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ABSTRACT

Abstract

Seal depredation is a common problem on Scottish salmon farms, causing an average loss

of £26,000 per year on each site. Economic losses are incurred principally from physical

damage to fish but also from the necessary repair of damaged equipment. Acoustic de-

terrent devices (ADDs) are widely used in Scotland as a means of reducing depredation,

as the sounds emitted by these devices are designed to deter seals from feeding at sites.

Despite this, little is known on how effective these devices are as their performance varies

widely with respect to deployment technique, target population and environmental condi-

tions. This study aims to inform aquaculture businesses in Scotland about the efficacy of

the common types of ADDs and provide an insight into seal behaviour around fish farms

so as to inform and improve deterrence strategies. Using records of seal-attributed mor-

talities from fish farms across Scotland, hidden Markov modelling is used to investigate

factors influencing the occurrence and severity of seal depredation events. The number of

expected salmon mortalities is found to be dependent on both season and region. The use

of an Ace Aquatec ADD reduced mortalities by an average of 70% whereas the Airmar

device caused only a 50% reduction. No significant reduction in mortalities was detected

from using a Terecos device. We further discuss the possible effects of seal abundance,

distribution and life history, prey availability and environmental conditions on regional

and seasonal variation in seal feeding behaviour. Secondary to this, we also conduct a case

study on a site where ADDs and a new electric net deterrent device are installed for the

first time. We find the combination of both the devices significantly reduces mortalities

but further studies are required to determine whether the electric net provides any added

benefit.
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1 INTRODUCTION

1 Introduction

Salmon farms in Scotland are frequently faced with economic losses caused by seal pre-

dation. An average of 264 fish per site per stocked month, the equivalent of £26,000 per

site per year (Northridge et al., 2013; Coram et al., 2014), is estimated to be lost due to

predation. Seals not only consume stock, but damage equipment and remaining fish, fur-

ther accentuating the costs. Thus, reducing seal attacks is a priority for the aquaculture

industry. Deterrent devices are employed on over 52% of sites in Scotland (Quick et al.,

2004) and range over a wide variety of kinds. Yet, despite their widespread use, little is

known about the efficacy of deterrent devices or how they can be best put to use. In this

study, we aim to quantify the effect of popular deterrents on predation and investigate

how deterrents could be used to better match the dynamics of how seals feed.

The aquaculture industry in Scotland, including both finfish and shellfish, is of great eco-

nomic importance and was worth over £560 million (at farm gate value) in 2012 (Scottish

Government, 2014). The salmon farm industry itself was worth £536 million in 2012

(Scottish Government, 2014), with Atlantic salmon (Salmo salar) accounting for over

98% of all marine finfish produced in Scotland (Marine Scotland Science, 2013). In 2013,

163,234 tonnes of salmon were produced from across 257 active sites in Scotland, all of

which were located on the western and northern islands and coastlines (Marine Scotland

Science, 2013). Sites were owned by a total of 21 different companies, but production was

dominated by seven main companies who collectively accounted for 98% of salmon farm

production (Marine Scotland Science, 2013). The industry directly employs 1,086 staff,

with numerous other jobs provided indirectly in downstream processing and marketing

(Marine Scotland Science, 2013; Coram et al., 2014). Furthermore, the aquaculture in-

dustry has plans for expansion and aims to reach a sustainable growth target of 210,000

tonnes of marine finfish production by 2020 (Scottish Government, 2014). It is the will to

sustain and grow this industry that makes further study of seal predation and deterrence

vital.

The costs incurred by seal predation stem from three principal sources. First, there is the

consumption of stock by seals and the incidental escape of captive fish (Northridge et al.,

2013). Second, the repairs necessary for damaged fishing gear and, third, the potential

reduced growth (Schotte and Pemberton, 2002) and increased disease susceptibility (Nash

et al., 2000; Northridge et al., 2010) of fish stressed by continual seal presence. All three

causes contribute to the economic losses experienced across the industry. Seal depredation

is reported as a serious issue on at least an occasional basis by 23% of all sites and as

a minor issue by a further 49% of sites (Northridge et al., 2010). Furthermore, here we

consider only grey (Halichoerus grypus) and harbour (Phoca vitulina) seals, but depre-
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1 INTRODUCTION

dation (the damage or removal of captive fish) is a prevalent problem with many marine

mammals worldwide including California sea lions (Zalophus californianus), South Amer-

ican sea lions (Otaria flavescens), Cape fur seals (Arctocephalus pusillus), killer whales

(Orcinus orca), false killer whales (Pseudorca crassidens), sperm whales (Physeter macro-

cephalus) and bottlenose dolphins (Tursiops truncatus) (Shaughnessy et al., 1981; Yano

and Dahlheim, 1995; Beeson and Hanan, 1996; Sepúlveda and Oliva, 2005; Sigler et al.,

2008; Rabearisoa et al., 2015). The range of marine mammals involved reveals why depre-

dation must be considered on both a focal and global scale: deterrent strategies must

target each perpetrator singly, but also be aware of its effect on the surrounding ecosys-

tem. Additionally, the depredation is widespread geographically (e.g. California, Chile,

southern Africa, Ireland and the Bering Sea) and occurs in a variety of fishery types

(Read, 2008; Schakner and Blumstein, 2013) where deterrent strategies necessarily differ.

The prevention of seal predation usually involves the improvement of either net design or

acoustic deterrent devices (ADDs). Nets made with tailored materials and with smaller

mesh sizes have been essential in improving depredation by reducing the ability of marine

predators to access fish (Nash et al., 2000; Schotte and Pemberton, 2002; Königson et al.,

2007). Nevertheless, the economic losses can still be profound. Hence, since the 1970’s,

acoustic deterrent devices (ADDs) have been considered as an additional method of re-

ducing marine mammal depredation (e.g. Anderson and Hawkins (1978)). These devices

operate on the principle of producing an aversive or threatening stimulus, with the aim

of inducing an avoidance response in the animal (Götz and Janik, 2010). They produce

loud sounds underwater which are unpleasant or uncomfortable at close ranges (Reeves

et al., 1996), or mimic predator sounds such as those of killer whales (Jefferson and Curry,

1996). ADDs are currently widely used but can have highly variable success (Götz and

Janik, 2013). The main problem is that the efficiency of these devices is thought to reduce

over time as animals habituate to the signal, especially when strong motivation (such as

food presence) to tolerate the signal exists (Kastelein et al., 2006; Graham et al., 2009).

ADDs may also produce a “dinner bell” effect and attract predators to a potential food

source (Jefferson and Curry, 1996). Additionally, these devices will be less effective for an-

imals with poor hearing or hearing damage caused by exposure to ADDs or other sound

sources. There is also serious concern over the long-ranging impacts of ADDs on non-

target species, in particular cetaceans (Gordon and Northridge, 2002). Harbour porpoises

(Phocoena phocoena) seem to be highly sensitive to ADDs and so can face habitat exclu-

sion when ADDs are active (Johnston, 2002; Olesiuk et al., 2002). In one case porpoises

have been observed to exhibit avoidance behaviour up to 7.5 km from the ADD source

(Brandt et al., 2013). ADD devices must therefore be used with regard to the ecosystem

as a whole so as to maximise the benefits of these devices whilst minimising the potential

drawbacks.
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1 INTRODUCTION

Improving net design and ADD performance is a primary focus of developers; however, it

raises the question of whether other possible deterrent devices could be implemented. For

decades, electric fences have been used in terrestrial ecosystems for the control of both

livestock and wildlife (Karhu and Anderson, 2006). In wildlife management they have been

used to control the movement of animals by excluding the target animals from particular

regions. These have been applied in cases where the grazing (Porter, 1983; Reidy et al.,

2008) or predation (LaGrange et al., 1995) of wild animals have been successfully con-

trolled. Electric fences have also been recommended as the best method for reducing otter

depredation at fish farms in Finland and France (Skaren, 1990; Leblanc, 2003). As electric

fields are a form of tactile deterrent device, they would be expected to be more effective

than acoustic deterrents and be more difficult to habituate to (Schakner and Blumstein,

2013). The development of a similar deterrent system for use in marine ecosystems could

present a major step forward in predator control. Forrest et al. (2009) developed and

tested the use of electric fields to deter harbour seals in salmon gill-net fisheries. Both

captive and wild seals exhibited strong avoidance of a low-voltage pulsed electric gradi-

ent when placed across a pool or river. The electric gradient was also integrated into an

experimental drift net where half of the net was electrified. Significantly higher salmon

catches were recorded in the electrified portion of the net and net damage rates were also

lower. It is notable that behavioural responses to electric fields in seals were recorded at

substantially lower voltages than that thought to cause a response in salmonid fish (Lines

and Kestin, 2004; Forrest et al., 2009; Milne et al., 2013). Given that the conductivity of

sea water is higher than for the freshwater system investigated by Forrest et al. (2009),

the power required to run a similar system in seawater is a major challenge. Pool trials

by Milne et al. (2013) review the testing of a similar device for seawater which generates

a pulsed, low-voltage electric field within a localised area around a feeding station. Both

grey and harbour seals were able to detect electric fields, with the level of response varying

according to voltage (signal amplitude), pulse duration and pulse length. At low levels,

seals refrained from entering the feeding station until food was present and exhibited mus-

cle tremors when reaching in for food. All animals showed strong aversion to high level

electric fields with refusal to enter the feeding station when food was presented. Thus,

electric fields may be a welcome addition to the current deterrent strategies employed in

marine mammal and fishery interactions.

Sites in Scotland apply a variable deterrent regime comprising many parts. Foremost is

the good husbandry practices such as the regular removal of dead fish from pens and the

maintenance of good net tension in different tidal states (to reduce the ability of seals to

push on nets to access fish) (Northridge et al., 2013). Coupled with this upkeep is the

sporadic use of ADDs. The majority of devices in use are from three manufacturers (Ace

Aquatec, Airmar and Terecos) (Lepper et al., 2014) but the true extent and distribution
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1 INTRODUCTION

of devices in Scotland is currently unknown. Sites are also allowed to carry out lethal

removal of seals through licensed shooting (under the Marine (Scotland) Act (2010)) to

protect fish and fish farms during periods of high depredation. Although this may remove

‘problem individuals’ (Königson, 2007; Graham et al., 2011), it contradicts conservation

efforts and is not a long-term solution. Overall, the Scottish aquaculture industry can

clearly benefit from improved knowledge of how deterrents could be managed so as to

minimise economic loss and seal shootings.

To quantify the effect of deterrents and capture the dynamics of feeding cycles is a chal-

lenging task for two reasons. First, available data is collected by sites during operation

rather than from a designed experiment. Second, the processes generating the data are

often temporally correlated and require sophisticated statistical techniques. For example,

data supplied by sites usually comprises a long list of predation counts over time. These

counts are often highly variable (over-dispersed) which immediately prohibits the appli-

cation of basic statistical tools such as generalised additive models (Zuur et al., 2009).

Furthermore, seal presence at a site is unknown so zero mortalities may indicate seal

absence or satiation; a complication that most popular statistical methods cannot accom-

modate. State-space models (SSMs), however, are ideal for such data. These models are

often used in ecology to study the (unknown) condition or state of ecosystems or indi-

vidual animals. They are built up from two parts: a state process which describes how

the hidden state changes over time, and an observation process which describes the link

between the state and what we observe (Zucchini and MacDonald, 2009). In marine mam-

mal science for example, they have been used to estimate grey seal population sizes from

survey data (Thomas and Harwood, 2003), infer health from observations of body condi-

tion in North Atlantic right whales (Eubalaena glacialis) (Schick et al., 2013a) and study

the body condition of elephant seals (Mirounga spp.) using measurements of drift dive

behaviour (Schick et al., 2013b). Hidden Markov models (HMMs) have the same structure

as state-space models but they assume there are a finite number of states (Schliehe-Diecks

et al., 2012). These finite models are therefore much easier to fit and present a reasonable

alternative when the system studied can be divided into a finite number of behavioural or

ecological states. One of the most common applications of HMMs in ecology is to animal

movement and behaviour data. By extracting measurements (e.g. travel speed, turn angle)

from telemetry data on animal movement, HMMs can be used to infer the behavioural

state (travelling, resting, foraging) of tagged animals (Franke et al., 2004; Patterson et al.,

2009). One study (Franke et al., 2006) used telemetry data to estimate behavioural states

and prey kill sites in wolves (Canis lupus). Schliehe-Diecks et al. (2012) used observa-

tions on the feeding behaviour of grey mouse lemurs (Microcebus murinus) to investigate

changes in the underlying motivational state (hungry, satiated) of animals. Modelling of

the feeding and foraging behaviour of animals such as this can be used to gain important
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1 INTRODUCTION

information on predation rates. HMMs are therefore a powerful tool for studying changes

in animal feeding behaviour. Here, we aim to apply hidden Markov modelling to the feed-

ing behaviour of seals at fish farms and infer what, if any, effect deterrents may have and

how feeding changes temporally and spatially.

This research project aims to inform aquaculture businesses about the economic efficacy

of ADDs and provide a summary of seal behaviour around fish farms so as to improve

deterrent strategies. In Section 2.1, we introduce our study of seal depredation across

Scotland and develop the statistical methods used. Additionally, in Section 2.2, we focus

on a case study of a salmon farm site where ADDs and a new electric net device were

recently installed. We present the results of both studies in Section 3 and discuss how our

findings impact upon the aquaculture industry at large in Section 4.
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2 METHODS

2 Methods

2.1 Seal Depredation Across Scotland

2.1.1 Data Collection

Under the SSPO Code of Good Practice (Scottish Salmon Producers Organisation, 2015),

Scottish salmon farmers are recommended to inspect pens and stock frequently for signs

of damage. They are also required to regularly remove dead fish and record the likely

cause of death in each instance.

Fish mortality data was provided from a fish farm company for a number of salmon

aquaculture sites on the west coast of Scotland. Mortality data was collected by each site

on a weekly basis and classified into 21 causes of death (e.g. due to different aspects of

production, types of disease, environmental causes and predation). Predation mortalities,

attributed to both grey (Halichoerus grypus) and harbour (Phoca vitulina) seals, are

typically identified by puncture wounds, flank gashes and missing flesh of collected fish

(Northridge et al., 2013). Also provided were site-specific details such as the location and

number of pens on each site. If sites used an acoustic deterrent device (ADD), the type of

ADD used was also given. The data used here were collected between January 2007 and

June 2013.

2.1.2 Data Preparation

There was a difference in the temporal resolution of mortality data provided by different

sites, with some showing weekly counts and others showing data aggregated by month.

Given that the interest here was to investigate long-term patterns, we reduced the tem-

poral resolution to increase the number of sites in the analysis. Mortalities attributed

to predation were extracted and summed for each month where required. Salmon farm

sites were located in distinct geographic clusters, each experiencing different ecological

and environmental dynamics. The sites were therefore grouped into three regions: South-

West Scotland (comprising all sites south of Oban), North-West Scotland (comprising all

mainland sites north of Oban and the islands of Mull and Skye) and the Outer Hebrides.

Finally, continuous covariates were standardised (i.e. to have zero mean and a standard

deviation of one).
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2 METHODS

... ... Ft 

Mt 

Ft-1 

Mt-1 

Ft+1 

Mt+1 

Hidden process 

(seal feeding state) 

Observations 

(fish mortalities) 

Figure 1. Dependence structure of the hidden Markov model (HMM).
For each time step t, seal behaviour Ft around salmon farms is either
in a “feeding” or “non-feeding” state and this is only dependent on the
state in the previous time step. Observations of fish mortalities Mt are
made where each observation depends on the current hidden state.

2.1.3 Constructing a Hidden Markov Model (HMM)

Seal predation mortality counts typically take the form of long periods of no mortalities

interspersed with sharp peaks when seal attacks occur. Hence, a model which can dis-

tinguish between these two distinct states of predation is critical. During these attacks,

mortality levels are variable and can occasionally reach extremely high levels (e.g. due

to catastrophic events such as severe net damage). Attack length can also vary highly.

This type of data is therefore a challenge for statistical modelling: mortality counts are

often zero-inflated and overdispersed. Zero-inflated models, which are designed to cope

with an excessive number of zeros (Agarwal et al., 2002), do not account for the temporal

correlation in predation counts and so cannot be applied here.

A hidden Markov model (HMM) is a type of state-space model with two components

(Cappé et al., 2005; Zucchini and MacDonald, 2009). First, there is a state process repre-

senting the unknown condition of a system that can switch between a number of different

states over time. In this application, we considered this to be the presence of seals around

a fish farm or their motivational state to feed at a farm. Second, there is an observa-

tion process whereby observations made at each time depend on the hidden state of the

system. Here, we observed the number of fish mortalities attributed to seals. Given that

the hidden state is dependent on the state in the previous time step and each observa-

tion is dependent on the current state (Cappé et al., 2005), the HMM was constructed

using the dependence structure illustrated in Figure 1. These models can accommodate

both overdispersion and temporal dependence (appropriate for coping with long time se-

ries containing mostly zeros) and so they are ideal for applying to seal depredation data

(Zucchini and MacDonald, 2009).
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2 METHODS

The hidden feeding process is here represented as a Markov process. For each discrete

time step t, the current state (Ft) of the system is only dependent on the state in the

previous time step (Ft−1) (and not on any earlier time steps) (Zucchini and MacDonald,

2009). Hence, the probability of the system being in a particular state at time t (Ft = ft)

is conditional on the value of the previous state:

Pr(Ft = ft|Ft−1 = ft−1, Ft−2 = ft−2, . . . F0 = f0)

= Pr(Ft = ft|Ft−1 = ft−1)

This is known as a first order Markov chain (Zucchini and MacDonald, 2009) as the

current state is only dependent on the previous state. Here, we consider two states: a

“non-feeding state” (state 1) where seals are absent from the site and a “feeding state”

(state 2) where seals are considered to be present locally and actively feeding at the site.

Each time unit t is one month in duration.

A key component of the Markov chain is the transition probability matrix. The transition

probability matrix Γ is a square matrix of probabilities (Zucchini and MacDonald, 2009):

Γ =

(
1− γin γin

γout 1− γout

)

where γin is the probability of moving into a feeding state and γout is the probability of

moving out of a feeding state. For example, γin = Pr(Ft+1 = 2|Ft = 1) is the probability

of entering a feeding state at the next time step given that the current state is non-feeding.

The matrix is characterised by two parameters because any system which is in state i at

time t must either stay in state i or switch to state j at time t+ 1. Therefore, the rows of

Γ sum to one (Zucchini and MacDonald, 2009; Schliehe-Diecks et al., 2012).

The Markov chain is also characterised by an initial distribution δ = (δ1, δ2), where δ is

a row vector containing the probability of a system starting in either state (Zucchini and

MacDonald, 2009). To deduce the distribution of F1 we simply multiply δ by the transition

probability matrix Γ (Zucchini and MacDonald, 2009). Hence, at any time t (from t = 0

onwards) the distribution of Ft can be given by δΓt. In theory, if the chain is run forever

(as t → ∞) the distribution approaches a dynamic equilibrium state (δΓt → δ∗) where

the proportion of time spent in each state remains the same (Zucchini and MacDonald,

2009). δ (or δ∗) is sometimes also called the equilibrium distribution since δ∗Γ = δ∗.

The observed fish mortalities attributed to seals are dependent on the underlying state

(Figure 1) (Schliehe-Diecks et al., 2012). If the system is in a non-feeding state (Ft = 1),

seal-attributed mortalities at this time (Mt) must be equal to zero as there are no seals
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2 METHODS

present to attack fish (Pr(Mt = 0|Ft = 1) = 1). In a feeding state (Ft = 2), we assume

the mortalities follow a negative binomial distribution with size parameter r and success

probability p. The flexibility of the negative binomial allows for possible overdispersion

to be accommodated (Ver Hoef and Boveng, 2007; Zuur et al., 2007). The model assumes

that the distribution of mortalities given the current feeding state is independent of all

previous states and observations (Schliehe-Diecks et al., 2012).

There are therefore four different parameters to estimate: the probability of switching

into a feeding state (γin), the probability of switching out of a feeding state (γout) and the

two parameters of the negative binomial distribution (r, p) which relate to the number

of fish mortalities within a feeding state. We estimate these parameters by maximum

likelihood estimation (MLE), where the likelihood L is constructed as follows (Zucchini

and MacDonald, 2009). For each observation mt,

P(mt) =

(
Pr(mt|F = 1) 0

0 Pr(mt|F = 2)

)

which is a diagonal matrix with the diagonal elements being the probability of the obser-

vation for each of the hidden states (Zucchini and MacDonald, 2009). To construct the

likelihood we take the product of the equilibrium distribution δ and ΓP(mt) for times

t = 0, 1, 2, . . . T and so

L = δP(m0)ΓP(m1)ΓP(m2)...ΓP(mT )1

where 1 is a 2 × 1 column vector of ones (Zucchini and MacDonald, 2009). This matrix

product is an efficient algorithm (known as the forward algorithm) and is equivalent

to summing over all possible sequences of hidden states whilst weighting them by their

likelihood (Zucchini and MacDonald, 2009).

Within biological data such as that analysed here, there are often gaps in the time series

where we do not make an observation Mt at time t. We do not gain any information about

the hidden state in these time steps but we know that the system will still follow the same

transition probability matrix Γ. Hence, we simply replace P(mt) with the identity matrix

for each missing observation.

2.1.4 Including Covariates

The parameters γin, γout and r can all depend on other variables (Zucchini and MacDonald,

2009; Schliehe-Diecks et al., 2012), allowing us to examine the factors influencing the

transitions between states and the number of mortalities per month of a feeding state.
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2 METHODS

We use a generalised linear modelling (GLM) framework:

g(xi) = β0 + β1X1 + . . .+ βkXk

where g is a link function, β0 is the intercept term and β1 . . . βk are the estimates for the

effect of explanatory covariates X1 . . . Xk (Zuur et al., 2007, 2009). We use a logit link to

ensure that the values of γin and γout remain between zero and one, and a log link for the

count data r:

logit(γin) = ηγin

logit(γout) = ηγout

log(r) = ηr

where ηγin , ηγout and ηr are the linear predictors. We consider several linear predictors

for each of the parameters, using combinations of the explanatory variables described in

Table 1. Factor variables only were considered in the linear predictors for the transition

probabilities as these could be easily estimated for all possible combinations of the factors.

Models requiring estimation of transition probabilities for all combinations of factor and

continuous variables were not computationally feasible.

Table 1. Description of covariates (continuous (C) and factor (F)) considered in
models and the range of values they could take. Shown also are the parameters
they were each considered for.

Covariate Description C/F r γin γout

Month Month of the year (Jan-Dec) F X X X

Region Region of Scotland (NW, Outer Hebrides, SW) F X X X

ADD Type ADD used (none, Ace Aquatec, Airmar, Terecos) F X X X

Year 2007-2013 C X

Pen Number Number of pens on site (4-16) C X

In addition to the fixed effects of covariates on predation mortalities, there is likely to be

further heterogeneity in mortalities due to unmodelled differences between sites. Mixed

effects models handle such a situation by combining linear effects with individualistic

variation (Zuur et al., 2007, 2009). We add a random effect ui ∼ N(0, σ2) that adds

additional variation to the intercept for each site (Zuur et al., 2007). This random effect

is assumed to be normally distributed with a mean of zero and variance σ2. Essentially

we consider all sites as being similar on average, but estimate an adjustment factor for

each site from the main estimate. For a given set of known random effects (u1, . . . , us)

where parameters can be calculated from GLMs, the likelihood for the HMM is the same
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as that described in Section 2.1.3:

Lf (u1, . . . , us) = δP0ΓP1ΓP2...ΓPT1

However, these random effects are unobserved and so must be averaged over. Hence, the

likelihood for the mixed model (MHMM) (Altman, 2007) is given by

Lm =

∫
. . .

∫
Lf (u1, . . . , us)φ(u1, . . . , us)du1 . . . dus

where φ is the standard normal density. This multidimensional integral was numerically

approximated using a discrete grid across the integration interval in the same manner as

Schliehe-Diecks et al. (2012).

2.1.5 Model Fitting and Parameter Estimation

Maximum likelihood estimates for models were obtained using a Newton-Raphson type

optimisation procedure (Ch. 3, Zucchini and MacDonald (2009)) using the ‘nlm’ function

in R (Dennis and Schnabel, 1983; Schnabel et al., 1985). Asymptotic variance estimates

were obtained using the negative inverse Hessian (Ch. 3, Zucchini and MacDonald (2009)).

All analysis was conducted in R (R Core Team, 2014) using code adapted from the sample

code provided by Zucchini and MacDonald (2009).

2.1.6 Model Selection and Evaluation

A maximal model containing all candidate explanatory variables (Table 1) was con-

structed and backward elimination was used to select the best fitting model. Variables

were removed from the model in order of significance, with the least significant terms

removed first. At each stage, models were compared by Akaike’s Information Criterion

(AIC) (Burnham and Anderson, 2002), with the aim of finding the model with the lowest

AIC value. We also consider including a random effect for site to see if this improves the

model. The complexity of these models means there are no standard tests to check the

goodness-of-fit. Thus, we simply compared the model predictions with the original data

to confirm they were reasonable.

The best model was then used for two purposes. First, to infer the significant factors

that determine when seals are likely to feed and how likely seal predation is to subside

when present. Second, to determine the significant factors affecting the mean number of

mortalities during a feeding event and whether ADDs in particular affect this.
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2.2 Case Study: Installing Deterrents to a Site in Orkney

2.2.1 Field Site and Setup

A case study was conducted on a salmon farm situated in the Orkney islands off the north

coast of Scotland. The farm consists of twelve circular pens arranged in two rows of six

(Figure 2). Each pen is 90 metres in diameter and is fitted with an anti-predator net.

This site experienced high levels of seal-related mortalities in early May 2015 immediately

after an extended fallow period. The company Ace Aquatec therefore installed six of their

ADDs (Universal Scrammer 3 (US3)) across the site on 13th May to combat this issue

(Figure 2). The US3 produces sounds in the range of 10-20 kHz and is reported by the

manufacturer to have a source level of 195 dB re 1 µPa at 1 m (rms).

Ace Aquatec also installed a new marine mammal deterrent device on one of the pens on

13th May 2015 (Figure 2). The device consists of a net which can be attached to a pre-

existing salmon pen and generates a pulsed, low-voltage electric field within a localised

area (a few centimetres) around the net. The net has a series of strings running out

from the base of the pen, as this is considered to be the direction from which most seal

attacks occur. In principle, the net was designed to provide a tactile response to enforce

the deterrence of marine mammal predators when paired with the acoustic system. For

details of captive trials of a preliminary version of the device, see Milne et al. (2013).

It is important to note that, prior to these installations, the site has not used any deterrent

systems before. In order to minimise losses, deterrents were installed on the pens with the

highest levels of fish mortalities.

1 2 3 4 5 6 

12 11 10 9 8 7 

Figure 2. Layout of case study salmon farm in Orkney. Six pens were
fitted with ADDs (shown by the red circles, with crosses indicating the
approximate location of the transducer) and one pen was fitted with a
new electric net device (highlighted in blue).
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2.2.2 Data Collection

As part of good practice, dead salmon in pens at the Orkney site are collected weekly,

counted, classified and recorded (similarly to that described for previous sites in Section

2.1.1). The company provided us with data on seal attack mortality numbers for the

period of July 2012 to July 2015. This included counts of the number of mortalities per

pen per week.

2.2.3 Using a HMM to Study Changes in Seal Depredation

In a similar method to that described in Section 2.1.3, a hidden Markov model (HMM)

(recall Figure 1) was constructed to investigate the changes in seal-attributed fish mortal-

ities and assess whether the addition of the new deterrent devices reduced the number of

mortalities. The new model had the same hidden states and state process as the previous

model. Differing from the previous model, here, a time step was of duration one week.

Another difference was that the state switching probabilities (γin, γout) were not consid-

ered as GLMs and so did not depend on any covariates. This was due to the lack of data

limiting the complexity of the model.

For this site, each observation M t is a vector of twelve elements

M t = (Mt,1, . . . ,Mt,12)

where Mt,i is the number of seal-attributed mortalities in pen i at time t. As before,

mortalities at pen i must be equal to zero if the system is in a non-feeding state (Pr(Mt,i =

0|Ft = 1) = 1). If the system is in a feeding state, we assume the mortalities in each pen

(Mt,i) follow a negative binomial distribution with size parameter r and success probability

p. We use the GLM structure with a log link function to include covariates as explanatory

variables for the number of fish killed in a feeding state (Table 2). We included covariates

to investigate whether there was an effect on a particular pen to which a deterrent device

(ADD, electric net) was attached as well as a covariate for the site-wide (or ‘global’) effect

of installing the deterrent systems.

Table 2. Description of covariates considered as explanatory variables for the
number of fish killed in a feeding state. All were factor variables.

Covariate Description

Month Month of the year (Jan-Dec)

ADD Pen ADD active on a specific pen (Y/N)

Net Pen Electric net active on a specific pen (Y/N)

ADD & Net Overall ADDs and electric net active anywhere on the site (Y/N)
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The number of mortalities within individual pens may not be independent of each other

and so a random effect (Zuur et al., 2007, 2009) was included to account for this. A

random effect ut for each week t was included in the linear predictor for the number of

fish mortalities:

log(r) = ηr + ut, where ut ∼ N(0, σ2)

where ηr is the linear predictor for the fixed effects, similar to Section 2.1.4. Here, ut

represents the correlation between pens. For example, in some weeks the mortalities will

be high in one pen and so you might expect them to be high in the other pens as well. For

any given week, there is a mean number of mortalities and the random effect describes

how each pen varies around this. Given ut is known, this now captures all of the pen

correlation and so the pens can then be considered as independent negative binomial

responses.

A mixed HMM was constructed using all of the explanatory covariates described, with

the aim of determining what factors were significant in affecting the number of mortalities

during a feeding event. As in Section 2.1, analysis was conducted in R (R Core Team,

2014) using code adapted from Zucchini and MacDonald (2009).

Given that this is a small dataset, one might suggest using a simpler modelling approach

instead. However, a simpler model would not be sufficient in this case as it could produce

a spurious significant result where a more complex model (capturing the temporal de-

pendence, overdispersion, zero-inflation and seasonality in the data) would conclude there

were no significant results.
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3 Results

3.1 Seal Depredation Across Scotland

In total, data were collected from 40 sites across the west coast of Scotland, 27 of which

used ADDs. Salmon mortality records for each site typically spanned the entire study

period of 78 months (with the exception of occasional missing data points), resulting in a

total of 2126 observations. When fish mortalities due to seals occurred, the mean number

recorded per month was 462 (SD = 1007,min = 1,max = 10460).

Table 3. Summary of top three models for seal depredation ranked by AIC.
Shown are models where the number of mortalities in a feeding state (r), prob-
ability of switching into a feeding state (γin) and probability of switching out
of a feeding state (γout) are influenced by combinations of month (Mon), region
(Reg), ADD type (ADD) and number of pens (PenNo). Also shown is a model
containing a random effect (RE) for site variability.

Model specification AIC ∆AIC

r γin γout

Reg + ADD + PenNo + RE(Site) Mon + Reg Mon 11571.94 0.00

Reg + ADD + PenNo Mon + Reg Mon 11589.96 18.02

Reg + ADD + PenNo Mon + Reg Mon + ADD 11590.88 18.94

The best fitting model for seal depredation included combinations of region, ADD type,

pen number and month as explanatory variables of the three different parameters as well

as a random effect for site (Table 3). In this model, the probability of switching into a

feeding state (γin, p < 0.05) and the probability of switching out of a feeding state (γout,

p < 0.01) were both significantly different from that expected by chance. The probability

of moving into a feeding state (γin) was dependent on both month and region (Figure

3). There was not a significant difference in γin between the North-West and the Outer

Hebrides (p = 0.239), but it was significantly lower in the South-West compared to the

other two regions (p < 0.001). There were seasonal changes in γin where there was a higher

chance of switching into a feeding state in the autumn or winter months (Figure 3). The

probability of switching into a feeding state was significantly lower (p < 0.05) in April,

May, June and July compared to January. The probability of moving out of a feeding

state (γout) was dependent only on month, with this probability being highest in the

summer months (Figure 3). Out probabilities were significantly lower in May (p < 0.05)

and significantly higher in July (p < 0.05) compared to January.

The mean number of fish killed in a feeding state (r) was dependent on region, ADD type

and pen number (Table 3). The number of pens on a site had a significant effect on the
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Figure 3. Estimated transition probabilities from the best fitting model for
seal depredation in Scotland. The probability of moving into a feeding state
(γin) depended on both month and region (solid lines): North-West (red), Outer
Hebrides (green), South-West (blue). The probability of moving out of a feeding
state (γout) depended only on month (black dashed line).

number of mortalities (p < 0.001) where the number of expected mortalities increased

with pen number. Adding an extra pen to a site increased the number of fish mortalities

by 13%. The number of fish killed was also dependent on region, with mortalities being

highest in the North-West, moderate in the Outer Hebrides (an average of 70% lower)

and lowest in the South-West (a further 15% lower) (Figure 4). Both the Outer Hebrides

and the South-West had mortalities which were significantly lower (p < 0.001) than in the

North-West. ADD type used on a site also affected the number of mortalities. Compared

to sites using no deterrent devices (Figure 4- shown in black), using an Ace Aquatec ADD

reduced the number of mortalities significantly (p < 0.001) with an average reduction of

70% (Figure 4- shown in red). Using an Airmar ADD (Figure 4- shown in green) also made

a significant difference (p < 0.01), with an average reduction in mortalities of 50%. Sites

which used a Terecos ADD experienced no reduction in mortalities, with mortalities being

insignificantly different (p = 0.497) from when no deterrent device was used. Expected

mortalities per month for Figure 4 were calculated by multiplying estimates for the number

of fish killed in a feeding state by the proportion of time expected to be spent in a feeding

state each month (using the equilibrium distribution δ). These were calculated for an

average site with eleven pens and so estimates would need to be adjusted to obtain

expectations for larger or smaller sites. The final model also contained a random effect

for site individuality with a standard deviation σ = 0.565.
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Figure 4. Expected salmon farm mortalities across Scotland for different regions, months
and deterrent systems. Shown are the estimated number of mortalities per month for each
ADD type used: none or Terecos (black), Ace Aquatec (red) and Airmar (green). Expected
mortalities were calculated for an average site size of 11 pens. Note the differences in the
axis scale used for mortalities in the different regions (A, B, C).
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3.2 Case Study: Installing Deterrents to a Site in Orkney

For the salmon farm site in Orkney there were 108 data points of mortality observations,

only 9 of which occurred after the installation date of the deterrent systems. When seal-

attributed fish mortalities did occur on site, the mean number recorded on the site per

week was 189 (SD = 153.9,min = 7,max = 728) with a mean of 15 per pen (min =

0,max = 639).

Table 4. Summary of parameter estimates, standard errors and p-values for the
mixed HMM for seal depredation at the case study site in Orkney. Parameters
which were significant at the p < 0.05 level are highlighted by an asterisk. The
parameters r to γout are presented on the natural scale and the remainder of the
parameters are on the scale of the linear predictor (as they were all considered
as covariates for r).

Parameter Name Estimate SE P-value

r -1.215 0.189 <0.001*

p 0.025 0.002 <0.001*

γin 0.325 0.126 0.082

γout 0.059 0.024 <0.001*

Global ADD effect -0.508 0.266 0.028*

Pen ADD effect -0.247 0.244 0.156

Pen Net effect 0.277 0.390 0.239

Month: February 0.087 0.271 0.374

Month: March 0.522 0.324 0.054

Month: April 0.451 0.301 0.067

Month: May 0.523 0.234 0.013*

Month: June 0.653 0.279 0.010*

Month: July 0.427 0.287 0.068

Month: August 1.023 0.516 0.024*

Month: September 0.452 0.416 0.139

Month: October 0.282 0.256 0.136

Month: November -0.263 0.330 0.213

Month: December -0.107 0.287 0.354

The model parameter estimates as well as their significance are summarised in Table 4.

The probability of switching into a feeding state (γin) was not significantly different from

random (p = 0.082) and so a system which is in a non-feeding state is equally likely to

switch or stay in the same state. The probability of switching out of a feeding state (γout)

was significantly different from that expected by randomness. There was a seasonal effect
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detected where some of the summer months had significantly higher mortalities than in

January (Table 4). Having an active ADD on a particular pen did not affect the number

of mortalities in that pen during a feeding state (p = 0.156). Similarly, there was no effect

detected from having the electric net on a particular pen (p = 0.239). However, there

were significantly less mortalities (p = 0.028) across the site (a global effect) when the

six ADDs and the electric net were all active. Due to the setup of this case study it is

not possible to isolate the effect of the ADDs from the electric net or estimate which

contributed more to this result. The model also contained a random effect for week with

a standard deviation σ = 0.850.
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4 Discussion

4.1 Seal Depredation Across Scotland

The occurrence and severity of seal predation attacks on Scottish salmon farms was found

to be dependent on a number of different factors. There was a clear seasonal trend detected

(Figure 3), with seals more likely to abandon feeding at a site in the summer than the

winter. They were also more likely to feed at farms in the autumn and winter months.

This means that during the summer seal attacks will generally be less common. When

they do occur there is a high chance of them ending and so they are likely to be short

in duration. In contrast, depredation events in autumn and winter are more likely to

occur and are likely to last for months at a time as there is a low probability that the

attack will end. This trend is consistent with the general perception within the industry,

where seal depredation is commonly reported to be worst in winter (Northridge et al.,

2013). The peak of depredation occurrence appears to be around January and February,

coinciding with the end of the grey seal breeding season (Cronin et al., 2013). As breeding

seals tend to fast during this time (Harris, 2007), individuals will have to find food fast

to build up energy stores again. Fish farms could therefore be seen as a quick and easy

food source for seals during this time, where their presence is generally reliable (with

the exception of fallow periods) and fish can be found in high quantities. The occurrence

of depredation events increases from summer to autumn, coinciding with the end of the

breeding season of the harbour seal (Cunningham et al., 2010) which also fasts during

this period. Alternatively, this increase could be caused by grey seals increasing their

food intake to stock up for the breeding season ahead. Therefore, monthly changes in

depredation rates can be explained by important changes in life history stages and energy

requirements of seals.

Seasonal changes in depredation are also likely to be dependent on changes in prey avail-

ability. Seals are generalist predators and so feed opportunistically on whatever prey is

abundant at the time (Brown et al., 2012). This results in large variations in UK seal diet

between different times of year (Hall et al., 1998; Hammond and Grellier, 2005; Harris,

2007; Brown et al., 2012). During winter, there is thought to be less prey available for

seals in coastal Atlantic waters. Prey patches become more scattered and unpredictable

and so seals often have to travel further offshore to feed (Breed et al., 2009). A study by

Cronin et al. (2013) found that grey seals in the northwest Atlantic travelled significantly

longer distances on foraging trips during the winter months, suggesting that prey is not

locally abundant at this time of year. Hence, the use of fish farms as a local resource for

seals during the winter could have substantial benefits for their energy budgets.
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In addition to seasonal trends, there were clear regional differences in seal depredation

observed. Both the probability of a seal beginning to feed at a site (Figure 3) and the

number of fish eaten (Figure 4) depended on region. Seal-attributed mortalities are gen-

erally highest in the North-West of Scotland, moderate in the Outer Hebrides (an average

of 70% lower) and lowest in the South-West (a further 15% lower). There is also a lower

chance of a seal beginning to feed in the South-West. Northridge et al. (2013) additionally

confirm depredation rates to be lower in the Outer Hebrides than in the North-West. Our

analysis has furthered our knowledge by providing an additional comparison to sites in

the South-West of Scotland. Regional differences are likely to be the result of a combina-

tion of different factors. First, the number of seals present in an area could influence the

number of mortalities. The estimated density of both grey and harbour seals is lower in

the South-West than in the other two regions (Jones et al., 2013). It could be speculated

that where more seals are present, more competition exists between seals for food and so

more seal attacks on fish farms might be expected. However, a comparison by Northridge

et al. (2013) found that fish farm sites closer to seal haulout sites did not experience an

increased frequency or intensity of depredation. The second factor that may determine

regional differences is prey availability. The regional differences in seal diet in the UK

are well-documented (Hammond and Grellier, 2005; Brown et al., 2012), with animals in

different regions consuming different quantities of each prey species in order to make up

their nutritional requirements. Regional depredation differences may be a result of diet

differences based on present or historical availability of prey. Third, and finally, the geo-

graphical and biological differences inherent in each site are a key factor in determining

whether depredation will be a problem. For example, the low levels of depredation ob-

served in the South-West may be because many sites are located in relatively more isolated

(inland) sea lochs where seals are less likely to frequent. We discuss further unmodelled

heterogeneity in predation counts in Section 4.3.

Along with the previous natural variations in fish mortalities, this study shows that the

application of ADDs can significantly reduce depredation (Figure 4). Mortalities for sites

using the Ace Aquatec device showed, on average, a 70% reduction in mortalities, while

those employing the Airmar ADD showed a 50% reduction. Notably, applying the Terecos

ADD on sites had no significant effect on mortalities. The difference between the efficacy

of these devices could be related to the characteristics of the different sounds produced.

The Ace Aquatec device (Universal Scrammer) produces sounds in a range of frequencies

(approximately 5–20 kHz) with a maximum observed source level of 193 dB re 1µPa at 1

m (rms) around 10 kHz (Lepper et al., 2004). The Airmar device (dB Plus II) has a peak

frequency of 10.3 kHz with a source level of 192 dB re 1µPa at 1 m (rms) (Lepper et al.,

2004). In contrast, the Terecos produces sounds of a lower frequency and source level,

with a range of peak frequencies from 2–7 kHz and peak source level of 178 dB re 1µPa
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at 1 m (rms) at 4.9 kHz (Lepper et al., 2004). This suggests that a higher source level or

higher frequency is sufficient to deter seals. Other studies (Kastelein et al., 2006; Graham

et al., 2009; Harris et al., 2014) that have tested ADDs of a similar or higher frequency

to that of the Airmar and Ace Aquatec devices have found that these sounds can be

effective in displacing seals. However, efficacy seems to vary according to the situation (i.e.

environmental conditions, target population and species, deployment technique) (Götz

and Janik, 2013) and so is not necessarily comparable between all studies. From our

project, we can conclude that the ADDs examined here provide the observed effects for

the conditions typically present in Scottish fish farms. We do not know how many sites

used their ADDs continuously and how many used them intermittently (e.g. during periods

of worse depredation). Therefore, we observe the effect of the common practice used on

sites that have ADDs.

Finally, the model further revealed that the average number of fish mortalities increased

with the number of pens on site. This can be interpreted as seals consuming a certain

percentage of the fish in each pen. However, the cause of this is probably related to the

attractive potential of sites. Sites with many pens and many fish present a larger potential

feeding resource for seals and so seals are more likely to visit. The model also included

a random effect for site variability. The multiple causes which will interact to influence

seal attacks are complex, and so it is realistic that the constructed model will not capture

all the variation in the data. Some sites seem to experience particular problems with seal

depredation, whereas other sites experience very few problems.

4.2 Case Study: Installing Deterrents to a Site in Orkney

The more detailed data available in the case study enabled a site on Orkney to be investi-

gated on a pen-by-pen basis (Table 4). The addition of a new electric net deterrent device

on one of the pens had no observable effect on the number of mortalities within that pen.

Similarly, the addition of ADDs to six of the pens did not reduce depredation within those

particular pens compared to the others. However, the addition of both the ADDs and the

electric net produced a significant decrease in the overall number of mortalities on the site.

As ADD locations are spread throughout the site and pens are situated close together, it

is likely that ADDs provide equal protection to all the pens on the site. Additionally, if

seals are startled by the electric net on pen six whilst trying to feed they may be less likely

to take the risk of feeding from any of the other pens. Thus, both ADDs and the electric

net could provide a global deterrent effect across the site. To detect a significant result

for this global effect from such a small number of data points after installation suggests

a rapid deterrent ability of these systems.
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Temporal variation in mortalities was also considered in this case study. Contrary to

the findings presented on the west coast of Scotland (Section 3.1), significantly higher

mortalities occurred in the summer months. This could be a result of regional differ-

ences in environment, ecosystems or fish farm practices. For example, a photo-ID study

(Northridge et al., 2013) found that seals which visited fish farms on the west coast were a

mixture of both grey and harbour seals, whereas on Orkney sites were visited exclusively

by grey seals. However, it seems more likely that this result is simply due to the limited

sample size available for each month.

As no pen-specific deterrence effects were significant and both the electric net and the

ADDs were installed at the same time, it is impossible to isolate the individual effect of

each of these deterrent systems. This is unfortunate as it could benefit the aquaculture

industry to know whether electric nets are an effective deterrent device. In Section 3.1 we

found that the Ace Aquatec ADD significantly reduces fish mortalities on the west coast

of Scotland and so the question remains on whether the electric net has any additional

benefit. Here, the deterrent devices were installed on pens with the highest levels of

mortalities and so these pens are likely to always have the largest observed mortalities,

even if the device begins to work.

This case study raises some important considerations in relation to the effective testing of

deterrent devices. Devices should be added to sites individually so that their effects can

be isolated. Pens and sites should be picked at random to test devices so as to remove

potential biases on average. Devices should be left on sites for a considerable length of

time in order to be sure seals do not habituate. During these trials a range of techniques

(e.g. mortality records, underwater cameras, visual observations at the surface) should

be carried out concurrently to fully understand how the new device is working. These

observations should be carried out before, during and after the new device is implemented.

4.3 Review of Methodology

There are a number of possible shortcomings in the methods used that need to be consid-

ered. In particular, we must address the assumptions made about the mortality data used.

First, it is assumed that fish mortalities are correctly classified by salmon farm workers.

It is possible that, on occasion, fish that died from other causes such as physical storm-

related damage or disease may be incorrectly classified as seal-attributed mortalities and

vice versa. However, seal-attributed mortalities are generally quite distinctive. Most com-

monly the fish have a clear bite mark taken from the abdomen, with puncture wounds

and missing flesh (Northridge et al., 2013). In other cases fish have multiple gashes along

the flank (presumably caused by the seals using their fore-flippers) or half or more of the
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fish has been bitten off. This misclassification is therefore likely to be negligible. Another

assumption is that seals predate only on live fish and do not feed opportunistically on

dead fish lying at the bottom of the pen. However, other studies of wild seals have shown

that seals will feed on dead fish presented as bait. Fjälling et al. (2007) observed grey

seals taking herring (Clupea harengus) bait which was attached to the anchor lines of

fishing buoys. Harbour seals have also been found to take bait of several different species

from net cages (Lunneryd, 2001). Notably in this study seals only visited sites at 30% of

opportunities, despite seals being present in the area the entire time. This suggests that

only some seals used the baited cages or that seals prefer to feed on live fish and only

supplement their diet with dead fish when required. This has important implications as

it reveals that seals may also, to some extent, feed on fish that are already dead in pens,

leading to a potential overestimation of the problem. One final limitation of fish mortality

data is that it does not account for hidden losses. As well as the observed mortalities, fish

may be eaten whole or escape from holes in damaged nets. Catastrophic escape events

are generally reported. For example, in 2013 there were four incidents across Scotland

involving the total loss of 9,709 Atlantic salmon (Marine Scotland Science, 2013). The

escape of individual fish from small net holes is less conspicuous and so may not be no-

ticed or recorded. Similarly, seals that leave no fish remains will result in mortalities going

unrecorded. Fjälling (2006) found that using fish mortalities to calculate catch losses to

grey seals in salmon set traps tended to underestimate losses by 37%. Hidden mortalities

will inevitably occur in salmon aquaculture also but are kept to a minimum by the fine

mesh size of nets (reducing the ability of seals to pull fish through the nets) and the repair

of holes by divers that regularly inspect the nets for damage.

Mortality data were collected as part of normal fish farm operation and not as part

of a designed experiment. Hence, the conditions under which data were collected and

the methods used could not be controlled. Given that UK fish farms must follow strict

recommendations and regulations relating to all aspects of production (RSPCA, 2012;

Aquaculture and Fisheries (Scotland) Act, 2013; Scottish Salmon Producers Organisation,

2015), all sites will use broadly similar equipment and protocols. This will be especially

true for the sites analysed in Section 2.1 which were all owned by the same aquaculture

company. Despite their potential caveats, mortality records present a large resource of

data which can provide important insight into the issues occurring at aquaculture sites.

These records represent some of the most long-term and geographically widespread data

we have. Ideally, investigations into seal depredation would be conducted in well-designed

and controlled experiments on fish farms. However, this is often not possible as many

companies and workers cannot put their livelihood at risk by experimenting with changing

practices.
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The hidden Markov model (HMM), implemented in this project, was constructed with

the assumption that the sites are stocked at all times. Yet, this may not be the case in

reality as sites are regularly left fallow for the purposes of cleaning and recovery. The

model was constructed under this assumption as no data were available on the stocking

density of pens. Thus, it was not possible to separate periods of zero mortality from

fallow periods with absolute certainty. However, it was interpreted that zeros in the data

probably related to periods of zero mortality, and the missing data points related to fallow

periods. It therefore made sense to model the sites as being stocked permanently, with

“missing observations” during fallow periods. During fallow periods, it is likely that seals

will still be present and visit sites to check if fish are present. This means that our model

is a good representation of the expected mortalities during periods when sites are stocked

and estimates are not biased by zeros recorded during fallow periods.

Our model for seal depredation across Scotland (constructed in Section 2.1) considers site

to be the basic experimental unit. Data was not available at a more detailed resolution and

so variability between specific pens could not be investigated. It is possible that the most

serious issues of depredation result from ‘problem pens’ that have a particular weakness

or are more attractive to seals. Even though it is unclear why seals pick particular pens

to attack intensely, given that mortalities still occur across most pens during feeding,

selecting site as the unit of interest still seems reasonable. It is also more informative

for site managers as they can gain information on how the total number of mortalities is

expected to vary across region and season.

In addition to the explanatory variables investigated here, there are a number of other

factors that could potentially have influenced the feeding dynamics of seals at farms. We

do not have information on the numbers of seals shot at each of the locations throughout

the study period. Seal shootings are most likely to occur during severe mortality events as

a means of ending the problem and reducing economic losses. Hence, it is possible that this

influenced the number of mortalities or the probability of a feeding ending. On the other

hand, the number of seals currently shot in Scotland is quite low and continues to decrease

each year as other methods of deterrence improve. For example, the numbers of grey seals

shot each year were 366 in 2011, 359 in 2012 and 238 in 2013 (Scottish Government, 2015).

Similarly, the numbers of harbour seals shot were 93, 74 and 36 (for the years 2011, 2012

and 2013 respectively) (Scottish Government, 2015). Therefore, the total number of seals

shot across Scotland during 2013 was 274, the equivalent of approximately one seal for

each stocked salmon farm site in that year. Therefore it seems unlikely that failing to

account for possible seal shootings in modelling will constitute a serious problem.

Similarly, aspects of site design ignored in this study may also influence depredation (e.g.

pen size, pen shape, net mesh size and pen arrangement). Most common are circular pens
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(Northridge et al., 2013), with pens typically arranged in parallel rows, but there will likely

be some variation between sites. Sites vary in stocking density (i.e. the number of fish

per volume of pen). It is believed that sites which have a high stocking density are likely

to experience more depredation Northridge et al. (2013); however there is currently no

evidence to support this. Environmental and ecological differences between sites such as

weather, seal haulout site distance and seal prey availability may also influence mortalities.

Sites may also differ slightly in their everyday practices. Despite these potential differences,

our model has been able to identify consistent trends in mortalities across regions and

seasons. Furthermore, the random effect included for site should capture the individualistic

variations of fish farms to some extent.

4.4 Suggestions for Further Research

This research project has highlighted a number of knowledge gaps that require further

study. If more fish farm data were available, the modelling framework presented here can

be expanded to investigate other explanatory variables. For example, it would be interest-

ing to test whether aspects of pen structure and design, such as the use of anti-predator

nets, reduces mortalities. Measures of the environmental (e.g. sea surface temperature)

and ecological (e.g. local prey availability) setting of fish farm sites should also be made

and compared to mortality rates. If further data on stocking biomass were provided,

the model could be used to investigate whether pens containing a higher density of fish

are more likely to be predated. They could also be used to investigate how depredation

changes with each stage of the production cycle. It is thought that depredation is de-

pendent on the number of months after the site was previously fallow (Northridge et al.,

2013), possibly due to seals becoming increasingly reliant on the site as a food source.

Some pens on fish farm sites appear to experience more severe depredation than others. It

is unknown whether this is due to location of these particular pens within the site (e.g. end

pens), maintenance of pen equipment (e.g. poor condition, degraded) or the disturbance

level of pens (i.e. how close are they to regular human activity). It could be that when

seals first visit the site they feed from the first pen they encounter, and so keep returning

to this one pen as they know they can get food there. Any further information on why

particular pens are targeted would enable fish farm managers to identify vulnerable pens

and adopt appropriate prevention strategies.
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The new electric net device assessed here could present a feasible alternative deterrent

device which does not produce the noise pollution that ADDs do. It should be installed in

a range of different sites and regions in order to gain reliable information on how effective

it is at reducing depredation. All trials should be careful to follow some of the advice on

experimental design in Section 4.2.

4.5 Overall Conclusions and Recommendations

To conclude, we review the main findings of this study in relation to recommendations

for salmon farm management. The number of seal-attributed mortalities is seasonally de-

pendent, with the highest numbers expected during the winter months. Hence, the use of

deterrent systems (such as ADDs) should be highest during this period. At other times

of the year, when fish mortalities are expected to be low, ADD use can be decreased to

minimise energetic running costs and noise pollution. There are also pronounced regional

differences in mortalities. For regions with higher expected mortalities, companies should

be investing more in appropriate deterrent and defence mechanisms and extra efforts

should be made to monitor the condition of pens. Both the Ace Aquatec and Airmar

ADDs were found to significantly reduce seal depredation and use of either device is rec-

ommended. Sites with particularly high depredation should use the Ace Aquatec device as

this appears to have a bigger reductive effect on fish mortalities. A summary of expected

mortalities for each month, region and ADD combination is provided in Figure 4 and can

be used in the planning of predator control strategies for sites across Scotland. Addition-

ally, the number mortalities increases with site size (number of pens) and so expected

mortalities should be adjusted for smaller or larger than average sites.

The installation of a new electric net deterrent was observed, but from this case study

it could not be concluded whether the net reduced mortalities. A combination of the net

and ADDs appeared to reduce mortalities but further studies are required before this can

be recommended as a viable alternative to ADDs.
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A APPENDIX: R CODE FOR SEAL DEPREDATION MODEL

A Appendix: R Code for Seal Depredation Model

1 #################### Fish Mort Ana lys i s ###############################

2 ## Desc r ip t i on : to f i t a hidden Markov model to morts in f i s h farms around

3 ## Scot land .

4 ## Model i n c l ud e s p r e d i c t o r s f o r mean o f negat ive binomial

5 ## ( s i z e p r ed i c t o r ) , p r obab i l i t y o f l e av ing a f e ed ing s t a t e

6 ## ( ’ out ’ p r ed i c t o r ) and p r obab i l i t y o f en t e r i ng a f e ed ing

7 ## s ta t e ( ’ in pred i c to r ’ ) . A random e f f e c t f o r s i t e i s

8 ## inc luded .

9 ## Author : Kather ine Whyte

10 ## Last Edited : 09 Aug 2015

11 ### Function Dec l a ra t i on s

12 N2W <− f unc t i on ( nat , n . s i z e =0,n . in=0,n . out=0,n . s t a t e s =2) {
13 # Transforms natura l parameter l i s t to working vec to r

14 # Args : nat = l i s t o f natura l parameters

15 # n . s i z e = number o f c o va r i a t e s in s i z e p r ed i c t o r

16 # n . out = number o f c ova r i a t e s in ’ out ’ p r obab i l i t y p r ed i c t o r

17 # n . in = number o f c ova r i a t e s in ’ in ’ p r obab i l i t y p r ed i c t o r

18 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

19 # Returns : the working vec to r

20 work <− numeric(4+n . s i z e+n . in+n . out )

21 # pr obab i l i t y parameter o f negat ive binomial

22 work [ 1 ] <− l og ( nat$prob/(1−nat$prob ) )

23 # mean p r ed i c t o r

24 work [ 2 ] <− nat$ s i z e

25 i f (n . s i z e >0) { f o r ( i in seq (n . s i z e ) ) {work[2+ i ] <− nat$ s i z e c ov [ i ]}}
26 # in p r ed i c t o r

27 work[3+n . s i z e ] <− nat$gamma0

28 i f (n . in>0) { f o r ( i in seq (n . in ) ) {work[3+n . s i z e+i ] <− nat$ incov [ i ]}}
29 # out p r ed i c t o r

30 work[4+n . s i z e+n . in ] <− nat$gamma1

31 i f (n . out>0) { f o r ( i in seq (n . out ) ) {work[4+n . s i z e+n . in+i ] <− nat$

outcov [ i ]}}
32 # random e f f e c t var i ance

33 work[5+n . s i z e+n . in+n . out ] <− nat$ s i z e s t d

34 re turn (work )

35 }
36 W2N <− f unc t i on (work , n . s i z e =0,n . in=0,n . out=0,n . s t a t e s =2) {
37 # Transforms working vec to r to natura l parameter l i s t

38 # Args : work = working vec to r

39 # n . s i z e = number o f c o va r i a t e s in s i z e p r ed i c t o r

40 # n . out = number o f c ova r i a t e s in ’ out ’ p r obab i l i t y p r ed i c t o r

41 # n . in = number o f c ova r i a t e s in ’ in ’ p r obab i l i t y p r ed i c t o r

42 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

43 # Returns : the working vec to r
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44 prob <− exp (work [ 1 ] ) /(1+exp (work [ 1 ] ) )

45 # mean p r ed i c t o r

46 s i z e <− work [ 2 ]

47 s i z e c ov <− NULL

48 i f (n . s i z e >0){ f o r ( i in seq (n . s i z e ) ) { s i z e c ov <− c ( s i z ecov , work[2+ i ] ) }}
49 # in p r ed i c t o r

50 gamma0 <− work[2+n . s i z e +1]

51 incov <− NULL

52 i f (n . in>0){ f o r ( i in seq (n . in ) ) { incov <− c ( incov , work[3+n . s i z e+i ] ) }}
53 # out p r ed i c t o r

54 gamma1 <− work[4+n . s i z e+n . in ]

55 outcov <− NULL

56 i f (n . out>0){ f o r ( i in seq (n . out ) ) {outcov <− c ( outcov , work[4+n . s i z e+n .

in+i ] ) }}
57 # random e f f e c t var i ance

58 s i z e s t d <− work[5+n . s i z e+n . in+n . out ]

59 re turn ( l i s t ( prob=prob , s i z e=s i z e , s i z e s t d=s i z e s t d , s i z e c ov=s i z ecov , gamma0=

gamma0 , incov=incov , gamma1=gamma1 , outcov=outcov ) )

60 }
61 NegLlk <− f unc t i on (w. par , obs , s i z e . covdat , in . covdat , out . covdat , n . s t a t e s =2) {
62 # Ca l cu l a t e s the negat ive log−l i k e l i h o o d o f the HMM with random e f f e c t s

63 # Args : w. par = working vec to r o f parameters

64 # obs = data frame o f mort data

65 # s i z e . covdat = data frame o f c ova r i a t e va lue s in mean p r ed i c t o r

66 # in . covdat = data frame o f c ova r i a t e va lue s in in p r ed i c t o r

67 # out . covdat = data frame o f c ova r i a t e va lue s in out p r ed i c t o r

68 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

69 # Returns : va lue o f the negat ive log−l i k e l i h o o d
70 par <− W2N(w. par , nco l ( s i z e . covdat ) , nco l ( in . covdat ) , nco l ( out . covdat ) ,n .

s t a t e s )

71 # ca l c u l a t e p r obab i l i t y o f observed under each hidden s t a t e

72 n <− nrow ( obs )

73 probs <− matrix (1 , nrow=n , nco l=n . s t a t e s )

74 f o r ( s in seq (n . s t a t e s ) ) {
75 l s i z e <− par$ s i z e

76 i f ( ! i s . nu l l ( par$ s i z e c ov ) ) { f o r ( i in seq ( l ength ( par$ s i z e c ov ) ) ) {
l s i z e <− l s i z e+par$ s i z e c ov [ i ] ∗ s i z e . covdat [ , i ]}}

77 s i z e <− exp ( l s i z e )

78 probs [ , s ] <− dnbinom( obs$ predat ion , s i z e ∗ ( s−1) , par$prob )
79 }
80 # ca l c u l a t e t r a n s i t i o n p r obab i l i t y matrix f o r each f a c t o r v a r i ab l e

combination

81 gamma. l i s t <− l i s t ( )

82 gamma <− diag (n . s t a t e s )

83 gamma [ 1 , 2 ] <− par$gamma0

84 gamma [ 2 , 1 ] <− par$gamma1
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85 f o r (m in seq (1 ,12 ) ) {
86 gamma. l i s t [ [m] ] <− l i s t ( )

87 f o r ( a in seq (1 , 4 ) ) {
88 gamma. l i s t [ [m ] ] [ [ a ] ] <− l i s t ( )

89 f o r ( r in seq (1 , 3 ) ) {
90 sgamma <− gamma

91 # commenting out l i n e s below exc ludes that f a c to r ’ s e f f e c t

92 # th i s MUST match the cho i c e s f o r in . covdat and out . covdat

93 i f (m>1) {gamma [ 1 , 2 ] <− gamma[1 ,2 ]+ par$ incov [m−1]}
94 #i f ( a>1) {gamma [ 1 , 2 ] <− gamma[1 ,2 ]+ par$ incov [11+a−1]}
95 i f (m>1) {gamma [ 2 , 1 ] <− gamma[2 ,1 ]+ par$outcov [m−1]}
96 #i f ( a>1) {gamma [ 2 , 1 ] <− gamma[2 ,1 ]+ par$outcov [11+a−1]}
97 i f ( r>1) {
98 #gamma [ 1 , 2 ] <− gamma[1 ,2 ]+ par$ incov [14+r−1]
99 gamma [ 1 , 2 ] <− gamma[1 ,2 ]+ par$ incov [11+r−1]

100 }
101 #i f ( r>1) {
102 # gamma [ 2 , 1 ] <− gamma[2 ,1 ]+ par$outcov [14+r−1]
103 # gamma [ 1 , 2 ] <− gamma[1 ,2 ]+ par$ incov [11+r−1]
104 #}
105 gamma[ ! d iag (2 ) ] <− exp (gamma[ ! d iag (2 ) ] )

106 gamma <− gamma/apply (gamma, 1 , sum)

107 gamma. l i s t [ [m ] ] [ [ a ] ] [ [ r ] ] <− gamma

108 gamma <− sgamma

109 }
110 }
111 }
112 # ca l c u l a t e l i k e l i h o o d f o r each s i t e i n d i v i d u a l l y

113 l l k <− 0

114 s i t e . names <− unique ( obs$ s i t e )

115 n . s i t e <− l ength ( s i t e . names )

116 # iobs i s the index o f the cur rent obse rvat i on being proce s sed

117 i ob s <− 1

118 f o r ( i in seq (n . s i t e ) ) {
119 # s l k i s the l i k e l i h o o d o f the s i t e averaged over the random e f f e c t

u

120 s l k <− 0

121 # d i s c r e t i s e random e f f e c t space and c a l c u l a t e p r obab i l i t y o f each

p o s s i b l e

122 # value o f the random e f f e c t

123 s i z e . sd <− exp ( par$ s i z e s t d )

124 l s i z e . l i s t <− seq ( par$ s i z e−s i z e . sd , par$ s i z e+s i z e . sd , l ength=100)

125 d i f f <− 0 .5 ∗ ( l s i z e . l i s t [2]− l s i z e . l i s t [ 1 ] )

126 pr <− pnorm( l s i z e . l i s t+d i f f , par$ s i z e , s i z e . sd )−pnorm( l s i z e . l i s t −d i f f
, par$ s i z e , s i z e . sd ) ; pr <− pr/sum( pr )

127 # idea i s to c a l c u l a t e the l i k e l i h o o d f o r t h i s s i t e f o r each
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po s s i b l e va lue

128 # of the random e f f e c t u and then weight by how l i k e l y that value

i s

129 uobs <− i ob s # need to r e s e t back to uobs a f t e r each cy c l e through

l s i z e . l i s t

130 f o r (u in seq ( l s i z e . l i s t ) ) {
131 i ob s <− uobs

132 # u l l k i s the l i k e l i h o o d f o r a s p e c i f i c va lue o f u

133 u l l k <− 0

134 f o r ( s in seq (n . s t a t e s ) ) {
135 # ca l c u l a t e the mean p r ed i c t o r f o r t h i s va lue o f u

136 l s i z e <− l s i z e . l i s t [ u ]

137 f o r ( c in seq ( l ength ( par$ s i z e c ov ) ) ) { l s i z e <− l s i z e+par$

s i z e c ov [ c ] ∗ s i z e . covdat [ , c ]}
138 s i z e <− exp ( l s i z e )

139 probs [ , s ] <− dnbinom( obs$ predat ion , s i z e ∗ ( s−1) , par$prob )
140 }
141 phi <− c ( 0 . 5 , 0 . 5 )

142 # look only at data f o r t h i s s i t e

143 subobs <− obs [ obs$ s i t e==s i t e . names [ i ] , ]

144 subn <− nrow ( subobs )

145 years <− seq (min ( subobs$ year ) ,max( subobs$ year ) )

146 months <− seq (1 , 12 )

147 f o r ( y in years ) {
148 f o r (m in months ) {
149 # s e l e c t c o r r e c t t r a n s i t i o n matrix

150 gamma <− gamma. l i s t [ [m ] ] [ [ as . numeric ( obs$addtype [ i ob s ] )

] ] [ [ as . numeric ( obs$ r eg i on [ i ob s ] ) ] ]

151 # i f an obse rvat i on e x i s t s f o r (m, y ) do HMM step ,

o therw i se j u s t

152 # do Markov chain s tep ( mult ip ly by gamma)

153 i f ( obs$ year [ i ob s ]==y & obs$month [ i ob s ]==m) {
154 phi <− phi%∗%gamma∗probs [ iobs , ]

155 sumphi <− sum( phi )

156 u l l k <− u l l k+log ( sumphi )

157 phi <− phi /sumphi

158 i obs <− i ob s+1

159 # to stop e r r o r s when read ing past the end o f the

dataframe

160 i f ( iobs>nrow ( obs ) ) { i ob s <− nrow ( obs ) }
161 }
162 e l s e {
163 phi <− phi%∗%gamma

164 }
165 }
166 }
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167 # mult ip ly u l l k by p r obab i l i t y o f u , then add to averaged

l i k e l i h o o d s l l k

168 # f o r t h i s s i t e

169 s l k <− s l k + exp ( u l l k ) ∗pr [ u ]
170 }
171 # add s i t e averaged l i k e l i h o o d s l l k to o v e r a l l l i k e l i h o o d

172 l l k <− l l k+log ( s l k )

173 }
174 cat ( ” l l k = ” , l l k , ”\n” )
175 re turn (− l l k )

176 }
177

178 MLE <− f unc t i on ( obs , par0 , s i z e . covdat , in . covdat , out . covdat , n . s t a t e s =2) {
179 # Performs maxmimum l i k e l i h o o d es t imat i on

180 # Args : obs = data frame o f mort data

181 # par0 = s t a r t i n g va lue s f o r parameters

182 # s i z e . covdat = data frame o f c ova r i a t e va lue s in mean p r ed i c t o r

183 # in . covdat = data frame o f c ova r i a t e va lue s in in p r ed i c t o r

184 # out . covdat = data frame o f c ova r i a t e va lue s in out p r ed i c t o r

185 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

186 # Returns : l i s t o f maximum l i k e l i h o o d est imates , standard e r r o r s and

AIC

187 w. par <− N2W( par0 , nco l ( s i z e . covdat ) , nco l ( in . covdat ) , nco l ( out . covdat ) ,n .

s t a t e s )

188 # numerica l op t im i s e r

189 mod <− nlm(NegLlk ,w. par , obs , s i z e . covdat , in . covdat , out . covdat , n . s t a t e s ,

h e s s i an=TRUE)

190 par <− W2N(mod$ est imate , nco l ( s i z e . covdat ) , nco l ( in . covdat ) , nco l ( out .

covdat ) ,n . s t a t e s )

191 # var iance o f parameters are d iagona l o f i nv e r s e he s s i an matrix

192 # ( not negat ive he s s i an s i n c e us ing negat ive l i k e l i h o o d here )

193 se <− s q r t ( d iag ( s o l v e (mod$ he s s i an ) ) )

194 pva l s <− pnorm(−abs (w. par ) ,0 , se )

195 AIC <− 2∗ ( l ength (w. par )+mod$minimum)

196 return ( l i s t ( par=par , se=se , pvalue=pvals ,AIC=AIC) )

197 }
198 Factor2Mat <− f unc t i on (x ) {
199 # Transforms f a c t o r v a r i a b l e s i n to des ign matr i ce s

200 # Args : x = data vec to r o f f a c t o r v a r i ab l e l e v e l s

201 # Returns : the des ign matrix

202 l e v s <− l e v e l s ( x )

203 mat <− matrix (0 , nr=length (x ) , nc=length ( l e v s ) )

204 f o r ( i in seq (x ) ) {
205 i l e v <− l e v s==x [ i ]

206 mat [ i , i l e v ] <− 1

207 }
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208 mat <− mat [ ,−1]

209 re turn (mat)

210 }
211 S td i s e <− f unc t i on (x ) { re turn ( ( x−mean(x ) ) / sd (x ) ) }
212 ### Executed Statements

213 obs <− read . t ab l e ( ’ obs . csv ’ , header=T, sep=” , ” )

214 obs$addtype <− r e l e v e l ( obs$addtype , ”none” )

215

216 # transform f a c t o r s i n to des ign matr i ce s

217 month .mat <− Factor2Mat ( f a c t o r ( obs$month) )

218 r eg i on .mat <− Factor2Mat ( f a c t o r ( obs$ r eg i on ) )

219 addtype .mat <− Factor2Mat ( f a c t o r ( obs$addtype ) )

220

221 # se t c ova r i a t e s f o r mean p r ed i c t o r

222 #s i z e . covdat <− as . data . frame ( cbind (month .mat , r eg i on .mat , addtype .mat) )

223 s i z e . covdat <− as . data . frame ( cbind ( r eg i on .mat , addtype .mat) )

224 c t s . s t a r t <− nco l ( s i z e . covdat )

225 #s i z e . covdat $ year <− Std i s e ( obs$ year )

226 s i z e . covdat $pen .num <− Std i s e ( obs$pen .num)

227 s i z e . pars <− nco l ( s i z e . covdat )

228

229 # se t c ova r i a t e s f o r ’ in ’ and ’ out ’ p r e d i c t o r s

230 in . covdat <− data . frame ( cbind (month .mat , r eg i on .mat) )

231 out . covdat <− data . frame ( cbind (month .mat) )

232 in . pars <− nco l ( in . covdat )

233 out . pars <− nco l ( out . covdat )

234

235 # se t s t a r t i n g parameter va lue s

236 n . s t a t e s <− 2

237 s i z e 0 <− 50

238 prob0 <− 0 .01

239 par0 <− l i s t ( prob=prob0 , s i z e =−0.3, s i z e s t d=log ( 0 . 4 ) , s i z e c ov=rep ( 0 . 0 , s i z e .

pars ) ,gamma0=log ( 0 . 1 / 0 . 9 ) , incov=rep ( 0 . 0 , in . pars ) ,gamma1=log ( 0 . 1 / 0 . 9 ) ,

outcov=rep ( 0 . 0 , out . pars ) )

240

241 # f i t model to data

242 mod <− MLE( obs , par0 , s i z e . covdat , in . covdat , out . covdat )
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B Appendix: R Code for Case Study

1 ################# Orkney S i t e Ana lys i s ###############################

2 ## Desc r ip t i on : to f i t a hidden Markov model to morts in f i s h farm on

3 ## Orkney to determine i f ADDs had any e f f e c t with in 8 weeks

4 ## ac t i v a t i o n per iod . Model i n c l ud e s p r ed i c t o r f o r mean morts

5 ## in a pen o f negat ive binomial and a random e f f e c t to induce

6 ## co r r e l a t i o n between pens .

7 ## Author : Kather ine Whyte

8 ## Last Edited : 13 Aug 2015

9 ### Function Dec l a ra t i on s

10 N2W <− f unc t i on ( par , n . s t a t e s =2) {
11 # Transforms natura l parameter l i s t to working vec to r

12 # Args : par = l i s t o f natura l parameters

13 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

14 # Returns : the working vec to r

15 b <− 2

16 a <− b+13

17 work <− numeric ( a+3)

18 # negat ive binomial parameters

19 work [ 1 ] <− par$ s i z e

20 work [ 2 ] <− l og ( par$prob/(1−par$prob ) )

21 # s i z e p r ed i c t o r

22 work [ b+1] <− par$add

23 work [ b+2] <− par$net

24 work [ ( b+3) : ( b+13) ] <− par$month

25 work [ ( a+3) ] <− par$add . o v e r a l l

26 work [ ( a+4) ] <− par$ re . sd

27 # t r a n s i t i o n p r o b a b i l t i e s

28 work [ ( a+1) : ( a+2) ] <− c ( par$gamma0 , par$gamma1)

29 re turn (work )

30 }
31 W2N <− f unc t i on (work , n . s t a t e s =2) {
32 # Transforms working vec to r to natura l parameter l i s t

33 # Args : work = working vec to r

34 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

35 # Returns : the working vec to r

36 b <− 2

37 a <− b+13

38 # negat ive binomial parameters

39 s i z e <− work [ 1 ]

40 prob <− exp (work [ 2 ] ) /(1+exp (work [ 2 ] ) )

41 # s i z e p r ed i c t o r

42 add <− work [ b+1]

43 net <− work [ b+2]

44 month <− work [ ( b+3) : ( b+13) ]
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45 add . o v e r a l l <− work [ a+3]

46 re . sd <− work [ a+4]

47 # t r a n s i t i o n p r o b a b i l i t i e s

48 gamma0 <− work [ a+1]

49 gamma1 <− work [ a+2]

50 re turn ( l i s t ( s i z e=s i z e , prob=prob , add . o v e r a l l=add . ov e r a l l , add=add , net=net

, gamma0=gamma0 , gamma1=gamma1 , month=month , re . sd=re . sd ) )

51 }
52 NegLlk <− f unc t i on (w. par , obs , n . s t a t e s =2) {
53 # Ca l cu l a t e s the negat ive log−l i k e l i h o o d o f the HMM with random e f f e c t

54 # Args : w. par = working vec to r o f parameters

55 # obs = data frame o f mort data

56 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

57 # Returns : va lue o f the negat ive log−l i k e l i h o o d
58 par <− W2N(w. par , n . s t a t e s )

59 # ca l c u l a t e p r obab i l i t y o f observed under each hidden s t a t e

60 # averag ing over random e f f e c t f o r each week

61 n <− nrow ( obs )

62 probs <− matrix (0 , nrow=n , nco l=n . s t a t e s )

63 # pa r t i t i o n random e f f e c t space

64 re . sd <− exp ( par$ re . sd )

65 r e f f e c t <− seq(− re . sd , re . sd , l ength=100)

66 d i f f <− r e f f e c t [2]− r e f f e c t [ 1 ]

67 pu <− pnorm( r e f f e c t+d i f f ∗ 0 . 5 , 0 , re . sd )−pnorm( r e f f e c t −d i f f ∗ 0 . 5 , 0 , re . sd ) ;

pu <− pu/sum(pu)

68 f o r ( s in seq (n . s t a t e s ) ) {
69 i f ( s==2) {
70 not . miss ing <− ( ! i s . na ( obs [ , 3 : 1 4 ] ) )

71 f o r ( ob in seq (n) ) {
72 f o r (u in seq ( r e f f e c t ) ) {
73 # ca l c u l a t e s i z e p r ed i c t o r

74 s i z e <− rep ( par$ s i z e , 1 2 )

75 s i z e <− s i z e+par$net ∗ as . numeric ( obs [ ob , 1 6 : 2 7 ] )+par$add∗
as . numeric ( obs [ ob , 2 9 : 4 0 ] )+par$add . o v e r a l l ∗obs$add .

o v e r a l l [ ob]+ r e f f e c t [ u ]

76 i f ( obs [ ob ,41]>1) { s i z e <− s i z e+rep ( par$month [ obs [ ob

,41 ] −1 ] , 12 ) }
77 s i z e <− exp ( s i z e )

78 s i z e <− s i z e [ not . miss ing [ ob , ] ]

79 mort <− as . numeric ( obs [ ob , 3 : 1 4 ] )

80 # not . miss ing i s used to inc lude only data o f pens in

use

81 mort <− mort [ not . miss ing [ ob , ] ]

82 i f ( l ength (mort )==1) {
83 probs [ ob , s ] <− probs [ ob , s ]+dnbinom(mort [ 1 ] , s i z e=

s i z e , prob=par$prob ) ∗pu [ u ]
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84 } e l s e {
85 # prod used here as pens are independent g iven

random e f f e c t

86 probs [ ob , s ] <− probs [ ob , s ]+prod (dnbinom(mort , s i z e=

s i z e , prob=par$prob ) ) ∗pu [ u ]
87 }
88 }
89 }
90 } e l s e {
91 mort <− rowSums( obs [ , 3 : 1 4 ] , na . rm=TRUE)

92 probs [ , 1 ] <− 1∗ (mort==0)

93 }
94 }
95 # ca l c u l a t e the t r a n s i t i o n p r obab i l i t y matrix

96 gamma <− diag (n . s t a t e s )

97 gamma [ 1 , 2 ] <− exp ( par$gamma0)

98 gamma [ 2 , 1 ] <− exp ( par$gamma1)

99 gamma <− gamma/apply (gamma, 1 , sum)

100 # ca l c u l a t e l i k e l i h o o d us ing forward a lgor i thm

101 l l k <− 0

102 i ob s <− 1

103 phi <− rep ( 0 . 5 , n . s t a t e s )

104 years <− seq (min ( obs$ year ) ,max( obs$ year ) )

105 weeks <− seq (1 , 52 )

106 f o r ( y in years ) {
107 f o r (w in weeks ) {
108 # i f an obse rvat i on e x i s t s f o r (m, y ) do HMM step , o therw i se

j u s t

109 # do Markov chain s tep ( mult ip ly by gamma)

110 i f ( obs$ year [ i ob s ]==y & obs$week [ i ob s ]==w) {
111 phi <− phi%∗%gamma∗probs [ iobs , ]

112 sumphi <− sum( phi )

113 l l k <− l l k+log ( sumphi )

114 phi <− phi /sumphi

115 i ob s <− i ob s+1

116 # to stop e r r o r s when read ing past the end o f the dataframe

117 i f ( iobs>n) { i ob s <− n}
118 }
119 e l s e {
120 phi <− phi%∗%gamma

121 }
122 }
123 }
124 cat ( ” l l k=” , l l k , ”\n” )
125 cat ( ” pars =” , w. par , ”\n” )
126 re turn (− l l k )
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127 }
128

129 MLE <− f unc t i on ( obs , par0 , n . s t a t e s =2) {
130 # Performs maxmimum l i k e l i h o o d es t imat i on

131 # Args : obs = data frame o f mort data

132 # par0 = s t a r t i n g va lue s f o r parameters

133 # n . s t a t e s = number o f hidden f e ed ing s t a t e s

134 # Returns : l i s t o f maximum l i k e l i h o o d est imates , standard e r r o r s and

AIC

135 w. par <− N2W( par0 , n . s t a t e s )

136 # numerica l op t im i s e r

137 mod <− nlm(NegLlk ,w. par , obs , n . s t a t e s , h e s s i an=TRUE)

138 par <− W2N(mod$ est imate , n . s t a t e s )

139 # var iance o f parameters are d iagona l o f i nv e r s e he s s i an matrix

140 # ( not negat ive he s s i an s i n c e us ing negat ive l i k e l i h o o d here )

141 se <− s q r t ( d iag ( s o l v e (mod$ he s s i an ) ) )

142 pva l s <− pnorm(−abs (mod$ es t imate ) ,0 , se )

143 AIC <− 2∗ ( l ength (mod$ es t imate )+mod$minimum)

144 return ( l i s t ( par=par , se=se , pvalue=pvals ,AIC=AIC) )

145 }
146 ### Executed Statements

147 obs <− read . t ab l e ( ’ obs . csv ’ , header=T, sep=” , ” )

148 # ca l c u l a t e month each week f a l l s i n to

149 mon . names <− NULL

150 num <− c ( 4 , 4 , 4 , 4 , 5 , 4 , 5 , 4 , 4 , 5 , 4 , 5 )

151 f o r (m in seq (12) ) {mon . names <− c (mon . names , rep (m,num[m] ) ) }
152 mon <− numeric ( nrow ( obs ) )

153 f o r ( i in seq ( nrow ( obs ) ) ) {
154 mon [ i ] <− mon . names [ obs$week [ i ] ]

155 }
156 obs$month <− mon

157

158 # se t s t a r t i n g parameters f o r opt im i s e r

159 par0 <− l i s t ( s i z e =−0.3,prob=0.0008 , s i z e . pen=rep (0 ,11 ) , add . o v e r a l l =0,add=0,

net=0,gamma0=log ( 0 . 1 / 0 . 9 ) ,gamma1=log ( 0 . 1 / 0 . 9 ) , rho=0,month=rep (0 ,11 ) , re .

sd=log ( 0 . 3 ) )

160

161 # f i t model

162 mod <− MLE( obs , par0 )
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