

Granton Harbour Dredging 2018 Best Practicable Environmental Option Report

June 2022

Granton Harbour Dredging 2018 Best Practicable Environmental Option Report

Client: Granton Central Developments

Document number: 8192 Project number: 769967j Status: Final

Author: Reviewer: Campbell Stewart Graeme Duff

Date of issue:15 June 2022Filename:Granton Harbour BPEO_Final_R2 June 2022

Glasgow	Aberdeen	Inverness	
Craighall Rusiness Dark	Panchary Pusinass	Alder House	
Craighall Business Park	Banchory Business	Alder House	
8 Eagle Street	Centre	Cradlehall Business Park	
Glasgow	Burn O'Bennie Road	Inverness	
G4 9XA	Banchory	IV2 5GH	
0141 341 5040	AB31 5ZU	01463 794 212	
info@envirocentre.co.uk	01330 826 596		
www.envirocentre.co.uk			

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Granton Central Developments ("the Client"). The report is confidential to the Client, and EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced or altered without the prior written approval of EnviroCentre Limited.

Contents

1	Intro	oduction	L
	1.1	Scope of Report	L
	1.2	Background to Application	L
	1.3	Source of Materials	L
	1.4	Dredge Volume and Disposal Routes	2
2	Discu	ussion of available disposal options	3
	2.1	Identification and screening of Available Disposal Options	3
	2.2	Summary of Identified BPEO Options6	5
3	Furt	her Assessment	7
	3.1	Assessment Outline	7
		Other Data10	
4	Wate	er Framework Directive Assessment12	2
	4.4	Other Considerations19	5
5	Cond	clusions	5
Refe	rence	2517	7

Appendices

- A Figures
- B Sampling Report
- C DatA Summary Tables

Tables

able 1.1: Dredge Volumes	2
able 2.1: Initial Best Practicable Available Options	4
able 3.1: Summary of Disposal Sites	8
able 3.2: Summary of Exceedances at Disposal Sites	
able 4.1: Receptor Risk Assessment	12

1 INTRODUCTION

1.1 Scope of Report

Granton Central Developments/Edinburgh Marina are required to undertake a Best Practicable Environmental Option (BPEO) assessment for the disposal of dredged material from Granton Harbour to facilitate the development of a planned marina and associated commercial infrastructure.

Sediment sampling was undertaken in November 2017 and discussions have been ongoing with Marine Scotland since this time regarding the various options available due to the presence of some contaminants of concern in exceedance of Revised Action Level 2.

The purpose of this report is to review each of the available potential disposal options for the dredged materials. The options which are not considered to be practicable are rejected and the reasons for doing so are explained.

Those options which are practicable are examined in detail and further consideration given to the options in an environmental and strategic context.

The report then compares the practicable disposal options and draws a conclusion on the BPEO.

1.2 Background to Application

As outlined above, the dredging application is being submitted to enable the dredging of the western harbour. These works are required to facilitate the development of the proposed marina. The Edinburgh Marina development will provide the city with its own state of the art Marina with 315 berths with 23,500 square meters approximate prime letting space, which will enable the city to extend its maritime connections to Europe and beyond.

1.3 Source of Materials

Samples from the proposed dredge area were collected in November 2017 and submitted for analysis in line with Marine Scotland's Guidance. The associated report from this exercise is provided in Appendix B.

Sediments sampled within the proposed dredge area are reported as primarily silt.

Multiple contaminants of concern were recorded above Revised Action Level1 including

- Metals
- PAHs
- PCBs
- Petroleum Hydrocarbons

Mercury was recorded in exceedance of Revised Action Level 2 in multiple locations.

Further review of the information and discussion with a view to segregating the material with exceedances above REV AL2 was undertaken and communicated with Marine Scotland. The key points being that if all material with mercury concentrations >RAL2 are excluded for sea disposal i.e. the material is dredged to a fixed depth of 1.6m the average concentration is 1.06 mg/kg which is also <RAL 2.

On this basis, it was proposed that the upper 1.2m of material would be dredged, excluding a large buffer around VC 8 and VC9 where shallow mercury contamination was also encountered with a view to disposing this material at sea on the basis that sufficient supporting evidence could be provided to justify this in the presence of REV AL1 exceedances. All remaining material would be taken to land for a land based disposal solution. This area is represented by AREA C on Fairhurst Drawing 115875-0101 in Appendix A.

1.4 Dredge Volume and Disposal Routes

Based on a dredging plan for the harbour which is provided in Appendix 2 the volume split is as follows based on chemical quality.

Table 1.1: Dredge Volumes

Dredge	Volume (m ³)	Comment
Total Dredge Volume	241,365	Total proposed dredge volume
Dredge Volume for Areas for surface to 1.2m Dredge	86,980	Proposed for Sea Disposal
Dredge Volume from below 1.2mto base of dredge plus Area around VC8 & VC9 with Shallow Contamination	164,368*	Land Based Disposal Options

*Note: Updated to include recently accreted sediments as outlined in 1.4.1.

1.4.1 Update June 2022

Following discussion with Marine Scotland with regards to a temporal variation for the dredge licence, further work was undertaken to establish the change in volume since the original sampling work was conducted in 2017 as this material also needs to be managed as part of licensed dredging works. To help facilitate the process and manage potential delays, it was agreed with all parties that the recently accreted material would not be subject to sampling and analysis if all of the material was brought to land for disposal along with the other sediment ear marked for the treatment and disposal/reuse route.

Based on recent bathymetric survey, this additional sediment equates to an additional 9,983m³ which will be brought to land for treatment/disposal/reuse.

2 DISCUSSION OF AVAILABLE DISPOSAL OPTIONS

The BPEO process is geared towards identifying a preferred overall strategy from the perspective of the environment as a whole, as opposed to detailed optimisation of any one selected scheme. It is a structured and systematic process to identify and compare strategic options in a transparent manner. Alternatives are evaluated in terms of their projected implications for the environment together with consideration of practicability, social and economic issues as well as within a wider strategic context.

The key stages of a BPEO are:

- Identification of options;
- Screening of options;
- Selection of assessment criteria;
- Analysis and evaluation of criteria; and
- Evaluation of BPEO.

However, due to initial discussions with Marine Scotland and the challenges associated with disposal of the material with contaminant levels >REV AL2, the selection process and discussion will be somewhat abbreviated as there is a proposed split disposal route and clearly defined disposal options. An initial screening has been undertaken for completeness and is included in the following section.

2.1 Identification and screening of Available Disposal Options

A number of options are available for disposal of dredged sediments. The options considered are provided in Table 2.1 along with justification for screening out those options which have not been taken forward for further consideration.

Table 2.1: Initial Best Practicable Available Options

Location	Options	Screening Assessment	Carry forward?
Estuary/ Riverbank	Do nothing Scenario/ Leave in situ	Not an option due to the requirement to develop a marina and associated facilities.	No
	Infilling of an existing dry dock/harbour facility	No projects have been identified which are available for utilisation.	No
	Beach Nourishment	Large areas of the Firth of Forth and Inner Estuary are designated sites (SSSI, SPA, RAMSAR) and hold both national and international importance to nature conservation. Specific beach nourishment projects would require to be supported by Environmental Assessments as a minimum to inform how the project could affect the environment as a result of disturbance to the intertidal area, changes to the sediment levels, the variable composition and quality of the material and measures devised from the assessment outcomes to minimise impacts on the environment. Considering the physical characteristics, in isolation from the chemical characteristics, silts are not typically used for beach nourishment projects. Large dredging operations undertaken at Grangemouth are typically disposed of at Bo'ness disposal ground as there is no requirement for the dredged silts in the estuary.	No
Land	Landfill Disposal	Material which is not suitable for sea disposal must be brought to land. Landfill is an option for the material which is not suitable for a sea based disposal, however it is not considered to be the most sustainable option available.	Yes
	Recycling/Re-use	Preliminary discussions have been undertaken regarding the potential for utilising the material, following suitable treatment and subject to necessary land based risk assessment and regulatory agreement.	Yes

	Land Incineration	The dredged material consists of non-combustible material (silts) with a low combustible component and very high water content.	No
	Application to Agricultural Land	The dredged material would need to be treated to reduce salt concentrations to acceptable levels. Would require detailed chemical analysis and assessment as well as a Waste Management License Exemption. Would require special precautions during spreading in relation to the risk of odour and watercourses / aquifers. The availability of land for this option will be limited within a reasonable haulage distance of the dredge arising's. Large volumes each year are unlikely to be viable to dispose of in this manner.	No
Sea	Aquatic disposal direct to seabed.	Relatively low cost, minimal transportation requirements compared to all other options and potential for low environmental risk. This option has been identified as a viable disposal route, subject to further consideration of the sediment from between surface and 1.2m below surface. Further consideration of this material is provided in Section 3.	Yes

2.2 Summary of Identified BPEO Options

Three options were identified for further assessment as follows:-

- Landfill Disposal;
- Recycling/Re-use and
- Sea Disposal.

As outline previously, the proposed disposal routes are to be split with 36% of the total volume considered for sea based disposal subject to agreement and the remaining 64% to be brought to land for a land based disposal option.

Further supporting information and detailed assessment of the sea based disposal is considered in Section 3.

Since the material below 1.2m is not considered suitable for a sea based disposal it will need to come to land for disposal. As such the material will be subject to land based re-use or disposal. These activities will be undertaken under appropriate SEPA licenses with respect to waste regulation. Initially it is proposed that the dredge arisings are brought onto the Granton development site for dewatering and stockpiling, prior to subsequent re-use and/or land based disposal.

The land based options will not be considered further in this document and the remainder of the document will focus on the material from surface to 1.2m below surface, excluding the area of shallow contamination around VC 8 & VC9, which has been identified for sea based disposal. This area is represented by AREA C on Fairhurst Drawing 115875-0101 in Appendix A.

Due to the limited disposal options available for the material with contaminants > REV AL2 no cost analysis has been undertaken as it is accepted this material must go to land it ultimately means that the cost will be the cost.

3 FURTHER ASSESSMENT

This section details the sediment quality of the material which is proposed to be disposed of at sea within one of the licensed spoil grounds. The material to be considered for disposal is the upper 1.2m from the whole harbour development excluding an area of 16,000m2 around VC8 and VC9 where mercury >REV AL2 was recorded at surface. This area was identified as the midpoint between other sample locations where mercury levels were recorded below REV AL2. Additionally, as discussed earlier, there are no exceedances of REV AL2 recorded for mercury above 1.6m, and average concentrations are below REV AL2 for all contaminants of concern.

To provide a buffer for the physical excavation of the sediment the material will be excavated to <u>1.2m below</u> <u>surface</u>. Early discussions with dredging contractors to ascertain if segregation is possible have indicated that modern excavation methods using 3D technology and GPS can provide very accurate excavation depths.

The original chemical sampling report is provided in Appendix A, and chemical quality data summaries all relate to samples which do not record levels of mercury > REV AL2 with all of these samples removed from the data set including shallow contamination recorded around VC8 & VC9.

The following section considers the following key elements:

- The available disposal sites;
- The material for disposal; and
- Consideration of the risks.

3.1 Assessment Outline

The purpose of this assessment is to provide an overview of the proposed dredge material and the identified disposal site(s) including existing chemical monitoring data for the site where available.

Compare existing chemical data with other recognised sediment assessment criteria including those listed below.

- Background Assessment Concentration (BAC) BACs were developed by the OSPAR Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background. However, it should be noted that river catchments have their own unique geochemical finger prints and are also governed by the geology within the catchment, so in theory one set of background level values is not applicable to all situations;
- Effects Range Low (ERL) ERLs were developed by the United States Environmental Protection Agency (USEPA) for assessing the ecological significance of sediment concentrations. Concentrations below the ERL rarely cause adverse effects in marine organisms. Concentrations above the ERM will often cause adverse effects in some marine organisms;
- **Probable Effects Level (PEL)** PELs (Marine) have been adopted from the Canadian Environmental Quality Guidelines <u>http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/</u>) If a concentration is recorded above the PEL this is the probable effect range within which adverse effects frequently occur. The Threshold Effect levels (TELs) have been included in the summary table in Appendix A, but have not been used as part of the further assessment as they typically fall below the RAL1

Review of potential risks to the list of receptors identified in "Water Framework Directive Assessment: estuarine and coastal waters (<u>https://www.gov.uk/guidance/water-framework-directive-assessment-estuarine-and-coastal-waters</u>).

Draw conclusions from available information and provide recommendation for proposed disposal Route(s).

3.2 Background Data – Dredge and Disposal Site

There are multiple disposal grounds in proximity to the site which are summarised below in Table 3.1. They are provided in order of distance closest to Granton Harbour. The information below was provided by Marine Scotland.

3.2.1 Disposal Volumes

Site ID	2018 Licensed	2017 Deposited	2016 Deposited
	Capacity	volumes	volumes
FO038 – Narrow Deep and	No set capacity	0	0
Narrow Deep B			
FO041 – Oxcars Main	No set capacity	84,185 tonnes	159,057 tonnes
FO042 – Oxcars Ext A	No set capacity	87,610 tonnes	0
FO043 – Oxcars Ext B	No set capacity	407,720 tonnes	0
FO044 – Bo'Ness	No set capacity	1,074,335 tonnes	0

Source:

The closest disposal site to Granton Harbour is FO038 Narrow Deep and Narrow Deep (B).

Drawing 769967-003 in Appendix A details the location and footprint of the disposal sites.

3.2.2 Chemical Quality Screening of Dredge Material

All data are summarised in the original sampling report which is provided in Appendix B The samples with levels of mercury > REV AL2 have been removed from the data set to mimic the proposed segregation during dredging works. All data included within the assessment is summarised in Table A in Appendix C with exceedances summarised below.

Revised Action Level 1

• Up to 18 of 18 samples exceed REV AL1 for metals, PAHs and PCBs

ВАС

• Up to 18 of 18 samples exceed for metals, PAHs and PCBs

ERL

• Up to 18 of 18 samples exceed ERL levels where available for metals and PAHs.

PEL

• Up to 18 of 18 samples exceed PEL levels where available for metals and PAHs. 18 samples exceed the PEL for mercury

Revised Action Level 2

No exceedances of REV AL 2 are recorded where they are available. ٠

Chemical Data at Disposal Site 3.2.3

The sampling data for three of the local disposal sites was provided by Marine Scotland as a means of baseline assessment. Oxcars, Narrow Deep and Bo'ness, the largest disposal site in the area were all included for the assessment. A summary of key contaminants including maximum, minimum and average concentrations is provided in Appendix C in TABLE C, Table D and Table E for the all of the sites where data was provided by Marine Scotland. All Data has been assessed as metals do not degrade and historic concentrations are of interest. Total concentrations may have altered over the time, but the data is considered useful for comparative purposes.

Data for all contaminants was not provided for each sample, so the summaries are of the data provided only and the number of data points vary accordingly.

Total PCB concentrations have been compiled by adding the ICES 7 congener concentrations as per the dredge material to enable a like for like comparison. Congeners included are PCB 28, 52, 101, 118, 138 153 and 180.

Marine Scotland noted that in Scotland the preference for disposal site selection is those which are dispersive, and as such it is assumed that all of the disposal grounds listed above are dispersive.

Site ID	Total No. of	No. of BAC	No. of ERL	No. of PEL	Comments
	Samples	Exceedances	Exceedances	Exceedances	
FO038 –	68	52	52	29	Exceedances include
Narrow					mercury (29 samples
Deep and					exceed PELs) and
Narrow					various PAH species and
Deep B					1 sample exceeds PEL
					for PCBs
OF041	66	56	56	28	Exceedances include
Oxcars					mercury (28 samples
					exceed PELs) and
					various PAH species and
					1 sample exceeds PEL
					for PCBs
FO044 –	43	42	42	31	All 31 samples which
Bo'Ness					exceed the PEL are for
					Mercury

Table 3.2: Summary of Exceedances at Disposal Sites

Source:

In summary, the Oxcars Narrow Deep and Bo'ness disposal sites have a history of contaminants of concern exceeding the adopted PELs for metals, PAHs species and PCBs.

On average, between 42% and 72% of samples exceed the PEL for mercury. Other contaminants present include PAH species and minor PEL exceedances for PCBs.

3.3 Averages

Review of the averaged data for all the data has been undertaken i.e. considering the material as a single volume for disposal. The concentrations of the various contaminants of concern are quite variable, the review of average data against the available adopted assessment criteria are summarised in corresponding Tables B and F within Appendix C and the findings summarised below.

3.3.1 Granton Harbour

- The average concentration of mercury in the sediments exceed the PEL for mercury for Granton Harbour.
- Various PAH species average concentrations exceed the PEL for Granton Harbour

3.3.2 Disposal Sites

- All three disposal sites record average mercury concentrations above the PEL,
- Narrow deep recorded average concentrations of fluorene above the PEL
- Oxcars recorded average concentrations of fluorene above the PEL

3.4 Other Data

Marine Scotland provided sediment quality data also for the Grangemouth (G21-27) site which is dredged on a frequent basis and is understood to constitute a large proportion of all disposed sediments in the Firth of Forth. It is noted that the samples collected share similarities to the Granton sediments (although TBT > Rev Al2 was recorded in one sample). The key point of note is that mercury is recorded above REV AL1 in all samples (and also the PEL in all samples with average mercury concentrations (0.93mg/kg) similar to those recorded in the sediments (0-1.2m) at Granton). These multiple sets of data highlighting widespread elevated mercury would suggest that mercury is a consideration in the entire estuary rather than just Granton Harbour and it either reflects natural baseline levels or anthropogenic inputs from large scale industry into the estuary.

3.5 Contaminant Sources

The contamination within the harbour is considered to be historic, with the worst noted at depth in most instances. PAHs and hydrocarbons are readily attributed to heavy industry, waste oils, with PAHs readily attributed to combustion of organic materials.

The current harbour is considered to have limited local contamination sources barring standard run-off of urban roadways. The harbour will remain open for movement of sediment from within the Firth of Forth and as such it is considered that there is not a suitable means for managing future sediment quality, barring routine maintenance dredging.

3.6 Chemical Assessment Conclusions

While exceedances of REV AL1, BAC, ERL and PEL (where available) values have been recorded for various contaminants of concern in the harbour sediments excluding all samples/depths with levels > Rev AL2.

Additionally, review of the background contaminant levels at three of the potential disposal sites has identified that there are contaminants of concern in exceedance ERL and PELs, and average concentrations of mercury in the historic data sets are recorded above the PEL value for all the sites.

On this basis, it is considered that while many contaminants are recorded above their respective REV AL1 levels within the Granton Harbour sediment identified for sea disposal, the levels at the disposal sites (FO038, FO041 & F0044), especially mercury, are very similar in nature, and would suggest an estuary wide mercury issue.

Further consideration of the potential risks associated with the proposed disposal is considered in the following sections.

4 WATER FRAMEWORK DIRECTIVE ASSESSMENT

This section details the assessment the dredge and disposal sites within the context of the Water Framework Directive as required by Marine Scotland.

As outlined in the Water Framework Directive Assessment: estuarine and coastal waters, there are several key receptors which can be impacted upon including the following:

- Hydromorphology
- Biology habitats
- Biology fish
- Water quality
- Protected areas

Each of these points are considered in Table 4.5 below:

Key Receptor	Brief Summary of	Further	Comment
	Potential Effects	Considerati	
	on Receptor	on	
		Required?	
Hydromorpholo	Morphological	No	The areas to be dredged are berths which
gy	conditions, for		naturally accumulate sediment , the disposal
	example depth		site is a sacrificial part of the Firth of Forth
	variation, the		designated and licensed for this purpose
	seabed and		
	intertidal zone		
	structure tidal		
	patterns, for		
	example dominant		
	currents,		
	freshwater flow		
	and wave exposure		
Biology -	Included to assess	No	Not considered to be a significant risk
habitats	potential impacts		considering the dredge areas are historic
	to sensitive/high		harbour areas and the disposal site is a
	value habitats.		sacrificial disposal site which has been used
Biology - fish	Consideration of	No	for the deposition of sediments. Key
	fish both within		contaminants of concern within the disposal
	the estuary and		ground, as well as other areas within the
	also potential		estuary based on data available on the Marine
	effects on		Scotland Interactive GIS database
	migratory fish in		https://marinescotland.atkinsgeospatial.com/
	transit through the		<u>nmpi/</u>
	estuary		, sediments are noted to exceed PEL values for
			mercury.

Table 4.1: Receptor Risk Assessment

Water Quality	Consideration must be given to water quality when contaminants are present in exceedance of CEFAS RAL1.	Yes	Contaminants noted to exceed CEFAS RAL1 within sediment samples
Protected Areas	If your activity is within 2km of any WFD protected area, include each identified area in your impact assessment. • special areas of conservati on (SAC) • special protection areas (SPA) • shellfish waters • bathing waters • nutrient sensitive areas	Yes	A SSSI, SPA and RAMSAR designations for the Granton Eastern Harbour and the shoreline along the coast

Source: Taken from <u>https://www.gov.uk/guidance/water-framework-directive-assessment-estuarine-and-</u> coastal-waters

4.1 Potential Risk to Water Quality

The potential risks to water quality at both the dredge sites and disposal site are further considered below.

The coastal classification of this area of water in and around Granton Harbour and the disposal ground is good (2016 Kinghorn to Leith Docks polygon) as detailed on Scotland's Environment (<u>http://www.environment.scotland.gov.uk/</u>).

Although there are contaminants of concern above the Rev AL1 for sediment disposal, it is considered that these levels will not contribute to an overall degradation of water quality as the potential for dilution in the Firth of Forth is very considerable. The key contaminants for impacting water quality are considered to be metals as these have the potential to dissolve/desorb from sorption sites, whereas the organic contaminants (PAHs and PCBs) have a greater affinity for the organic materials which they are bound to, and are more likely to remain strongly bound to the sediment, or if become dissolved, quickly adsorbed onto organic matter.

Additionally, the sediment quality within the disposal ground which is also noted to contain levels of contaminants above the adopted PELs, which does not appear to have impacted on the Water Quality classification of good in this area.

The key risk is considered to be an increase in turbidity/suspended solids during the disposal activity, although this is likely to cause localised degradation in water quality, it is considered that this will be a short term event and has been factored in to the selection and location of the agreed disposal ground. On this basis, the associated risk with degradation of water quality directly associated with the proposed disposal is considered to be Low i.e. unlikely to cause a significant adverse effect on the overall water quality.

4.2 Protected Areas

The coastline immediately either side of Granton Harbour and the eastern harbour (outwith dredge area) have ecological designations as SSSI, SPA and RAMSAR sites. The designations are for a variety of birds, invertebrates, habitat and geomorphological features.

The key potential risk to the sensitive features are considered to be attributed to the transport of suspended material from the dredge site during dredging whereby contaminants associated with particulate material could be transported from the western harbour towards the protected areas.

Considering the presence of contaminants within the harbour sediments, mitigation measures will be required during the dredging works to minimise this potential risk.

To minimise the potential suspension and distribution of sediment several options are available and will need to be employed to minimise the potential impact on designated sites, and to reduce the potential for offsite distribution of material. This needs to be considered during all stages, but more so when the areas with contaminants in exceedance of REV AL2 are being dredged and moved from the water environment to land for a land based disposal option.

The key proposed mitigation measures for the dredge works are as follows:

- Dredging method to be designed to limit release of sediment during works.
- Physical Barrier a physical silt barrier will be placed between dredging within the western harbour and Eastern harbours/Firth of Forth.
- Turbidity Monitoring to ensure that material is not being widely displaced. A baseline would need to be established for contaminant levels within the eastern harbour sediments as well as baseline turbidity levels prior to dredging to enable direct comparisons.

4.3 Assessment Summary

Review of available information has highlighted that although several chemical contaminants exceed RAL1 within the sediments which have been identified for a sea based disposal (0-1.2m below surface), assessment of key receptors identified from the Water Framework Directive assessment for estuarine and coastal waters concluded that there is a low risk to the key receptor of Water Quality. The chemical levels in the sediment are not considered likely to have a significant impact on the sediment quality already located within the disposal grounds and it is recognised that this part of the sea floor is a sacrificial site for the disposal of dredge material. The preferred disposal site would be FO038 Narrow Deep due to its proximity to Granton Harbour.

Further assessment of the risks to Protected Areas have identified a potential risk and that mitigation measures should be adopted during dredging works. The specific details of dredging and associated mitigation measures will need to be finalised.

While the risk to migratory fish (particularly salmon) was screened out at the start of the risk assessment process, it should be considered as best practice that these are considered during the dredging works and that timing for these is considered as far as practicable to mitigate against any potential risks.

4.4 Other Considerations

The other point to consider as part of this assessment is the proposed volume total in comparison to the total volumes of sediment disposed of within the various licensed disposal site within the Firth of Forth. Data supplied by Marine Scotland indicated that just under 1.25 million tonnes (wet) of dredged material were disposed of within the licensed sites in 2017.

In comparison, the proposed material for disposal form Granton Harbour is 86,980m³, assuming a bulk density of 1.8, would equate to 156,564 tonnes wet of material.

5 CONCLUSIONS

As previously outlined, the proposed method for disposal is a split waste stream with c. 36% of material earmarked for a sea based disposal (upper 1.2m of dredge) and the remaining 64% being disposed of on land due to the presence of contaminants in exceedance of Rev AL2.

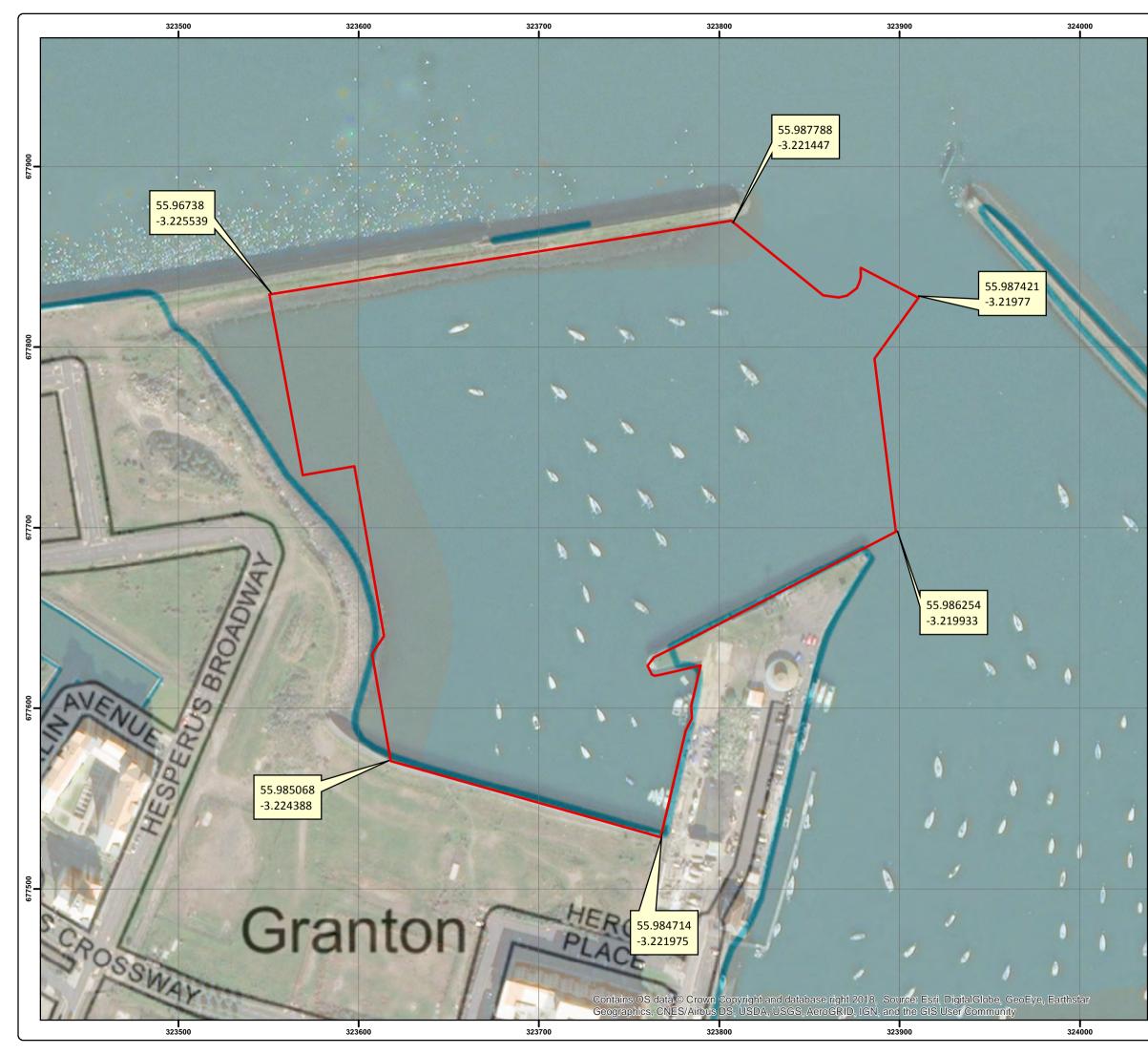
Land based disposal will also include the accreted sediment which has built up within the harbour since the original sampling works in 2017 (calculated to be c. 9,983m³) which has been agreed with Marine Scotland inlieu of testing requirements to help facilitate the provision of a temporal variation to the existing licence.

Following the review of available disposal options and assessment of material in relation to sea based disposal, the Best Practicable Environmental Option for the disposal of dredging's from Granton Harbour has therefore been assessed as a combination of sea and land based disposal.

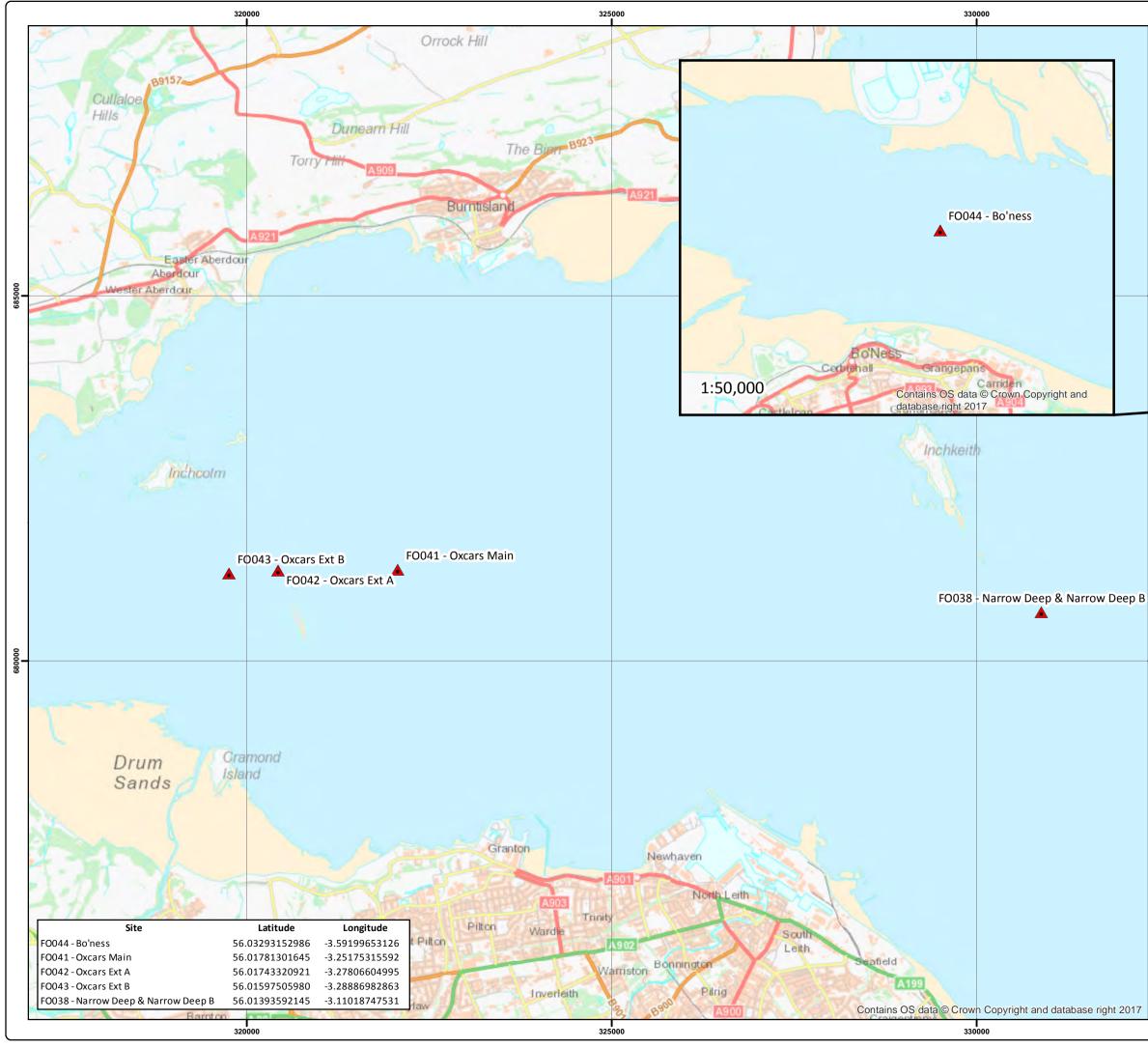
While it is noted that contaminants are present in the material ear marked for a sea based disposal, it is also noted that the key contaminant of concern, mercury, is also present in the disposal grounds as well as the wider estuary sediments at similar levels.

The exclusion of the more contaminated sediments in the areas previously identified for sea disposal is considered to minimise the long term impact on the marine environment as well as providing the most cost effective disposal solution.

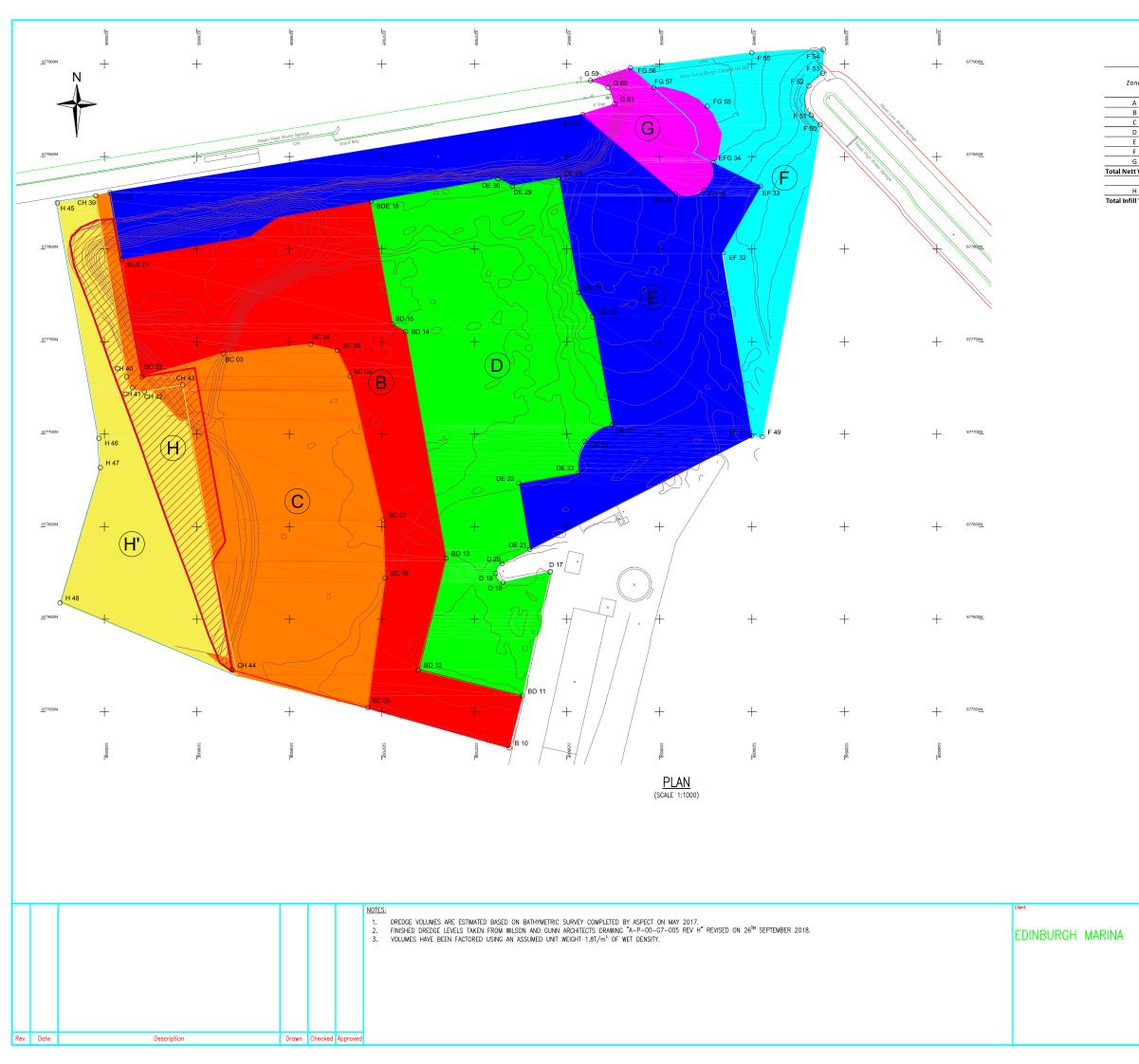
REFERENCES


Canadian Council for Minsters of the Environment (CCME), Canadian Environmental Quality Guidelines, <u>https://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/</u>

Marine Scotland (2017). Pre-DredgeSampling Guidance Version 1: Scottish Government.


Marine Scotland (2018), National Marine Plan Interactive (NMPI), https://marinescotland.atkinsgeospatial.com/nmpi/

APPENDICES


A FIGURES

	Legend	Dredge Are	ea			
677900						
6 77800						
677700	Do not scale this Client	: map				
	Project	Central D	evelopm	ients		
677600	Title Dredge	Area				
	Status					
	Drawing No.		Final			Revision
	769967-0	04				
677500	Scale 1:2,000			A3	Date 28 Sep 2	018
9	Drawn FR	Check	ked CCAS		Approved	٩S
	e J		htre	 (-	Craighall Bus Park, Eagle S Glasgow, G4 Tel: 0141 34 Fax: 0141 34	treet, 9XA 1 5040

		Legend						
		▲ Disposal Site						
	685000 685000							
	685	Dunblane Alva A91 Dollar Alloa A91 Alloa A91 Alloa A907 Cowdenbeath Bunfermiline Cowdenbeath Alva A91 Alloa A91 Alva A91 Alloa A91 Alva Al						
3		Client Granton Central Developments Project						
	680000	Granton Harbour Title Sea Disposal Sites						
		Status						
		Drawing No. Revision						
	769967-003							
		Scale A3 Date 30 Apr 2018						
		Drawn Checked Approved FR CCAS CCAS						
		Craighall Business Park, Eagle Street, Glasgow, G4 9XA Tel: 0141 341 5040 Fax: 0141 341 5045						

Do not scale from this drawing.

ine	Volume for Disposal at Sea (m ³) (Top 1.2m where applicable)	Volume for Disposal on Land (m ³)	NETT VOLUME (m ³)	Factored by 1.8 wet tonnes/m ³
A			N/A	
В	20,344	7,936	28,280	50,904
с		47,094	47,094	84,769
D	25,698	20,620	46,318	83,372
E	27,349	40,928	68,277	122,898
F	10,073	21,400	31,472	56,650
G	3,516	16,408	19,924	35,863
t Volume	86,980	154,385	241,365	434,457
н			19,322	34,780
ll Volume			19,322	34,780

	COORDINATES				
POINTS	EASTING	NORTHING	NORTHING LATITUDE		
BCE 01	323559	677794	55° 59.220' N	3° 13.609' N	
BC 02 323570 BC 03 323614		677731	55° 59.186' N	3° 13.597' N	
		677744	55° 59.194' N	3° 13.555' N	
BC 04	323661	677749	55° 59.197' N	3° 13.510' N	
BC 05	323676	677745	55° 59.195' N	3° 13.496' N	
BC 06	323683	677731	55° 59.187' N	3° 13.489' N	
BC 07	323701	677654	55° 59.146' N	3° 13.470' N	
BC 08	323702	677622	55° 59.129' N	3° 13.468' N	
BC 09	323692	677552	55° 59.091' N	3° 13.477' N	
B 10	323769	677530	55° 59.080' N	3° 13.402' N	
BD 11	323776	677559	55° 59.096' N	3° 13.396' N	
BD 12	323720	677572	55° 59.102' N	3° 13.450' N	
BD 13	323735	677633	55° 59.135' N	3° 13.437' N	
BD 14	323713	677755	55° 59.201' N	3° 13.460' N	
BD 15	323706	677759	55° 59.203' N	3° 13.467' N	
BDE 16	323694	677826	55° 59.239' N	3° 13.480' N	
D 17	323791	677626	55° 59.132' N	3° 13.383' N	
D 18	323766	677620	55° 59.128' N	3° 13.407' N	
D 19	323761	677625	55° 59.131' N	3° 13.412' N	
D 20	323765	677630	55° 59 134' N	3° 13.408' N	
DE 21	323780	677638	55° 59 138' N	3° 13.394' N	
DE 22	323774	677673	55° 59 157' N	3° 13.400' N	
DE 23	323806	677679	55° 59.161' N	3° 13.369' N	
DE 20	323810	677696	55° 59 170' N	3° 13 366' N	
DE 25	323824	677705	55° 59 175' N	3° 13.353' N	
DE 26	323814	677763	55° 59 206' N	3° 13.363' N	
DE 20 DE 27	323806	677776	55° 59 213' N	3° 13.371' N	
DE 28	323796	677838	55° 59.246' N	3° 13.382' N	
DE 20	323730	677834	55° 59.244' N	3° 13.406' N	
DE 30	323763	677838	55° 59.246' N	3° 13.413' N	
EF 31	323900	677699	55° 59.172' N	3° 13.279' N	
EF 32	323900	677798	55° 59.225' N	3° 13.279 N	
EF 33	323905	677834	55° 59.245' N	3° 13.277' N	
EFG 34	323903	677847	55° 59.252' N	3° 13.302' N	
EG 35	323874	677832	55° 59.244' N	3° 13.302' N	
EG 36	323859	677830	55° 59 242' N	3° 13.307 N	
EG 30 323639 EG 37 323809 CE 38 323553 CH 39 323545		677873	55° 59,265' N	3° 13.370' N	
		677831 55° 59.240'		3° 13.615' N	
		677829	55° 59 239' N	3° 13.623' N	
CH 39 CH 40	323545	677731	55° 59.186' N	3° 13.605' N	
CH 40 CH 41	323565	677725	55° 59.183' N	3° 13.602' N	
CH 41 CH 42	323505		55° 59 183' N	3° 13.595' N	
CH 42 CH 43	323572	677723 677727	55° 59,182' N 55° 59,184' N	3° 13.595' N 3° 13.576' N	
CH 43 CH 44		677573	55° 59.184' N 55° 59.102' N	3° 13.576 N 3° 13.547' N	
H 45	323619 323525		55° 59.102' N 55° 59.237' N	3° 13.547' N 3° 13.642' N	
		677825			
H 46	323547	677698	55° 59.168' N	0 101010 11	
H 47	323548	677682	55° 59.160' N		
H 48	323526	677609	55° 59.120' N	3° 13.637' N	
F 49	323906	677699	55° 59.172' N	3° 13.274' N 3° 13.247' N	
F 50 F 51	323937	677867	55° 59.263' N		
	323932	677872	55° 59.266' N	o nonece na	
F 52 F 53	323931	677888	55° 59.274' N	3° 13.253' N 3° 13.246' N	
	323938	677895	55° 59.278' N		
F 54	323939	677908	55° 59.285' N	3° 13.245' N	
F 55	323900	677906	55° 59.284' N	3° 13.283' N	
FG 56	323834	677898	55° 59.279' N	3° 13.346' N	
FG 57	323847	677887	55° 59.273' N	3° 13.334' N	
FG 58	323876	677877	55° 59.268' N	3° 13.305' N	
G 59	323813	677891	55° 59.275' N	3° 13.366' N	
G 60	323822	677887	55° 59.273' N	3° 13.358' N	
G 61	323826	677878	55° 59.268' N	3° 13.354' N	

MARINA BASIN

Drawing Title:

PROPOSED DREDGE WORKS

B SAMPLING REPORT

Granton Harbour Pre-Dredge Sampling 2017 Sediment Quality Report

November 2017

Granton Harbour Pre-Dredge Sampling 2017 Sediment Quality Report

Client: Granton Central Developments

Document number:	7972
Project number:	769967jj
Status:	Final
Author:	Campbell Stewart

Reviewer:

Date of issue:24 November 2017Filename:Granton Sediment Samples Final

Graeme Duff

Glasgow	Aberdeen	Inverness	Edinburgh
Craighall Business Park 8 Eagle Street	Banchory Business Centre	Alder House Cradlehall Business Park	Suite 114 Gyleview House
Glasgow	Burn O'Bennie Road	Inverness	3 Redheughs Rigg
G4 9XA	Banchory	IV2 5GH	Edinburgh
0141 341 5040	AB31 5ZU	01463 794 212	EH12 9DQ
info@envirocentre.co.uk	01330 826 596		0131 516 9530
www.envirocentre.co.uk			

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Granton Central Developments ("the Client"). The report is confidential to the Client, and EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced or altered without the prior written approval of EnviroCentre Limited.

Contents

1	Intro	duction1
	1.1	Background1
	1.3	Scope of Report1
2	Sedi	ment Sampling Requirements2
	2.1	Sampling Locations2
	2.2	Field Information2
	2.3	Sampling Requirements2
3	Sam	pling Methodology3
	3.1	Survey Vessel
	3.2	Navigation and Sample Location
	3.3	Sample Retrieval
	3.4	Sample Preparation
	3.5	Sampling Constraints
4	Anal	ytical Results5
	4.1	Physical Analysis5
	4.2	Chemical Analysis
5	Sum	mary7
Refe	rence	

Appendices

- A Figures
- B Sample Logs and Photographs
- C Summary Table and Analytical data

Tables

Table 2.1: Sample Coordinates	2
Table 4.1: Particle Size Analysis Results	5
Table 5.1: Chemical Analysis Screening Summary –	7

1 INTRODUCTION

1.1 Background

Granton Central Developments contracted EnviroCentre Ltd. to undertake the collection of cored samples within the Western Harbour at Granton Harbour. The samples were collected to inform proposed dredging and associated disposal options.

The purpose of these samples is to provide supporting information to Marine Scotland during the licensing process on sediment quality within the proposed dredge areas. The dredging and disposal activities are regulated by Marine Scotland under the Marine (Scotland) Act 2010. The licensing conditions require representative samples to be collected and the nature (i.e. physical composition), quality and contamination status to be determined.

The samples were sub-sampled for analysis in accordance with best practice.

1.2 Action Levels – AL1 Vs AL2

Two action levels are currently used to assess the suitability of sea based disposal of dredged sediment material AL1 and AL2.

Sediment with contaminant concentrations below AL1 is generally considered to be below background levels for contamination and is suitable for disposal at sea.

For samples between AL1 and AL2, additional risk assessment may be required including further sampling and testing to fully identify pockets of contamination or implementation of bioassays to assess the materials suitability for sea disposal. This would need to be agreed and approved by Marine Scotland.

Material above AL2 is generally considered to be unsuitable for disposal to sea. If the sea disposal route is to be pursued, further testing along the lines of bioassay accompanied by a robust justification for selecting sea disposal as the BPEO may be required. This would need to be supported further with additional information regarding any mitigation measures which could be put in place as part of these works. This would require further discussion and agreement with Marine Scotland.

1.3 Scope of Report

The following report details the sampling methodology, field and laboratory analysis and provides a summary of the sediment quality present within the proposed dredge areas.

2 SEDIMENT SAMPLING REQUIREMENTS

2.1 Sampling Locations

Sampling locations are provided in the table below

Table	2 1.	Samo	ا ما	^oord	inates
rable	Z.1.	Samp	ie (LOOIU	mates

Location	Latitude/Longditude
VC01	55.987711,-3.2215627
VC02	55.986567,-3.2218151
VC03	55.987117,-3.2234354
VC04	55.986215,-3.2229260
VC05	55.987015,-3.2246665
VC06	55.986266,-3.2241138
VC07B	55.986942,-3.2257061
VCo8	55.986207,-3.2255385
VCo9	55.985428,-3.2252094
VC10	55.985260,-3.2240660
VC11	55.984771,-3.2234896

2.2 Field Information

The draft following field data is recorded for each sample obtained. This field data included the following information:-

- A unique sample ID;
- Sample location;
- Sample co-ordinates in latitude and longitude in degrees, minutes and decimals of minutes;
- Date, time and depth of collection;
- Sampler's ID;

.

- Sediment description; and
- Details of any deviation from sampling protocol.

2.3 Sampling Requirements

The laboratory analysis required, and undertaken as part of this investigation, included metals, organic and particle size analysis. Samples for metals and particle size analysis were sub-sampled using a plastic spoon and stored in polyethylene bags. Samples for organic analysis were collected using stainless steel spoons and stored in glass jars. Samples were sent to Socotec for analysis.

3 SAMPLING METHODOLOGY

All core samples were collected between the 30th October and 1st November 2017. The following sections detail the sampling methodology used to retrieve sediment samples from the site.

3.1 Survey Vessel

The sampling vessel was the "Forth Fighter" which was operated by Briggs Marine.

3.2 Navigation and Sample Location

Positions were navigated to using a Trimble GPS. Once on position the on-board spud legs were deployed to keep the vessel in position. Sampling equipment was deployed and then recovered. Once the sample had been recovered, the leg was lifted and the vessel moved to the next sampling position. Sample co-ordinates are provided in Appendix B sample logs.

3.3 Sample Retrieval

Core samples were recovered using a viborocorer with 75mm aluminium sample tubes. The vibrocorer was lifted and lowered using the deck mounted crane as well as recovering the corer from the harbour sediments following cessation of coring.

Once the sample was recovered, the core detatched from the head unit, cut in to sub sample sections and each sub-sample extruded from the tube. Un-sampled sections of core were labelled, capped and retained for freezing.

Core logs are provided in Appendix B including coordinates and sample descriptions.

3.4 Sample Preparation

Following collection, core sections were extruded into a plastic core holder, spilt length wise, photographed and then logged prior to sub-sampling

The stainless steel (organic analysis) and plastic sampling spoons (inorganic analysis) were cleaned with sea water between samples. The sample tub was washed with sea water between samples.

Once samples had been placed within appropriate containers, they were labelled and placed immediately into cool boxes. Samples were packed with 2kg bags of ice to cool the samples prior to dispatch to the project laboratory.

3.5 Sampling Constraints

There were no significant sampling constraints encountered during the sampling.

Sample location 7 was relocated on site as the original location identified was within an area which was already at or below the proposed dredge level. A sample from this area was not considered appropriate as it would not

provide information on the material to be dredged. The sample was relocated to an area where material will be dredged.

4 ANALYTICAL RESULTS

A summary table comparing the data to assessment criteria and the laboratory certificates are provided in Appendix C. It should be noted that the results presented in the summary table are in different units. Metals, PAHs and TPH are provided in mg/kg (ppm) and the TBT and PCBs have been provided in μ g/kg (ppb). The corresponding action levels have been converted to µg/kg to facilitate direct comparison of the data and appropriate action level.

Physical Analysis 4.1

Particle Size Distribution (PSD) 4.1.1

Particle Size Distribution data set for each sample is included within Appendix C. Sediments sampled within the proposed dredge area is reported as being predominately medium and coarse silt.

Field descriptions of the sediments and accompanying comment on sedimentology are included within Appendix B within the sample logs. PSD descriptions for each of the samples are provided in Table 4.1.

Sample ID	Particle Size Description
VC01	Coarse Silt
VC02	Coarse Silt
VC03	Medium Silt
VC04	Coarse/Medium Silt
VC05	Medium Silt
VC06	Medium/Coarse Silt
VC07	Medium Silt
VCo8	Medium Silt
VC09	Medium Silt
VC10	Medium/Coarse Silt
VC11	Medium/Coarse Silt

Table 4 1. Particle Size Analysis Results

4.2 **Chemical Analysis**

Chemical Analysis Assessment Criteria 4.2.1

All chemical analytical results were assessed against Revised Action levels criteria as adopted by Marine Scotland. The results are summarised in the following sections with respect to the Marine Scotland Revised Action Levels (RAL).

Metals 4.2.2

- Arsenic 3 of 31 samples recorded arsenic levels above REV AL1. The maximum concentration • recorded was 23 mg/kg.
- Cadmium –23 of 31 samples recorded cadmium levels above REV AL1. The maximum concentration • recorded was 2.8mg/kg.

- Chromium 31 of 31 samples recorded chromium levels above REV AL1. The maximum concentration recorded was 93.8 mg/kg.
- Copper –31 of 31 samples recorded copper levels above REV AL1. The maximum concentration recorded was 106.9 mg/kg.
- Lead -31 of 31 samples recorded lead levels above REV AL1. The maximum concentration recorded was 255 mg/kg.
- Mercury 31 of 31 samples recorded mercury levels above REV Al1. The maximum concentration recorded was 3.15 mg/kg.
- Nickel 30 of 31 samples recorded nickel levels above REV Al1.The maximum concentration recorded was 45 mg/kg.
- Zinc 31 of 31 samples recorded zinc levels above REV Al1. The maximum concentration recorded was 317 mg/kg.

All metal levels were below RAL 2 with the exception of mercury which recorded 13 samples in exceedance of RAL 2

4.2.3 Tributyl Tin (TBT)

All samples were recorded below RAL 1with the maximum concentration recorded as 4.69 μ g Sn/kg

4.2.4 Polyaromatic Hydrocarbons (PAHs)

All 31 samples recorded at least one PAH species above RAL 1. The maximum concentration was 5.33mg/kg for Pyrene.

4.2.5 Polychlorinated Biphenyls

9 of 31 samples recorded individual PCB congeners in exceedance of RAL 1. There were no exceedances of RAL 2.

4.2.6 Total Hydrocarbons (THC)

All 31 samples collected recorded hydrocarbons above Rev AL1. The maximum concentration was 2,854 mg/kg.

5 SUMMARY

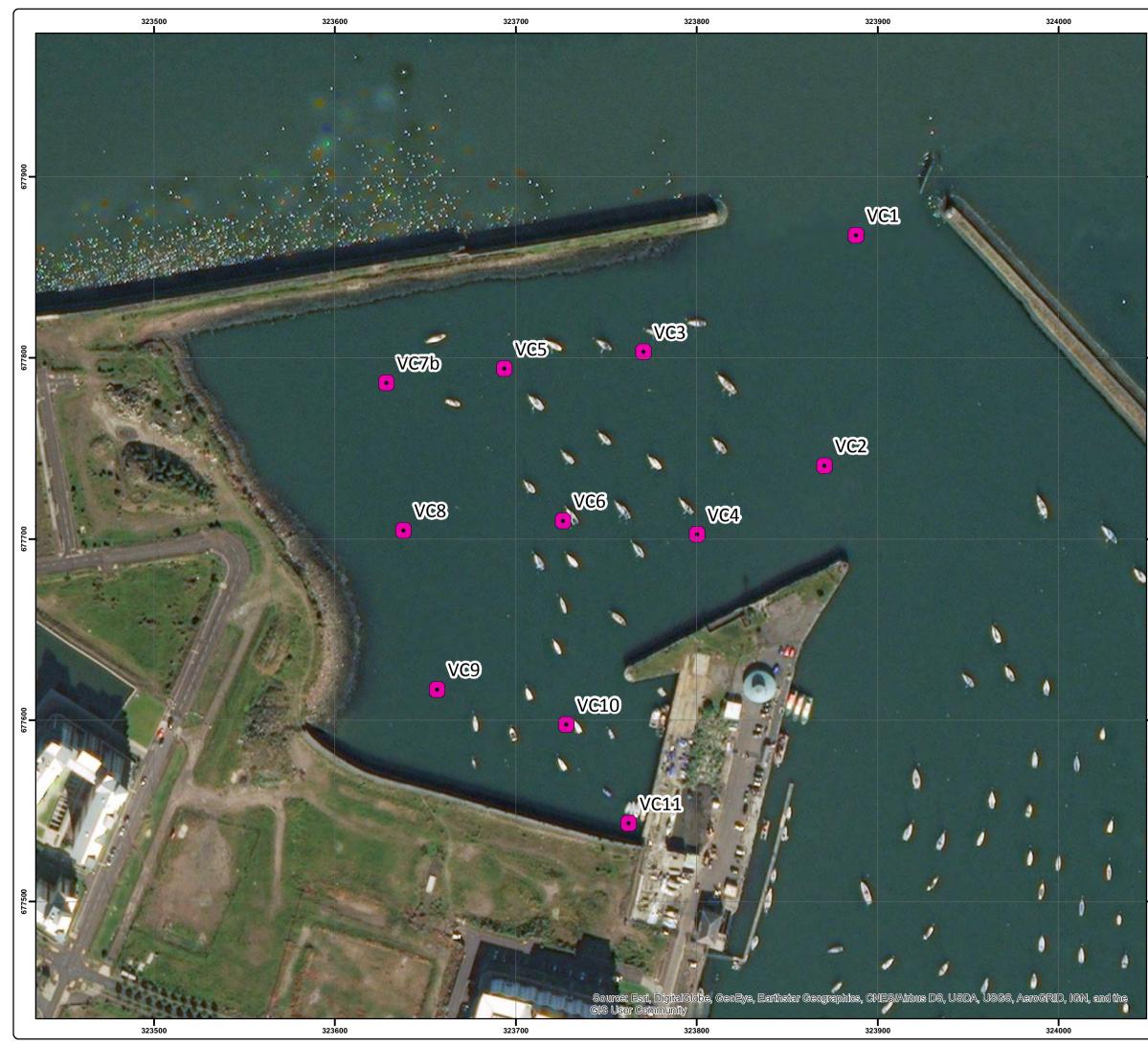
The sediment sampling can be summarized as follows:

- 11 core samples were recovered from the Western Harbour at Granton Harbour up to 3.0m in depth
- 31 samples were submitted for chemical analysis with all 31 samples exceeding the REV Al1 levels for certain contaminants including metals, TBT, THC PAHs and PCBs
- 13 of the 31 samples recorded mercury above RAL2.

Table 5.1 summarises the results of the laboratory analysis with respect to the Action Levels adopted by Marine Scotland. Any concentration recorded below the action level is noted as a pass and above the action level as a fail.

Table 5.1: Chemical Analysis Screening Summary –

Sample ID	Metals		ТВТ		Hydroc arbons	PAHs	PCBs	
Action Level	AL1	AL2	AL1	AL2	AL1	AL1	AL1	AL2
VC01 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC01 0.50-1.00	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC02 0.00-0.65	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC02 0.65-1.30	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC03 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC03 1.50-2.00	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC03 2.50-3.00	Fail	Fail	Pass	Pass	Fail	Fail	Pass	Pass
VC04 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC04 1.00-1.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC04 2.15-2.65	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC05 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC05 1.00-1.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC05 1.50-2.00	Fail	Fail	Pass	Pass	Fail	Fail	Pass	Pass
VC06 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC06 1.20-1.70	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass


VC06 2.40-2.90	Fail	Fail	Pass	Pass	Fail	Fail	Pass	Pass
VC07B 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC07B 1.25-1.75	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC07B 2.00-2.55	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC08 0.00-0.50	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC08 1.45-1.95	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC08 2.40-2.90	Fail	Fail	Pass	Pass	Fail	Fail	Pass	Pass
VC09 0.00-0.50	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC09 1.30-1.80	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC09 0.65-1.15	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC10 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC10 1.25-1.75	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC10 2.00-2.50	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass
VC11 0.00-0.50	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC11 1.50-2.00	Fail	Pass	Pass	Pass	Fail	Fail	Pass	Pass
VC11 2.50-3.00	Fail	Fail	Pass	Pass	Fail	Fail	Fail	Pass

REFERENCES

Marine Scotland (2017). Pre-DredgeSampling Guidance Version 1: Scottish Government.

APPENDICES

A FIGURES

	Legend					
	•	Locations Sa	mpled			
			•			
677900						
67						
677800						
67						
677700	Do not scale this					
9	Client	шар				
		C				
	Granton	Central Dev	velopm	ents		
	Ducient					
	Project Granton	Harbour				
	Granton	Tarbour				
	[
	Title					
677600	Location	is Sampled				
Ū						
	Status	_				
		F	inal			
	Drawing No.					Revision
	769967-0	01				
	Scale				Date	
Q	1:2,000			A3		nber 2017
677500	Drawn	Checke	d		 Approved	
	SMC	6	R		CC	AS
	~	NUIDO	A		raighall Bus ark, Eagle S	
			2	G	lasgow, G4	9XA
		Cen	tre	T	el: 0141 34 ax: 0141 34	

B SAMPLE LOGS AND PHOTOGRAPHS

Granton Harbour	VC01	
Sample Date/Time: Position: Water Depth: Core Length:	31/10/2017 55.987711,-3.22 6.6m 1m	10:01 15627
Remarks:	0.0 – 0.1m 1.0 – 1.0m 0.85m 0.9m	Very fine brown silt Black – grey silt with sandy bands small stick of wood Plant remains
Samples:	0.0 – 0.5m, 0.5 –	
Biota: Notes:	None noted Attempt 1 and 2 washed out; attempt 4 retained 0.77m.	

Granton Harbour	VC02	
Sample Date/Time: Position: Core Length:	31/10/2017 55.986567,-3.22 1.3m	13:20 18151
Remarks:	0.0 – 0.1m 0.1 – 1.3m	Very soft black silt Soft black silt. Dark brown fine sand band at 0.55m.

Samples:

0-0.65m, 0.65-1.3m

Biota: Notes: None noted Attempt 1 - 1.3m at gravel base

Granton Harbour	VC03	
Sample Date/Time: Position: Core Length:	31/10/2017 55.987117,-3.22 3.0m	10:25 34354
Remarks:	0.0 – 0.5m 1.5 – 2.0m 2.5 – 3.0m	Very soft brown silt over black silt. Soft black silt Slightly firm to firm black silt
Samples collected:	0 – 0.5m, 1.5 – 2	.0m, 2.5 – 3.0m
Biota: Notes:	None noted -	

Granton Harbour	VC04	
Sample Date/Time: Position: Core Length:	30/10/2017 55.986215,-3.22 2.65m	14:16 229260
Remarks:	0.0 – 0.5m 1.0 – 1.5m 2.15 – 2.65m	Soft black silt. Very slight anoxic odour. Very soft at top. Drier with depth. Soft black silt. Drier than top length. Black silt. Firmer than previous.
Samples collected:	0 – 0.5m, 1.0 – 1	1.5m, 2.15 – 2.65m
Biota: Notes:	None noted -	

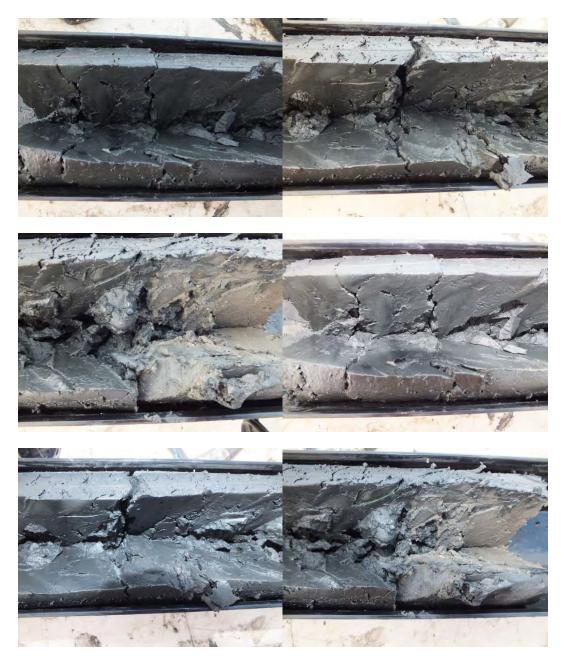
0.0 – 0.5m:

1.0 – 1.5m:

2.15 – 2.65m:

Granton Harbour	VC05	
Sample Date/Time: Position: Core Length:	31/10/2017 55.987015,-3.22 2.0m	11:00 246665
Remarks:	0.0 – 0.5m 1.0 – 1.5m 1.5 – 2.0m	Very soft to soft silt. Brown at top over dark brown-grey silt. Soft to firm black-grey silt. Soft to firm black silt
Samples collected:	0 – 0.5m, 1.0 – 1	1.5m, 1.5 – 2.0m
Biota: Notes:	None noted Attempt 1 – 1.8	m; Attempt 2 – 2.0m

Granton Harbour	VC06	
Sample Date/Time: Position: Core Length:	30/10/2017 55.986266,-3.22 2.9m	241138
Remarks:	0.0 – 0.5m	Very soft to soft black silt. 0.2m.
	1.2 – 1.7m	Very rare black shell fragments (fine gravel) at top. Soft black silt.
	2.4 – 2.8m	Firm black silt.
	2.8 – 2.9m	Firmer grey-brown slightly sandy silt. Rare black seashell
		fragments. Black sub-rounded coarse gravel at interface.
Samples collected:	0.0 – 0.5m, 1.2 ·	– 1.7m, 2.4 – 2.9m
Biota:	None noted	
Notes:	-	


0.0 – 0.5m

1.2 – 1.7m


2.4 – 2.9m

Granton Harbour	VC07B	
Sample Date/Time: Position: Core Length:	31/10/2017 55.986942,-3.22 2.55m	14:04 57061
Remarks:	0.0 – 0.5m 1.20 – 1.75m 2.0 – 2.55m	Very soft brown and black silt Soft to slightly firm black – grey silt Slightly firm black silt
Samples collected:	0.0 – 0.5m, 1.20	– 1.75m, 2.0 – 2.55m
Biota: Notes:	None noted -	

Granton Harbour	VCo8	
Sample Date/Time: Position: Core Length:	30/10/2017 55.986207,-3.22 2.9m	12:56 55385
Remarks:	0.0 – 0.5m 1.45 – 1.95m 2.4 – 2.9m	Soft black silt becoming firmer with depth. H ₂ S odour Black silt, firmer with depth. Black silt, firmer with depth. Dryer than top.
Samples collected:	0 – 0.5m, 1.45 –	1.95m, 2.4 – 2.9m
Biota: Notes:	None noted Attempt 1 — 1.71	n; Attempt 2 – 2.9m.

0.0 – 0.5m

1.45 – 1.95m

2.4 – 2.9m

Granton Harbour	VC09	
Sample Date/Time: Position: Core Length:	30/10/2017 55.985428,-3.22 1.8m	11:52 252094
Remarks:	0.0 – 0.5m 0.65 – 1.15m 1.15 – 1.8m	Soft black silt. Very soft for top 0.1m. Black-grey silt with fine sand beds. Moderately firm. Few fibres. Black-grey silt. Becoming drier at base. Moderately firm.
Samples collected:	0.0 – 0.5m, 0.65	– 1.15m. 1.3 – 1.8m
Biota: Notes: <i>0.0 – 0.5m</i>	None noted Slight sulphurou	ıs odour.

0.65 – 1.15m

1.3 – 1.8m

Granton Harbour	VC10	
Sample Date/Time: Position: Core Length:	31/10/2017 55.985260,-3.222 2.5m	12:56 40660
Remarks:	0.0 – 0.5m 1.25 – 1.75m 2.0 – 2.5m	Very soft – soft black silt. Brown at top. Soft black silt Soft black silt. Firmer with depth. Minor gravel.
Samples collected:	0.0 – 0.5m, 1.25 ·	– 1.75m, 2.0 – 2.5m
Biota:	None noted	

Notes:

-

Granton Harbour	VC11	
Sample Date/Time: Position: Core Length:	31/10/2017 55.984771,-3.22 3.0m	12:20 34896
Remarks:	0.0 – 0.5m	Very soft - soft silt. Brown at surface, depth uncertain since smeared.
	1.5 – 2.0m 2.5 – 3.0m	Black-grey soft silt. Black silt with fine sandy bands. Soft becoming firm with depth.
	2.5 - 3.011	Dry at base. Fine gravel layer at 2.6m.
Samples collected:	0.0 – 0.5m, 1.5 -	- 2.0m, 2.5 – 3.0m.
Biota:	None noted	

Notes:

C SUMMARY TABLE AND ANALYTICAL DATA

Granton Harbour Sediments November 2017

	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug Sn/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg ug/k	ug/kg	ug/kg	ug/kg ι	ug/kg ug/kg
ID Number	Sample ID	Copper	Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	Zinc	Tributyl Tin	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]ant hracene	Chrysene	Benzo[b]fluor anthene	Benzo[k]flu oranthene	Benzo[a] pyrene	Perylene *	Indeno[123,cd pyrene	I] Dibenzo[a,h]a nthracene		Total Oil	PCB28* PCB5	2* PCB10	1* PCB118	PCB153* PC	;B138* PCB180*
	RAL1/RAL2	30/300	20/70	0.4/4	50/370	50/400	0.25/1.5	30/150	130/160	100/500	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.01	0.1	100	20/180 20/18	0 20/18	20/180	20/180 2	20/180 20/180
S1782106	VC01 0.00-0.50	42.1	15.8	0.45	57.8	79.6	0.88	32.9	141.1	1.29	0.18	0.05	0.13	0.15	0.85	0.32	1.17	1.49	0.67	0.54	0.45	0.32	0.68	0.18	0.31	0.08	0.34	510	5.0 3.2	4.3	3.1	4.8	7.6 4.3
S1782107	VC01 0.50-1.00	51.6	16.7	0.87	57	93.9	1.13	30.9	155.1	2.71	0.20	0.06	0.27	0.29	1.31	0.45	1.88	2.06	1.11	0.94	0.84	0.46	1.01	0.27	0.43	0.11	0.50	330	10.2 8.8	9.9	6.4	11.2	14.0 8.5
S1782108	VC02 0.00-0.65	46.5	15.1	0.52	52.8	83.2	1.04	29.6	141.7	<1	0.22	0.06	0.17	0.19	1.12	0.40	1.66	2.00	1.34	1.08	0.92	0.60	1.28	0.38	0.58	0.14	0.63	474	8.6 5.8	7.7	4.9	9.3	13.2 8.5
S1782109	VC02 0.65-1.30	60.6	17.6	0.99	75.5	107.6	1.42	33.9	172.1	2.32	0.31	0.12	0.26	0.23	1.12	0.50	1.75	2.28	1.01	0.82	0.75	0.47	0.98	0.34	0.48	0.12	0.78	817	11.9 7.6	10.9	8.5	13.0	17.3 9.7
S1782110	VC03 0.00-0.50	40.2	17.4	0.29	56.4	77.9	0.86	31.9	141.3	<1	0.20	0.05	0.06	0.11	0.45	0.19	0.63	0.84	0.40	0.33	0.62	0.29	0.41	0.20	0.23	0.05	0.27	530	5.9 3.4	5.0	3.7	6.0	8.8 5.3
S1782111	VC03 1.50-2.00	55.6	19.5	0.44	72.7	107.2	1.22	38.4	173.7	<1	0.22	0.06	0.09	0.13	0.59	0.26	0.89	1.16	0.52	0.50	0.56	0.25	0.53	0.25	0.28	0.07	0.32	571	9.3 6.5	8.6	6.2	11.1	16.5 10.9
S1782112	VC03 2.50-3.00	60.4	19.4	0.74	80.1	116.3	1.5	36.4	179.8	<1	0.33	0.09	0.15	0.24	0.91	0.49	1.47	1.93	0.88	0.64	0.76	0.41	0.89	0.32	0.48	0.12	0.55	939	8.3 4.2	7.0	5.4	7.1	10.9 5.4
S1782113	VC04 0.00-0.50	40.3	17.9	0.35	54.1	78.5	0.88	31.9	141.5	<1	0.22	0.07	0.10	0.16	0.54	0.22	0.82	1.04	0.48	0.43	0.40	0.27	0.52	0.20	0.29	0.07	0.33	540	5.9 3.6	5.0	3.9	6.1	8.6 5.8
S1782114	VC04 1.00-1.50	58.2	19.4	0.72	68.2	119	1.3	35.7	183.3	<1	0.28	0.08	0.12	0.18	0.65	0.29	0.99	1.33	0.62	0.45	0.69	0.32	0.60	0.29	0.35	0.09	0.38	775	11.0 5.9	9.5	6.2	11.8	16.4 10.7
S1782115	VC04 2.15-2.65	81	18.1	2.83	84.5	162.7	1.88	38.1	223.5	2.03	0.27	0.10	0.14	0.25	0.72	0.39	1.27	1.53	0.71	0.56	0.48	0.33	0.65	0.27	0.37	0.09	0.30	163	22.7 13.7	17.6	10.3	21.8	24.3 17.3
S1782116	VC05 0.00-0.50	47.6	18.7	0.38	59.6	152	0.93	33.8	151.9	<1	0.22	0.07	0.13	0.19	0.73	0.27	1.01	1.24	0.60	0.51	0.53	0.30	0.60	0.22	0.32	0.08	0.37	574	6.8 4.1	5.8	4.1	7.0	8.9 6.5
S1782117	VC05 1.00-1.50	55.1	18.7	0.63	69.3	110.1	1.19	35.4	177.2	1.24	0.25	0.07	0.10	0.17	0.62	0.31	0.75	1.33	0.60	0.46	0.46	0.30	0.67	0.28	0.26	0.07	0.30	659	10.0 6.1	8.9	5.5	10.8	13.7 8.2
S1782118	VC05 1.50-2.00	63.3	19.6	0.75	77	126.3	1.5	37.2	184.7	1.14	0.29	0.06	0.11	0.18	0.72	0.35	1.30	1.46	0.68	0.51	0.74	0.34	0.70	0.31	0.50	0.12	0.58	1074	11.1 7.9	10.0	7.0	11.6	17.4 8.4
S1782119	VC06 0.00-0.50	45.5	17.5	0.42	57.3	96.7	1	32.6	151.2	<1	0.24	0.06	0.09	0.15	0.62	0.27	1.00	1.20	0.59	0.52	0.62	0.29	0.63	0.21	0.44	0.10	0.49	672	8.3 5.7	7.3	5.1	9.0	11.2 8.6
S1782120	VC06 1.20-1.70	59.9	18.2	0.81	72.2	110.4	1.38	34.3	175.9	3.33	0.33	0.07	0.18	0.24	0.85	0.38	1.34	1.62	0.74	0.52	0.70	0.36	0.77	0.34	0.56	0.14	0.65	2854	9.4 6.0	8.6	6.0	10.8	14.4 8.4
S1782121	VC06 2.40-2.90	79.9	18.4	1.69	65.1	176.6	2.02	32.6	230.5	<1	0.54	0.11	0.23	0.40	1.12	0.63	2.10	2.30	1.31	0.97	1.15	0.59	1.30	0.41	0.91	0.22	0.99	1323	12.2 9.3	12.0	7.2	13.2	15.2 10.0
S1782122	VC07B 0.00-0.50	40.3	18.8	0.34	56.7	83	0.88	33.5	146.8	<1	0.20	0.04	0.05	0.10	0.41	0.16	0.61	0.72	0.37	0.28	0.42	0.20	0.39	0.15	0.31	0.07	0.34	544	4.1 2.8	3.4	2.5	4.1	5.6 3.4
S1782123	VC07B 1.25-1.75	48.8	20.2	0.35	71.8	97.2	1.05	37.1	164.4	<1	0.24	0.05	0.07	0.14	0.48	0.20	0.73	0.85	0.44	0.35	0.50	0.23	0.48	0.25	0.40	0.09	0.45	590	7.1 4.3	5.7	3.9	6.9	9.7 5.7
S1782124	VC07B 2.00-2.55	90.6	18.2	1.62	83.6	188.6	2.16	39.2	252.6	1.26	0.26	0.07	0.11	0.20	0.67	0.34	1.12	1.41	0.69	0.58	0.52	0.34	0.74	0.31	0.54	0.13	0.60	836	21.5 15.2	17.4	10.5	21.5	26.7 20.8
S1782646	VC08 0.00-0.50	98.4	18.2	2.41	85.7	185.3	2.41	36.1	256.3	4.34	0.35	0.08	0.15	0.25	0.86	0.48	1.43	1.69	0.84	0.59	0.61	0.37	0.79	0.29	0.58	0.15	0.68	1309	41.8 22.0	25.2	15.3	35.3	41.3 33.1
S1782647	VC08 1.45-1.95	106.9	16.7	2.28	93.8	182.9	2.64	37	253.9	4.69	0.44	0.09	0.17	0.28	1.05	0.56	1.65	1.98	1.01	0.74	0.89	0.44	0.95	0.34	0.70	0.18	0.82	179	27.5 16.2	20.4	12.7	25.2	31.5 24.8
S1782648	VC08 2.40-2.90	86.7	22.6	1.14	67.5	241.1	3.15	35.3	268.2	<1	0.75	0.28	0.39	0.83	2.24	1.49	4.53	5.33	2.91	2.01	1.68	1.13	2.68	0.81	1.76	0.41	1.92	1663	6.5 6.1	7.1	3.5	10.9	11.9 12.7
S1782649	VC09 0.00-0.50	76.3	18.2	1.49	64.4	197.7	2.1	36.1	251.8	11.8	0.34	0.14	0.23	0.34	1.29	0.67	2.52	2.96	1.41	1.01	0.94	0.65	1.50	0.48	1.02	0.25	1.15	1229	32.4 29.7	35.5	24.1	28.1	35.8 24.1
S1782650	VC09 1.30-1.80	90.4	19.5	1.97	80.2	206.1	2.3	40.1	255.8	3.31	0.43	0.15	0.28	0.47	1.56	0.79	2.79	3.08	1.65	1.09	1.36	0.72	1.65	0.57	1.12	0.27	1.24	2510	39.0 32.2	32.7	22.2	20.8	32.4 11.7
S1782125	VC09 0.65-1.15	98.9	20.5	2	85.2	255.1	2.39	45.1	317	3.69	0.45	0.11	0.20	0.34	1.24	0.65	2.17	2.49	1.26	0.96	1.19	0.56	1.22	0.50	0.94	0.24	1.08	1634	24.8 19.5	24.7	16.0	22.0	26.8 16.0
S1782126	VC10 0.00-0.50	43.7	19.3	0.34	62	92	1.01	34.9	153.4	<1	0.20	0.04	0.06	0.11	0.39	0.16	0.57	0.67	0.33	0.24	0.31	0.17	0.35	0.15	0.29	0.06	0.32	508	5.1 3.5	4.1	3.0	4.7	6.7 3.9
S1782127	VC10 1.25-1.75	48.7	19.7	0.43	59.8	102.9	0.98	34.4	158.2	<1	0.24	0.05	0.08	0.14	0.62	0.24	0.95	1.05	0.54	0.43	0.45	0.27	0.57	0.23	0.45	0.11	0.50	598	7.1 4.8	6.0	3.8	6.6	9.4 5.8
S1782128	VC10 2.00-2.50	65.2	19.2	0.78	76.8	168	1.58	39.4	199.9	<1	0.27	0.06	0.11	0.19	0.69	0.32	1.23	1.36	0.69	0.52	0.70	0.33	0.73	0.31	0.55	0.13	0.60	796	11.9 11.0	12.8	7.4	19.2	21.3 14.9
S1782129	VC11 0.00-0.50	45.1	19	0.28	63.6	92.8	0.97	35.7	154.4	<1	0.22	0.04	0.06	0.11	0.42	0.17	0.65	0.76	0.40	0.30	0.38	0.22	0.45	0.19	0.39	0.09	0.44	658	5.5 3.4	5.0	3.8	5.7	7.5 5.3
S1782130	VC11 1.50-2.00	46.7	19.4	0.32	66.8	113.8	1.08	37	164.7	<1	0.24	0.05	0.07	0.13	0.54	0.23	0.89	1.03	0.54	0.41	0.57	0.28	0.60	0.30	0.49	0.11	0.55	720	7.7 4.9	6.0	4.7	7.2	10.7 5.6
S1782131	VC11 2.50-3.00	82.8	16.3	0.97	62.7	208.8	1.67	39.6	251.6	<1	0.39	0.11	0.34	0.43	1.99	0.87	3.60	3.70	2.06	1.57	1.47	0.97	2.22	0.67	1.53	0.36	1.56	1927	33.0 40.9	53.3	30.6	55.0	66.2 47.9

Our Ref: EFS/180403 (Ver. 1) Your Ref:

December 1, 2017

SOCOTEC 🔇

Environmental Chemistry SOCOTEC UK Limited Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Campbell Stewart

Dear Campbell Stewart

Sample Analysis - Granton Harbour 769967j

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

The samples will be kept until the agreed date when they will be discarded. Please call 01283 554467 for an extension of this date. Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with SOCOTEC UK Limited (Multi-Sector Services) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for SOCOTEC UK Limited

th

L Thompson Project Co-ordinator 01283 554467

TEST REPORT

Report No. EFS/180403 (Ver. 1)

EnviroCentre Envirocentre Craighall Business Park Eagle St Glasgow G4 9XA

Site: Granton Harbour 769967j

The 37 samples described in this report were registered for analysis by SOCOTEC UK Limited on 07-Nov-2017. This report supersedes any versions previously issued by the laboratory. The analysis was completed by: 01-Dec-2017

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PCB Congener Results (Pages 4 to 6) PAH/TPH Results (Pages 7 to 15) Subcontracted Analysis Reports (Pages 16 to 24) *The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.* Analytical and Deviating Sample Overview (Pages 25 to 27) Table of Additional Report Notes (Pages 28 to 29) Table of Method Descriptions (Page 30) Table of Report Notes (Page 31) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (Tim Barnes

Operations Director Energy & Waste Services

Date of Issue: 01-Dec-2017

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	ug Sn/kg	µg/kg	%	µg/kg
		nod Codes :	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	PAHSED	OGSNSED		Sub061	TPHSED
	Method Report	Accredited :	0.5 Yes	0.5 Yes	0.04 Yes	0.5 Yes	0.5 Yes	0.5 Yes	0.5 Yes	0.015 Yes	0.5 Yes	2 Yes	1 Yes	1 No	0.08 No	No	10 No
LAB ID Number CL/	Client Sample Description	Sample Date	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Cobalt (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	PAH by MS Dti	Tributyl Tin (Sediments)	PCB-7 Congeners (Marine Sediments)	^Particle Size Analysis (Sediment)	TPH GCFID (Si)+Sats
1782106	VC01 0.00-0.50	31-Oct-17	42.1	15.8	0.45	57.8	11.5	79.6	429.7	0.88	32.9	141.1	Req	1.29	Req	Req	Req
1782107	VC01 0.50-1.00	31-Oct-17	51.6	16.7	0.87	57	10.7	93.9	400	1.13	30.9	155.1	Req	2.71	Req	Req	Req
1782108	VC02 0.00-0.65	31-Oct-17	46.5	15.1	0.52	52.8	10.6	83.2	404.7	1.04	29.6	141.7	Req	<1	Req	Req	Req
1782109	VC02 0.65-1.30	31-Oct-17	60.6	17.6	0.99	75.5	11.9	107.6	468.6	1.42	33.9	172.1	Req	2.32	Req	Req	Req
1782110	VC03 0.00-0.50	31-Oct-17	40.2	17.4	0.29	56.4	11.8	77.9	590.4	0.86	31.9	141.3	Req	<1	Req	Req	Req
1782111	VC03 1.50-2.00	31-Oct-17	55.6	19.5	0.44	72.7	13.3	107.2	587.2	1.22	38.4	173.7	Req	<1	Req	Req	Req
1782112	VC03 2.50-3.00	31-Oct-17	60.4	19.4	0.74	80.1	12.9	116.3	715.4	1.5	36.4	179.8	Req	<1	Req	Req	Req
1782113	VC04 0.00-0.50	31-Oct-17	40.3	17.9	0.35	54.1	11.6	78.5	603.1	0.88	31.9	141.5	Req	<1	Req	Req	Req
1782114	VC04 1.00-1.50	31-Oct-17	58.2	19.4	0.72	68.2	12.4	119	559.1	1.3	35.7	183.3	Req	<1	Req	Req	Req
1782115	VC04 2.15-2.65	31-Oct-17	81	18.1	2.83	84.5	12.5	162.7	463.6	1.88	38.1	223.5	Req	2.03	Req	Req	Req
1782116	VC05 0.00-0.50	31-Oct-17	47.6	18.7	0.38	59.6	12.1	152	564.3	0.93	33.8	151.9	Req	<1	Req	Req	Req
1782117	VC05 1.00-1.50	31-Oct-17	55.1	18.7	0.63	69.3	12.3	110.1	561.4	1.19	35.4	177.2	Req	1.24	Req	Req	Req
1782118	VC05 1.50-2.00	31-Oct-17	63.3	19.6	0.75	77	12.9	126.3	604	1.5	37.2	184.7	Req	1.14	Req	Req	Req
1782119	VC06 0.00-0.50	30-Oct-17	45.5	17.5	0.42	57.3	11.5	96.7	517.1	1	32.6	151.2	Req	<1	Req	Req	Req
1782120	VC06 1.20-1.70	30-Oct-17	59.9	18.2	0.81	72.2	12.2	110.4	539.5	1.38	34.3	175.9	Req	3.33	Req	Req	Req
1782121	VC06 2.40-2.90	30-Oct-17	79.9	18.4	1.69	65.1	10.8	176.6	330.3	2.02	32.6	230.5	Req	<1	Req	Req	Req
1782122	VC07B 0.00-0.50	31-Oct-17	40.3	18.8	0.34	56.7	12	83	668	0.88	33.5	146.8	Req	<1	Req	Req	Req
1782123	VC07B 1.25-1.75	31-Oct-17	48.8	20.2	0.35	71.8	13.3	97.2	685.4	1.05	37.1	164.4	Req	<1	Req	Req	Req
1782124	VC07B 2.00-2.55	31-Oct-17	90.6	18.2	1.62	83.6	13	188.6	374.3	2.16	39.2	252.6	Req	1.26	Req	Req	Req
1782125	VC09 0.65-1.15	30-Oct-17	98.9	20.5	2	85.2	15.3	255.1	505.7	2.39	45.1	317	Req	3.69	Req	Req	Req
9			Client Na Contact	ame	Enviro(Campbell								Sam				
В	Bretby Business Park, Ashby Road											Date Prin	nted		23-1	lov-2017	
В	Burton-on-Trent, Staffordshire, DE15 0YZ				•	1						Report N	lumber		EF	S/180284	
	Tel +44 (0) 1283 554400				Gran	ton H	larbo	ur /69	9967J			Table Number 1					
	Fax +44 (0) 1283 554422																

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	ug Sn/kg	µg/kg	%	µg/kg	
		od Codes :	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	PAHSED		PCBMS3Q	Sub061	TPHSED	
	Method Reportin	ng Limits : ccredited :	0.5 Yes	0.5 Yes	0.04 Yes	0.5 Yes	0.5 Yes	0.5 Yes	0.5 Yes	0.015 Yes	0.5 Yes	2 Yes	1 Yes	1 No	0.08 No	No	10 No	
_													103		PCB-	^Particle		
LAB ID Number CL/	Client Sample Description	Sample Date	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Cobalt (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	PAH by MS Dti	Tributyl Tin (Sediments)	- 7 Congeners (Marine Sediments)	e Size Analysis (Sediment)	TPH GCFID (Si)+Sats	
1782126	VC10 0.00-0.50	31-Oct-17	43.7	19.3	0.34	62	12.5	92	642.4	1.01	34.9	153.4	Req	<1	Req	Req	Req	
1782127	VC10 1.25-1.75	31-Oct-17	48.7	19.7	0.43	59.8	12.4	102.9	633.3	0.98	34.4	158.2	Req	<1	Req	Req	Req	
1782128	VC10 2.00-2.50	31-Oct-17	65.2	19.2	0.78	76.8	13.7	168	602	1.58	39.4	199.9	Req	<1	Req	Req	Req	
1782129	VC11 0.00-0.50	31-Oct-17	45.1	19	0.28	63.6	12.8	92.8	665.3	0.97	35.7	154.4	Req	<1	Req	Req	Req	
1782130	VC11 1.50-2.00	31-Oct-17	46.7	19.4	0.32	66.8	13.4	113.8	734.7	1.08	37	164.7	Req	<1	Req	Req	Req	
1782131	VC11 2.50-3.00	31-Oct-17	82.8	16.3	0.97	62.7	13.6	208.8	495.3	1.67	39.6	251.6	Req	<1	Req	Req	Req	
1782132	CRM	31-Oct-17											Req §		Req			
1782133	QC Blank	31-Oct-17	<0.5 §	<0.5 §	<0.04 §	<0.5 §	<0.5 §	<0.5 §	<0.5 §	<0.015 §	<0.5 §	<2 §	Req §	<1	Req		Req	
1782134	Reference Material (% Recovery)	31-Oct-17	103 §	100 §	91 §	103 §	100 §	95 §	99 §	94 §	101 §	102 §	Req §	84	Req		Req	
1782646	VC08 0.00-0.50	31-Oct-17	98.4	18.2	2.41	85.7	11.8	185.3	334.9	2.41	36.1	256.3	Req	4.34	Req	Req	Req	
1782647	VC08 1.45-1.95	31-Oct-17	106.9	16.7	2.28	93.8	12.1	182.9	317.6	2.64	37	253.9	Req	4.69	Req	Req	Req	
1782648	VC08 2.40-2.90	31-Oct-17	86.7	22.6	1.14	67.5	11.9	241.1	300.8	3.15	35.3	268.2	Req	<1	Req	Req	Req	
1782649	VC09 0.00-0.50	31-Oct-17	76.3	18.2	1.49	64.4	12.5	197.7	435.7	2.1	36.1	251.8	Req	11.8	Req	Req	Req	
1782650	VC09 1.30-1.80	30-Oct-17	90.4	19.5	1.97	80.2	13.5	206.1	402.7	2.3	40.1	255.8	Req	3.31	Req	Req	Req	
1782651	CRM	30-Oct-17											Req §		Req			
1782652	QC Blank	30-Oct-17	<0.5 §	<0.5 §	<0.04 §	<0.5 §	<0.5 §	<0.5 §	<0.5 §	<0.015 §	<0.5 §	<2 §	Req §	<1	Req		Req	
1782653	Reference Material (% Recovery)	31-Oct-17	104 §	93 §	96 §	99 §	95 §	103 §	96 §	104 §	96 §	100 §	Req §	95	Req		Req	
		31-Oct-17																
		31-Oct-17																
		30-Oct-17																
			Client N	ame	Enviro								Sam	ple Ana	alysis			
			Contact		Campbell	Stewart								1				
	Bretby Business Park, Ashby Road											Date Pri				Nov-2017		
	Burton-on-Trent, Staffordshire, DE15 0YZ				Gran	ton H	larbo	ur 769	9967i			Report N			EI	FS/180284		
	Tel +44 (0) 1283 554400				Jiun				,,			Table Nu	umber			1		
	Fax +44 (0) 1283 554422																	

Polychlorinated Biphenyls (congeners)

Customer and Site Details:	EnviroCentre: Granton Harbour 769967j	Matrix:	Soil
Job Number:	S18_0284	Date Booked in:	02-Nov-17
QC Batch Number:	170012	Date Extracted:	15-Nov-17
Directory:	151117PCB.TQ1	Date Analysed:	17-Nov-17
Method:	Ultrasonic		

Compounds marked *	are not UKAS or MCerts accredited
--------------------	-----------------------------------

		Concentration, (µg/kg)										
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*				
CL1782106	VC01 0.00-0.50	5.0	3.2	4.3	3.1	4.8	7.6	4.3				
CL1782107	VC01 0.50-1.00	10.2	8.8	9.9	6.4	11.2	14.0	8.5				
CL1782108	VC02 0.00-0.65	8.6	5.8	7.7	4.9	9.3	13.2	8.5				
CL1782109	VC02 0.65-1.30	11.9	7.6	10.9	8.5	13.0	17.3	9.7				
CL1782110	VC03 0.00-0.50	5.9	3.4	5.0	3.7	6.0	8.8	5.3				
CL1782111	VC03 1.50-2.00	9.3	6.5	8.6	6.2	11.1	16.5	10.9				
CL1782112	VC03 2.50-3.00	8.3	4.2	7.0	5.4	7.1	10.9	5.4				
CL1782113	VC04 0.00-0.50	5.9	3.6	5.0	3.9	6.1	8.6	5.8				
CL1782114	VC04 1.00-1.50	11.0	5.9	9.5	6.2	11.8	16.4	10.7				
CL1782115	VC04 2.15-2.65	22.7	13.7	17.6	10.3	21.8	24.3	17.3				
CL1782116	VC05 0.00-0.50	6.8	4.1	5.8	4.1	7.0	8.9	6.5				
CL1782117	VC05 1.00-1.50	10.0	6.1	8.9	5.5	10.8	13.7	8.2				
CL1782118	VC05 1.50-2.00	11.1	7.9	10.0	7.0	11.6	17.4	8.4				
CL1782119	VC06 0.00-0.50	8.3	5.7	7.3	5.1	9.0	11.2	8.6				
CL1782120	VC06 1.20-1.70	9.4	6.0	8.6	6.0	10.8	14.4	8.4				
CL1782121	VC06 2.40-2.90	12.2	9.3	12.0	7.2	13.2	15.2	10.0				
CL1782122	VC07B 0.00-0.50	4.1	2.8	3.4	2.5	4.1	5.6	3.4				
CL1782123	VC07B 1.25-1.75	7.1	4.3	5.7	3.9	6.9	9.7	5.7				
CL1782124	VC07B 2.00-2.55	21.5	15.2	17.4	10.5	21.5	26.7	20.8				
CL1782132	CRM	2.9	4.9	5.1	2.8	4.4	4.7	3.1				
CL1782133	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08				
CL1782134	Reference Material (% Recovery)	96	101	100	94	95	98	99				

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	EnviroCentre: Granton Harbour 769967 S18_0284 170013 151117PCB.TQ1 Ultrasonic		marked * are i	not UKAS or N	Matrix: Date Booked Date Extracte Date Analyse	d: d:	Soil 02-Nov-17 15-Nov-17 17-Nov-17	
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1782125	VC09 0.65-1.15	39.0	32.2	32.7	22.2	20.8	32.4	11.7
CL1782126	VC10 0.00-0.50	5.1	3.5	4.1	3.0	4.7	6.7	3.9
CL1782127	VC10 1.25-1.75	7.1	4.8	6.0	3.8	6.6	9.4	5.8
CL1782128	VC10 2.00-2.50	11.9	11.0	12.8	7.4	19.2	21.3	14.9
CL1782129	VC11 0.00-0.50	5.5	3.4	5.0	3.8	5.7	7.5	5.3
CL1782130	VC11 1.50-2.00	7.7	4.9	6.0	4.7	7.2	10.7	5.6
CL1782131	VC11 2.50-3.00	33.0	40.9	53.3	30.6	55.0	66.2	47.9
CL1782132	CRM	3.1	4.6	5.0	2.4	4.0	4.5	2.7
CL1782133	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1782134	Reference Material (% Recovery)	101	104	105	98	107	108	108

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	EnviroCentre: Granton Harbour 769967 S18_0403 170013 151117PCB.TQ1 Ultrasonic		marked * are i	not UKAS or N	Matrix: Date Booked Date Extracte Date Analyse	ed: d:	Soil 07-Nov-17 15-Nov-17 17-Nov-17	
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28*	PCB52*	PCB101*	PCB118*	PCB153*	PCB138*	PCB180*
CL1782646	VC08 0.00-0.50	41.8	22.0	25.2	15.3	35.3	41.3	33.1
CL1782647	VC08 1.45-1.95	27.5	16.2	20.4	12.7	25.2	31.5	24.8
CL1782648	VC08 2.40-2.90	6.5	6.1	7.1	3.5	10.9	11.9	12.7
CL1782649	VC09 0.00-0.50	32.4	29.7	35.5	24.1	28.1	35.8	24.1
CL1782650	VC09 1.30-1.80	24.8	19.5	24.7	16.0	22.0	26.8	16.0
CL1782651	CRM	3.1	4.6	5.0	2.4	4.0	4.5	2.7
CL1782652	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
CL1782653	Reference Material (% Recovery)	101	104	105	98	107	108	108

Polvaromatic Hydrocarbon Concentrations (ng/g dry weight basis) UKAS accredited ?: Yes

	1	Sample ID :	CL1782133a	CL1782134a	CL1782106	CL1782107	CL1782108	CL1782109	CL1782110	CL1782111	CL1782112	CL1782113	CL1782114	CL1782115	CL1782116	CL1782117
		Station :	QC Blank		VC01 0.00-0.50	VC01 0.50-1.00			VC03 0.00-0.50	VC03 1.50-2.00			VC04 1.00-1.50			
PAH Fraction	# PAH	Mass	QU Blaint	o materiai (70 m	1001 0.00 0.00	1001 0.00 1.00	1002 0100 0100	1002 0100 1100	1000 0.00 0.00	1000 1100 2100	1000 2:00 0:00			100121102100	1000 0.00 0.00	
Naphthalene	1	128	<1	94.8	183.3	203.6	218.3	312.0	201.6	224.2	332.7	219.3	283.8	267.4	217.8	252.1
C1 Naphthalenes *	2	142	<1	95.5	513.1	749.0	646.4	818.6	568.0	629.4	832.8	816.8	883.1	976.6	668.1	679.9
C2 Naphthalenes *		156	<1	N.D	609.0	941.6	756.4	1107.1	621.1	677.9	923.5	868.5	978.6	1066.2	774.2	744.8
C3 Naphthalenes *		170	<1	N.D	636.3	1120.1	883.5	1258.2	700.3	121.2	1102.5	894.3	987.3	1185.9	980.3	827.6
C4 Naphthalenes *		184	<1	N.D	547.7	723.1	558.3	681.7	409.2	438.1	766.8	548.9	588.1	708.2	619.7	533.5
Sum Naphthalenes *		-	0	95	2489	3737	3063	4178	2500	2091	3958	3348	3721	4204	3260	3038
Phenanthrene / Anthracene	2	178	0.0	94.5	1162.9	1751.8	1516.7	1613.6	639.1	847.5	1402.8	755.6	936.8	1117.2	1003.0	929.6
C1 178 *		192	<1	N.D	796.8	1109.9	1073.6	1246.7	615.3	740.3	1277.3	686.9	860.6	966.0	881.6	843.4
C2 178 *		206	<1	N.D	645.4	839.6	898.0	1050.2	561.1	638.9	1181.1	642.6	753.6	782.3	702.7	751.2
C3 178 *		220	<1	N.D	586.3	730.6	578.8	1022.1	605.2	397.4	868.7	369.6	581.9	715.5	690.9	643.7
Sum 178 *			0	94	3191.4	4432.0	4067.1	4932.6	2420.7	2624.1	4729.8	2454.7	3132.9	3581.1	3278.2	3167.9
Dibenzothiophene *		184	<1	95	65.8	86.1	73.9	95.2	42.8	55.8	115.0	50.1	61.4	76.8	58.7	73.3
C1 Dibenzothiophenes *		198	<1	N.D	110.2	150.5	142.5	213.2	107.8	121.4	288.1	115.3	138.3	179.4	132.1	178.1
C2 Dibenzothiophenes *		212	<1	N.D	172.2	211.1	246.6	386.9	185.2	218.0	670.5	205.7	299.7	331.5	212.5	335.1
C3 Dibenzothiophenes *		226	<1	N.D	89.8	92.2	131.4	188.1	139.5	111.2	560.4	121.5	186.9	204.7	107.7	261.9
Sum Dibenzothiophenes *		-	0	95	437.9	539.9	594.4	883.3	475.4	506.3	1634.2	492.6	686.4	792.3	510.9	848.5
Fluoranthene * / pyrene	2	202	0	90	2667.3	3941.1	3660.8	4032.9	1467.3	2050.7	3399.0	1853.4	2321.5	2806.0	2254.3	2083.3
C1 202 *		216	<1	N.D	1110.2	1764.5	1556.4	1764.2	795.8	939.8	1673.1	916.7	1092.8	1159.0	1117.3	1158.8
C2 202 *		230	<1	N.D	790.9	1272.0	875.0	1692.3	659.4	553.5	1062.3	742.8	889.1	874.8	869.7	871.7
C3 202 *		244	<1	N.D	493.3	669.9	821.7	641.5	362.4	511.7	913.0	383.4	480.8	614.1	463.6	502.8
Sum 202 *			0	90	5061.7	7647.6	6913.9	8130.9	3284.9	4055.7	7047.4	3896.4	4784.1	5453.9	4705.0	4616.7
Benzoanthracene / Chrysene	2	228	0	84	1206.8	2050.7	2412.6	1833.0	724.5	1019.1	1525.9	913.2	1066.8	1274.6	1105.1	1065.5
C1 228 *		242	<1	N.D	698.1	1060.4	1279.5	1010.3	518.0	622.1	1080.8	623.7	703.8	767.2	730.7	769.8
C2 228 *		256	<1	N.D	582.5	742.3	707.9	608.7	458.3	374.2	677.3	439.4	471.7	518.4	513.2	645.5
Sum 228 *			0	84	2487.4	3853.5	4400.0	3451.9	1700.8	2015.5	3284.0	1976.2	2242.4	2560.1	2348.9	2480.8
Benzofluoranthenes /					1070 7					1010.0		1005.0			10101	
benzopyrenes	4	252	0	87	1972.7	3080.7	3834.5	3010.4	1711.1	1816.9	2844.3	1635.6	2148.3	2026.4	1946.1	2003.7
C1 252 *		266	<1	N.D	825.7	1203.8	1602.1	1294.5	648.9	723.7	1314.3	758.0	871.4	693.6	873.3	730.5
C2 252 *		280	<1	N.D	485.2	676.9	832.4	779.3	353.7	358.2	861.7	395.1	545.2	487.1	462.8	429.3
Sum 252 *			0	87	3283.6	4961.4	6269.1	5084.2	2713.7	2898.8	5020.3	2788.6	3564.9	3207.2	3282.2	3163.5
Dibenzoanthracene / Indenopyrene																
/	3	276	0	57	730.1	1038.1	1356.5	1386.6	561.4	662.9	1155.9	687.4	819.1	753.0	773.9	623.6
Benzoperylene *																
C1 276 *		290	<1	N.D	155.3	266.2	303.3	255.8	141.8	201.7	391.1	180.3	300.1	213.5	162.3	169.2
C2 276 *		304	<1	N.D	67.1	100.7	88.2	93.2	51.6	82.2	79.3	70.7	77.7	55.8	56.3	56.1
Sum 276 *			0	57	952.5	1405.1	1747.9	1735.7	754.8	946.8	1626.3	938.5	1196.9	1022.2	992.4	848.9
Sum of all fractions *			0	86	17904.0	26576.7	27055.4	28396.3	13850.4	15137.8	27300.3	15894.8	19328.5	20821.1	18377.8	18164.2
Sum of NPD fraction *			0	95	6118.8	8709.1	7724.5	9993.6	5396.3	5221.0	10322.3	6295.1	7540.2	8577.6	7049.3	7054.3
NPD / 4-6 ring PAH ratio *	1 1		#DIV/0!	0.30	0.52	0.49	0.40	0.54	0.64	0.53	0.61	0.66	0.64	0.70	0.62	0.63

N.D = Not Determined as these compounds are not in the reference material spike. As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery. * Denotes not UKAS accredited

EPA 16 PAHs	Compounds mark	ed with a * ar	e reported no	t UKAS.											
	Sample ID : Station :							CL1782110 VC03 0.00-0.50							
PAH	Mass														
Naphthalene	128	<1	94.8	183.3	203.6	218.3	312.0	201.6	224.2	332.7	219.3	283.8	267.4	217.8	252.1
Acenaphthylene	152	<1	97.0	45.4	62.6	55.8	119.4	50.8	57.0	85.6	71.7	79.8	96.7	70.9	72.3
Acenaphthene	154	<1	99.0	131.2	268.2	168.7	261.7	64.4	85.0	154.5	102.9	121.9	141.6	128.4	104.3
Fluorene	166	<1	99.3	154.1	285.9	191.5	231.9	113.0	134.3	240.0	162.7	177.6	252.4	187.1	169.6
Phenanthrene	178	<1	98.1	845.3	1305.3	1117.5	1118.2	451.2	587.0	910.6	537.6	646.4	723.3	729.0	624.3
Dibenzothiophene *	184	<1	94.7	65.8	86.1	73.9	95.2	42.8	55.8	115.0	50.1	61.4	76.8	58.7	73.3
Anthracene	178	<1	90.8	317.6	446.5	399.3	495.4	188.0	260.5	492.1	218.0	290.4	393.9	274.0	305.4
Fluoranthene *	202	<1	83.7	1172.6	1882.5	1660.2	1749.6	628.9	894.1	1467.9	817.9	994.4	1274.4	1010.3	752.2
Pyrene	202	<1	96.0	1494.7	2058.6	2000.6	2283.3	838.4	1156.5	1931.1	1035.5	1327.1	1531.6	1244.1	1331.1
Benzo[a]anthracene	228	<1	82.0	668.3	1111.6	1336.5	1010.1	399.0	521.4	883.3	483.6	618.8	713.1	596.6	600.5
Chrysene	228	<1	86.9	538.5	939.1	1076.1	822.9	325.5	497.7	642.6	429.6	448.0	561.5	508.5	465.0
Benzo[b]fluoranthene	252	<1	94.2	450.6	841.4	918.9	747.9	617.3	560.5	755.8	402.9	691.9	481.1	529.9	462.1
Benzo[k]fluoranthene	252	<1	89.3	315.6	458.8	601.6	466.2	293.3	254.6	410.9	267.2	319.7	327.7	298.4	298.2
Benzo[e]pyrene	252	<1	83.3	530.3	771.9	1030.5	818.4	391.0	468.4	786.4	446.8	534.6	568.8	518.0	574.1
Benzo[a]pyrene	252	<1	80.0	676.2	1008.6	1283.6	977.9	409.5	533.5	891.2	518.6	602.2	648.8	599.8	669.3
Perylene *	252	<1	<1	180.6	268.1	376.3	336.2	195.3	251.3	322.4	195.3	289.1	273.3	222.9	277.6
Indeno[123,cd]pyrene	276	<1	57.1	308.2	428.3	582.0	482.5	234.4	277.3	481.2	291.4	351.2	365.3	324.0	261.2
Dibenzo[a,h]anthracene	278	<1	53.4	81.6	108.8	139.8	123.1	53.8	69.8	122.0	69.4	86.6	90.1	78.9	67.4
Benzo[ghi]perylene *	276	<1	61.8	340.2	501.0	634.8	780.9	273.2	315.8	552.7	326.7	381.4	297.5	371.0	295.1

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)	UKAS accredited
---	-----------------

Polyaromatic Hydrocarbon Concen	trations (ng/g dry weight	basis)	UKAS accredited	i?: Yes														
		Sample ID :	CL1782133b	CL1782134b	CL1782118	CL1782119	CL1782120	CL1782121	CL1782122	CL1782123	CL1782124	CL1782125	CL1782126	CL1782127	CL1782128	CL1782129	CL1782130	CL1782131	CL1782132
		Station :	QC Blank	e Material (% R	VC05 1.50-2.00	VC06 0.00-0.50	VC06 1.20-1.70	VC06 2.40-2.90	/C07B 0.00-0.50	/C07B 1.25-1.75	VC07B 2.00-2.55	VC09 0.65-1.15	VC10 0.00-0.50	VC10 1.25-1.75	VC10 2.00-2.50	VC11 0.00-0.50	VC11 1.50-2.00	VC11 2.50-3.00	CRM 1941b
PAH Fraction	# PAH	Mass																	
Naphthalene	1	128	<1	94.9	292.2	237.1	327.1	539.6	199.9	241.5	264.7	431.9	195.1	239.9	270.9	220.2	241.0	393.5	463.8
C1 Naphthalenes *	2	142	<1	96.4	813.7	669.6	923.5	1189.5	553.7	726.6	705.8	1040.3	582.0	684.4	754.2	667.1	590.1	779.5	309.3
C2 Naphthalenes *		156	<1	N.D	911.4	726.4	1070.7	1295.1	608.7	774.3	792.1	1246.4	630.2	660.5	784.7	704.8	643.8	984.5	210.9
C3 Naphthalenes *		170	<1	N.D	967.2	807.5	1400.3	1417.3	694.6	850.4	901.1	1639.6	684.0	767.2	900.8	750.3	690.6	1130.5	168.7
C4 Naphthalenes *		184	<1	N.D	632.9	501.9	670.3	984.5	399.0	523.2	416.6	1184.9	405.6	434.2	574.9	445.8	462.2	747.5	122.3
Sum Naphthalenes *			0	96	3617	2942	4392	5426	2456	3116	3080	5543	2497	2786	3286	2788	2628	4036	1275
Phenanthrene * / Anthracene	2	178	0.0	92.9	1071.5	883.6	1225.5	1747.6	563.3	684.1	1013.3	2353.8	550.5	866.1	1011.3	587.8	769.1	2857.4	423.4
C1 178 *		192	<1	N.D	896.9	780.8	1094.5	1464.5	544.7	654.4	863.3	1902.5	507.4	738.0	798.2	597.6	711.1	1824.2	231.7
C2 178 *		206	<1	N.D	857.2	716.6	985.2	1583.2	588.0	676.9	828.4	1831.8	478.0	663.7	957.6	629.1	779.6	1598.5	204.2
C3 178 *		220	<1	N.D	868.9	658.5	946.9	1114.7	472.8	422.4	531.6	1517.8	383.7	549.6	729.7	540.5	447.4	1404.2	157.6
Sum 178 *			0	93	3694.5	3039.5	4252.0	5909.9	2168.8	2437.8	3236.6	7605.9	1919.7	2817.5	3496.9	2354.9	2707.3	7684.3	1016.9
Dibenzothiophene *		184	<1	93	71.3	62.5	84.8	191.2	39.5	48.9	89.0	187.0	37.6	50.9	71.8	40.9	52.1	177.6	36.5
C1 Dibenzothiophenes *		198	<1	N.D	182.6	144.0	205.6	400.7	96.6	120.9	213.9	426.4	92.0	122.3	153.3	106.2	127.0	317.6	58.9
C2 Dibenzothiophenes *		212	<1	N.D	172.0	255.9	373.0	874.6	181.6	206.1	411.7	899.6	152.5	201.5	266.5	192.5	221.5	569.0	93.5
C3 Dibenzothiophenes *		226	<1	N.D	380.9	301.4	516.6	904.8	159.2	228.5	433.8	1105.1	182.6	203.0	324.6	185.3	235.8	635.9	50.3
Sum Dibenzothiophenes *			0	93	806.9	763.7	1179.9	2371.2	476.9	604.5	1148.4	2618.0	464.8	577.7	816.2	524.8	636.4	1700.1	239.2
Fluoranthene * / pyrene	2	202	0	89	2756.1	2200.3	2957.2	4399.6	1330.2	1583.5	2532.6	5869.0	1236.3	1996.1	2594.8	1404.9	1919.4	7302.3	852.5
C1 202 *		216	<1	N.D	1279.6	1118.9	1420.8	2301.6	674.7	833.9	1328.9	3153.0	646.7	963.1	1164.2	735.5	970.9	2737.2	246.6
C2 202 *		230	<1	N.D	1039.6	877.8	1201.1	1340.9	604.7	730.5	802.2	1694.4	556.3	803.2	898.1	687.6	840.0	2173.9	212.3
C3 202 *		244	<1	N.D	571.6	497.9	693.5	966.3	387.2	436.9	596.8	1126.6	318.8	476.1	517.7	501.2	478.2	1291.3	105.7
Sum 202 *			0	89	5646.9	4694.8	6272.7	9008.4	2996.8	3584.8	5260.5	11843.0	2758.0	4238.5	5174.7	3329.2	4208.5	13504.7	1417.1
Benzoanthracene / Chrysene	2	228	0	92	1194.8	1110.4	1266.2	2277.7	645.2	797.1	1275.4	2734.8	572.7	977.8	1205.3	702.3	949.0	3632.6	611.8
C1 228 *		242	<1	N.D	850.0	727.8	1112.6	1432.4	476.0	586.9	889.3	1960.3	431.4	677.0	826.9	560.7	737.5	2155.0	274.4
C2 228 *		256	<1	N.D	549.2	506.5	573.1	862.6	336.0	397.5	877.7	1153.8	400.8	684.9	514.1	457.2	562.1	1942.3	163.5
Sum 228 *			0	92	2594.0	2344.7	2951.9	4572.6	1457.1	1781.5	3042.5	5848.9	1404.9	2339.7	2546.2	1720.2	2248.5	7729.9	1049.8
Benzofluoranthenes / benzopyrenes	4	252	0	87	2440.5	2083.9	2563.6	4154.4	1372.6	1675.2	2260.8	5135.3	1168.5	1800.4	2408.3	1460.4	2000.2	6395.6	1294.6
C1 252 *		266	<1	N.D	993.5	919.9	1184.5	1883.9	582.8	774.1	1150.5	2590.6	571.6	863.5	1008.6	759.1	913.2	2634.2	417.3
C1 252 C2 252 *		280	<1	N.D	604.6	577.0	787.2	1248.4	396.9	468.1	653.5	1348.4	373.8	525.0	601.7	446.5	547.4	1387.6	199.7
Sum 252 *		200	0	87	4038.6	3580.7	4535.2	7286.7	2352.3	2917.4	4064.8	9074.3	2113.9	3188.9	4018.6	2666.0	3460.8	10417.4	1911.5
			-	÷.															
Dibenzoanthracene / Indenopyrene / Benzoperylene *	3	276	0	59	1201.2	1024.4	1352.7	2120.9	727.0	945.8	1269.8	2627.0	672.3	1052.0	1276.5	920.2	1161.3	3444.7	662.4
C1 276 *		290	<1	N.D	302.9	246.2	477.3	587.7	182.7	253.1	488.1	743.6	171.3	389.8	282.6	230.4	269.1	997.3	110.4
C2 276 *		304	<1	N.D	73.2	67.9	110.9	221.6	65.6	84.4	129.5	301.0	79.1	80.4	110.7	111.6	108.1	261.6	45.4
Sum 276 *		201	0	59	1577.3	1338.6	1940.9	2930.2	975.2	1283.3	1887.3	3671.6	922.7	1522.2	1669.8	1262.2	1538.6	4703.5	818.2
Sum of all fractions *	1		0	87	21975.6	18704.5	25524.7	37505.2	12883.0	15725.3	21720.3	46204.7	12080.8	17470.8	21008.0	14645.6	17427.7	49775.6	7727.6
Sum of NPD fraction *	1		0	94	8118.7	6745.7	9823.9	13707.2	5101.6	6158.4	7465.3	15767.0	4881.3	6181.4	7598.7	5668.0	5971.3	13420.0	2531.0
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.29	0.59	0.56	0.63	0.58	0.66	0.64	0.52	0.52	0.68	0.55	0.57	0.63	0.52	0.37	0.49
a b, romgrantado				0.20	5.55	0.00	0.00	0.00	0.00	0.04	0.02	0.02	0.00	0.00	0.01	0.00	0.02	0.01	0.40

N.D = Not Determined as these compounds are not in the reference material spike.

0.59 0.56 As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery. * Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis) UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CI 1782133b	CL1782134b	CI 1792119	CI 1782110	CI 1782120	CI 1782121	CL1782122	CI 1782123	CI 1782124	CI 1782125	CI 1792126	CI 1782127	CI 1792129	CI 1782120	CI 1782130	CI 1792131	CI 1782132
	Station :		-					VC07B 0.00-0.50										
2.44		QC Blank	je Material (% R	VC05 1.50-2.00	VC06 0.00-0.50	VC06 1.20-1.70	VC06 2.40-2.90	VC07B 0.00-0.50	VC07B 1.25-1.7	CU/B 2.00-2.0	/CU9 0.65-1.1	0.00-0.5	/0101.25-1.7	2.00-2.5	0.00-0.5	00111.50-2.0	00112.50-3.0	CRIM 1941D
PAH	Mass																	
Naphthalene	128	<1	94.9	292.2	237.1	327.1	539.6	199.9	241.5	264.7	431.9	195.1	239.9	270.9	220.2	241.0	393.5	463.8
Acenaphthylene	152	<1	97.0	59.0	62.0	73.2	106.5	35.1	54.8	73.3	152.6	36.1	45.1	56.8	39.8	50.5	109.4	56.7
Acenaphthene	154	<1	98.3	106.5	93.0	177.9	231.3	54.4	68.6	111.0	281.0	57.7	83.7	109.6	57.3	71.1	339.4	28.6
Fluorene	166	<1	98.5	178.2	147.2	242.8	401.2	101.9	137.0	204.1	468.3	109.8	135.9	188.4	112.9	128.0	428.2	49.1
Phenanthrene *	178	<1	95.7	720.7	616.8	850.4	1118.1	405.1	484.0	672.7	1560.5	394.2	624.6	689.0	419.5	541.0	1986.7	302.0
Dibenzothiophene *	184	<1	92.7	71.3	62.5	84.8	191.2	39.5	48.9	89.0	187.0	37.6	50.9	71.8	40.9	52.1	177.6	36.5
Anthracene *	178	<1	90.1	350.8	266.8	375.0	629.6	158.2	200.2	340.6	793.4	156.3	241.6	322.3	168.2	228.1	870.7	121.4
Fluoranthene *	202	<1	84.0	1297.2	1004.4	1341.4	2100.5	610.4	729.6	1121.2	2786.5	568.2	945.8	1231.4	646.0	887.8	3600.9	477.3
Pyrene	202	<1	94.8	1458.8	1195.9	1615.8	2299.1	719.7	853.9	1411.4	3082.5	668.0	1050.3	1363.4	758.9	1031.6	3701.4	375.2
Benzo[a]anthracene	228	<1	89.6	683.0	594.3	743.0	1311.3	369.8	443.8	693.8	1649.4	333.0	544.2	685.5	403.0	542.4	2060.6	255.9
Chrysene	228	<1	95.0	511.8	516.0	523.2	966.4	275.4	353.2	581.6	1085.4	239.7	433.6	519.8	299.3	406.6	1571.9	356.0
Benzo[b]fluoranthene	252	<1	88.8	743.6	624.6	698.7	1147.5	419.9	504.5	524.3	1364.7	312.4	448.5	703.3	375.5	567.4	1465.4	464.9
Benzo[k]fluoranthene	252	<1	92.8	344.0	291.6	360.2	592.4	197.5	234.4	339.5	715.9	169.5	265.8	334.0	220.3	280.4	969.6	213.8
Benzo[e]pyrene	252	<1	85.5	657.3	541.2	736.1	1116.5	368.6	459.1	658.4	1400.6	335.8	513.5	641.2	416.1	554.5	1739.4	359.3
Benzo[a]pyrene	252	<1	81.4	695.6	626.5	768.5	1298.1	386.6	477.2	738.6	1654.0	350.9	572.6	729.9	448.5	597.9	2221.3	256.7
Perylene *	252	<1	<1	306.0	212.4	338.8	414.1	151.6	254.0	314.0	567.9	148.8	232.8	312.2	185.8	296.0	672.9	279.0
Indeno[123,cd]pyrene	276	<1	59.0	502.2	435.9	564.8	910.7	310.2	399.9	542.2	1118.6	286.8	446.5	550.6	391.4	492.7	1525.9	337.4
Dibenzo[a,h]anthracene	278	<1	54.7	119.5	103.3	136.4	221.2	73.4	91.8	130.4	272.7	63.8	105.2	130.4	89.4	114.4	356.9	76.6
Benzo[ghi]perylene *	276	<1	63.8	579.4	485.3	651.5	989.0	343.3	454.1	597.2	1235.7	321.7	500.3	595.5	439.4	554.2	1562.0	248.4
	منام مطفوه مطغو																	

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

AREA RECOVERIES

-alkanes (ng/g)		UKAS acc	redited?: N	0	As the method	s the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recover									
	Sample ID :	CL1782133a	CL1782134a	CL1782133b	CL1782134b	CL1782106	CL1782107	CL1782108	CL1782109	CL1782110	CL1782111	CL1782112	CL1782113	CL178211	
	Station :	QC Blank	nce Material (% Re	QC Blank	ence Material (% Rec	VC01 0.00-0.50	VC01 0.50-1.00	VC02 0.00-0.65	VC02 0.65-1.30	VC03 0.00-0.50	VC03 1.50-2.00	VC03 2.50-3.00	VC04 0.00-0.50	VC04 1.00-1	
Alkane															
nC10		<1	101.0	<1	99.2	134.1	131.7	151.0	168.1	124.4	132.8	162.7	117.0	142.8	
nC11		<1	<0.08	<1	<0.08	156.4	157.5	144.0	47.4	132.6	148.4	16.1	124.0	161.6	
nC12		<1	107.5	<1	90.7	220.7	246.4	233.2	44.0	167.3	173.2	48.9	175.4	275.2	
nC13		<1	<0.08	<1	<0.08	155.8	196.6	205.0	104.0	165.3	199.6	79.7	207.3	241.0	
nC14		<1	96.9	<1	92.0	335.7	286.6	326.1	140.7	217.9	194.7	160.0	237.7	291.2	
nC15		<1	<0.08	<1	<0.08	518.3	606.1	518.5	493.5	327.8	283.5	443.9	383.6	492.	
nC16		<1	121.7	<1	107.8	417.5	473.8	417.0	285.0	280.6	253.8	292.1	324.6	413.	
nC17		<1	<0.08	<1	<0.08	423.9	353.6	452.4	408.1	603.6	379.5	466.5	545.6	553.	
pristane		<1	<0.08	<1	<0.08	760.2	1,072.3	932.0	1,111.0	654.6	579.7	1,088.1	704.0	977.	
nC18		<1	96.7	<1	102.8	281.4	244.7	349.7	326.9	185.0	185.5	406.6	242.4	362.	
phytane		<1	<0.08	<1	<0.08	1,260.6	2,137.2	1,754.6	1,729.0	434.0	537.0	1,432.8	835.0	949.	
nC19		<1	<0.08	<1	<0.08	341.7	365.4	398.0	496.6	300.8	249.7	469.9	333.2	365.	
nC20		<1	104.9	<1	108.3	488.8	720.0	778.1	887.4	460.2	349.0	786.5	456.6	776.	
nC21		<1	<0.08	<1	<0.08	766.4	483.6	834.6	3,301.0	562.6	536.4	2,835.4	462.0	617.	
nC22		<1	105.1	<1	113.1	602.0	690.4	770.4	654.3	565.4	751.4	633.0	605.6	741.	
nC23		<1	<0.08	<1	<0.08	530.5	275.0	448.9	789.9	469.2	455.0	796.2	380.9	465.	
nC24		<1	104.6	<1	111.8	352.9	288.7	278.9	546.5	339.8	343.9	560.0	282.4	318.	
nC25		<1	<0.08	<1	<0.08	805.1	849.2	881.9	661.1	310.4	387.6	719.4	357.5	545.	
nC26		<1	107.7	<1	109.3	501.3	404.8	590.5	950.7	588.9	682.4	1,000.0	2,638.8	589	
nC27		<1	<0.08	<1	<0.08	1,190.4	799.1	1,118.5	1,607.7	1,247.6	1,228.0	1,765.1	1,152.9	1,026	
nC28		<1	105.4	<1	104.4	479.9	358.1	399.2	644.0	499.5	440.1	892.9	374.7	592	
nC29		<1	<0.08	<1	<0.08	1,196.1	800.0	1,063.8	1,960.5	1,557.1	1,415.2	2,723.5	1,317.7	1,566	
nC30		<1	112.7	<1	97.7	546.2	403.6	549.9	916.7	594.1	630.5	1,021.2	517.4	725.	
nC31		<1	<0.08	<1	<0.08	1,818.0	1,111.5	1,996.8	2,695.0	2,226.4	2,105.2	4,002.5	1,953.2	2,942	
nC32		<1	106.5	<1	101.7	226.8	104.3	291.0	479.0	236.0	213.4	427.0	264.5	232.	
nC33		<1	<0.08	<1	<0.08	2,055.7	1,846.2	2,035.7	2,937.8	1,757.8	2,184.8	3,117.0	1,609.4	2,438	
nC34		<1	113.2	<1	118.8	89.6	547.6	290.7	347.4	132.1	316.6	227.0	84.1	754.	
nC35		<1	<0.08	<1	<0.08	77.1	72.1	317.6	500.8	293.9	221.1	774.8	400.3	239	
nC36		<1	117.7	<1	112.0	52.3	4.4	19.7	58.1	234.6	46.5	102.0	16.9	19.	
nC37		<1	<0.08	<1	<0.08	85.1	6.7	36.2	121.6	257.0	176.8	108.3	11.5	27.4	
Total Oil (ug/kg)		29.6	0.0	48.7	0.0	509,613.1	330,411.5	474,379.2	817,296.6	530,188.4	570,916.7	938,969.3	539,779.9	775,01	
Total n alkanes (ng/g)		0	1,502	0	1,470	14,850	12,828	15,897	22,574	14,838	14,684	25,038	15,577	17,9 ⁻	
Carbon Preference Inde		#DIV/0!	0.00	#DIV/0!	0.00	2.14	1.62	1.92	2.50	2.21	2.12	2.73	1.46	1.8	
Pristane		<1	<0.08	<1	<0.08	760	1072	932	1111	655	580	1088	704	978	
Phytane		<1	<0.08	<1	<0.08	1261	2137	1755	1729	434	537	1433	835	950	
Pristane / phytane ratio)					0.6	0.5	0.5	0.6	1.5	1.1	0.8	0.8	1.0	

Note: sample data are NOT blank corrected

AREA RECOVERIES

lkanes (ng/g)		UKAS acc	credited?: N																			
5	Sample ID :	CL1782133a	CL1782134a	CL1782133b	CL1782134b	CL1782115	CL1782116	CL1782117	CL1782118	CL1782119	CL1782120	CL1782121	CL1782122	CL1782124	CL1782123	CL1782125	CL1782126	CL1782127	CL1782128	CL1782129	CL1782130	CL178213
	Station :	QC Blank	nce Material (% Re	QC Blank	ence Material (% Red	VC04 2.15-2.65	VC05 0.00-0.50	VC05 1.00-1.50	VC05 1.50-2.00	VC06 0.00-0.50	VC06 1.20-1.70	VC06 2.40-2.90	VC07B 0.00+0.50	VC07B 1.25-1.75	VC07B 2.00-2.55	VC09 0.65-1.15	VC10 0.00-0.50	VC10 1.25-1.75	VC10 2.00-2.50	VC11 0.00-0.50	VC11 1.50-2.00	VC11 2.50-
Alkane																						
nC10		<1	101.0	<1	99.2	19.3	96.4	117.4	164.9	141.1	224.0	345.0	96.0	164.6	95.7	251.5	137.5	89.7	164.4	112.2	144.2	242.3
nC11		<1	<0.08	<1	<0.08	5.6	113.1	120.0	128.9	92.0	699.4	258.1	116.8	119.2	42.3	285.5	103.5	79.8	153.7	90.4	95.7	184.2
nC12		<1	107.5	<1	90.7	10.6	146.9	194.1	168.9	91.9	567.5	401.6	90.1	188.1	227.9	383.2	76.4	102.2	181.1	104.8	169.5	329.
nC13		<1	<0.08	<1	<0.08	34.4	148.5	183.2	162.5	92.1	524.1	391.4	140.6	208.6	80.4	308.2	147.0	152.2	188.5	161.8	127.1	401.
nC14		<1	96.9	<1	92.0	33.9	182.3	254.2	325.3	192.9	1,368.2	416.3	203.3	272.0	118.3	424.8	170.7	196.7	237.7	173.3	151.2	465.
nC15		<1	<0.08	<1	<0.08	64.9	340.2	463.8	516.1	398.5	1,476.8	746.0	321.5	603.1	442.5	844.6	331.4	352.7	505.4	297.0	330.7	1,066
nC16		<1	121.7	<1	107.8	44.6	266.0	386.3	280.8	349.7	1,638.2	695.1	242.7	503.8	230.2	781.5	252.1	269.0	292.8	258.4	233.9	903.
nC17		<1	<0.08	<1	<0.08	51.6	499.6	476.2	540.7	476.3	1,203.8	704.4	484.8	524.4	459.6	659.2	471.7	517.3	439.5	549.7	537.5	766.
pristane		<1	<0.08	<1	<0.08	263.0	590.9	767.1	1,132.3	698.1	2,897.9	1,999.1	527.8	1,088.7	539.2	1,997.1	564.7	761.7	833.4	638.7	694.7	1,563
nC18		<1	96.7	<1	102.8	71.5	213.0	221.3	333.4	238.2	1,280.3	608.2	501.1	376.2	499.0	661.9	206.7	262.1	372.6	281.5	263.0	624
phytane		<1	<0.08	<1	<0.08	348.5	712.7	659.7	814.3	708.0	1,000.9	1,412.0	559.9	876.7	162.3	1,738.8	576.3	855.6	997.8	569.4	648.7	2,69
nC19		<1	<0.08	<1	<0.08	77.4	302.4	306.0	397.3	335.6	1,045.3	717.2	264.0	444.3	342.9	702.9	276.6	363.4	429.7	350.2	402.1	793
nC20		<1	104.9	<1	108.3	122.7	540.1	536.2	764.4	360.8	1,104.4	1,331.8	410.1	641.5	415.0	1,396.5	386.5	545.8	655.4	503.8	564.6	1,32
nC21		<1	<0.08	<1	<0.08	115.1	307.4	511.5	769.7	490.0	1,173.6	1,056.7	385.6	648.3	499.6	1,005.8	368.5	533.1	577.8	497.7	484.4	602
nC22		<1	105.1	<1	113.1	92.5	502.4	738.2	911.6	468.4	917.0	1,533.1	391.6	716.2	480.0	1,474.5	365.8	662.2	691.3	426.0	608.1	1,17
nC23		<1	<0.08	<1	<0.08	98.2	404.4	461.4	846.9	571.6	761.8	889.7	495.2	738.6	593.7	931.4	478.9	691.9	678.3	639.9	732.9	719
nC24		<1	104.6	<1	111.8	61.2	286.5	368.2	648.2	362.5	586.6	732.5	341.5	557.2	391.1	699.4	301.3	403.0	606.6	484.0	499.1	601
nC25		<1	<0.08	<1	<0.08	89.0	502.1	325.6	803.4	640.4	557.5	1,511.5	305.6	801.5	682.5	1,745.4	320.6	413.0	566.8	345.7	571.5	1,62
nC26		<1	107.7	<1	109.3	87.0	400.4	656.1	875.2	615.0	1,428.7	1,375.2	549.8	1,140.0	655.3	1,025.9	475.6	711.6	877.2	687.7	836.4	1,14
nC27		<1	<0.08	<1	<0.08	174.1	1,027.7	1,673.5	2,192.5	1,195.0	1,985.0	2,974.3	1,435.2	2,067.6	1,629.9	2,807.6	1,211.4	2,034.8	1,812.1	1,594.3	1,810.1	2,08
nC28		<1	105.4	<1	104.4	87.8	490.4	746.3	1,014.2	607.0	831.9	1,517.3	632.6	928.8	704.7	1,251.2	505.0	644.5	937.1	624.1	823.8	977
nC29		<1	<0.08	<1	<0.08	348.2	1,335.2	1,670.6	3,613.6	2,271.6	2,887.0	4,531.9	2,093.5	3,441.2	2,586.2	3,888.3	2,125.3	3,022.9	2,791.8	2,926.9	3,261.5	2,65
nC30		<1	112.7	<1	97.7	137.1	489.2	770.1	1,149.9	835.8	1,162.1	1,489.5	695.8	1,159.8	795.8	1,561.3	645.5	913.2	1,112.2	859.4	1,082.3	1,15
nC31		<1	<0.08	<1	<0.08	547.8	1,974.5	2,962.2	6,433.2	4,324.9	5,415.2	14,159.3	3,521.8	7,454.9	4,887.0	9,651.4	3,759.0	4,661.3	5,188.6	5,027.4	5,994.2	5,90
nC32		<1	106.5	<1	101.7	64.0	253.7	196.8	535.6	382.4	473.9	744.6	314.1	575.4	482.1	999.3	371.4	423.0	551.7	488.4	677.1	367
nC33		<1	<0.08	<1	<0.08	316.5	1,858.2	1,700.6	5,207.9	3,367.5	4,695.5	10,318.3	2,696.5	6,034.9	3,649.3	6,850.5	2,541.1	4,227.0	4,135.1	3,179.8	4,297.1	4,96
nC34		<1	113.2	<1	118.8	32.3	77.5	371.4	453.2	217.6	389.0	1,382.4	551.2	718.6	234.3	1,433.2	324.0	488.6	658.1	376.4	370.8	706
nC35		<1	<0.08	<1	<0.08	45.6	143.6	446.2	609.7	234.2	911.5	842.3	387.4	283.4	1,037.5	772.0	138.8	444.8	381.2	390.7	153.9	173
nC36		<1	117.7	<1	112.0	11.8	1.2	36.4	76.4	50.8	175.6	35.4	96.2	84.9	160.0	46.3	49.3	57.7	35.2	72.1	32.6	7.
nC37		<1	<0.08	<1	<0.08	16.5	6.9	9.3	238.8	35.4	155.9	32.5	274.2	165.3	165.2	51.7	256.8	184.1	112.1	288.4	85.1	14
Total Oil (ug/kg)		29.6	0.0	48.7	0.0	162,807.2	574,357.7	659,344.0	1,074,000.0	671,507.5	2,854,456.1	1,323,284.5	544,209.8	589,673.1	835,987.2	2,510,083.8	508,313.7	598,053.7	796,128.9	658,331.3	719,592.5	1,927
Fotal n alkanes (ng/g)		0	1,502	0	1,470	2,862	12,910	16,903	30,163	19,439	35,640	51,742	18,039	31,562	22,588	42,895	16,799	23,448	25,334	21,792	25,340	31,
arbon Preference Index		#DIV/0!	0.00	#DIV/0!	0.00	2.27	2.27	2.02	2.92	2.96	1.93	3.10	2.53	2.93	3.11	2.46	2.94	3.06	2.44	3.00	2.92	2.
Pristane		<1	<0.08	<1	<0.08	263	591	767	1132	698	2898	1999	528	1089	539	1997	565	762	833	639	695	15
Phytane		<1	<0.08	<1	<0.08	349	713	660	814	708	1001	1412	560	877	162	1739	576	856	998	569	649	26
ristane / phytane ratio			1		1	0.8	0.8	1.2	1.4	1.0	2.9	1.4	0.9	1.2	3.3	1.1	1.0	0.9	0.8	1.1	1.1	0.

Note: sample data are NOT blank corrected

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

		Sample ID :	CL1782652	CL1782653	CL1782646	CL1782647	CL1782648	CL1782649	CL1782650	CL1782651
		Station :	QC Blank	ce Material (% R	VC08 0.00-0.50	VC08 1.45-1.95	VC08 2.40-2.90	VC09 0.00-0.50	VC09 1.30-1.80	CRM 1941b
PAH Fraction	# PAH	Mass								
Naphthalene	1	128	<1	106.2	350.0	439.0	754.0	343.7	453.7	463.8
C1 Naphthalenes *	2	142	<1	114.9	903.3	1184.0	1750.9	818.4	1150.6	309.3
C2 Naphthalenes *		156	<1	N.D	1057.5	1274.6	2178.1	998.3	1241.1	210.9
C3 Naphthalenes *		170	<1	N.D	1187.2	1434.3	2303.6	1230.1	1197.6	168.7
C4 Naphthalenes *		184	<1	N.D	730.6	991.9	1607.2	884.8	1071.5	122.3
Sum Naphthalenes *			0	111	4229	5324	8594	4275	5114	1275
Phenanthrene * / Anthracene *	2	178	0.0	92.3	1336.0	1609.2	3730.7	1959.7	1888.8	423.4
C1 178 *		192	<1	N.D	1118.5	1445.5	3269.2	1554.5	1627.8	231.7
C2 178 *		206	<1	N.D	1120.4	1412.2	3396.8	1463.2	1584.7	204.2
C3 178 *		220	<1	N.D	1171.6	1429.3	1895.1	1129.8	1684.1	157.6
Sum 178 *			0	92	4746.4	5896.2	12291.9	6107.3	6785.4	1016.9
Dibenzothiophene *		184	<1	91	136.5	152.5	599.1	141.8	162.7	36.5
C1 Dibenzothiophenes *		198	<1	N.D	365.4	400.0	1274.6	292.7	393.6	58.9
C2 Dibenzothiophenes *		212	<1	N.D	985.0	1158.5	2408.3	602.5	933.4	93.5
C3 Dibenzothiophenes *		226	<1	N.D	1215.1	1453.0	1682.1	681.8	1169.3	50.3
Sum Dibenzothiophenes *			0	91	2701.9	3164.0	5964.1	1718.8	2658.9	239.2
Fluoranthene * / pyrene *	2	202	0	83	3118.7	3638.2	9861.3	5485.5	4662.4	852.5
C1 202 *		216	<1	N.D	1649.8	1837.2	5769.5	2780.4	2479.8	246.6
C2 202 *		230	<1	N.D	1271.7	1534.5	3908.6	2020.9	1869.1	212.3
C3 202 *		244	<1	N.D	787.6	1041.8	1831.0	1108.2	1231.9	105.7
Sum 202 *			0	83	6827.8	8051.7	21370.4	11395.0	10243.2	1417.1
Benzoanthracene / Chrysene	2	228	0	90	1428.2	1750.2	4924.9	2424.1	2213.7	611.8
C1 228 *		242	<1	N.D	1038.4	1107.1	3146.0	1760.2	1434.7	274.4
C2 228 *		256	<1	N.D	1052.0	882.5	2798.5	1445.8	1420.0	163.5
Sum 228 *			0	90	3518.6	3739.8	10869.5	5630.1	5068.4	1049.8
Benzofluoranthenes /	4	252	0	107	2468.5	3163.4	7747.1	4361.0	4095.1	1294.6
benzopyrenes C1 252 *		266	<1	N.D	1265.7	1436.3	3803.6	2212.7	1878.1	417.3
C2 252 *		280	<1	N.D	706.3	824.3	2013.6	1140.1	1238.4	199.7
Sum 252 *		200	0	107	4440.4	5424.0	13564.2	7713.7	7211.6	199.7
Sum 252			0	107	4440.4	3424.0	13304.2	1113.1	7211.0	1911.5
Dibenzoanthracene / Indenopyrene / Benzoperylene	3	276	0	88	1412.5	1704.9	4099.7	2421.8	2265.9	662.4
C1 276 *		290	<1	N.D	417.4	442.5	1102.5	646.7	609.3	110.4
C2 276 *		304	<1	N.D	114.1	148.8	450.1	180.5	193.6	45.4
Sum 276 *			0	88	1943.9	2296.2	5652.2	3249.0	3068.8	818.2
Sum of all fractions *			0	95	28407.6	33895.7	78306.2	40089.2	40150.7	7727.6
Sum of NPD fraction *			0	98	11676.9	14384.0	26849.9	12101.4	14558.8	2531.0
NPD / 4-6 ring PAH ratio *			#DIV/0!	0.27	0.70	0.74	0.52	0.43	0.57	0.49

N.D = Not Determined as these compounds are not in the reference material spike. As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

* Denotes not UKAS accredited

Polyaromatic Hydrocarbon Concentrations (ng/g dry weight basis)

UKAS accredited?: Yes

EPA 16 PAHs

Compounds marked with a * are reported not UKAS.

	Sample ID :	CL1782652	CL1782653	CL1782646	CL1782647	CL1782648	CL1782649	CL1782650	CL1782651
	Station :	QC Blank	ce Material (% R	VC08 0.00-0.50	VC08 1.45-1.95	VC08 2.40-2.90	VC09 0.00-0.50	VC09 1.30-1.80	CRM 1941b
PAH	Mass								
Naphthalene	128	<1	106.2	350.0	439.0	754.0	343.7	453.7	463.8
Acenaphthylene	152	<1	117.9	78.2	92.6	283.9	140.3	114.4	56.7
Acenaphthene	154	<1	117.5	152.8	168.8	390.3	228.6	200.8	28.6
Fluorene *	166	<1	125.5	246.3	277.2	827.6	340.2	335.3	49.1
Phenanthrene *	178	<1	94.8	858.4	1047.3	2235.8	1289.2	1236.9	302.0
Dibenzothiophene *	184	<1	91.2	136.5	152.5	599.1	141.8	162.7	36.5
Anthracene *	178	<1	89.7	477.5	561.9	1494.9	670.5	652.0	121.4
Fluoranthene *	202	<1	78.5	1426.6	1653.5	4528.0	2523.2	2172.1	477.3
Pyrene *	202	<1	88.2	1692.2	1984.7	5333.3	2962.3	2490.3	375.2
Benzo[a]anthracene	228	<1	88.5	840.0	1013.9	2912.6	1414.5	1257.9	255.9
Chrysene	228	<1	92.1	588.2	736.4	2012.3	1009.6	955.7	356.0
Benzo[b]fluoranthene	252	<1	84.6	606.1	890.8	1683.8	936.7	1187.8	464.9
Benzo[k]fluoranthene	252	<1	111.2	369.4	440.2	1132.2	645.0	557.8	213.8
Benzo[e]pyrene	252	<1	116.2	699.8	882.9	2248.0	1277.0	1133.5	359.3
Benzo[a]pyrene	252	<1	114.1	793.2	949.5	2683.1	1502.2	1216.0	256.7
Perylene *	252	<1	<1	286.5	337.5	808.7	476.9	497.7	279.0
Indeno[123,cd]pyrene	276	<1	89.1	583.5	704.1	1762.0	1021.5	938.3	337.4
Dibenzo[a,h]anthracene	278	<1	83.0	145.9	177.1	413.9	249.9	243.1	76.6
Benzo[ghi]perylene	276	<1	90.7	683.0	823.7	1923.8	1150.4	1084.6	248.4

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

AREA RECOVERIES

n-alkanes (ng/g)		UKAS acc	redited?: N	0	As the method	uses surrogate	standards to c	correct for loss
	Sample ID :	CL1782652	CL1782653	CL1782646	CL1782647	CL1782648	CL1782649	CL1782650
	Station :	QC Blank	nce Material (% Re	VC08 0.00-0.50	VC08 1.45-1.95	VC08 2.40-2.90	VC09 0.00-0.50	VC09 1.30-1.80
Alkane								
nC10		<1	88.3	302.6	291.3	393.0	163.1	229.8
nC11		<1	<0.08	30.5	219.4	350.6	152.9	117.1
nC12		<1	89.4	107.0	226.5	730.7	96.6	84.0
nC13		<1	<0.08	264.8	356.2	620.1	295.0	301.9
nC14		<1	78.8	193.5	275.1	611.9	291.8	214.7
nC15		<1	<0.08	545.7	634.3	1,365.1	778.1	681.2
nC16		<1	121.0	451.0	585.5	1,203.8	585.2	793.3
nC17		<1	<0.08	496.6	761.8	918.2	629.5	766.5
pristane		<1	<0.08	1,795.1	2,792.8	2,555.6	1,593.2	2,355.7
nC18		<1	88.9	496.3	719.5	653.2	476.8	713.9
phytane		<1	<0.08	658.3	1,220.0	2,522.0	1,660.5	892.3
nC19		<1	<0.08	551.0	853.0	1,148.8	615.1	731.3
nC20		<1	110.8	784.5	1,123.2	2,125.8	1,097.3	1,370.2
nC21		<1	<0.08	865.3	1,067.4	1,442.3	750.3	1,182.4
nC22		<1	101.2	860.7	1,725.1	1,971.9	782.7	1,225.5
nC23		<1	<0.08	1,056.7	1,073.0	1,179.5	867.3	1,284.3
nC24		<1	110.2	818.5	871.5	782.2	637.2	747.1
nC25		<1	<0.08	614.2	695.1	2,795.0	1,340.8	808.2
nC26		<1	100.3	1,142.8	1,706.6	1,891.5	1,455.9	1,197.3
nC27		<1	<0.08	1,920.3	2,763.0	4,077.5	1,795.5	2,526.9
nC28		<1	106.6	1,095.9	1,494.9	2,005.8	910.0	1,301.2
nC29		<1	<0.08	4,012.7	5,018.0	8,024.1	4,008.5	5,033.1
nC30		<1	106.0	1,325.8	1,851.0	2,148.6	1,472.9	1,759.3
nC31		<1	<0.08	8,375.4	10,537.1	25,116.1	9,224.7	10,437.8
nC32		<1	110.4	680.3	932.3	1,122.7	590.6	973.2
nC33		<1	<0.08	5,939.9	7,424.4	16,591.0	7,430.8	7,147.2
nC34		<1	123.9	222.1	610.7	661.0	423.6	423.9
nC35		<1	<0.08	148.0	402.3	3,137.8	662.6	272.2
nC36		<1	107.3	246.3	291.1	317.1	145.0	214.9
nC37		<1	<0.08	97.2	236.6	298.3	202.6	75.1
Total Oil (ug/kg)		54.2	0.0	1,309,331.8	178,696.2	1,663,373.9	1,228,836.7	1,634,056.0
Total n alkanes (ng/g)		0	1,443	33,646	44,746	83,684	37,882	42,614
Carbon Preference Index		#DIV/0!	0.00	2.86	2.52	4.04	3.15	2.79
Pristane		<1	<0.08	1795	2793	2556	1593	2356
Phytane		<1	<0.08	658	1220	2522	1661	892
Pristane / phytane ratio				2.7	2.3	1.0	1.0	2.6

Note: sample data are NOT blank corrected

OceanEcology

DATA SUBMISSION REPORT

FROM:	Gary Robinson
EMAIL:	Gary.robinson@ocean-ecology.com
TO:	Stacey Tonkin <u>(stacey.tonkin@ocean-ecology.com)</u> Sample Submission (<u>subcon@esg.co.uk)</u> David Ratcliffe <u>(David.Ratcliffe@esg.co.uk)</u> Ross Griffin (<u>Ross.griffin@ocean-ecology.com</u>)

PROJECT NO:	ESG051117
CLIENT:	ESG
DATA:	Particle Size Analysis
DATA REFERENCE:	S180284
SAMPLE NUMBER:	31
LEAD ANALYST:	Stacey Tonkin
QUALITY CONTROL:	Gary Robinson
LOGIN DATE:	13/11/17

LOGIN DATE:	13/11/17
COMPLETION DATE:	22/11/17
QC DATE:	23/11/17
SUBMISSION DATE:	23/11/17

COVER NOTES

Sample S1782107 completed by a combination of dry sieve and laser diffraction due to mixed nature of sediments, in line with NMBAQC guidance. Subsample taken for laser analysis. All remaining samples completed by laser diffraction only due to sediment being <1mm, in line with NMBAQC guidance. No subsample needed to be taken for laser analysis due to small sample size. Samples were determined to be either Mud (M) or Sandy Mud (sM).

No TOC analysis was undertaken on these samples by request of the client.

- OceanEcology
 River Office, Severnside Park, Epney, Gloucester, GL2 7LN
- Tel: +44(0)1452 740697 Mob: +44(0)7969559716
- E-mail: info@ocean-ecology.com Website www.ocean-ecology.com
- Company Registration Number: 08961638 VAT Registration Number: 178 3220 05

Sample Proc	cessing							
Sample ID	Client sample des	cription	Storage	Visual Sediment Description	Wet Split (Y/N)	Dry Sieve (Y/N)	Laser Analysis	Analyst(s)
S1782106	VC01 0.00-0.50	ID991	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782107	VC01 0.50-1.00	ID992	Foil Tray / Nalgene / PSA Bag	Sandy Mud (shell and organic detritus)	Y	Y	Y	ST
S1782108	VC02 0.00-0.65	ID993	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782109	VC02 0.65-1.30	ID994	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782110	VC03 0.00-0.50	ID995	Nalgene	Mud	Ν	Ν	Y	ST
S1782111	VC03 1.50-2.00	ID996	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782112	VC03 2.50-3.00	ID997	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782113	VC04 0.00-0.50	ID998	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782114	VC04 1.00-1.50	ID999	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782115	VC04 2.15-2.65	IE001	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782116	VC05 0.00-0.50	IE002	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782117	VC05 1.00-1.50	IE003	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782118	VC05 1.50-2.00	IE004	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782119	VC06 0.00-0.50	IE005	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782120	VC06 1.20-1.70	IE006	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782121	VC06 2.40-2.90	IE007	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782122	VC07B 0.00-0.50	IE008	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782123	VC07B 1.25-1.75	IE009	Nalgene	Mud	Ν	Ν	Y	ST
S1782124	VC07B 2.00-2.55	IE010	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782125	VC09 0.65-1.15	IE012	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782126	VC10 0.00-0.50	IE014	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782127	VC10 1.25-1.75	IE015	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782128	VC10 2.00-2.50	IE016	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782129	VC11 0.00-0.50	IE017	Nalgene	Mud	Ν	Ν	Y	ST
S1782130	VC11 1.50-2.00	IE018	Nalgene	Sandy Mud	Ν	Ν	Y	ST
S1782131	VC11 2.50-3.00	IE019	Nalgene	Sandy Mud	Ν	Ν	Y	ST

Samp	le Tracking										
Sa	ample ID	S1782106	S1782107	S1782108	S1782109	S1782110	S1782111	S1782112	S1782113	S1782114	S1782115
Sample Log In	Sample Wet Weight (g)	139.22	108.69	164.68	126.77	148.41	145.29	148.64	145.54	140.93	137.84
nple	Initials	ST/SE									
Sar	Date	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17
	<1mm Dry weight (g)	-	56.37	-	-	-	-	-	-	-	-
	Pan weight (g)	-	0.10	-	-	-	=	-	-	-	-
Dry Sieving	>1mm Dry Weight (g)	-	0.46	-	-	-	-	-	-	-	-
Dry S	Sample Total Dry Weight (g)	-	56.93	-	-	-	-	-	-	-	-
	Initials	-	ST/SE	-	-	-	-	-	-	-	-
	Date	-	20/11/17	-	-	-	-	-	-	-	-
ion	Subsample Wet Weight (g)	-	49.10	-	-	-	-	-	-	-	-
fract	Date	-	14/11/17	-	-	-	-	-	-	-	-
Laser Diffraction	Initials	-	ST	-	-	-	-	-	-	-	-
La	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initial	ST									
	Start weight (g)	-	-	-	-	-	-	-	-	-	-
I / TOC	Final weight (g)	-	-	-	-	-	-	-	-	-	-
LOI	Initials	-	-	-	-	-	-	-	-	-	-
	Date	-	-	-	-	-	-	-	-	-	-
ta qe	Initials	ST									
Data Merge	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initials	GR									
OC	Date	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17

Samp	le Tracking										
Sa	ample ID	S1782116	S1782117	S1782118	S1782119	S1782120	S1782121	S1782122	S1782123	S1782124	S1782125
Sample Log In	Sample Wet Weight (g)	114.21	147.70	152.26	127.30	125.57	152.84	152.01	158.06	141.04	170.04
nple	Initials	ST/SE									
Sar	Date	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17
	<1mm Dry weight (g)	-	-	-	-	-	-	-	-	-	-
	Pan weight (g)	-	-	-	-	-	-	-	-	-	-
eving	>1mm Dry Weight (g)	-	-	-	-	-	-	-	-	-	-
Dry Sieving	Sample Total Dry Weight (g)	-	-	-	-	-	-	-	-	-	-
	Initials	-	-	-	-	-	-	-	-	-	-
	Date	-	-	-	-	-	-	-	-	-	-
tion	Subsample Wet Weight (g)	-	-	-	-	-	-	-	-	-	-
ifract	Date	-	-	-	-	-	-	-	-	-	-
Laser Diffraction	Initials	-	-	-	-	-	-	-	-	-	-
La	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initial	ST									
	Start weight (g)	-	-	-	-	-	-	-	-	-	-
I / TOC	Final weight (g)	-	-	-	-	-	-	-	-	-	-
/ IOI /	Initials	-	-	-	-	-	-	-	-	-	-
	Date	-	-	-	-	-	-	-	-	-	-
Data Merge	Initials	ST									
Da Mer	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initials	GR									
OC	Date	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17

Sample	Tracking						
	Sample ID	S1782126	S1782127	S1782128	S1782129	S1782130	S1782131
Sample Log In	Sample Wet Weight (g)	144.62	126.84	146.14	142.81	149.50	171.75
ple L	Initials	ST/SE	ST/SE	ST/SE	ST/SE	ST/SE	ST/SE
Sam	Date	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17	14/11/17
	<1mm Dry weight (g)	-	-	-	-	-	-
	Pan weight (g)	-	-	-	-	-	-
eving	>1mm Dry Weight (g)	-	-	-	-	-	-
Dry Sieving	Sample Total Dry Weight (g)	-	-	-	-	-	-
	Initials	-	-	-	-	-	-
	Date	-	-	-	-	-	-
lon	Subsample Wet Weight (g)	-	-	-	-	-	-
ffract	Date	-	-	-	-	-	-
Laser Diffraction	Initials	-	-	-	-	-	-
Las	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initial	ST	ST	ST	ST	ST	ST
	Start weight (g)	-	-	-	-	-	-
LOI / TOC	Final weight (g)	-	-	-	-	-	-
LOI	Initials	-	-	-	-	-	-
	Date	-	-	-	-	-	-
ta ge	Initials	ST	ST	ST	ST	ST	ST
Data Merge	Date	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17	22/11/17
	Initials	GR	GR	GR	GR	GR	GR
QC	Date	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17

Methods followed the NMBAQC PSA SOP for supporting biological data:

Mason, C. 2016. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 77pp, First published 2011, updated January 2016.

Dry Sieve Equipment	
Sieve Shaker	Retsch AS200 Sieve Shaker
Sieves	Retsch Test Sieves ISO 3310-1
Sieve Series	Wentworth half-phi
Drying Oven	Memmert / Gallenkamp
Weighing Scales	Ohaus PA2202 (Max' Capacity 2200g and Readability 0.01g)

Laser Equipment	
Laser model/manufacturer	Malvern Mastersizer Hydro 3000 MU
Optical model (Refractive index, Absorption index; Fraunhofer)	Blue Light
Obscuration (%)	10-15%
Pump speed (%, rpm, unit of speed)	
Stirrer speed (%, rpm, unit of speed)	2550rpm
Ultrasonic duration (seconds)	Continuous
Ultrasonic level (eg %, unit as described by instrument manual)	100%
Background duration (seconds)	10
Measurement duration (seconds)	10
Number of runs	1 x 5

DATA SUBMISSION REPORT

FROM:	Gary Robinson
EMAIL:	Gary.robinson@ocean-ecology.com
TO:	Stacey Tonkin <u>(stacey.tonkin@ocean-ecology.com)</u> Sample Submission (<u>subcon@esg.co.uk)</u> David Ratcliffe <u>(David.Ratcliffe@esg.co.uk)</u> Ross Griffin (<u>Ross.griffin@ocean-ecology.com</u>)

PROJECT NO:	ESG051117
CLIENT:	ESG
DATA:	Particle Size Analysis
DATA REFERENCE:	S180403
SAMPLE NUMBER:	5
LEAD ANALYST:	Stacey Tonkin
QUALITY CONTROL:	Gary Robinson

LOGIN DATE:	13/11/17
COMPLETION DATE:	22/11/17
QC DATE:	23/11/17
SUBMISSION DATE:	23/11/17

COVER NOTES

All samples completed by laser diffraction only due to sediment being <1mm in line with NMBAQC guidance. No subsample needed to be taken for laser analysis due to small sample size. Samples were determined to be either Mud (M) or Sandy Mud (sM).

No TOC analysis was undertaken on these samples by request of the client.

- OceanEcology
 River Office, Severnside Park, Epney, Gloucester, GL2 7LN
- Tel: +44(0)1452 740697 Mob: +44(0)7969559716
- E-mail: info@ocean-ecology.com Website www.ocean-ecology.com
- Company Registration Number: 08961638 VAT Registration Number: 178 3220 05

Sample Proc	cessing							
Sample ID	Client Sample De	scription	Storage	Visual Sediment Description	Wet Split (Y/N)	Dry Sieve (Y/N)	Laser Analysis	Analyst(s)
S1782646	VC08 0.00-0.50	IE086	Nalgene	Mud	Ν	Ν	Y	ST
S1782647	VC08 1.45-1.95	IE087	Nalgene	Mud	Ν	Ν	Y	ST
S1782648	VC08 2.40-2.90	IE088	Nalgene	Mud	Ν	Ν	Y	ST
S1782649	VC09 0.00-0.50	IE011	Nalgene	Mud	Ν	Ν	Y	ST
S1782650	VC09 1.30-1.80	IE013	Nalgene	Mud	Ν	Ν	Y	ST

Sample	Tracking					
	Sample ID	S1782646	S1782647	S1782648	S1782649	S1782650
Sample Log In	Sample Wet Weight (g)	142.97	113.86	114.31	151.39	154.71
ple L	Initials	ST	ST	ST	ST	ST
Sam	Date	13/11/2017	13/11/2017	13/11/2017	13/11/2017	13/11/2017
	<1mm Dry weight (g)	-	-	-	-	-
	Pan weight (g)	-	-	-	-	-
Dry Sieving	>1mm Dry Weight (g)	-	-	-	-	-
Dry S	Sample Total Dry Weight (g)	-	-	-	-	-
	Initials	-	-	-	-	-
	Date	-	-	-	-	-
Laser Diffraction	Initials	ST	ST	ST	ST	ST
Ō	Date	21/11/2017	21/11/2017	21/11/2017	21/11/2017	21/11/2017
	Start weight (g)	-	-	-	-	-
TOC	Final weight (g)	-	-	-	-	-
LOI / TOC	Initials	-	-	-	-	-
	Date	-	-	-	-	-
Data Merge	Initials	ST	ST	ST	ST	ST
Da	Date	22/11/2017	22/11/2017	22/11/2017	22/11/2017	22/11/2017
QC	Initials	GR	GR	GR	GR	GR
ð	Date	23/11/17	23/11/17	23/11/17	23/11/17	23/11/17

Summary of Methods

Methods followed the NMBAQC PSA SOP for supporting biological data:

Mason, C. 2016. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 77pp, First published 2011, updated January 2016.

Dry Sieve Equipment	
Sieve Shaker	Retsch AS200 Sieve Shaker
Sieves	Retsch Test Sieves ISO 3310-1
Sieve Series	Wentworth half-phi
Drying Oven	Memmert / Gallenkamp
Weighing Scales	Ohaus PA2202 (Max' Capacity 2200g and Readability 0.01g)

Laser Equipment	
Laser model/manufacturer	Malvern Mastersizer Hydro 3000 MU
Optical model (Refractive index, Absorption index; Fraunhofer)	Blue Light
Obscuration (%)	10-15%
Pump speed (%, rpm, unit of speed)	
Stirrer speed (%, rpm, unit of speed)	2550rpm
Ultrasonic duration (seconds)	Continuous
Ultrasonic level (eg %, unit as described by instrument manual)	100%
Background duration (seconds)	10
Measurement duration (seconds)	10
Number of runs	1 x 5

Sample Analysis

Socotec Environmental Chemistry

S180284

Analytical and Deviating Sample Overview

CustomerEnviroCentreSiteGranton Harbour 769967jReport NoS180284

Consignment No S70221 Date Logged 02-Nov-2017

In-House Report Due 22-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	CustServ	ICPMSS										OGSNSED	PAHSED	PCBMS3Q	Sub061	TPHSED	
ID Number	Description	Sampled	Report C	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Cobalt (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Tributyl Tin (Sediments)	PAH by MS Dti	PCB- 7 Congeners (Marine Sediments)	^Particle Size Analysis (Sediment)	TPH GCFID (Si)+Sats	
01 /4700400	V/C04 0 00 0 50	04/40/47																	
CL/1782106	VC01 0.00-0.50	31/10/17																	
CL/1782107 CL/1782108	VC01 0.50-1.00 VC02 0.00-0.65	31/10/17 31/10/17																	
CL/1782108 CL/1782109	VC02 0.00-0.85	31/10/17																	
CL/1782109	VC02 0.00-0.50	31/10/17																	
CL/1782111	VC03 1.50-2.00	31/10/17																	
CL/1782112	VC03 2.50-3.00	31/10/17																	
CL/1782113	VC04 0.00-0.50	31/10/17																	
CL/1782114	VC04 1.00-1.50	31/10/17																	
CL/1782115	VC04 2.15-2.65	31/10/17																	
CL/1782116	VC05 0.00-0.50	31/10/17																	
CL/1782117	VC05 1.00-1.50	31/10/17																	1
CL/1782118	VC05 1.50-2.00	31/10/17																	1
CL/1782119	VC06 0.00-0.50	30/10/17																	
CL/1782120	VC06 1.20-1.70	30/10/17																	

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming deviant	A The sample was received in an inappropriate container for this analysis
whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will not	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
be ISO 17025 accredited. Please contact us as soon as possible to provide	E Sample processing did not commence within the appropriate holding time
missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

Sample Analysis

Socotec Environmental Chemistry

S180284

Analytical and Deviating Sample Overview

CustomerEnviroCentreSiteGranton Harbour 769967jReport NoS180284

Consignment No S70221 Date Logged 02-Nov-2017

In-House Report Due 22-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	CustServ	ICPMSS										OGSNSED	PAHSED	PCBMS3Q	Sub061	TPHSED
ID Number	Description	Sampled	Report C	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Cobalt (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Tributyl Tin (Sediments)	PAH by MS Dti	PCB- 7 Congeners (Marine Sediments)	^Particle Size Analysis (Sediment)	TPH GCFID (Si)+Sats
CL/1782121	VC06 2.40-2.90	30/10/17																
CL/1782122	VC07B 0.00-0.50	31/10/17																
CL/1782123	VC07B 1.25-1.75	31/10/17																
CL/1782124	VC07B 2.00-2.55	31/10/17																
CL/1782125	VC09 0.65-1.15	30/10/17																
CL/1782126	VC10 0.00-0.50	31/10/17																
CL/1782127	VC10 1.25-1.75	31/10/17																
CL/1782128	VC10 2.00-2.50	31/10/17																
CL/1782129	VC11 0.00-0.50	31/10/17																
CL/1782130	VC11 1.50-2.00	31/10/17																
CL/1782131	VC11 2.50-3.00	31/10/17																
CL/1782132	CRM	31/10/17																
CL/1782133	QC Blank																	
CL/1782134	Reference Material (% Recovery	<i>'</i>)																

Note: We will endeavour to prioritise samples to complete analysis within	Dev	viating Sample Key
holding time; however any delay could result in samples becoming deviant	A	The sample was received in an inappropriate container for this analysis
whilst being processed in the laboratory.	В	The sample was received without the correct preservation for this analysis
	С	Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will not	D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
be ISO 17025 accredited. Please contact us as soon as possible to provide	E	Sample processing did not commence within the appropriate holding time
missing information in order to reinstate accreditation.	F	Sample processing did not commence within the appropriate handling time
	Rec	uested Analysis Key
		Analysis Required
		Analysis dependant upon trigger result - Note: due date may be affected if triggered
		No analysis scheduled
	^	Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

Sample Analysis

Socotec Environmental Chemistry

S180403

Analytical and Deviating Sample Overview

CustomerEnviroCentreSiteGranton Harbour 769967jReport NoS180403

Consignment No S70229 Date Logged 07-Nov-2017

In-House Report Due 22-Nov-2017

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

		MethodID	CustServ	ICPMSS										OGSNSED	PAHSED	PCBMS3Q	Sub061	TPHSED	
ID Number	Description	Sampled	Report C	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Cobalt (MS) Sediments	Lead (MS) Sediments	Manganese (MS) Sediments	Mercury (MS) Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	Tributyl Tin (Sediments)	PAH by MS Dti	PCB-7 Congeners (Marine Sediments)	^Particle Size Analysis (Sediment)	TPH GCFID (Si)+Sats	
CL/1782646	VC08 0.00-0.50	30/10/17																	l
CL/1782647	VC08 1.45-1.95	30/10/17																	l
CL/1782648	VC08 2.40-2.90	30/10/17																	
CL/1782649	VC09 0.00-0.50	30/10/17																	l
CL/1782650	VC09 1.30-1.80	30/10/17																	l
CL/1782651	CRM																		
	QC Blank																		
CL/1782653	Reference Material (% Recovery	/)																	

Note: We will endeavour to prioritise samples to complete analysis within	Deviating Sample Key
holding time; however any delay could result in samples becoming deviant	A The sample was received in an inappropriate container for this analysis
whilst being processed in the laboratory.	B The sample was received without the correct preservation for this analysis
	C Headspace present in the sample container
If sampling dates are missing or matrices unclassified then results will not	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
be ISO 17025 accredited. Please contact us as soon as possible to provide	E Sample processing did not commence within the appropriate holding time
missing information in order to reinstate accreditation.	F Sample processing did not commence within the appropriate handling time
	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	A Analysis Subcontracted - Note: due date may vary

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	CL1782106 to CL1782117	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiophene, Fluoranthene, Benzo[ghi]perylene). These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1782118 to CL1782132	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiophene, Fluoranthene, Benzo[ghi]perylene, Anthracene, Phenanthrene) . These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1782106 to CL1782132	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene).This should be taken into consideration when utilising the data.
TPHSED	CL1782109 CL1782112 CL1782115	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted to improve the signal to noise ratio but in doing so, the scale for the WMF files is smaller. This should be taken into consideration when utilising the data.

Report Number : EFS/180403

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHSED	to	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Dibenzothiophene, Fluoranthene, Fluorene, Anthracene, Phenanthrene, Pyrene). These circumstances should be taken into consideration when utilising the data.
PAHSED	CL1782646 to CL1782651	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene).This should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	OGSNSED	As Received	Determination of Organo-tin compounds using sonic extraction in
			methanol, derivatiseation with Sodium Tetraethylborate and GCMS
			quantitation (SIM mode).
Soil	PAHSED	As Received	Determination of Polyaromatic Hydrocarbons in Sediments by
			Methanol/Dichloromethane ultrasonic extraction GC-MS
			quantification
Soil	PCBMS3Q	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners by
			hexane/acetone extraction followed by GCECD detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TPHSED	As Received	Determination of methanol/dichloromethane extractable
			Hydrocarbons in Marine & Esturine Sediments with GCFID
			detection including quantitation of Aliphatic fractions.

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
- All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity. Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	Enviro
Site :	Granto

Report Numbers :

EnviroCentre Granton Harbour 769967j S18_0284 S18_0403

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1782106	VC01 0.00-0.50	MARINE SEDIMENTS
CL/1782107	VC01 0.50-0.50	MARINE SEDIMENTS
CL/1782107	VC01 0.30-1.00	MARINE SEDIMENTS
CL/1782109	VC02 0.65-1.30	MARINE SEDIMENTS
CL/1782110	VC03 0.00-0.50	MARINE SEDIMENTS
CL/1782111	VC03 1.50-2.00	MARINE SEDIMENTS
CL/1782112	VC03 2.50-3.00	MARINE SEDIMENTS
CL/1782113	VC04 0.00-0.50	MARINE SEDIMENTS
CL/1782114	VC04 1.00-1.50	MARINE SEDIMENTS
CL/1782115	VC04 2.15-2.65	MARINE SEDIMENTS
CL/1782116	VC05 0.00-0.50	MARINE SEDIMENTS
CL/1782117	VC05 1.00-1.50	MARINE SEDIMENTS
CL/1782118	VC05 1.50-2.00	MARINE SEDIMENTS
CL/1782119	VC06 0.00-0.50	MARINE SEDIMENTS
CL/1782120	VC06 1.20-1.70	MARINE SEDIMENTS
CL/1782121	VC06 2.40-2.90	MARINE SEDIMENTS
CL/1782122	VC07B 0.00-0.50	MARINE SEDIMENTS
CL/1782123	VC07B 1.25-1.75	MARINE SEDIMENTS
CL/1782124	VC07B 2.00-2.55	MARINE SEDIMENTS
CL/1782125	VC09 0.65-1.15	MARINE SEDIMENTS
CL/1782126	VC10 0.00-0.50	MARINE SEDIMENTS
CL/1782127	VC10 1.25-1.75	MARINE SEDIMENTS
CL/1782128	VC10 2.00-2.50	MARINE SEDIMENTS
CL/1782129 CL/1782130	VC11 0.00-0.50 VC11 1.50-2.00	MARINE SEDIMENTS MARINE SEDIMENTS
CL/1782130	VC11 1.50-2.00 VC11 2.50-3.00	MARINE SEDIMENTS
CL/1782131 CL/1782132	CRM	QUALITY CONTROL SAMPLE
CL/1782132	QC Blank	QUALITY CONTROL SAMPLE
CL/1782133	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
CL/1782646	VC08 0.00-0.50	MARINE SEDIMENTS
CL/1782647	VC08 1.45-1.95	MARINE SEDIMENTS
CL/1782648	VC08 2.40-2.90	MARINE SEDIMENTS
CL/1782649	VC09 0.00-0.50	MARINE SEDIMENTS
CL/1782650	VC09 1.30-1.80	MARINE SEDIMENTS
CL/1782651	CRM	QUALITY CONTROL SAMPLE
CL/1782652	QC Blank	QUALITY CONTROL SAMPLE
CL/1782653	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
	Image: Constraint of the sector of	
	Image: Constraint of the sector of	
	Image: Constraint of the sector of	
	Image: Constraint of the sector of	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Constraint of the sector of the se	
	Image: Section of the section of th	
	Image: Section of the section of th	
	Image: Constraint of the sector of the se	
	Image: Construct of the section of	

C DATA SUMMARY TABLES

Summary Table A

Sample information - Granton Action Level 2 Exceedances Removed All units in mg/kg

All units in mg/kg																														
	AL1	AL2	BAC	<erl< th=""><th>ISOG/TEL</th><th>PEL</th><th>VC01 0.00-0.50</th><th>VC01 0.50-1.00</th><th>VC02 0.00-0.65</th><th>VC02 0.65-1.30</th><th>VC03 0.00-0.50</th><th>VC03 1.50-2.00</th><th>VC04 0.00-0.50</th><th>VC04 1.00-1.50</th><th>VC05 0.00-0.50</th><th>VC05 1.00-1.50</th><th>VC06 0.00-0.50</th><th>VC06 1.20-1.70</th><th>VC07B 0.00-0.50</th><th>VC07B 1.25-1.75</th><th>VC10 0.00-0.50</th><th>VC10 1.25-1.75</th><th>VC11 0.00-0.50</th><th>VC11 1.50-2.00</th><th>Average</th><th>No. Exceed Al1?</th><th>No. Exceed Al 2?</th><th>No.Exceed BAC?</th><th>No. Exceed ERL</th><th>No. Exceed PEL?</th></erl<>	ISOG/TEL	PEL	VC01 0.00-0.50	VC01 0.50-1.00	VC02 0.00-0.65	VC02 0.65-1.30	VC03 0.00-0.50	VC03 1.50-2.00	VC04 0.00-0.50	VC04 1.00-1.50	VC05 0.00-0.50	VC05 1.00-1.50	VC06 0.00-0.50	VC06 1.20-1.70	VC07B 0.00-0.50	VC07B 1.25-1.75	VC10 0.00-0.50	VC10 1.25-1.75	VC11 0.00-0.50	VC11 1.50-2.00	Average	No. Exceed Al1?	No. Exceed Al 2?	No.Exceed BAC?	No. Exceed ERL	No. Exceed PEL?
Source			CSEMP	CSEMP	Cana	ada																							,,	
Arsenic	20	70	25	-	7.	2 41.6	15.8	16.7	15.1	17.6	17.4	19.5	17.9	19.4	18.7	18.7	17.5	18.2	18.8	20.2	19.3	19.7	19	19.4	18.3	1	0	0		0
Cadmium	0.4	4	0.31	1.2	0.7	4.2	0.45	0.87	0.52	0.99	0.29	0.44	0.35	0.72	0.38	0.63	0.42	0.81	0.34	0.35	0.34	0.43	0.28	0.32	0.5	10	0	16	0	0
Chromium	50	370	81	81	52.3	160	57.8	57	52.8	75.5	56.4	72.7	54.1	68.2	59.6	69.3	57.3	72.2	56.7	71.8	62	59.8	63.6	66.8	63.0	18	0	0	0	0
Copper	30	300	27	34	18.7	108	42.1	51.6	46.5	60.6	40.2	55.6	40.3	58.2	47.6	55.1	45.5	59.9	40.3	48.8	43.7	48.7	45.1	46.7	48.7	18	0	18	18	0
Mercury	0.25	1.5	0.07	0.15	0.13	0.7	0.88	1.13	1.04	1.42	0.86	1.22	0.88	1.3	0.93	1.19	1	1.38	0.88	1.05	1.01	0.98	0.97	1.08	1.1	18	0	18	18	18
Nickel	30	150	36	-	-	-	32.9	30.9	29.6	33.9	31.9	38.4	31.9	35.7	33.8	35.4	32.6	34.3	33.5	37.1	34.9	34.4	35.7	37	34.1	17	0	3	N/A	N/A
Lead	50	400	38	47	30.2	112	79.6	93.9	83.2	107.6	77.9	107.2	78.5	119	152	110.1	96.7	110.4	83	97.2	92	102.9	92.8	113.8	99.9	18	0	18	18	3
Zinc	130	600	122	150	124	271	141.1	155.1	141.7	172.1	141.3	173.7	141.5	183.3	151.9	177.2	151.2	175.9	146.8	164.4	153.4	158.2	154.4	164.7	158.2	18	0	18	13	0
					-	-																							(
Napthalene	0.1		0.08	0.16	-	0.319	0.18	0.20	0.22	0.31	0.20	0.22	0.22	0.28	0.22	0.25	0.24	0.33	0.20	0.24	0.20	0.24	0.22	0.24	0.23	18	N/A	18	18	1
Acenaphthylene	0.1			-	0.00587	0.128	0.05	0.06	0.06	0.12	0.05	0.06	0.07	0.08	0.07	0.07	0.06	0.07	0.04	0.05	0.04	0.05	0.04	0.05	0.06	1	N/A	N/A	N/A	0
Acenaphthene	0.1		-	-	0.00671	0.0889	0.13	0.27	0.17	0.26	0.06	0.09	0.10	0.12	0.13	0.10	0.09	0.18	0.05	0.07	0.06	0.08	0.06	0.07	0.12	9	N/A	N/A	N/A	0
Fluorene	0.1			-	0.0212	0.144	0.15	0.29	0.19	0.23	0.11	0.13	0.16	0.18	0.19	0.17	0.15	0.24	0.10	0.14	0.11	0.14	0.11	0.13	0.16	18	N/A	N/A	N/A	10
Phenanthrene	0.1		0.032	0.24	0.0867	0.544	0.85	1.31	1.12	1.12	0.45	0.59	0.54	0.65	0.73	0.62	0.62	0.85	0.41	0.48	0.39	0.62	0.42	0.54	0.68	18	N/A	18	18	11
Anthracene	0.1		0.05	0.085	0.0469	0.245	0.32	0.45	0.40	0.50	0.19	0.26	0.22	0.29	0.27	0.31	0.27	0.38	0.16	0.20	0.16	0.24	0.17	0.23	0.28	18	N/A	18	18	10
Fluoranthene	0.1		0.039	0.6	0.113	1.494	1.17	1.88	1.66	1.75	0.63	0.89	0.82	0.99	1.01	0.75	1.00	1.34	0.61	0.73	0.57	0.95	0.65	0.89	1.02	18	N/A	18	17	3
Pyrene	0.1		0.024	0.665	0.153	1.398	1.49	2.06	2.00	2.28	0.84	1.16	1.04	1.33	1.24	1.33	1.20	1.62	0.72	0.85	0.67	1.05	0.76	1.03	1.26	18	N/A	18	18	5
Benzo(a)anthracene	0.1		0.016	0.261	0.0748	0.693	0.67	1.11	1.34	1.01	0.40	0.52	0.48	0.62	0.60	0.60	0.59	0.74	0.37	0.44	0.33	0.54	0.40	0.54	0.63	18	N/A	18	18	4
Chrysene	0.1		0.02	0.384	0.108	0.846	0.54	0.94	1.08	0.82	0.33	0.50	0.43	0.45	0.51	0.46	0.52	0.52	0.28	0.35	0.24	0.43	0.30	0.41	0.51	18	N/A	18	13	2
Benzo(b)fluoranthene	0.1			-	-	-	0.45	0.84	0.92	0.75	0.62	0.56	0.40	0.69	0.53	0.46	0.62	0.70	0.42	0.50	0.31	0.45	0.38	0.57	0.57	18	N/A	N/A	N/A	N/A
Benzo(k)fluoranthene	0.1		-	-	-	-	0.32	0.46	0.60	0.47	0.29	0.25	0.27	0.32	0.30	0.30	0.29	0.36	0.20	0.23	0.17	0.27	0.22	0.28	0.31	18	N/A	N/A	N/A	N/A
Benzo(a)pyrene	0.1		0.03	0.384	0.0888	0.763	0.68	1.01	1.28	0.98	0.41	0.53	0.52	0.60	0.60	0.67	0.63	0.77	0.39	0.48	0.35	0.57	0.45	0.60	0.64	18	N/A	18	17	4
Indeno(1,2,3cd)pyrene	0.1		0.103	0.24	-	-	0.31	0.43	0.58	0.48	0.23	0.28	0.29	0.35	0.32	0.26	0.44	0.56	0.31	0.40	0.29	0.45	0.39	0.49	0.38	18	N/A	18	17	N/A
Benzo(ghi)perylene	0.1		0.08	0.085	-	-	0.34	0.50	0.63	0.78	0.27	0.32	0.33	0.38	0.37	0.30	0.49	0.65	0.34	0.45	0.32	0.50	0.44	0.55	0.44	18	N/A	18	18	N/A
Dibenzo(a,h)anthracene	0.01			-	0.00622	0.135	0.08	0.11	0.14	0.12	0.05	0.07	0.07	0.09	0.08	0.07	0.10	0.14	0.07	0.09	0.06	0.11	0.09	0.11	0.09	7	N/A	N/A	N/A	2
																													,	
PCBs	0.02	0.18		-	0.0215	0.189	0.032	0.069	0.058	0.079	0.038	0.069	0.039	0.071	0.043	0.063	0.055	0.064	0.026	0.043	0.031	0.044	0.036	0.047	0.1	18	0	N/A	N/A	0
TBT	0.1	0.5	-	-	-		0.00129	0.00271	< 0.001	0.00232	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	0.00124	<0.001	0.00333	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	0.002	0	0	N/A	N/A	N/A

Summary Table B

Granton Average Concentrations

All units in mg/kg

	AL1	AL2	BAC	<erl< th=""><th>PEL</th><th>Dredge Average</th><th>Exceed Al1?</th><th>Exceed Al2?</th><th>Exceed BAC?</th><th>Exceed ERL ?</th><th>Exceed PEL?</th></erl<>	PEL	Dredge Average	Exceed Al1?	Exceed Al2?	Exceed BAC?	Exceed ERL ?	Exceed PEL?
Source			CSEMP	CSEMP	Canada						
Arsenic	20	70	25	-	41.6	18.3	No	No	No	-	No
Cadmium	0.4	4	0.31	1.2	4.2	0.5	Yes	No	Yes	No	No
Chromium	50	370	81	81	160	63.0	Yes	No	Yes	No	No
Copper	30	300	27	34	108	48.7	Yes	No	Yes	Yes	No
Mercury	0.25	1.5	0.07	0.15	0.7	1.07	Yes	No	Yes	Yes	Yes
Nickel	30	150	36	-	-	34.1	Yes	No	Yes	N/A	N/A
Lead	50	400	38	47	112	99.9	Yes	No	Yes	Yes	No
Zinc	130	600	122	150	271	158.2	Yes	No	Yes	Yes	No
					-						
Napthalene	0.1	-	0.08	0.16	0.319	0.234	Yes	N/A	Yes	Yes	No
Acenaphthylene	0.1	-	-	-	0.128	0.060	No	N/A	N/A	N/A	No
Acenaphthene	0.1	-	-	-	0.0889	0.117	Yes	N/A	N/A	N/A	Yes
Fluorene	0.1	-	-	-	0.144	0.162	Yes	N/A	N/A	N/A	Yes
Phenanthrene	0.1	-	0.032	0.24	0.544	0.683	Yes	N/A	Yes	Yes	Yes
Anthracene	0.1	-	0.05	0.085	0.245	0.277	Yes	N/A	Yes	Yes	Yes
Fluoranthene	0.1	-	0.039	0.6	1.494	1.016	Yes	N/A	Yes	Yes	No
Pyrene	0.1	-	0.024	0.665	1.398	1.259	Yes	N/A	Yes	Yes	No
Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.629	Yes	N/A	Yes	Yes	No
Chrysene	0.1	-	0.02	0.384	0.846	0.505	Yes	N/A	Yes	Yes	No
Benzo(b)fluoranthene	0.1	-	-	-	-	0.565	Yes	N/A	N/A	N/A	N/A
Benzo(k)fluoranthene	0.1	-	-	-	-	0.311	Yes	N/A	N/A	N/A	N/A
Benzo(a)pyrene	0.1	-	0.03	0.384	0.763	0.639	Yes	N/A	Yes	Yes	No
Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24	-	0.382	Yes	N/A	Yes	Yes	N/A
Benzo(ghi)perylene	0.1	-	0.08	0.085	-	0.443	Yes	N/A	Yes	Yes	N/A
Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.092	No	N/A	N/A	N/A	No
PCBs	0.02	0.18	-		0.189	0.050	Yes	No	N/A	N/A	No
ТВТ	0.1	0.5	-	-	-	0.002	No	No	N/A	N/A	N/A

Summary Table C Disposal Site Data Summary Narrow Deep All units in mg/kg

	AL1 AL2	BAC	<erl< th=""><th>ISQ6/TEL</th><th>PEL</th><th>1ND93 2N</th><th>93 3ND93</th><th>8 4ND93</th><th>5ND93 6</th><th>ND93 7ND5</th><th>33 8ND93</th><th>9ND93 101</th><th>ND93 11ND93</th><th>17/ND/04</th><th>5/ND/04 13/</th><th>ND/04 11/ND/</th><th>14 9/ND/04</th><th>7/ND/04</th><th>(ND/04 3N</th><th>/04 1/ND</th><th>04 2/ND/0</th><th>4 4/ND/04</th><th>6/ND/04</th><th>8/ND/04 1</th><th>0/ND/04 12/N</th><th>/04 16/ND/0</th><th>3NDTWL</th><th>2NDTWL0</th><th>ANDTWL0</th><th>4ND07 15</th><th>4007 13N</th><th>07 17ND0</th><th>7 16ND07</th><th>12ND07</th><th>11ND07</th><th>10ND07 9N</th><th>07 8ND0</th><th>6ND07</th><th>7ND07</th><th>5ND07 4</th><th>6007 3ND07</th><th>2ND07 1</th><th>ND07 4/N</th><th>D/11 3/ND</th><th>/11 1/ND/1</th><th>6/ND/11</th><th>9/ND/11 13/</th><th>ID/11 1/ND</th><th>15 2/ND/15</th><th>3/ND/15</th><th>4/ND/15</th><th>s/ND/15 6/1</th><th>ND/15 9/N</th><th>D/02 8/ND</th><th>3/02 7/ND/0</th><th>02 6/ND/0</th><th>2 5/ND/02</th><th>4/ND/02 3</th><th>ND/02 2/ND/0</th><th>02 1/ND/02</th><th>12 Average</th><th>No.Exceed E</th><th>BAC? No. I</th><th>ixceed ERL 1</th><th>No. Exceed PEL?</th></erl<>	ISQ6/TEL	PEL	1ND93 2N	93 3ND93	8 4ND93	5ND93 6	ND93 7ND5	33 8ND93	9ND93 101	ND93 11ND93	17/ND/04	5/ND/04 13/	ND/04 11/ND/	14 9/ND/04	7/ND/04	(ND/04 3N	/04 1/ND	04 2/ND/0	4 4/ND/04	6/ND/04	8/ND/04 1	0/ND/04 12/N	/04 16/ND/0	3NDTWL	2NDTWL0	ANDTWL0	4ND07 15	4007 13N	07 17ND0	7 16ND07	12ND07	11ND07	10ND07 9N	07 8ND0	6ND07	7ND07	5ND07 4	6007 3ND07	2ND07 1	ND07 4/N	D/11 3/ND	/11 1/ND/1	6/ND/11	9/ND/11 13/	ID/11 1/ND	15 2/ND/15	3/ND/15	4/ND/15	s/ND/15 6/1	ND/15 9/N	D/02 8/ND	3/02 7/ND/0	02 6/ND/0	2 5/ND/02	4/ND/02 3	ND/02 2/ND/0	02 1/ND/02	12 Average	No.Exceed E	BAC? No. I	ixceed ERL 1	No. Exceed PEL?
ource		CSEMP	IP CSEMP		Canada																																																				·								
rsenic	20	70	25 -		7.2 41.6	NA 11	85455 11.57	009 7.620968	11.3301	10.9 7.62	6263 7.98	10.39604 11	141463 10.4379	5 11.31612	1.60123 12	85831 8.4627	12 56628	1 10.485	11.32822 13	29725 12.2	321 11.005	69 12,3088	11.27284	11.0715 1	9.935941 9.54	896 13.75			_		.0.80					11.30	2.10	10.40	11.90		9.38		1	74 7.4	45 10.74	9.87	8.24 3	.14 11	50 13.10		10.90	11.40	17	3.40 12	60 13.3/	40 12.67	9.31	11.60	12.50 13.3	30 13.4	4 11	1 0	_		0
admium	0.4	4 0.	1.31 1.2	0.7	7 4.2	NA	0.1 <0.	1 <0.1	<0.1	<0.1 ≪	0.1 <0.1	<0.1	<0.1 <0.1	0.264059	1381571 11	192995 0.6385	12 1.310219	(0.191	0.325858 0.7	15809 0.32	007 0.1933	156 0.21927	0.253189	0.422571 0	0.626586 0.65	168 1.06					0.64					BOL	BOL	BDL	BOL		BDL			1.14 0.1	11 0.18	0.20	0.25	35 0.	16 0.17		0.17	0.25	0	455 0.1	20 0.21	1 0.43	3 0.20	NA	NA 0.3	4 1.2	0	.4 16		1	0
hromium	50 3	370 8	81 81	52	3 160	NA 50	56818 33.83	41.83468	40.65534 4	47.15909 18.9	3939 30	54.45545 33	7.0935 43.5267	9 54.50959	.0.20395 55	.8881 29.61F	4 60.89382	46.75365	51.52715 42	47168 50.1	931 51.64	43 57.7809	49.24806	48.19455	39.69152 38.4	57.78				1	4.70					39.00	4.50	47.90	38.40		53.80		4	7.98 31	24 49.88	46.42	32.92	1.14 69.	90 67.90		56.10	61.40	67	J.70 67	7.20 67.80	A) 55.4/	0 55.80	50.40	59.70 51.8	40 61.5	s 49.1	.8 0	-	0	0
oper	30 31	100 2	27 34	18.	7 108	NA	25 21.95	262 25	24.75728 2	29.09091 29.7	9798 26	34.65347 22	1.35772 23.2142	4 30,77694	36.7711 54	14573 42.147	9 95.77217	26.72853	30.70547 22	29938 28.8	378 25.64	28.4053	28.05683	29.29585 4	45.69644 47.0	045 59.21				1	46.30					30.00	5.70	25.50	19.60		24.30		1	6.80 15	76 25.36	25.02	23.79	277 22	30 24.70		22.90	28.50	34	1.60 28.2	.20 28.8	£ 28.97	J 27.50	25.70	28.30 29.5	30 47.6	a 31.	.3 28	-	11	0
lercury	0.25 1	1.5 0.	0.07 0.19	5 0.1	3 0.7	0.592 (.858 0.56	56 0.769	0.743	1.12 0.9	502 0.487	1.102 (0.807 0.843	0.879353	1826282 17	11845 0.6957	16 1.477136	1 0.745824	0.785837 0	7139 0.92	201 0.7726	35 0.75216	0.791856	0.849408 0	0.867013 1.354	108 1.52					0.66					0.41	1.41	0.39	0.33		0.61			1.53 0.3	35 0.45	0.48	0.46	.67 0.1	6 0.74		0.45	0.51	0	4.69 0.7	.66 0.80	J 0.72	0.77	0.61	0.82 0.7	1 1.3	0.7	/5 52		52	29
ickel	30 1	150 3	36 -	-	-	NA 28	72909 22.18	318 26.4871	24.65243 2	29.60727 19.9	3333 23.46	30.33267 23	1,78537 25.5053	6 29.08047	42.8995 34	70159 28.526	41.8858	1 27.05888	28.93552 25	10778 28.5	234 28.79	06 30.9099	28.06042	28.45231	30.77752 32.7	623 38.36					40.40					29.90	4.30	25.20	22.00		28.30		2	2.79 17.	63 29.14	23.14	21.19	.38 31.	60 31.60		27.10	29.70	3	4.60 30	170 32.4/	.0 28.67	J 27.80	26.60	30.30 28.8	30 34.5	30.1	.5 3		N/A	N/A
ad	50 44	400 3	38 47	30.	2 112	NA 1	6.25 46.26	168 57,43952	55.53398	70.75 3	39.325	68.61386 48	8.29268 50.8258	@ 72.21112	/1.84391 10	6.5736 91.947	45 132,1846	1 58.40353	68.28584 57	18527 69.0	081 63.048	63.1035	65.03776	69.54348	111.5318 92.6	98 119.71				1	4.20					66.70	9.40	43.20	35.80		57.20		5	4.05 37.	66 48.14	59.22	60.97 8	45 62	70 62.90		55.40	52.40	7	0.40 65	10 67.8	40 61.4 ⁴	a 63.40	54.30	70.10 73.0	40 98.3	3 66.	.3 48		45	2
inc	130 6	500 13	122 150	12	4 271	NA 11	13636 10	0 101 8145	108 9806 1	117 9545 121	2121 76.25	121 0396 93	08943 98 8839	8 114 5822	137 2943 17	3 5485 162.95	45 305 2746	1 106 9526	110 2609 89	68755 110	192 101 54	51 101 549	104 5227	109.6514	146 1482 147	111 189 50				1	35.00					163.00	3.00	87.20	87.00		96.90		8	1.81 64	27 91 30	149 11	168.41 1	1.26 105	.00 111.00		25.60	108.00	12	29.00 123	\$.00 117.0	.00 131.00	0 104.00	97.00	109.00 148.0	00 158.0	0 123	0 17		8	1
								-						1			-																																																_
lanthalene	0.1	0	0.16		0.319	0.2084 0	0416	0.0725	0.0599		0.3935		1.0746										0.1136	0.1581	0.0294						07	43 0.072	4 0.0431	0 1022	0.0509		0.099 0.04	0.0052	8 0.2134	0.0625					_			0.03	930 0.04330	0	0.0452	0.052 /	1 0442						0.0916		0	1 7		3	1
cenaphthylene	0.1			0.005	587 0.128	0.001 0	0007	0.0012	0.0016		0.0066	0	0.0017				1 '						0.0017	0.1581	0.0014						0/	01 0.001	2 0.0008	0.0015	0.001	0.0009 0	0005 0.00	0.001	2 0.0027	0.0011								0.00	044 0.00103	2	0.00	0.00	0.00				· · · ·	·	0.001		0.1	.0 N/A		N/A	0
renanhthene	0.1			0.006	571 0.0889	0.0245 0	0107	0.0254	0.0446		0.1717		0.053		_	_	1 '	(_				0.033	0.0976	0.0248					_	07	188 0.011	8 0.0054	0.0275	0.0122	0.0119 0	0067 0.02	39 0.050	1 0.1753	0.0145								0.00	964 0.01170	0	0.01	0.01	0.01						0.018		0	0 N/A		N/A	0
invene	0.1			0.02	12 0 144	0.2236 0	1463	0.2969	0.9614		1 5809		15266	+-+			$+ \rightarrow$	-+					0.4552	2 9621	0.2745		-	1 1			01	0 112	2 0.0254	0.1692	0.0884	0.129 0	0599 0.15	34 0 341	6 0.8844	0.1235								0.03	080 0.01570	0	0.02	0.02	0.01	_			\rightarrow		0.21	_	0.15	1 N/A	_	N/A	14
henanthrene	0.1	0.0	032 0.24	1 0.08	67 0 544	0.1946 0	0918	0.1738	0.4549		1 1159		13268	+-+			$+ \rightarrow$	-+					0.285	1 2338	0.2344		-	1 1			0/	53 0.088	4 0.0596	0.1212	0.0591	0.0855 (0445 0.11	59 0.229	9 0.8403	0.0905								0.06	060 0 11800	0	0.11	0.09	0.08				\rightarrow		0.16	_	0	1 26	_	6	3
othraceao	0.1	0.	1.05 0.08	s 0.04	60 0.245	0.065 0	0226	0.0549	0.129		0.4294		1216	+-+			$+ \rightarrow$	-+					0.1001	0.602	0.0214		-	1 1			0/	0.02	0.0197	0.0441	0.0246	0.0221	0172 0.0	67 0.099	6 0.265	0.0260								0.02	£20 0.04120	0	0.04	0.02	0.02				\rightarrow		0.06	_	0	0 11		2	
luoranthene	0.1	0.0		0.11	13 1.494	0.005	0.00	0.00-0	0.175					+			+ +	-+					0	0	0										0.000					0.000								0.10	200 0 1720	0	0.14	0.12 (0.09				\rightarrow		0.00		0	1 5		0	0
hrono	0.1		024 0.66	5 0.15		0.2323 0	1525	0.2945	0.7372		1 202		15384	+			+	-+				-	0.454	2 2985	0.2716		-			_	01	43 0.120	7 0.083	0.1686	0.0892	0.1338 (0588 0.1	39 0.304	2 0.8009	0.1348								0.11	700 0 1890	0	0.14	0.12	0.10		_	_	+		0.23	_	0.1	2 26		4	2
enzolalanthracene	0.1	0.0	016 0.26	1 0.07	49 0.602	0.1166 0	0727	0.1421	0.2496		0.7495		12915	+-+			$+ \rightarrow$	-+					0.2244	1 9222	0.1102		-	1 1			0/	210 0.022	4 0.0473	0.0092	0.06	0.0775	041 0.1	42 0.195	0.4405	0.0772								0.04	600 0.0024	0	0.07	0.09	0.06	_			\rightarrow		0.11	_	0	1 26		¢	2
boroso	0.1	0.0	0.20	4 0.1/	10 0.005	0.1249 0	0902	0.1617	0.2602		0.9511		2225	+-+			$+ \rightarrow$	-+					0.3562	1 0267	0.1472		-	1 1				0.071	0.0517	0.0921	0.0595	0.0791	041 0.1	00 0.129	0.4322	0.0759								0.04	0.00	0	0.07	0.00	0.06	_			\rightarrow		0.10	_	0.0	1 26		2	
in press	0.1	0.	0.20		0.040	0.1249 0	0003	0.1017	0.3030		0.0311			+		_	+	-+		_	_	-	0.000	0	0.0472	-	-							0.0071	0.0000	0.0704	~ ~		0.9424	0.0725	_		_	_	_	-		0.1	600 0.0460	0	0.56	0.00	0.12		_		+		0.00		0.1	1 1/4	_	N/A	N/A
top to fail fuer on the sec	0.1				-			-			_			+		_	+	-+		_	_	-	0	0	0	-	-				_	_	-	-		_	_	_	-	_	_		_	_	_	-		0.0	000 0.0000	0	0.00	0.00	0.00		_		+		0.00		0.1	0 N/A		N/A	N/A
lease())aurosa	0.1		1.02 0.29	4 0.09	99 0.762	0.1155 0	0778	0.1579	0.2945		0.0642		12775	+			+	-+				-	0.2462	1 2296	0.1265		-			_		0.000	0.0510	0.0962	0.0562	0.0716	0.50	0.128	0.3426	0.0721								0.04	800 0.1050	0	0.00	0.00	0.06		_	_	+		0.00	_	0.0	1 36		2	
edago(1.2.2odbaurosa	0.1	0.1	102 0.36	0.05	0.765	0.0027 0	0622	0.15/6	0.1025		0.3043		1005	+		_	+	-+				1	0.1015	0.7544	0.1169		1	1 1		_		0.084	4 0.0561	0.0992	0.0550	0.0722 (0224 0.0	0 138	0.2435	0.0297		1				1		0.0	730 0.0966	0	0.07	0.05	0.05		_		+		0.11		0.1	1 10		2	N/A
in the second se	0.1	0.1	0.09 0.09	6	-	0.0327 0	0023	0.1113	0.1973		0.725			+		_	+	-+		_	_	-	0.2323		0.1100	-	-								0.000	0.0723		0.117		0.0727	_		_	_	_	-			0.0000	-	0.00	0.00	100		_		+		0.11				_	0	N/A
lenzo(ghi)perylene	0.01	0.	7.00 0.00	0.00	622 0.126			-			_			+		_	+	-+		_	_	-	0	0	0	-	-				_	_	-	-		_	_	_	-	_	_		_	_	_	-		0.00	0.0116	0	0.01	0.01	0.01		_		+		0.00		0	0 1/4	_	N/A	
toenzoja,njanne aoerre	0.01	_		0.000	0.133		_							+-+			+	\rightarrow	_		_	-	Ŭ,				-		_	_		_	-	-						_	_								0.0113	-	0.01	0.01	201		_	_	\rightarrow	-	0.00	_		4	_		
0/9/	0.02 0	10	-	0.03	15 0 195		- 1							0.012470	011400 0/	142214 0.0157	12 0.046128	0.000121	0.010105 07	14954 0.01	200	-		_		-	-		_	_	0.01	2364	0.02726			0.040402 0	92742	0.0051	55 0.005382	_	0.0050	0	_		0.0002	0.00225	0.005822			-	0.049	0.025	0.005	_	_	_	_			_	0.0267	N/A		81/4	1
TOT	0.02 0.			0.02	0.169			-						0.04.75		4.0159	1 2000113			0.02							+				- 0.00	~~	0.03/36	-	-	0.020207 0.		3.0051			0.0053	~	_	_	0.0098	0.00535	0.00.437	_		-	0.043										2.0367	N/A	-+-	NO	

Disposal Site Data Summ All units in maller	ry Oxcars																																																																						
All units in mg/kg								1 1						_												_	_	_		_	_	_	_	_	_		_			110	1200	1000	1201/200	-		1	4017240		1000730	m		5.00X/30 13.00	×730 2.00V	7304 320X7	301 A/OV/	101		-													
	411 4	840	(FRI	1506/75	I PFI	1000	200093	303(93 4	00003 500	(C93 60XC9	93 ZOXC93	803093	903(93	10000093	100093 120	000793 130	000793 140	100 150	16000	93 17000	93 18030	3 1903(19)	2003(93	2108(93	2203(593 2	11	V0X/04 1:	/0X/84 9	0X/04 7/	01/04 5	0X/04 3	0X/04 1/	00.04 2	10X/04 4	4/0X/04	6/0X/04 8	400×04 11	/0X/04 12/	0X/04 140	10X/04 7			122007 7 6012007	1002007	4032007 2	20122017 7	80	002007 90	12007 7	30)2007	20)2007 11	1 11	1	1	1	8/0X/1	1 1/08/19	3/0X/15	5/0X/15	7/08/15	10/08/15 4/	01/112 3/0	x/02 2/01	×/02 1/03	(ID2 Average	w No F	weed BAC2	No. Exceed El	FRI No.	Exceed PEL2	
Source		CSEMP	CSEMP		Canada						-									-		-						-																															· · · · ·												
Arsenic	20	70	25 -		7.2 4	1.6 1	15 10.2	10.33	12.11	11.03 14	4.10 16.0	67 28.29	11.10	18.27	14.67	13.15	8.24	11.18	11.67 11	.86 13	.17 9.	6 16.9	4 13.99	7.13	5.19	12.17	16.48	14.57	15.35	16.00	14.59	14.79	16.37	17.19	16.25	16.46	11.08	17.14	13.92	29.13					11.80	16.00	15.10	14.40	12.40 13	30		13.43	12.30	7.48	9.75 1	3.89 10	0.47	16.30	15.20	15.50		10.40	16	13.3	12.5	13.8	2	1 .		0	
Cadmium	0.4	4 0.31	1.2	0	7 .	4.2 <0.1	<0.1	<0.1	0.16 <0.1	1 <0.1	<0.1	<0.1	<0.1	<0.1	0.1 <0.	1 <0.	1 <0.1	1 40.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	0.1 80	DL 81	X. 8	X 80	х в	2. 8	L 80	X 8	DL B	80L 1	BOL B	JOL I	0.19 80	L BDL						BOL B	SOL BI	DL 80	DL BDI	L BDL			0.09	0.11	0.22	0.12	0.12 0	0.11	0.12	0.14	0.67	N	NA NA	NA		0.485	0.2	2	0		0	
Chromium	50	370 81	81	52	3	160 40	66 27.5	36.18	40.87	27.24 14	4.84 16.3	77 14.25	28.98	31.89	56.49	46.27	22.28	26.19	13.24 17	71 20	22 14	50 17.7	9 19.31	27.85	21.45	21.46	34.59	44.95	52.37	45.25	42.96	66.41	52.45	54.81	45.53	40.65	42.10	59.38	40.70	25.85					54.80	69.50	40.90	72.90	45.70 61.1	80		37.02	52.15	35.10 4	7.20 4	2.74 43	1.04	62.90	74.00	102.00		48.80	71.1	36.3	37.8	40.8	1	1		0	
Copper	30	300 27	34	18	2 3	108 23	30 19.5	24.61	24.53	19.19 9.	9.54 26.3	13 15.66	19.94	34.36	104.98	30.91	11.62	20.41	16.00 10	166 11	37 14	17 46.3	3 30.77	15.30	14.11	26.92	18.62	24.31	29.57	23.73	24.11	40.85	26.60	30.62	26.28	23.22	23.65	36.75	21.28	13.46					25.60	35.00	17.90	37.30	21.60 32	50		17.16	21.21	24.79 2	0.95 2	2.76 28	6.23	23.90	26.70	74.30		24.20	37.7	17.6	16	26.0	14	9		0	
Mercury	0.25	1.5 0.07	0.15	0.	13	0.7 0	74 0.6	1.01	1.07	0.74 0.	0.38 1.3	74 0.70	0.67	1.01	2.16	1.76	0.23	0.49	0.66 0	153 0	28 0.	13 1.6		0.50	0.39	0.67	0.52	0.82	0.89	0.77	0.73	1.59	0.81	0.83	0.77	0.70	0.65	1.09	0.61	0.31					0.66	0.93	0.40	0.85	0.53 0.1	.69		0.48	0.58	0.55	0.70 0	0.80 0	0.71	0.71	0.77	1.60		0.61	1.02	0.392	0.536	0.78	56	56		28	
Nickel	30	150 36				- 10	48 15.7	20.09	21.89	16.39 10.	0.33 12.9	90 17.67	18.44	19.01	29.59	24.15	24.46	15.77	14.50 12	.65 11	26 13	15 15.3	9 16.72	18.72	15.69	15.19	19.93	23.50	27.62	24.29	21.89	30.12	26.61	28.35	25.00	22.04	26.66	30.84	21.05	17.60					27.20	33.50	22.30	34.30	24.00 31	20		20.84	24.65	24.98 1	9.27 2	2.76 21	1.43	29.10	30.50	47.80		23.10	31.1	18.6	14.4	22.2	1	N/A		N/A	
Lead	50		47	30	12 :	112 45	12 43.2			45.13 58		60 45.11	43.50	218.32	90.17	55.79	25.05	44.26 4	11.48 43	.02 56	.42 36.	16 196.1	116.26	32.67	26.69	37.22	47.37	57.25	64.50	55.26	53.44	74.47	69.38	66.99	57.81	54.90	56.41	70.53	47.75	45.87					53.30	69.00	43.00	71.80	46.20 65.1	80		49.17	61.10 65	55.37 4	5.53 5	4.70 54	4.86	56.10	63.30	115.00		46.40	70.2	40.4	46.2	71.0	51	35		5	
Zinc	130	600 122	150	1	14	271 84	22 82.1	94.08	95.19	78.85 61	1.15 69.5	51 109.87	89.32	123.72	605.77	112.98	66.34	79.52 7	72.03 72	71 78	.86 79.	99.8	1 87.20	68.56	64.95	68.69	75.12	92.79	107.77	94.50	89.44	124.10	103.18	115.12	92.97	85.78	94.74	122.10	83.03	64.16					100.00	123.00	80.50	126.00	81.10 1141	.00		76.39	88.15 13	39.52 7	3.93 8	8.46 88	6.74	101.00	108.00	216.00		90.70	132	91.1	68.2	103.1	9	2		1	
						-																																																					('									()			
Napthalene	0.1	0.08	0.16		. 0	319 105	30 110.2	108.60									156.30 1	151.80 1	77.00 92	10 292	20 165	10		262.30											77.00	161.10	107.40																						<u> </u>			75.40	291.3	67.3	57.6	119.6	17	17		17	
Acenaphthylene	0.1			0.0	I587 0.	.128	60 2.0	2.50									2.00	2.50	2.60 1	20 3	.90 2	50		2.80											1.50	2.70	1.70																						<u> </u>			2.10	5.6	2.4	1.5	2.5	N/A	N/A		17	
Acenaphthene	0.1			0.0	671 0.	0889 20	17.9	43.4									20.5	19 7	4.8 9.9	38.3	24.8			29.1											13.3	28.3	19.5																						<u>'</u> '		1	1.4000 5	8.800 13	2.400 12	800	23.8	N/A	N/A		0	
Fluorene	0.1			0.0	212 0	144 185	129.2	219.5									227 2	51.9 34	4.6 109	1 462	9 324.1			327.3											189.9	367.2	270.2																						<u>'</u>			165.10 4	88.40 14	6.20 12	4.00	250.1	N/A	N/A		17	
Phenanthrene	0.1	0.032	0.24	0.0	867 0	544 135	107.4	220.6								1	176.8 21	202.1 24	4.2 95.	1 386.	4 254.			276.9											137.8	257.8	204.1																						<u>'</u> '			124.20 4	14.90 12	27.30 8	3.50	192.8	17	17		17	
Anthracene	0.1	0.05	0.085	5 0.0	469 0	245 54	41	69.9									70.6 7	,4.8 9	7.5 36.	1 147.	9 104.1			101.3											57.3	110.2	85.7																						<u>'</u>			50.60 2	61.70 4	8.80 35	5.20	92.8	17	17		17	
Fluoranthene	0.1	0.039				494	_				_								_	_							_	_	_	_	_		_						_	_	_	_												_	_	_		-	+'								0	- 0		0	
Pyrene	0.1	0.024				398 205	148.6	242.9			_					2	266.4 2	193.6 37	2.8 137	4 560.	2 392.4			393.5			_	_	_	_	_		_		223.7	422.5	317		_	_	_	_												_	_	_		-	+'			186.60 5	57.20 15		8.20	285.2	17	17		17	
Benzo(a)anthracene	0.1	0.016	0.261	1 0.0	748 0	.693 11	82.8	141.7				_				1	111.1 1	18.4 2	52 55.	7 233.	5 181			162.8		_		_		_			_	_	203.4	198.5	139	_	_	_	_						_			_			_	_	_	_	_	-	+'			110.10 2	91.40 8		5.60	143.6	17	17		17	
Chrysene	0.1	0.02	0.384	4 0.:	08 0	.846 115	83.9	140.7		_	_				_	1	142.9 1	159.3 19	6.7 72.	5 299.	1 233.4			203.9		_	_	_	_	_	_	_	_	_	1222.7	230	155.9	_	_	_	_	_						_	_	-		_	_	_	_	_	-		+'			112.70 2	86.90 8	3.90 75	5.40	152.5	17	17		17	
Benzolb)fluoranthene	0.1				-		-				_	_				_	_		_	_	-	-	-			_	_	_	_	_	_	_	_	_				_	_	_	_	_					_	_	_	-		_	-	_	_	_	_	-	<u>'</u>								N/A	N/A		N/A	
Benzo(k)fluoranthene	0.1									_	_				_	_		_			-	_				_	_	_	_	_	_	_	_	_				_	_	_	_	_				_		_	_	-		_	_	_	_	_	-		+'								N/A	N/A		N/A	
Benzo(a)pyrene	0.1	0.03		4 0.0	555 0	.7b5 128	87.8	159.1			_	_					139.9	.490 202	0.7 81	7 293	210.	-	-	192.8		_	_	_	_	_	_	_	_	_	119.4	229.4	14/.3	_	_	_	_	_					_	_	_	-		_	-	_	_	_	_	-	<u>'</u>			128.20 2	96.60 9	2.20 74	4.10	155.5	1/	17		1/	
indeno(1,2,3cd)pyrene	0.1	0.103	0.24			- 13/	95.1	101.9			_	-				-	22.0 1	2 2	*0 33.	a 216.	4 146.	-	-	142.9		-	-		-	-	-	-	-		22.1	101.0	100.0	-	-	-	_	-										_	_	_	_	-		-	<u> </u>			126.10 3	24.10 9	•.30 7i	5.10	199.1	-1/	<u>1/</u>		N/A	
Benzo(ghi)perylene	0.1	0.08	0.085	>		-	-				_	-				-	-		_	-	-	-	-			-	-		-	-	-	-	-					-	-	-	_	-							_	-		_		_	_	-	_	-	'						_	_	0			N/A	
Dibenzo(a,h)anthracene	0.01		-	0.0	011 0	. 233	-				-	-		_	_	_	_	\rightarrow	_	-	-	-	-		_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_				_	_	_		-		_	_		_	-	_	-	<u> </u>			_		_		_	D/A	N/A		0	
0/0-	0.02	0.40				400	-				_	-		_					cour 0.040	-20 0.000		× 0.04.407			_	_	_	_	_	_	_	_	_	_	_	0.04/22/2		433324	_		40403 0.30	00242	A 005457 A 00530			0.007.000	_	_		0.0000000	0.00007 0	0000000	_	_	_			0.007				_	_	_	_	0.022			_		
PCBS	0.02	0.16		0.0	(12 0	102	-	2 402250	100000 10	2020 20 20	104 C	-			6	0124/9 0.0	40 609 60	423141 0.07	0.046	172 0.0091	0.0101	0 001485	• 0.01980.		40	~	-			-		-	-	-		0.010/30		up/201	_	0.0	2020/ 0.28	12/45	0.005155 0.00578	- I		0.000/10	-			0.0094623	0.00655 0		-			0.04	0.035	0.005	0.000	0.0077	0.0030				3 447	0.05/	DVA			1	

Summary Table E

Disposal Site Data Summary Bo'ness

						07/BO	N/1 06/BO	0N/1 05/BON	1/1 04/BON/1	03/BON/1 0	2/BON/1 01/	/BON/1																																			No.Exceed BAC?			
-	AL1	ALZ E	CSEMP	CSEMP	ISQG/IEL Cana	PEL 1	1	1	1	1 1	1	18	5593 2855	93 382293	485593	282233	682233	782293	882233	185501	285501	385501 48	15501 5855	01 685	501 /8550	1 885501	985501	1085501	1185501	1285501 1:	85501 1	1485501 1	1585501 16855	01 1/855	501 1885	501 1985501	2085501	2185501	2285501	2385501	1/855/15 2/	355/15 3	\$/855/15 5	3/855/15	6/BSS/15 Av	verage	NO.Exceed BAC?	No. Excee	Ed ERL NO	. Exceed PEL?
Source			CSEIVIP	CSEIVIP	Cana		36 13.2	26 16.46	5 17.51	12.45	14.38		13.34 12		3 11.96	9.26	16.67	7 17.43	23.77	13.90	15.50			5.80 2	5.10 12.9	0 13.8	0 16.50	13.20	12.70	12.80	8.32	13.90	16.80 14		.40 18	3 00 13 20	18.40	16.00	14.00		17.00	17.50	20.30							
Arsenic	20	/0	0 31		1.		6 01														0.14	0.11	13.40 18		5.10 12.9						8.32	0.06	16.80 14					0.14	0.12	14.40	21100		20.30	17.80	20.30	15.3	1	<u>+</u>		0
Cadmium	0.4	370	81	1.2	52.3					0.13									<0.1											30.20						3.80 65.60					62.00			57 10		0.1		0		0
Chromium	50	3/0	81	81	52.3		19 52.9						73.43 40 58.57 33						18.88					1.90 5		0 57.0				30.20	27.90	24.00	53.10 37 33.90 13	90 37				62.90	38.80	44.80	26.40	/1.10	69.70	28.60	38.10	50.9	0			0
Copper	30	300	27	34	18.7	100 10.1	6 0.7		5 14.14												42.00		033 0		0.70 26.6					0.07	0.30	0.48	0.75 0	50 01.	.00 00		44.00	40.90	0.89			0.86	29.40	20.00	17.90	30.7	22	1/		0
Mercury	0.25	1.5	0.07	0.15	0.13												1.66				1.13							0.84					0.75 0.			.99 0.96	1.10								0.49	0.87	42	42		31
Nickel	30	150	36	-	-		55 24.2			22.49				.00 27.5	9 11.60		21.10	18.45	14.88		31.30				3.40 26.3	0 27.2				20.00	13.90	22.10	25.10 20	50 25.		.50 31.80	31.00	30.80	29.90	34.00		31.00	30.80	29.60	19.60	24.5		N/A	<u>A</u>	N/A
Lead	50	400	38	47	30.2		59 58.1			33.00	03.34		84.41 49		/ 25.34	23.13		+ 47.JO				09.30		3.80 4		10 56.80		62.50			00.00		58.50 50		.90 64		65.60	64.60	62.30				00.10	57.20	43.60	54.4	38	32		0
Zinc	130	600	122	150	124	271 106.	96 98.4	42 81.48	8 88.58	94.36	101.51	98.39	173.27 109	9.50 134.7	1 70.52	78.22	110.5	4 100.75	94.75	121.00	119.00	119.00	72.30 68	3.00 7	6.70 85.5	0 109.0	0 115.00	D 116.00	88.40	57.20	62.30	89.60	109.00 70	90 114	.00 117	7.00 121.0	123.00	121.00	114.00	131.00	110.00	119.00	128.00	117.00	95.80	103.1	5	1		0
					-	-														-						_																	V					4		
Napthalene	0.1		0.08	0.16	-	0.319		0.083	-	0.1342	0.0649				-		-			-						_		_	_										-		0.0624	J.0837	0.0303	0.0527	0.0607	0.075	3	0		0
Acenaphthylene	0.1		-	-	0.00587	0.128		0.001		0.0031	0.001					_																									0.001			0.001	0.001	0.002	N/A	N/A		0
Acenaphthene	0.1			-	0.00671	0.0889		0.012		0.0253	0.0111																																0.007	0.009	0.010	0.021	N/A	N/A	~	0
Fluorene	0.1		-	-	0.0212	0.144		0.156		0.3878	0.1224					_																										0.02	0.01	0.01	0.02	0.094	N/A	N/A	A	0
Phenanthrene	0.1		0.032	0.24	0.0867	0.544		0.126		0.2733	0.095																														0.11			0.09		0.127	8	1		0
Anthracene	0.1		0.05	0.085	0.0469	0.245		0.052	2	0.0986	0.0392																															0.09	0.03	0.03	0.04	0.052	3	2		0
Fluoranthene	0.1		0.039	0.6	0.113	1.494																																			0.14			0.11	0.12	0.135	5	0		0
Pyrene	0.1		0.024	0.665	0.153	1.398		0.183		0.375	0.1338																															0.23	0.10	0.12	0.14	0.180	8	0		0
Benzo(a)anthracene	0.1		0.016	0.261	0.0748	0.693		0.082		0.2112	0.0645																														0.07	0.12	0.05	0.06	0.06	0.089	5	0		0
Chrysene	0.1		0.02	0.384	0.108	0.846		0.090	9	0.2252	0.0698																														0.08	0.12	0.05	0.06	0.07	0.096	8	0	/	0
Benzo(b)fluoranthene	0.1			-																																					0.18	0.28	0.11	0.15	0.17	0.178	N/A	N/A	A	N/A
Benzo(k)fluoranthene	0.1		-	-	-					1 1																															1 I.					0.000	N/A	N/A	A	N/A
Benzo(a)pyrene	0.1		0.03	0.384	0.0888	0.763		0.098	1	0.249	0.0777																														0.08	0.13	0.05	0.06	0.07	0.103	8	0	/	0
Indeno(1,2,3cd)pyrene	0.1		0.103	0.24	-	-		0.080	6	0.1894	0.0611																														0.06	0.10	0.04	0.05	0.06	0.080	1	0		N/A
Benzo(ghi)perylene	0.1		0.08	0.085	-	T																																									0	0		N/A
Dibenzo(a,h)anthracene	0.01		-	-	0.00622	0.135																																			0.01	0.01	0.01	0.01	0.01	0.009	N/A	N/A	A	0
																																											/							-
PCBs	0.02	0.18	-	-	0.0215	0.189	0.005	864 0.0043	08 0	0.004385										0.012654	0.010207	0.007604 0	.002889 0.00	0.0	02302 0.009	61 0.006	99 0.00747	79 0.00710	0.005006	0.001	0.005	0.005	0.007 0.0	0.0	007 0.	.007 0.009	0.009	0.007	0.008	0.009	0.004		0.005	0.004		0.0060	N/A	N/A	A	0
TBT	0.1	0.5	-	-	-	- 0.001	81		0.00719																BDL																	0.006	0.00	0.004		0.005	N/A	N/A	A	N/A

Table F Disposal Site Average Data

							Granton Harbour	Narrow Deep	
	AL1	AL2	BAC		ISQG/TEL		Dredge Average	Average	Bo'ness Average
Source			CSEMP	CSEMP	Can				
Arsenic	20	70	25		7.2	41.6	18.3	11.1	
Cadmium	0.4	4	0.31	1.2	0.7	4.2	0.5	0.4	•
Chromium	50	370	81	81	52.3	160	63.0	49.8	50.91
Copper	30	300	27	34	18.7	108	48.7	31.3	30.66
Mercury	0.25	1.5	0.07	0.15	0.13	0.7	1.07	0.7	0.87
Nickel	30	150	36	-	-	-	34.1	30.5	24.53
Lead	50	400	38	47	30.2	112	99.9	66.3	54.37
Zinc	130	600	122	150	124	271	158.2	123.0	103.06
Napthalene	0.1		0.08	0.16	-	0.319	0.23	0.06	0.075
Acenaphthylene	0.1		-	-	0.00587	0.128	0.06	0.00	0.002
Acenaphthene	0.1		-	-	0.00671	0.0889	0.12	0.02	0.021
Fluorene	0.1		-	-	0.0212	0.144	0.16	0.15	0.094
Phenanthrene	0.1		0.032	0.24	0.0867	0.544	0.68	0.14	0.127
Anthracene	0.1		0.05	0.085	0.0469	0.245	0.28	0.05	0.052
Fluoranthene	0.1		0.039	0.6	0.113	1.494	1.02	0.11	0.135
Pyrene	0.1		0.024	0.665	0.153	1.398	1.26	0.18	0.180
Benzo(a)anthracene	0.1		0.016	0.261	0.0748	0.693	0.63	0.10	0.089
Chrysene	0.1		0.02	0.384	0.108	0.846	0.51	0.11	0.096
Benzo(b)fluoranthene	0.1		-	-	-	-	0.57	0.14	0.178
Benzo(k)fluoranthene	0.1		-	-	-	-	0.31	-	-
Benzo(a)pyrene	0.1		0.03	0.384	0.0888	0.763	0.64	0.09	0.103
Indeno(1,2,3cd)pyrene	0.1		0.103	0.24	-	-	0.38	0.08	0.080
Benzo(ghi)perylene	0.1		0.08	0.085	-	-	0.44	-	-
Dibenzo(a,h)anthracene	0.01		-	-	0.00622	0.135	0.09	0.0	0.009
PCBs	0.02	0.18	-	-	0.0215	0.189	0.050	0.0367	0.006
TBT	0.1	0.5	-	-	-	-	0.002	No data	0.005