at 1 metre used impact piling modelling for a 910 mm pile

508 mm pile	Impact piling source level (50 kJ) (single pulse SEL)	Impact piling source level (150 kJ) (single pulse SEL)
Unweighted	173.2 dB re 1 µPa ² s	181.6 dB re 1 µPa ² s
LF Cetaceans	172.4 dB re 1 µPa²s	180.8 dB re 1 µPa²s
MF Cetaceans	144.6 dB re 1 µPa²s	153.0 dB re 1 µPa²s
HF Cetaceans	142.5 dB re 1 µPa²s	150.9 dB re 1 µPa ² s
Phocid Pinnipeds	163.3 dB re 1 µPa²s	171.7 dB re 1 µPa²s

 Table 3-11 Summary of the NMFS (2016) weighted source levels at 1 metre used impact piling

 modelling for a 508 mm pile

	Vibro piling source level (1 second SEL)	Rock breaking source level (1 second SEL)
Unweighted	188.0 dB re 1 µPa²s	175.4 dB re 1 µPa²s
LF Cetaceans	185.6 dB re 1 µPa²s	174.8 dB re 1 µPa²s
MF Cetaceans	172.0 dB re 1 µPa ² s	157.5 dB re 1 µPa²s
HF Cetaceans	167.2 dB re 1 µPa²s	154.9 dB re 1 µPa²s
Phocid Pinnipeds	183.6 dB re 1 µPa²s	169.1 dB re 1 µPa²s

 Table 3-12 Summary of the NMFS (2016) weighted source levels at 1 metre used for simple modelling

4 Modelling results

4.1 Impact piling

4.1.1 Unweighted SPL_{peak}

The SPL_{peak} noise level from impact piling for 910 and 508 mm diameter piles using blow energies of 50 and 150 kJ are presented in Figure 4-1 to Figure 4-4 for the maximum level in the water column. Cross sections of a south-easterly transect (112°) are presented in Figure 4-5 to Figure 4-8 to show the distribution of noise through the water column along with the water depth profile. These results have been analysed for their potential impact on marine mammals and fish using the criteria detailed in section 3.3 in Table 4-1 to Table 4-4.

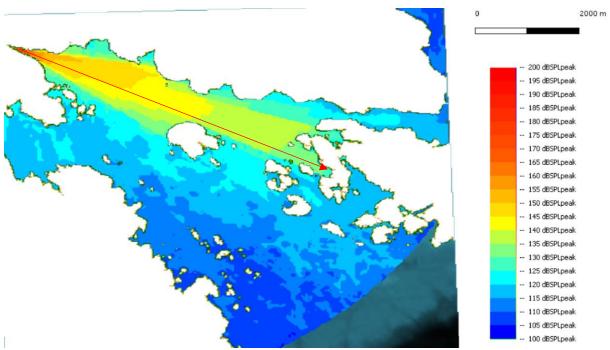


Figure 4-1 Impact piling (910 mm pile, 50 kJ blow energy), unweighted SPLpeak showing 112° transect

Figure 4-2 Impact piling (910 mm pile, 150 kJ blow energy), unweighted SPL_{peak} showing 112° transect

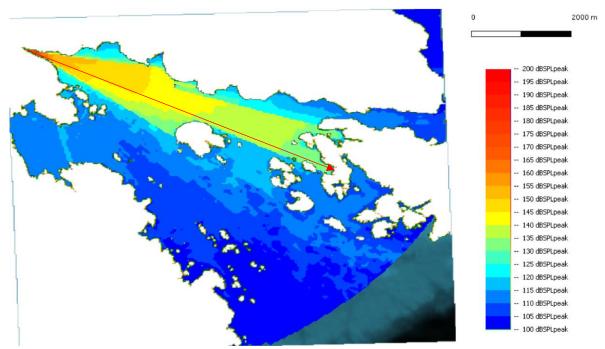


Figure 4-3 Impact piling (508 mm pile, 50 kJ blow energy), unweighted SPLpeak showing 112° transect

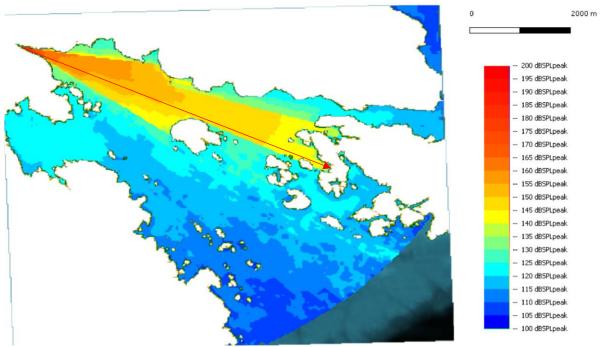


Figure 4-4 Impact piling (508 mm pile, 150 kJ blow energy), unweighted SPL_{peak} showing 112° transect

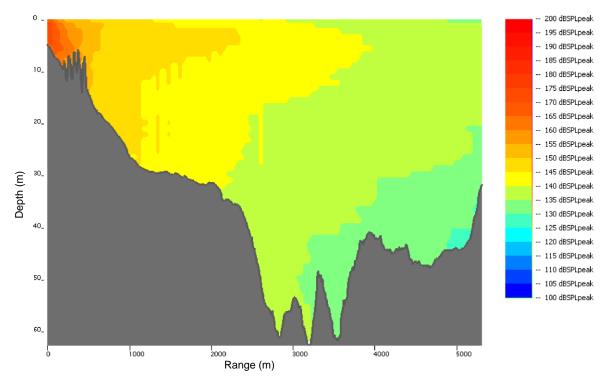
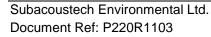



Figure 4-5 Cross section of the 112° transect from impact piling (910 mm pile, 50 kJ blow energy), unweighted SPL_{peak}

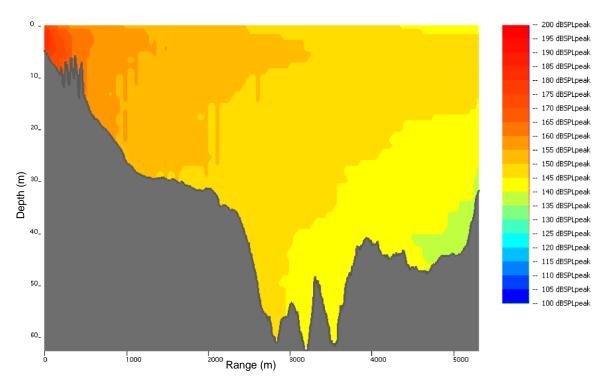


Figure 4-6 Cross section of the 112° transect from impact piling (910 mm pile, 150 kJ blow energy), unweighted SPL_{peak}

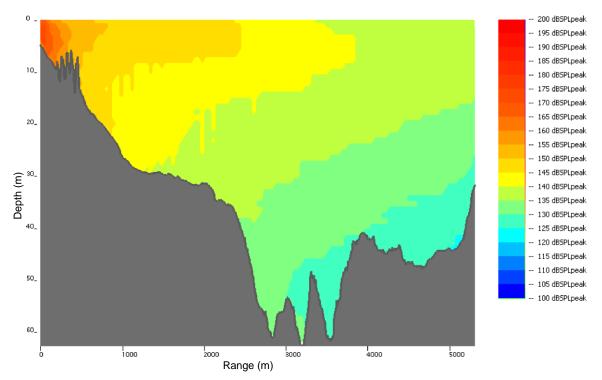


Figure 4-7 Cross section of the 112° transect from impact piling (508 mm pile, 50 kJ blow energy), unweighted SPL_{peak}

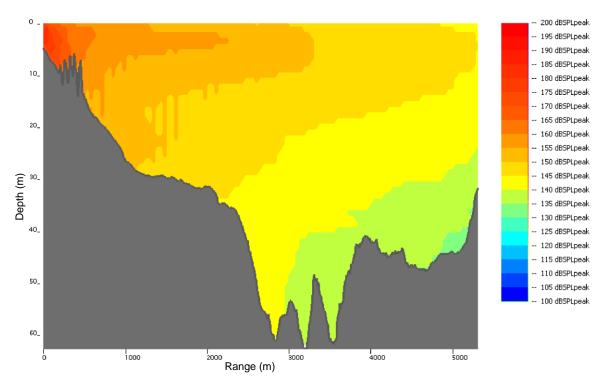


Figure 4-8 Cross section of the 112° transect from impact piling (508 mm pile, 150 kJ blow energy), unweighted SPL_{peak}

Threshold	Criteria SPL _{peak} (unweighted)	Impact piling (910 mm, 50 kJ) SPL _{peak} Maximum range	Impact piling (910 mm, 150 kJ) SPL _{peak} Maximum range
LF Cetaceans TTS	213 dB re 1 µPa	< 1 m	< 1 m
MF Cetaceans TTS	224 dB re 1 µPa	< 1 m	< 1 m
HF Cetaceans TTS	196 dB re 1 µPa	1 m	5 m
PW Pinnipeds TTS	212 dB re 1 µPa	< 1 m	< 1 m
LF Cetaceans PTS	219 dB re 1 µPa	< 1 m	< 1 m
MF Cetaceans PTS	230 dB re 1 µPa	< 1 m	< 1 m
HF Cetaceans PTS	202 dB re 1 µPa	< 1 m	1 m
PW Pinnipeds PTS	218 dB re 1 µPa	< 1 m	< 1 m

Table 4-1 Maximum ranges to NMFS (2016) SPLSPLinjury criteria for marine mammals from impactpiling noise from 910 mm diameter piles for two hammer sizes based on the maximum level in thewater column

Threshold	Criteria SPL _{peak} (unweighted)	Impact piling (910 mm, 50 kJ) SPL _{peak} Maximum range	Impact piling (910 mm, 150 kJ) SPL _{peak} Maximum range
Fish (no swim bladder) injury	213 dB re 1 µPa	< 1 m	< 1 m
Fish (with swim bladder) injury	207 dB re 1 µPa	< 1 m	< 1 m

Table 4-2 Maximum ranges to Popper et al. (2014) SPLpeak injury criteria for species of fish fromimpact piling noise from 910 mm diameter piles for two hammer sizes based on the maximum level in
the water column

Threshold	Criteria SPL _{peak} (unweighted)	Impact piling (508 mm, 50 kJ) SPL _{peak} Maximum range	Impact piling (508 mm, 150 kJ) SPL _{peak} Maximum range
LF Cetaceans TTS	213 dB re 1 µPa	< 1 m	< 1 m
MF Cetaceans TTS	224 dB re 1 µPa	< 1 m	< 1 m
HF Cetaceans TTS	196 dB re 1 µPa	1 m	6 m
PW Pinnipeds TTS	212 dB re 1 µPa	< 1 m	< 1 m
LF Cetaceans PTS	219 dB re 1 µPa	< 1 m	< 1 m
MF Cetaceans PTS	230 dB re 1 µPa	< 1 m	< 1 m
HF Cetaceans PTS	202 dB re 1 µPa	< 1 m	2 m
PW Pinnipeds PTS	218 dB re 1 µPa	< 1 m	< 1 m

Table 4-3 Maximum ranges to NMFS (2016) SPL_{peak} injury criteria for marine mammals from impact piling noise from 508 mm diameter piles for two hammer sizes based on the maximum level in the water column

Threshold	Criteria SPL _{peak} (unweighted)	Impact piling (508 mm, 50 kJ) SPL _{peak} Maximum range	Impact piling (508 mm, 150 kJ) SPL _{peak} Maximum range	
Fish (no swim bladder) injury	213 dB re 1 µPa	< 1 m	< 1 m	
Fish (with swim bladder) injury	207 dB re 1 µPa	< 1 m	< 1 m	

Table 4-4 Maximum ranges to Popper et al. (2014) SPLpeak injury criteria for species of fish fromimpact piling noise from 508 mm diameter piles for two hammer sizes based on the maximum level in
the water column

The results are based on the maximum predicted noise level in the water column and this approach has been used as it is not possible to predict the depth of a marine mammal at the time of a single impulsive event. Figure 4-5 to Figure 4-8 indicate an even distribution of noise through the water column with the maximum generally occurring in the mid-water region indicating that the use of maximum noise level is a reasonable approach.

Given the proximity to the coast, only the maximum ranges have been presented above as any attempt to present a mean range would be subject to considerable bias from many very short transects and would therefore be misleading. In practice only a very small number of transects will be subject to the maximum range. Figure 4-9 shows the ranges out to a level of 150 dB SPL_{peak} along each transect and only 5 transects exceed 3 km and 15 out of 180 transects exceed 1 km.

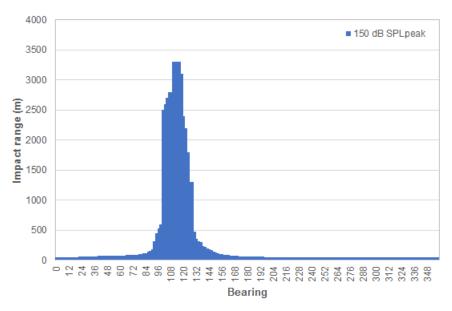


Figure 4-9 Ranges to 150 dB SPL_{peak} for each transect for impact piling noise from a 910 mm diameter pile using a blow energy of 150 kJ

4.1.2 <u>Cumulative SEL (SEL_{cum})</u>

The noise from impact piling is a multiple pulse source and as such cumulative SEL values have been calculated assuming piling lasting 1 hour (the worst-case duration for piling). Table 4-5 and Table 4-8 present the impact ranges for marine mammal and fish assuming a stationary receptor. If a fleeing receptor were assumed for these results, the predicted impact ranges would be reduced.

Threshold	Criteria SELcum (weighted)Impact piling (910 mm, 50 kJ) SELcum (1 hour) Maximum range		Impact piling (910 mm, 150 kJ) SEL _{cum} (1 hour) Maximum range	
LF Cetaceans TTS	168 dB re 1 µPa ² s	450 m	1.4 km	
MF Cetaceans TTS	170 dB re 1 µPa ² s	20 m	71 m	
HF Cetaceans TTS	140 dB re 1 µPa ² s	540 m	2.2 km	
PW Pinnipeds TTS	170 dB re 1 µPa ² s	150 m	410 m	
LF Cetaceans PTS	183 dB re 1 µPa ² s	73 m	210 m	
MF Cetaceans PTS	185 dB re 1 µPa ² s	1 m	5 m	
HF Cetaceans PTS	155 dB re 1 µPa ² s	87 m	250 m	
PW Pinnipeds PTS	185 dB re 1 µPa ² s	18 m	68 m	

Table 4-5 Maximum ranges to NMFS (2016) weighted SEL_{cum} injury criteria for marine mammals fromimpact piling noise from 910 mm diameter piles for two hammer sizes assuming a stationary animaland 1 hour of piling based on the maximum level in the water column

Threshold	Criteria SEL _{cum} (unweighted)	Impact piling (910 mm, 50 kJ) SEL _{cum} (1 hour) Maximum range	Impact piling (910 mm, 150 kJ) SEL _{cum} (1 hour) Maximum range	
Fish (no swim bladder) mortality and potential mortal injury	219 dB re 1 µPa²s	< 1 m	< 1 m	
Fish (no swim bladder) recoverable injury	216 dB re 1 µPa²s	< 1 m	1 m	
Fish (with swim bladder not involved in hearing) mortality and potential mortal injury	210 dB re 1 µPa²s	< 1 m	3 m	
Fish (with swim bladder involved in hearing) mortality and potential mortal injury	207 dB re 1 µPa²s	1 m	6 m	
Fish (with swim bladder) recoverable injury	203 dB re 1 µPa²s	2 m	14 m	
Fish TTS	186 dB re 1 µPa²s	60 m	160 m	

Table 4-6 Maximum ranges to Popper et al. (2014) unweighted SEL_{cum} injury criteria for species offish from impact piling noise from 910 mm diameter piles for two hammer sizes assuming a stationaryanimal and 1 hour of piling based on the maximum level in the water column

Threshold	Criteria SELcum (weighted)Impact piling (508 mm, 50 kJ) SELcum (1 hour) Maximum range		Impact piling (508 mm, 150 kJ) SEL _{cum} (1 hour) Maximum range	
LF Cetaceans TTS	168 dB re 1 µPa ² s	390 m	1.3 km	
MF Cetaceans TTS	170 dB re 1 µPa ² s	8 m	45 m	
HF Cetaceans TTS	140 dB re 1 µPa ² s	320 m	1.2 km	
PW Pinnipeds TTS	170 dB re 1 µPa ² s	120 m	290 m	
LF Cetaceans PTS	183 dB re 1 µPa ² s	83 m	220 m	
MF Cetaceans PTS	185 dB re 1 µPa ² s	< 1 m	2 m	
HF Cetaceans PTS	155 dB re 1 µPa ² s	69 m	150 m	
PW Pinnipeds PTS	185 dB re 1 µPa ² s	17 m	63 m	

 Table 4-7 Maximum ranges to NMFS (2016) weighted SEL_{cum} injury criteria for marine mammals from impact piling noise from 508 mm diameter piles for two hammer sizes assuming a stationary animal and 1 hour of piling based on the maximum level in the water column

Threshold	Criteria SEL _{cum} (unweighted)	Impact piling (910 mm, 50 kJ) SEL _{cum} (1 hour) Maximum range	Impact piling (910 mm, 150 kJ) SEL _{cum} (1 hour) Maximum range
Fish (no swim bladder) mortality and potential mortal injury	219 dB re 1 µPa²s	< 1 m	< 1 m
Fish (no swim bladder) recoverable injury	216 dB re 1 µPa²s	< 1 m	1 m
Fish (with swim bladder not involved in hearing) mortality and potential mortal injury	210 dB re 1 µPa²s	< 1 m	4 m
Fish (with swim bladder involved in hearing) mortality and potential mortal injury	207 dB re 1 µPa²s	1 m	8 m
Fish (with swim bladder) recoverable injury	203 dB re 1 µPa ² s	3 m	18 m
Fish TTS	186 dB re 1 µPa²s	67 m	150 m

Table 4-8 Maximum ranges to Popper et al. (2014) unweighted SEL_{cum} injury criteria for species offish from impact piling noise from 508 mm diameter piles for two hammer sizes assuming a stationaryanimal and 1 hour of piling based on the maximum level in the water column

4.2 Vibro piling and rock breaking (simple modelling)

Underwater noise from the piling using a vibratory pile driver along with rock breaking have been modelled using Subacoustech's SPEAR model. This is a simple model which uses Subacoustech's measurement database to estimate noise levels with range.

For vibro piling, ranges have been calculated for a stationary animal and are based on 1 hour of operation in a given 24-hour period (the same duration given for impact piling). The ranges for rock breaking have assumed a stationary animal and rock breaking being undertaken for up to 8 hours in a given 24-hour period. The predicted ranges are given in Table 4-9 and Table 4-10.

Threshold	Criteria SEL _{cum} (weighted)	Vibro piling (1 hour)	Rock breaking (8 hours)
LF Cetaceans TTS	179 dB re 1 µPa²s	200 m	300 m
MF Cetaceans TTS	178 dB re 1 µPa²s	40 m	40 m
HF Cetaceans TTS	153 dB re 1 µPa²s	500 m	600 m
PW Pinnipeds TTS	181 dB re 1 µPa²s	100 m	100 m
LF Cetaceans PTS	199 dB re 1 µPa²s	10 m	20 m
MF Cetaceans PTS	198 dB re 1 µPa²s	3 m	1 m
HF Cetaceans PTS	173 dB re 1 µPa ² s	40 m	50 m
PW Pinnipeds PTS	201 dB re 1 µPa²s	10 m	7 m

 Table 4-9 Ranges to NMFS (2016) SEL_{cum} non-impulsive injury criteria for marine mammals from

 vibro piling and rock breaking noise

Threshold	Criteria SPL _{RMS} (unweighted)	Vibro piling	Rock breaking
Fish (with swim bladder involved in hearing) recoverable injury	170 dB re 1 μPa (for 48 hours)	18 m	2 m
Fish (with swim bladder involved in hearing) TTS	158 dB re 1 μPa (for 12 hours)	87 m	14 m

 Table 4-10 Ranges to Popper et al. (2014) SPL_{RMS} continuous noise injury criteria for species of fish

 from vibro piling and rock breaking noise

4.3 Other noise sources

4.3.1 Backhoe Dredging

Backhoe dredging is undertaken by an excavator mounted on a barge. All machinery is located on the deck of the barge, above the waterline. Noise radiates into the water through the hull of the barge or from the action of the excavator on the seabed. No noise generating plant is located in the water. Measurements undertaken by Subacoustech indicate that an unweighted RMS source level of up to 165 dB re 1 μ Pa could be expected. Measurement data show that underwater noise levels from backhoe dredging reduce quickly with range to approximately 133 dB re. 1 μ Pa within 50 m from the source.

For marine mammals, when NMFS weightings are applied levels are further reduced such that a stationary animal located at 50 m from the source would need to be exposed for a minimum of 19 hours in a 24-hour period for the TTS criteria to be exceeded.

For fish, the source level is below the recoverable injury criteria specified in Popper et al. (2014). The range at which the Popper et al. (2014) TTS criteria would be exceeded is less than 5 m.

4.3.2 Vessel Movements

Underwater noise from vessels varies significantly depending on the size, speed and operating conditions. Underwater noise from small vessels of the type typically used for inshore development projects (workboats, safety boats, dredging barges) have been measured by Subacoustech and source levels at 1 m have been found to be in the range of 140 dB to 160 dB RMS re 1 μ Pa with peak frequencies occurring between 100 Hz and 800 Hz.

At the time of writing no detail about the type of vessels or number of movements was available to enable a detailed assessment. However, no vessels likely to be involved in the construction works are likely to exceed the noise level of the existing ferry. Overall, vessel movements are likely to produce a lower noise level than the other sources considered in this report and as such are not expected to have a significant impact.

4.4 Discussion

The impact ranges seen in the preceding sections vary significantly depending on the functional hearing (species) group and the NMFS (2016) criteria that defines the onset of PTS and TTS.

NMFS (2016) requires that where an assessment includes both SPL_{peak} and SEL_{cum} then the greater of the two impact ranges should be used in the assessment. For impact piling, the SEL_{cum} criteria gave rise to the greatest ranges across all functional groups due to the multiple pulse nature of the noise and the small scale of the piling. The greatest impact ranges were seen for HF and LF cetaceans, this is not unexpected given the stricter SEL_{cum} criteria specified by NMFS (2016) for those groups. This can be seen in Table 4-11 Maximum range to PTS criteria for each activity and species groupswhich details the greatest PTS impact range modelled for each activity and species group.

	LF Cetaceans	MF Cetaceans	HF Cetaceans	PW Cetaceans	Fish
Impact piling 910mm 50 kJ (1 hour)	73 m	< 10 m	87 m	18 m	< 10 m
Impact piling 910mm 150 kJ (1 hour)	210 m	< 10 m	250 m	68 m	14 m
Impact piling 508 mm 50 kJ (1 hour)	83 m	< 10 m	69 m	17 m	< 10 m
Impact piling 508 mm 150 kJ (1 hour)	220 m	< 10 m	150 m	63 m	18 m
Vibro piling (1 hour)	10 m	< 10 m	40 m	10 m	18 m
Rock Breaking	20 m	< 10 m	50 m	< 10 m	< 10 m
Dredging	< 20 m	< 10 m	< 50 m	< 10 m	< 10 m

Table 4-11 Maximum range to PTS criteria for each activity and species groups

Despite this, the SPL_{peak} ranges should still be considered conservative as physical processes in propagation alter the shape of the waveform and reduce the peaks with increasing range. NMFS (2016) refers to this effect (p27, paragraph 2) but it is not easily quantified or accounted for in the modelling.

5 Summary and conclusions

Subacoustech Environmental has undertaken a study of noise propagation for Affric Limited at the Tarbert ferry terminal, Scotland, for impact piling and other related noise making activities.

The level of underwater noise from impact piling has been estimated using a parabolic equation (PE) method for lower frequencies and a ray tracing solution at higher frequencies. The modelling considers a wide variety of input parameters including source noise levels, frequency content, duty cycle, seabed properties and the sound speed profile in the water column. Full account is taken of the complex bathymetry in the area.

A representative location at the ferry terminal has been modelled to give worst case ranges into the open water.

Further simple modelling has been carried out to assess the effects of vibro piling and rock breaking in the area. A qualitative assessment of noise from dredging and vessel noise has also been completed.

Noise levels have been assessed in terms of the criteria provided by NMFS (2016) for SPL_{peak} and SEL_{cum} for marine mammals and Popper et al (2014) for SPL_{peak}, SEL_{cum} and SPL_{RMS} for fish. In the case of the NMFS (2016) criteria, the 1/3 octave band spectrum of the source level has been weighted according the LF, MF, HF and PW frequency weightings stipulated in the guidelines.

References

- Bresnan E, Cook K, Hindson J, Hughes S, Lacaze J-P, Walsham P, Webster L, Turrell W R (2016). *The Scottish Coastal Observatory 1997-2013, Part 2 – Description of Scotland's Coastal Waters*. Scottish Marine and Freshwater Science Vol. 7, No. 26. http://data.marine.gov.scot/dataset/scottish-coastal-observatory-data/resource/e2cffdec-45cb45a7-a5c2-a985e2051436 accessed on 3rd January 2018.
- 2. Etter P C (1991). Underwater acoustic modelling: Principles, techniques and applications. Elsevier Science Publishers Ltd, Essex. ISBN 1-85166-528-5.
- 3. Hastings M C and Popper A N (2005). *Effects of sound on fish.* Report to the California Department of Transport, under Contract No. 43A01392005, January 2005.
- 4. Jensen F B, Kuperman W A, Porter M B, Schmidt H (2011). *Computational Ocean Acoustics.* Modern Acoustics and Signal Processing. Springer-Verlag, NY. ISBN: 978-1-4419-8678-8.
- Lawrence B. (2016) Underwater noise measurements rock breaking at Acheron Head. https://www.nextgenerationportotago.nz/assets/Uploads/4e-Underwater-Noise-Measurements.pdf accessed on 24th November 2017.
- 6. Mackenzie K V (1981). *Nine-term equation for the sound speed in the oceans.* J. Acoust. Soc. Am 70(3), pp 807-812.
- National Marine Fisheries Service (NMFS) (2016). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. U.S. Dept. of Commer., NOAA. NOAA Technical Memorandum NMFS-OPR-55.
- 8. Nedwell J R, Langworthy J, Howell D (2003). Assessment of sub-sea acoustic noise and vibration from offshore wind turbines and its impact on marine wildlife initial measurements of underwater noise during construction of offshore wind farms, and comparison with background noise. Subacoustech Report ref: 544R0423, published by COWRIE, May 2003.
- Nedwell J R, Parvin S J, Edwards B, Workman R, Brooker A G, Kynoch J E (2007). Measurement and interpretation of underwater noise during construction and operation of offshore windfarms in UK waters. Subacoustech Report Ref: 544R0738 to COWRIE. ISBN: 978-09554276-5-4.
- Popper A N, Hawkins A D, Fay R R, Mann D A, Bartol S, Carlson T J, Coombs S, Ellison W T, Gentry R L, Halvorson M B, Løkkeborg S, Rogers P H, Southall B L, Zeddies D G, Tavolga W N (2014). Sound Exposure Guidelines for Fishes and Sea Turtles. Springer Briefs in Oceanography, DOI 10. 1007/978-3-319-06659-2.
- Southall B L, Bowles A E, Ellison W T, Finneran J J, Gentry R L, Green Jr. C R, Kastak D, Ketten D R, Miller J H, Nachtigall P E, Richardson W J, Thomas J A, Tyack P L (2007). *Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations*. Aquatic Mammals, 33 (4), pp. 411-509.

Report documentation page

- This is a controlled document.
- Additional copies should be obtained through the Subacoustech Environmental librarian.
- If copied locally, each document must be marked "Uncontrolled copy".
- Amendment shall be by whole document replacement.
- Proposals for change to this document should be forwarded to Subacoustech Environmental.

Document No.	Draft	Date	Details of change
P220R1100	02	04/01/2018	Initial writing and internal review
P220R1101	-	10/01/2018	Issue to client
P220R1102	-	10/09/2018	Revised following client review
P220R1103	-	11/10/2018	Change in document status

Originator's current report number	P220R1103	
Originator's name and location	Redacted ; Subacoustech Environmental Ltd.	
Contract number and period covered	P220; December 2017 – January 2018	
Sponsor's name and location	Redacted Affric Limited	
Report classification and caveats in use	Unclassified. Not to be cited without author's	
	permission.	
Date written	January 2018	
Pagination	Cover + i + 27	
References	11	
Report title	Underwater noise propagation modelling at the	
	Tarbert ferry terminal, Isle of Harris, Scotland	
Translation/Conference details (if translation,		
give foreign title/if part of a conference, give		
conference particulars)		
Title classification	Unclassified	
Author(s)	Redacted	
Descriptors/keywords		
Abstract		
Abstract classification	Unclassified; Unlimited distribution	

