

Hunterston Construction Yard Best Practicable Environmental Options Report

June 2024

CONTROL SHEET

Client: Peel Ports Group/Clydeport Operations

Project Title: Hunterston Construction Yard

Report Title: Best Practicable Environmental Options Report

Document number: 14183 Project number: 176482

Issue Record

Issue	Status	Author	Reviewer	Approver	Issue Date
1	Final	VM	GD	GD	17/6/24

EnviroCentre Limited Office Locations:

Glasgow Edinburgh Inverness Banchory

Registered Office: Craighall Business Park 8 Eagle Street Glasgow G4 9XA Tel 0141 341 5040 info@envirocentre.co.uk www.envirocentre.co.uk

This report has been prepared by EnviroCentre Limited with all reasonable skill and care, within the terms of the Contract with Peel Ports Group/Clydeport Operations ("the Client"). The report is confidential to the Client, and EnviroCentre Limited accepts no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced or altered without the prior written approval of EnviroCentre Limited.

EnviroCentre Limited is registered in Scotland under no. SC161777.

VAT no. GB 348 6770 57.

Contents

1	Intro	oduction	1
	1.1	Scope of Report	1
	1.2	Report Usage	1
	1.3	Background to Application	1
2		pling Locations and Methodology	
	2.1	Sample Locations and Collection	3
	2.2	Proposed Sample Locations	3
	2.3	Analysis Requirements	5
3	Res	ults	7
4	Disc	cussion of available disposal options	. 10
	4.1	Identification and Screening of Available Disposal Options	. 11
	4.2	Summary of Identified BPEO Options	. 13
5	Furt	her Consideration of Remaining Disposal Options	. 15
	5.1	Detailed BPEO Assessment	. 15
	5.2	BPEO Assessment Discussion	. 21
6	Furt	her Assessment	. 22
	6.2	Averages	. 23
	6.3	Water Framework Directive Assessment	. 23
	6.4	Potential Risk to Water Quality and Protected Areas	. 28
	6.5	Potential Risk to Water Quality and Marine Life	. 28
7	Con	clusions and Recommendations	. 30
Refe	erenc	es	. 31

Appendices

- A Figures
- B Sediment Logs
- C Analytical Results
- D SEPA Correspondence
- E Radionuclide Assessment

Tables

Table 1-1: Proposed Dredge Site and Approximate Dredge Volumes	1
Table 2-1: Proposed Sample Stations	3
Table 2-2: Actual Sample Stations	4
Table 2-3: Exceedances of Revised Action Levels – Hunterston	7
Table 4-1: Initial Best Practicable Available Options	11
Table 4-2: BPEO Detailed Assessment Criteria	15
Table 5-2: BPEO Strategic Assessment	16
Table 4-4: BPEO Environmental Assessment	17
Table 5-4: BPEO Cost Analysis (based on 2,474,665 tonnes only)	20
Table 6-1: Exceedances of ERL and PEL	23
Table 6-2: Exceedances of ERL and PEL – Average Concentrations	23
Table 6-3: Receptor Risk Assessment	25

1 INTRODUCTION

1.1 Scope of Report

Clydeport Operations Limited are required to undertake a Best Practicable Environmental Option (BPEO) assessment for the disposal/re-use of dredged material originating from Hunterston Construction Yard.

The purpose of the BPEO report is to review each of the available potential disposal options for the dredged materials. The options which are not considered to be practicable are rejected and the reasons for doing so are explained.

Those options which are practicable are examined in detail and assessed against the following considerations:

- Environmental;
- Strategic; and
- Cost.

The report then compares the practicable disposal options and draws a conclusion on the BPEO.

1.2 Report Usage

The information and recommendations contained within this report have been prepared in the specific context stated above and should not be utilised in any other context without prior written permission from EnviroCentre Limited.

If this report is to be submitted for regulatory approval more than 12 months following the report date, it is recommended that it is referred to EnviroCentre Limited for review to ensure that any relevant changes in data, best practice, guidance or legislation in the intervening period are integrated into an updated version of the report.

Whilst the Client has a right to use the information as appropriate, EnviroCentre Limited retains ownership of the copyright and intellectual content of this report. EnviroCentre Limited does not accept liability to any third party for the contents of this report unless written agreement is secured in advance, stating the intended use of the information.

EnviroCentre Limited accepts no liability for use of the report for purposes other than those for which it was originally provided, or where EnviroCentre Limited has confirmed it is appropriate for the new context.

1.3 Background to Application

The dredging works proposed are for the proposed capital dredging of an area adjacent to the existing Hunterston Construction Yard reducing the average dredge level from current levels to -12.0m below

Chart Datum (CD).

Table 1-1: Proposed Dredge Site and Approximate Dredge Volumes

Site Name	Dredge Volume (m³)
Dredge Area (Blue Line)	1,546,660

Dredging would be carried out potentially by a combination of Trailer Suction Hopper Dredger, Cutter Suction Dredger and Backhoe Dredger, or combination as appropriate.

The proposed dredge sites are outwith the Southannan Sands of Special Scientific Interest (SSSI).

Arch Henderson drawings are included in Appendix A detailing the proposed dredge area for both the EIAR assessed dredge pocket (HMY-AHN-01-00-DR-C-003) and the actual proposed dredge pocket (HMY-AHN-01—DR-C-001). Accompanying sediment quality data is presented in Appendix C.

1.4 Action Levels – AL1 vs AL2

Two action levels are currently used to assess the suitability of sea-based disposal of dredged sediment material: Revised Action Level 1 (RAL1) and Revised Action Level 2 (RAL2).

Sediment with contaminant concentrations below RAL1 is generally considered to be below background levels for contamination and is suitable for disposal at sea.

For samples recording contaminant concentrations between RAL1 and RAL2, additional risk assessment may be required including further sampling and testing to fully identify pockets of contamination or implementation of bioassays to assess the materials suitability for sea disposal.

Material recording contaminant concentrations above RAL2 is generally considered to be unsuitable for disposal to sea. If the sea disposal route is to be pursued, further testing along the lines of bioassay accompanied by a robust justification for selecting sea disposal as the BPEO may be required. This would need to be supported further with additional information regarding any mitigation measures which could be put in place as part of these works. This would require further discussion and agreement with Marine Directorate.

2 SAMPLING LOCATIONS AND METHODOLOGY

2.1 Sample Locations and Collection

Sediment sampling was undertaken in March and April 2024 by Causeway Geotech Limited. A sonic drilling rig was used to recover cored sections for logging and sub-sampling. A total of 78 sediment samples were submitted for analysis, recovered from 26 boreholes.

Factual information, including sediment logs are included in Appendix B.

2.2 Proposed Sample Locations

Proposed sample locations are given in the table below

Table 2-1: Proposed Sample Stations

Location number	Туре	National grid reference		
		Easting: m	Northing: m	
1	ВН	218255.0591	652988.517	
2	ВН	218299.36	653118.91	
3	ВН	218380.1	653304.3	
4	ВН	218471.92	653233.95	
5	ВН	218558.86	653294.14	
6	ВН	218655.17	653361.02	
10	ВН	218363.11	653424.06	
12	ВН	218433.12	653476.06	
13	ВН	218514.1173	653417.8501	
14	ВН	218242.08	653385.71	
15	ВН	218462.55	653576.38	
16	ВН	218140.72	653346.30	
17	ВН	218312.74	653466.69	
18	ВН	218187.00	653470.71	

19	ВН	218046.55	653477.39
20	ВН	218304.71	653352.99
21	ВН	217970.54	653348.89
22	ВН	218038.01	653268.90
23	ВН	218188.34	653185.79
24	ВН	218175.69	653095.41
25	ВН	218442.49	653379.75
26	ВН	218191.01	653310.19
27	ВН	218290.5	653243.3
29	ВН	218542.81	653494.78
30	ВН	218574.3245	653381.8516
GBS2-BH-SPT-11	ВН	218385.3	653177.4

The sampling works were subject to some limited constraints which resulted in some minor micrositing of locations due to the substrate/working condition requirements. There is not deemed to have been a significant alteration in the specific locations that were drilled. The following table details the actual locations drilled.

Table 2-2: Actual Sample Stations

Location number	Туре	National grid reference		
		Easting: m	Northing: m	
1	ВН	218251	652997	
2	ВН	218299	653115	
3	ВН	218380	653305	
4	ВН	218475	653230	
5	ВН	218559	653295	
6	ВН	218651	653363	

10	ВН	218363	653424
12	BH	218434	653476
13	BH	218510	653421
14	ВН	218239	653386
15	ВН	218462	653577
16	ВН	218139	653345
17	ВН	218311	653469
18	ВН	218189	653471
19	ВН	218045	653478
20	ВН	218306	653354
21	ВН	217968	653345
22	ВН	218037	653269
23	ВН	218189	653184
24	ВН	218178	653092
25	ВН	218444	653382
26	ВН	218194	653311
27	BH	218288	653244
29	ВН	218542	653494
30	ВН	218573	653382
GBS2-BH-SPT-1	1 BH	218387	653174

A sampling plan detailing the actual locations is provided in Appendix A.

2.3 Analysis Requirements

The laboratory analysis undertaken to inform the marine licence application was as follows:

• Metals- As, Cr, Cd, Cu, Hg, Ni, Pb, Zn

- Tributyl Tin
- PAHs USEPA 16
- PCBs ICES 7
- Total Hydrocarbon

In addition to the core analytical suite, Brominated fire retardants (PBDEs) and Booster Biocides i.e. organochlorine pesticides and assessment of radionuclide potential were requested by Marine Directorate and was undertaken for all 78 samples (note for radionuclide testing a composite sample of all three samples from each location was collected and tested so there was 26 composite sample results to assess the full core length at these locations).

- Alpha -hexachlorcyclohexane
- Beta- hexachlorcyclohexane
- Gamma- hexachlorocyclohexane
- Dieldrin
- Hexachlorobenzene
- DDD
- DDE
- DDT
- Radionuclide assessment

3 RESULTS

All chemical analytical results were assessed against Revised Action Levels (RAL) criteria as adopted by Marine Scotland. The results are summarised below and within the Summary Tables provided in Appendix C.

Summary reports detailing exceedances in the Marine Scotland format have been submitted along with the supporting information for the application. Please note that there is a formatting issue in the sheet which incorrectly highlights samples with results in exceedance of RAL2. This is noted where samples have a "<" denoting less than the limit of detection. So while the sheet indicates there is a breach of RAL2, there are no RAL2 exceedances with samples being below detectable limits where a "<" is denoted unless otherwise specified.

Where contaminants have RALs as adopted by Marine Scotland, recorded exceedances above these criteria are summarised in Table 3-1.

All chemical data is reported and assessed on a dry weight basis.

Further consideration of these exceedances undertaken in Section 4.

Table 3-1: Exceedances of Revised Action Levels – Hunterston

Contaminant	No. of Exceedances (of 78 samples)		
	RAL 1	RAL 2	
Arsenic	0	0	
Cadmium	0	0	
Copper	0	0	
Chromium	0	0	
Lead	0	0	
Mercury	0	0	
Nickel	0	0	
Zinc	0	0	
PAH (All Species	12		
Maximum)	12	-	
PCBs	0	0	
TBT	0	0	
THC	3	-	
DBT	0	0	

3.1.1 Organochlorine Pesticides

Samples were tested for an organochlorine pesticide suite at the request of Marine Directorate. It is noted there is no RAL1 or RAL2 for these parameters. Of the samples tested the majority of results were noted to be less than the laboratory detection limit.

For the purposes of an initial screen of the results Ecotoxicological Assessment Criteria (EACs) were derived from values detailed in the Ospar Commissions Report of the Third OSPAR Workshop on Ecotoxicological Assessment Criteria (1996). This incorporates EACs in sediment for:

Dieldrin: 0.5 to 5ug/kgDDE: 0.5 to 5ug/kg.

With respect to Dieldrin, 9 of the samples recorded concentrations above the laboratory detection limits. The highest value recoded was 1.49 ug/kg (BH04, 6.1). None of the other 6 samples recorded concentrations above 0.5ug/kg with the exception of BH10-1.8 which recorded a concentration of 0.85ug/kg.

Of the samples tested 12 recorded concentrations of DDE above the limit of detection The maximum concentration recorded was 0.61ug/kg ((BH04, 6.1). The concentrations in the remaining samples did not exceed the 0.5ug/kg lower EAC threshold value with the exception of BH10-1.8 which recorded a concentration of 0.59ug/kg.

On the basis of the vast majority of samples not recording concentrations of organochlorine pesticides above the laboratory limit of detection, and on the basis of initial screening of results against applicable EAC values for specific parameters it is considered that there is not a significant risk associated with these contaminants within the sediment at Hunterston.

3.1.2 Brominated Flame Retardants (PBDEs)

Samples were tested for a PBDEs suite at the request of Marine Directorate. It is noted there is no RAL1 or RAL2 for these parameters. Of the samples tested the majority of results were noted to be less than the laboratory detection limit.

For the purposes of an initial screen of the results, values derived from the Ospar Commissions Background document for Canadian Federal Environmental Quality Guidelines (FEQGs) for Polybrominated Diphenyl Ethers (PBDEs) in sediment and biota were adopted as screening criteria. These values include:

- BDE28: 110ug/kg;
- BDE47: 97.5ug/kg;
- BDE66: 97.5ug/kg;
- BDE85: 1ug/kg;
- BDE99: 1ug/kg;
- BDE100: 1ug/kg;
- BDE153: 1,100ug/kg;
- BDE154: 1,100ug/kg;
- BDE183: 14,000ug/kg
- BDE209: 47.5ug/kg.

None of the samples recorded concentrations that exceeded the screening criteria. On this basis it is not considered that the sediments at Hunterston contain concentrations of PBDEs that would represent a significant risk to the environment during dredging or disposal.

3.1.3 Radionuclides

Composite samples from each location were tested for a radionuclide suite at the request of the Marine Directorate. It is noted there is no RAL1 or RAL2 for these parameters. Of the samples tested the majority of the resulted were less than the laboratory detection limit.

Under the London Convention (1972), only materials with de minimis levels of radioactivity may be considered for disposal to sea. For the purposes of this assessment the approach detailed in *IAEA*

Determining the suitability of materials for disposal at sea under the London Convention 1972: A radiological assessment procedure (2003) was adopted.

The Tables provided in Appendix E details the average (over all sample stations and depth ranges in cores) radionuclide results converted into radiation doses due to disposal. For the public assessment a mass conversion was carried out on the basis of disposal of 2.4 million tonnes of sediment per annum on a dry weight basis (i.e. assumes all material disposed of to one disposal ground within one year). As the majority of analytes were recorded as not exceeding the laboratory detection limit a 50% value of the limit of detection was adopted as the concentration for assessment.

The derived total doses to individual members of the crew and public were $2.06 \,\mu\text{Sv/year}$ and $7.6 \,\mu\text{Sv/year}$, respectively. The total collective dose was $0.031 \,\text{manSv/year}$. The values for individual members of the crew and public, and the collective dose, were found to be below the de minimis criteria of $10 \,\mu\text{Sv/year}$ (individual doses) and $1 \,\text{manSv/year}$ (collective dose), respectively.

On this basis there is not considered to be a significant risk from radiological concentrations in the sediment in relation to proposed dredging or disposal of the material at sea.

4 DISCUSSION OF AVAILABLE DISPOSAL OPTIONS

The BPEO process is geared towards identifying a preferred overall strategy from the perspective of the environment as a whole, as opposed to detailed optimisation of any one selected scheme. It is a structured and systematic process to identify and compare strategic options in a transparent manner. Alternatives are evaluated in terms of their projected implications for the environment together with consideration of practicability, social and economic issues as well as within a wider strategic context.

The key stages of a BPEO are:

- · Identification of options;
- · Screening of options;
- · Selection of assessment criteria;
- · Analysis and evaluation of criteria; and
- Evaluation of BPEO.

Further details on methodology are provided within each section.

4.1 Identification and Screening of Available Disposal Options

A number of options are available for disposal of dredged sediments. The options considered are provided in Table 4-1 along with justification for screening out those options which have not been taken forward for further consideration.

Table 4-1: Initial Best Practicable Available Options

Location	Options	Screening Assessment		
			forward?	
Harbour /	Leave in situ	Not an option due to the project maintenance dredge level requirements	No	
Quayside	Infilling of an existing dry dock/harbour	The development itself incorporates the requirement of suitable material for infilling of the existing dry dock at Hunterston.	Yes	
	facility/develop	Where material is geotechnically suitable for the infilling works (based on assessment of		
	ment site	elements such as % of fine material within the sediment) and the dredging and reuse of the		
	(beneficial re- use)	material meets the programme requirements for the construction phase then material will be reused.		
	Beach Nourishment	Areas of the Firth of Clyde and North Ayrshire Coastline are designated sites (SSSI, LNR) and hold both national and international importance to nature conservation. Specific beach nourishment projects would require to be supported by Environmental Assessments as a minimum to inform how the project could affect the environment as a result of disturbance to the intertidal area, changes to the sediment levels, the variable composition and quality of the material and measures devised from the assessment outcomes to minimise impacts on the environment.	No	
		The material to be dredged comprises a mixture of gravel, sand and silt. Fine sediments (i.e. silt) is not generally suitable for beach nourishment in the traditional sense.		

Location	Options	Screening Assessment	Carry forward?
Land	Landfill Disposal	This is possible but it is unlikely that this option will offer long term solution due to lack of space at landfills. Landfill space is currently at a premium and does not offer a sustainable solution either financially or environmentally for the disposal of dredged arisings. Dredged material likely to require treatment first in a dewatering facility. Significant cost associated with set up of dewatering facility at the quayside plus transportation and additional costs associated with gaining the necessary planning and regulatory consents.	Yes
	Land Incineration	The dredged material consists of non-combustible material (silts, sands, gravels, shells) with a low combustible component and very high-water content. This makes it unsuitable for treatment/disposal by this route.	No
	Application to Agricultural Land	The dredged material would need to be treated to reduce salt concentrations to acceptable levels. Would require detailed chemical analysis and assessment as well as a Waste Management License Exemption. Would require special precautions during spreading in relation to the risk of odour and watercourses / aquifers. The availability of land for this option will be limited within a reasonable haulage distance of the dredge arisings. Large volumes each year are unlikely to be viable to dispose of in this manner and would potentially have a detrimental effect on existing terrestrial habitats.	No
	Recycling	Recycling of dredged material is theoretically possible, however, due to the varied lithology there would need to be either segregation during dredging works to minimise the entrainment of fine-grained material into the sands, or energy and water rich processing on land. This is not currently understood to be an established disposal and reuse route in the Firth of Clyde at present and is not likely to be something which could be established in the project timeframes due to the requirement for various permitting requirements including waste management licencing, discharge consents for process water as well as increased road transportation for delivery of waste material and collection of processed material.	No
Sea	Aquatic disposal direct to seabed.	Relatively low cost, minimal transportation requirements compared to all other options and potential for low environmental risk. The closest licensed disposal grounds are Birch Point (MA17) and Brodick (MA19), both are located approximately 15 km from the closest proposed dredge site. An alternative disposal site that could also be used for the disposal (either in combination with Birch Point/Brodick or as a substitute) is Cloch Point (MA21) which is located 25km to the north of the site.	Yes

4.2 Summary of Identified BPEO Options

Following review of the available options, two options were identified for further detailed BPEO assessment which are as follows:

- Beneficial Re-use Infilling of Dry Dock/Site Platforming
- Landfill
- Sea Disposal

A brief summary of the necessary works or methodology for each option being taken forward for detailed BPEO assessment is provided below.

4.2.1 Beneficial Reuse - Infilling of Dry Dock/Site Platforming

The proposed construction methodology for the infilling of the dry dock will retain the existing bund that is in place that isolates the dock from the Firth of Clyde. Discussion with Marine Scotland and SEPA have confirmed that on this basis the infilling of the dry dock would be deemed a terrestrial activity in relation to licensing requirements (i.e. material placement within the dry dock would not require a Marine Construction Licence).

Dredged material is considered to be controlled waste for the purpose of transport, storage and disposal as per Section 34 (7) of the Environmental Protection Act 1990. Discussions with SEPA have indicated that reuse of dredge arisings for the dry dock infill/site platforming will require to be regulated by SEPA, with a Recovery Waste Management Licence being the likely most relevant applicable license for the works.

Attached in Appendix D is correspondence from SEPA in relation to testing considerations for material proposed to be reused at the site. As such, there is a requirement to assess the material for reuse from a geochemical perspective to ensure that it meets the requirements of the SEPA licensed activity

With respect to the beneficial reuse of the material the dredge arisings will require to meet specific geotechnical parameters to be deemed appropriate for reuse on the site. This will incorporate assessment of the physical quality of the material for engineering fill.

Finally, the reuse of the material will be dependent on project programme requirements. Currently the dredge activity is likely to occur towards the end of the construction programme, as such the material may not be available at the appropriate time in the construction phase to make its reuse a certainty.

At the time of writing the detailed assessment of the physical quality, extent and volume of suitable dredge material for reuse has not been completed. As noted above, the project programme as it currently stands also may result in the beneficial reuse not being possible.

On this basis the BPEO will progress on a conservative assumption that the material is not viable for the beneficial reuse based on either the physical quality or the programme implications. However, should the material be identified as geotechnically suitable and the project programme allow for beneficial reuse, then this will be the preferred option.

4.2.2 Landfill Disposal

Dredged material is considered to be controlled waste for the purpose of transport, storage and disposal as per Section 34 (7) of the Environmental Protection Act 1990. The Landfill (Scotland) Regulations 2003 require the classification and characterisation (i.e. inert, non-hazardous or hazardous) of the dredged material to be determined prior to landfill acceptance.

Disposal to landfill would require several stages in material handling operations:

- Dredging and transport to shore;
- Transfer to shore to a dewatering facility;
- Dewatering;
- Transfer of dewatered material to storage area for stockpiling;
- · Loading of lorries and transport to landfill site; and
- Disposal at Landfill site.

Transport to the shore would require the identification of an available space to allow for dewatering. It is assumed for the purposes of the BPEO that the Construction Yard itself would not be suitable for the dewatering activity due to the ongoing construction elements on site. As such the dewatering activity may need to take place elsewhere on the Hunterston Parc site assuming there is available land to facilitate the activity. Two options are available for off-loading; namely grabbing the spoil from the barge or hopper or pumping directly ashore.

The dewatering facility would require being purpose built and capable of receiving large quantities of bulk material. Currently no facility exists for this activity. Settlement tanks, with the aid of sluices and rotational management, would allow solids to settle out and the water element drain off and return to the sea. Temporary mobilisation of bespoke mechanical dewatering equipment could also be utilised but at greater cost. The dewatered dredged sediment would then be removed from the facility and stockpiled for transfer via lorry to a suitably licensed landfill.

We understand that the type of vehicle most suitable for transporting the dewatered dredged material is either a rigid bodied tipper or an articulated tanker both with a 16 tonne load capacity. It is estimated that the dredge volume equates to c. (approximately 1,546,660m³) of material and approximately 154,666 return trips would typically be required to transport the dewatered dredged material to landfill.

The number of landfills within a viable distance of the Firth of Clyde is considered to be low. In addition, the available capacity of each site is limited by the amount of material it can receive per annum. Due to the proposed quantity of material to be dredged it is therefore unlikely that any landfill within viable distance of the site will have the capacity to receive the dredged material.

4.2.3 Sea disposal

This option handles material in a single stage namely transport to the disposal site. The existing closest licensed disposal sites are 15km south west of the site, Cloch Point could also be utilised for the disposal this is located 25km to the north of the site. They are located in naturally deep water with ease of access, have a large capacity and are anticipated to be active for the foreseeable future.

5 FURTHER CONSIDERATION OF REMAINING DISPOSAL OPTIONS

5.1 Detailed BPEO Assessment

Each of the identified options was assessed against the criteria detailed in Table 5-1 below.

Table 5-1: BPEO Detailed Assessment Criteria

Primary Criteria	Description and Attributes		
Strategic	 Operational aspects, including handling, transport etc. 		
	 Availability of suitable sites/facilities 		
	General Public/local acceptability		
	Legislative Implications		
	 Summary of the outcome of consultation with third 		
	parties		
Environmental	Safety Implications		
	Public Health Implications		
	 Pollution/ Contamination Implications 		
	General Ecological Implications		
	 Interference with other legitimate activities e.g. fishing 		
	Amenity/Aesthetic Implications		
Costs	Operating costs e.g. labour, site operations,		
	environmental monitoring		
	 Capital e.g. Transport, equipment hire 		

5.1.1 BPEO Strategic Assessment

Table 5-2 provides details of the strategic assessment for each option taken forward for the detailed BPEO assessment:

Table 5-2: BPEO Strategic Assessment

Criteria	Beneficial Reuse – Dry Dock Infill/Site	Landfill	Sea Disposal
	Platforming		
Operational	Assumed that dewatering would occur on the	Would involve double handling of material	There would be no double handling of the
Aspects (inc.	Construction yard, with the dry dock being	through dewatering and transportation to	dredged material. Transportation to the
handling and	the most likely location. Dewatering would be	landfill.	disposal site would be by dredger or
transport)	undertaken under a SEPA discharge consent		barge(s) depending on methodology.
	incorporating appropriate plant to facilitate	As noted previously it is assumed that the	
	the removal/treatment of water to meet the	dewatering activity would require to be	
	consent requirements.	undertaken outwith the Hunterston	
		Construction yard, therefore a specific	
	Material would be subsequently moved on	dewatering facility will require to developed	
	site and placed in final location to facilitate	elsewhere incorporating SEPA discharge	
	the development.	consent.	
		Would also increase the number of HGV's on the road network.	
Availability of suitable	The project would incorporate installation of equipment to allow for dewatering likely to	The geotechnical composition of the dewatered dredged material is considered	The marine disposal site has been designed to accommodate the quantities
sites/facilities	use the existing dry dock with material being pumped ashore.	likely to be suitable for disposal via this route. However, there is typically a limit to the amount of waste that can be accepted both	typically generated by dredging operations. The chemical analysis of the sediments from the proposed dredge
	The geotechnical composition of the	on a daily and annual basis at a landfill.	sites would indicate that the material is
	dewatered dredged material is still to be	5.7 d dain, d. 1.2 d 1.1.1.2 d 1.2.1 d	likely to be acceptable for testing pending
	reviewed. As noted previously it is assumed		further risk assessment for contaminants
	at this stage that the material may not be		present at levels between Action Level 1
	suitable or may not be available at an		and Action Level 2.
	adequate time during the programme.		

Criteria	Beneficial Reuse – Dry Dock Infill/Site	Landfill	Sea Disposal
	Platforming		
General	The overall project has had three Public	Increase traffic on haul routes therefore	Traditionally accepted disposal route for
Public /Local	Consultation Events associated with the	potential for increase in public complaints.	dredged material and limited public
acceptability	Planning and Marine Licence Applications.		impact.
	The works will retain all material within the		
	existing Hunterston Construction Yard. The		
	activities are covered under the project EIAR		
	and supporting documents.		
Legislative	Beneficial re-use is the preferred option for	Contravenes the principles of minimising	This is an accepted disposal route as long
Implications	dredge arisings.	waste and long-term commitments by the government to reduce landfilling.	as a Marine Licence is obtained.
	These works would require obtaining		
	appropriate licence from SEPA.		

5.1.2 BPEO Environmental Assessment

Table 5-3 below details the environmental assessment for each option taken forward for detailed BPEO assessment.

Table 5-3: BPEO Environmental Assessment

Criteria	Beneficial Reuse – Dry Dock Infill/Site Platforming	Landfill	Sea Disposal
Safety Implications	Double handling of material increases the potential for accidents to occur. Work would be undertaken in accordance with H&S legislation.	Double handling of material increases the potential for accidents to occur. Work would be undertaken in accordance with H&S legislation.	Minimal handling of material required as it is directly placed at the disposal site. Work would be undertaken in accordance with H&S legislation.

Criteria	Beneficial Reuse – Dry Dock Infill/Site Platforming	Landfill	Sea Disposal
Public Health	Measures will be required to limit human contact during transfer of material from dredger to dewatering facility. Reuse of material will incorporate	Measures will be required to limit human contact during transfer of material from dredger to dewatering facility and transportation to landfill.	Low potential for human contact during dredging and disposal operations. Once deposited at disposal site pathways for human contact greatly reduced.
	assessment of risks to human health as part of the SEPA licensing requirements.	Security measures typically employed at licensed landfills which will minimise human contact once accepted and emplaced at site.	
Pollution/cont amination	Pumping ashore to dewatering facility and reuse will require energy. Reuse of material will incorporate assessment of risks to the environment as part of the SEPA licensing requirements.	Pumping ashore to dewatering facility and transportation to landfill will all require energy. Road transport increases the carbon footprint of this disposal option. Potential for spillages to occur. Suitability of material would need agreed with landfill manager.	Pollutant concentrations in dredged material to be disposed are limited to acceptable levels through regulatory licensing processes. Information with regards to the type of disposal site with regards to its effects on sediments has not been provided. Previous correspondence with Marine Scotland has previously concluded that disposal sites in Scotland are Dispersive.
General Ecological Implications	The EIAR for the development incorporates consideration of impact to ecology as a result of the proposed development.	Licensed landfill would be away from protected species and habitats with measures in place to prevent or minimise pollution of the surrounding environment.	Proposed to dispose at existing licensed facilities.
Interference with other legitimate activities	The EIAR incorporates consideration of cumulative impacts associated with the proposed development.	Potential for limited short term local impact to commercial and ferry operations in the area of the dredged material handling and road hauling principally related to noise and dust potential.	Disposal at the licensed sites has historically been used.

Criteria	Beneficial Reuse – Dry Dock Infill/Site Platforming	Landfill	Sea Disposal
Amenity / Aesthetic Implications	Odour release from dewatering facility. EIAR incorporates assessment of noise impact and supporting assessments on Construction Dust impacts.	Odour release from dewatering facility. Increase in traffic noise during transportation from dewatering facility to landfill facility. Potential for spillages on haul route.	Limited short term visual / odour / noise effects as dredged material is transported by dredger and disposed of below sea level.
		No significant additional visual / odour / noise effects as using existing landfill site.	

5.1.3 BPEO Cost Assessment

Costs were assessed for each of the options taken forward for detailed BPEO assessment. The BPEO assessment considered the typical costs associated with dredging, transportation to the disposal site, construction of treatment facilities (where applicable) and methods employed to protect the environment for each of the identified options. As costs are generally "Commercially Sensitive" the rates are based on experience within industry (as opposed to formal quotations).

For the purposes of comparing costs associated with each option a benchmark of 2,474,665 tonnes (approximately 1,546,660m³) of dredged material has been set.

The assumptions to calculate the costs are as follows:

- Dredging costs are estimated to be £3.21 per m³;
- Ship transportation costs from the dredged area to disposal / transfer site have been calculated based on £1.85 per tonne;
- Costs associated with construction and operation of a dewatering facility are estimated to be in the order of £1,000,000 or greater;
- Cost associated with transfer of dewatered material to lorry are based on a wheeled shovel (costing £47 per hour) operating 7 hours per day for 24 weeks (though minimum hire charges may make this cost significantly greater);
- Transportation costs from a dewatering facility to landfill are estimated to be £4.85 per tonne;
 and
- Landfill gate fees are estimated to be £30 per tonne for a non-hazardous landfill (Note: Maintenance dredgings are currently exempt from landfill tax as defined in SLfT3006 – Dredgings – Material removed from water, August 2018).

Table 5-4 provides details on the Cost assessment for each option taken forward for detailed BPEO assessment:

Table 5-4: BPEO Cost Analysis (based on 2,474,665 tonnes only)

Activity	Beneficial Reuse – Dry Dock Infill/Site	Landfill Disposal	Sea Disposal
	Platforming	(£)	(£)
	(£)		
Dredging	7,943,674	7,943,674	7,943,674
Transport by vessel to disposal site		-	4,578,130
Dewatering Facility	1,000,000	1,000,000	-
Transfer of material to lorry		39,480	-
Transportation Cost		12,002,125	-
Landfill Gate Fee		74,239,950	-
Total Costs	8,943,674	94,325,229	12,521,804

Note: The above costs do not take into account the cost required to gain planning or licensing consents or potentially to purchase land (where applicable). They also do not take account of the influence volumes will have on costs (economies of scale).

5.2 BPEO Assessment Discussion

Disposal to landfill is considered to be the least suitable option for the dredged material. It contravenes the principles of minimising waste and reducing landfilling. Several stages in material handling operations would be required to dispose of the material by this route. The cost associated with setting up a suitable treatment facility to dewater the dredged material is significant. Transportation of material by road is also undesirable as a result of increased traffic and the potential for accidental spillages. Landfill capacity is also typically limited and potentially unable to accommodate the quantities of material typically generated by the dredging operations. Any surplus dredged material will therefore require to be disposed of via an alternative route.

Beneficial reuse of the material is identified as the preferred option. As previously noted this would be subject to confirmation that the material meets the engineering specification requirements for the proposed dock infilling and site platforming. In addition, the material would require to be available at an appropriate time during the project programme to ensure that the reuse can be undertaken.

Deposition of the dredged material at a licensed marine disposal site is traditionally acceptable. The licensed marine disposal site has been designed to allow easy access as well as being capable of accommodating the quantities of material typically generated by dredging activities. Material handling is limited to transportation thereby reducing the risk for pollution incidents occurring. Pollutant concentrations are also limited to acceptable levels through regulatory requirements. Should beneficial reuse of the material not be possible due to the material not meeting the specification of programme requirements, then disposal at a licensed facility will be the preferred disposal option.

6 FURTHER ASSESSMENT

As detailed in Section 3, on the basis of the exceedances of Action Level 1 and Action Level 2, further assessment to determine the suitability of the material for sea disposal is deemed a requirement.

The approach for this further assessment is outlined as follows:

- Provide an overview of the proposed dredge works and the identified disposal site including existing chemical monitoring data for the site where available; and
- Compare existing chemical data with other recognised sediment assessment criteria including those listed below. Summary tables are provided in Appendix C

Background Assessment Concentration (BAC) - BACs were developed by the OSPAR Commission (OSPAR) for testing whether concentrations are near background levels. Mean concentrations significantly below the BAC are said to be near background. However, it should be noted that river catchments have their own unique geochemical fingerprints and are also governed by the geology within the catchment, so in theory one set of background level values is not applicable to all situations;

Effects Range Low (ERL) - ERLs were developed by the United States Environmental Protection Agency (USEPA) for assessing the ecological significance of sediment concentrations. Concentrations below the ERL rarely cause adverse effects in marine organisms. Concentrations above the ERL will often cause adverse effects in some marine organisms;

Probable Effects Level (PEL) – PELs (Marine) have been adopted from the Canadian Environmental Quality Guidelines (http://www.ccme.ca/en/resources/canadian environmental quality guidelines/). If a concentration is recorded above the PEL this is the probable effect range within which adverse effects frequently occur. The Threshold Effect levels (TELs) have been included in the summary table in Appendix C, but have not been used as part of the further assessment as they typically fall below the RAL1.

The following section contains a review of potential risks to the list of receptors identified in "Water Framework Directive Assessment: estuarine and coastal waters" (https://www.gov.uk/guidance/water-framework-directive-assessment-estuarine-and-coastal-waters). The conclusions drawn from the available information will provide a recommendation on proposed disposal routes.

6.1.1 Action Level 1

Exceedances of RAL1 can be summarised as follows:

- 12 samples recorded exceedances of PAHs.
- 3 samples recorded exceedances of THC.

6.1.2 Action Level 2

No exceedances of RAL2 were recorded in the sediment at the site.

6.1.3 ERL & PEL Review

Exceedances of the ERL and PEL (where one is available) is summarised in **Table 6-1**. Full summary tables are provided in Table B in Appendix C: Note any contaminant of concern with N/A indicates no corresponding ERL or PEL value currently available.

Table 6-1: Exceedances of ERL and PEL

Contaminant		No. of Exceedances (of 78 samples)	
	ERL	PEL	
Cadmium	0	0	
Copper	0	0	
Chromium	0	0	
Lead	0	0	
Mercury	1	0	
Zinc	0	0	
PAH (All Species	3	1	
Maximum)			
PCBs	N/A	0	

6.2 Averages

Review of the averaged data for all the data has been undertaken i.e. considering the material as a single volume for disposal to reflect the likely potential that the material is dredged as part of one exercise. The concentrations of the various contaminants of concern are quite variable, the review of average data against the available adopted assessment criteria are as follows:

Table 6-2: Exceedances of ERL and PEL - Average Concentrations

Contaminant	Do Average Concentrations exceed?	
	ERL	PEL
Cadmium	No	No
Copper	No	No
Chromium	No	No
Lead	No	No
Mercury	No	No
Zinc	No	No
PAH (All Species	No	No
Maximum)*		
PCBs	No	No

^{*}Note - where values are available for review.

6.3 Water Framework Directive Assessment

As outlined in the Water Framework Directive Assessment: estuarine and coastal waters guidance (Environment Agency, 2017), there are several key receptors which can be impacted upon including the following:

- Hydromorphology;
- Biology habitats;
- Biology fish;

- Water quality; and
- Protected areas

Each of these points are considered in Table 6-3 below.

Table 6-3: Receptor Risk Assessment

Key Receptor ¹	Brief Summary of Potential Effects on Receptor	Further Consideration Required?	Comment
Hydromorphology (Source Area and Disposal Site)	Morphological conditions, for example depth variation, the seabed and intertidal zone structure tidal patterns, for example dominant currents, freshwater flow and wave exposure	Yes	The EIAR incorporates assessment of the impact of the proposed dredge at the Hunterston Construction Yard. The assessment has not identified significant impact to the morphological conditions at the dredge site or in the surrounding area as a result of the proposed dredge. The EIAR is provided to support the application. The Birch Point and Brodick disposal sites are located within the Firth of Clyde Middle-Offshore area which is Classified as High for Hydromorphology and Morphology. The Cloch Point disposal site is located within the Firth of Clyde Inner - Dunoon and Wemyss Bay area which is Classified as Good and is not considered to be heavily Modified. The classification of the water bodies takes into account the presence of the disposal sites, so no further assessment is considered to be required. Birch Point and Brodick are identified as having a radius of 463m each whilst Cloch Point has a radius of 370m². Assuming that Cloch Point (as the smallest disposal area) was adopted solely for the disposal, on the basis of the total quantity of dredge material being evenly distributed across the dredge site this would result in a deposit of 3.6m thickness across the deposition area. The depth of water at this disposal ground is 50m. Assuming total disposal at Birch Point was carried as descried above for Cloch Point a deposit of 2.3m across the deposition area. The depth of water at the disposal ground is 160m. It is considered that the disposal would therefore not result in a significant impact to the hydromorphology of the disposal grounds on the basis of one single location being used for the total disposal.

 $^{^{1}\,\}underline{\text{https://www.gov.uk/guidance/water-framework-directive-assessment-estuarine-and-coastal-waters}}$

² www.gov.scot.xlsx (live.com)

Key Receptor ¹	Brief Summary of Potential Effects on Receptor	Further Consideration Required?	Comment
Biology - habitats	Included to assess potential impacts to sensitive/high value habitats.	Yes	The EIAR incorporates assessment impact of the proposed development and dredge with respect to impact to biology including the existing priority marine features and SSSI in proximity to the site. The assessment has not identified significant potential for impact to the sensitive/high value habitats as a result of the proposed dredging works at the site. The EIAR is provided to support the application.
			The establishment of the Brodick, Birch Point and Cloch Point disposal sites will have taken the potential presence of sensitive/high value habitats into account. There are no statutory habitat designations in the immediate vicinity of the dredge or disposal sites. No further assessment is considered necessary.
Biology – fish	Consideration of fish both within the estuary and also potential effects on migratory fish in transit through the estuary	No	The Largs Channel (Fairlie Roads) (ID: 200026) and disposal site 'Firth of Clyde Middle – Offshore' (ID: 200310) are coastal water bodies that do not have a WFD classification for fish. The Firth of Clyde Inner - Dunoon and Wemyss Bay is classified as Good Potential/Status or pass for Coastal and Transitional Waters for fish.
			The proposed disposal site has been approved for use specifically for the purpose of dredged materials. Migratory fish may be present within the Firth of Clyde at certain times of year, but this will have been taken in account in the establishment of the Brodick, Birch Point and Cloch Point disposal sites.
			It is noted that under periods of exceptionally hot and dry weather the potential for oxygen related issues to arise i.e. oxygen depletion and it is proposed that dredging works will be avoided as far as practicable during such times.

Key Receptor ¹	Brief Summary of Potential Effects on Receptor	Further Consideration Required?	Comment
Water Quality	Consideration must be given to water quality when contaminants are present in exceedance of CEFAS RAL1.	Yes	The Largs Channel (Fairlie Roads) and disposal site 'Firth of Clyde Middle – Offshore' are coastal water bodies classified as "Pass" for specific pollutants. Both locations Pass p for "priority substances". The overall classification for overall status is "Good". The outer estuary and Firth of Clyde Inner - Dunoon and Wemyss Bay are classified as Good potential/status or pass for "specific pollutants". The Firth of Clyde Dunoon and Wemyss Bay is classified as "Good" Potential/Status or pass for Coastal and Transitional Waters Contaminants are noted to exceed CEFAS RAL1 within sediment samples. It is noted that there are no exceedances of RAL2. Average results do not exceed ERL or PEL. Potential effects are considered to be both local and temporary.
Protected Areas	If your activity is within 2km of any WFD protected area, include each identified area in your impact assessment. • special areas of conservation (SAC) • special protection areas (SPA) • shellfish waters • bathing waters • nutrient sensitive areas	Yes	The proposed dredging and disposal sites are not located within 2 km of an SAC or SPA, marine protected area or Ramsar sites. The dredge area is located approximately 1.7km from the site. A dredge plume assessment has been carried out as part of the EIAR. The closest designation to the disposal sites is the South Arran Protected Area which is 4.6m to the south of the sites. The dredge site is within 1.4km of a shellfish waters protected area. The EIAR has incorporated coastal modelling to assess impact potential from the dredge plume. The EIAR is provided as a supporting document to the application.

6.4 Potential Risk to Water Quality and Protected Areas

6.4.1 Water Quality

Neither coastal water body covering the dredge or disposal areas have a classification status for priority substances or specific pollutants. The classification status at both areas for general water quality is 'Good'.

Although concentrations of some contaminants of concern were recorded above the RAL1 within the sediment for disposal, it is considered that these levels will not contribute to an overall degradation of water quality at the disposal site. While any effects are considered to be both localised and temporary, the potential for dilution in the open waters beyond the disposal site is considerable.

The disposal sites are assumed to be dispersive in nature.

Additionally, when the sediment results are reviewed as an average to assess all of the dredged sediment as a single unit for disposal, then no exceedances of RAL1 are noted. When considering the averaged results for PAHs, RAL1, the BAC, ERL and PEL is exceeded for several species. Averaged concentrations also exceed RAL1 for TPH. The BAC is intended to be used to determine if concentrations are near to background concentrations, rather than qualify any potential environmental impact. It should also be noted that the BACs for PAH are generally lower than the Marine Scotland RAL1, therefore it is considered to be a very conservative assessment criterion. In addition, PAHs and hydrocarbons are hydrophobic with low aqueous solubility and will naturally remain associated with organic sediment fractions, rather than become dissolved within the water column. On this basis, the risks associated with impact to water quality from chemical contaminants in sediment are considered to be low, with the associated dilution potential providing further mitigation. There are no exceedances of RAL2 in any individual samples or averaged concentrations. The key risk to water quality is considered to be an increase in turbidity/suspended solids during the disposal activity (i.e. placement of sediment on receiving beach and potential subsequent dispersal by tides). Although this is likely to cause localised increase in suspended solids, it is considered that this will be both local and temporary in nature. The sediment material primarily comprises mostly of sand (60%) with silt forming 37% of the material.

Sand and gravel particles will generally fall out of suspension quickly with minimal lateral spread. Given that majority of the sediment to be disposed comprises sand, it is unlikely that there will be a prolonged significant increase in suspended solids/turbidity. Any silts and clays (in this case an average of 37% of material) will have the potential for dispersal due to longer times in suspension, however it is expected that the majority will quickly fall quickly to the seabed. It should be noted that both Brodick and Birch Point disposal sites are classified as having 'Good' water quality although being ongoingly utilised as a site for disposal. As a result, it is considered unlikely that this dredging campaign will result in a change in the classification status of coastal water bodies at both the dredge and disposal sites.

6.5 Potential Risk to Water Quality and Marine Life

The potential risks to water quality at the dredge site and disposal sites are further considered as all other receptors have been screened out of the assessment.

The coastal classification of this area of water in and around the disposal grounds is "good" in 2008 (SEPA) & 2015 as detailed on Scotland's Environment (http://www.environment.scotland.gov.uk/)

Although there are contaminants of concern above the RAL1 it is considered that these levels will not contribute to an overall degradation of water quality as the potential for dilution and attenuation in the Firth of Clyde is very considerable.

The key contaminants for impacting water quality are considered to be metals as these have the potential to dissolve/desorb from sorption sites, whereas the organic contaminants (e.g. PCBs and PAHs) have a greater affinity for the organic materials which they are bound to, and are more likely to remain strongly bound to the sediment, or if become dissolved, quickly adsorbed onto organic matter within the water column or sediments.

The key risk is considered to be an increase in turbidity/suspended solids during the dredging activity, although this is likely to cause localised degradation in water quality, it is considered that this will be a short term event and mitigation measures could be put in place if deemed necessary.

On this basis, the associated risk with degradation of water quality directly associated with the proposed disposal is considered to be Low i.e. unlikely to cause a significant adverse effect on the overall water quality.

7 CONCLUSIONS AND RECOMMENDATIONS

Peel Ports Group Ltd. has appointed EnviroCentre Ltd. to complete a Marine Licence application and BPEO assessment for dredging at Hunterston Construction Yard. This has been informed using sediment quality results from sampling undertaken in March and April 2024.

Beneficial reuse of the material as part of the terrestrial development is the best practicable environmental option subject to the material being geotechnically suitable for use and meeting the project programme with respect to material availability. This material reuse would be undertaken under SEPA Waste Management Licensing and as such the disposal activity would not require a Marine Scotland Disposal Licence.

At the time of writing a full assessment of the potential reuse viability of the material has not been completed. Where material is not available at the appropriate time for reuse or is considered geotechnically unsuitable the best practicable environmental option for the dredge arisings is disposal at sea.

For the purposes of the application a conservative assessment has been undertaken and it is assumed that none of the material will meet the requirements for beneficial reuse. This will however be assessed as the project design progresses and where possible material will be identified for beneficial reuse.

Results from analysis of sediment samples recorded various PAH species and THC in exceedance of RAL 1. However, assessment of key receptors identified from the Water Framework Directive assessment for estuarine and coastal waters concluded that there is a low risk of the sediments impacting upon the overall ecological or chemical status upon disposal.

Based on the multiple lines of evidence approach adopted to further assess the exceedances identified in the sediment assessment, the material as a whole is considered suitable for disposal at sea at either the Brodick (MA017), Birch Point (MA019) and Cloch Point (MA021) disposal sites (this is considered to be suitable on the basis of disposal at one site solely however the project could adopt disposal at multiple sites should this be considered desirable with respect the dredging programme for the works), within the Firth of Clyde. This option is considered to have no significant long-term impact on the marine environment, is readily accessible from the harbour and has been assessed as a suitable option.

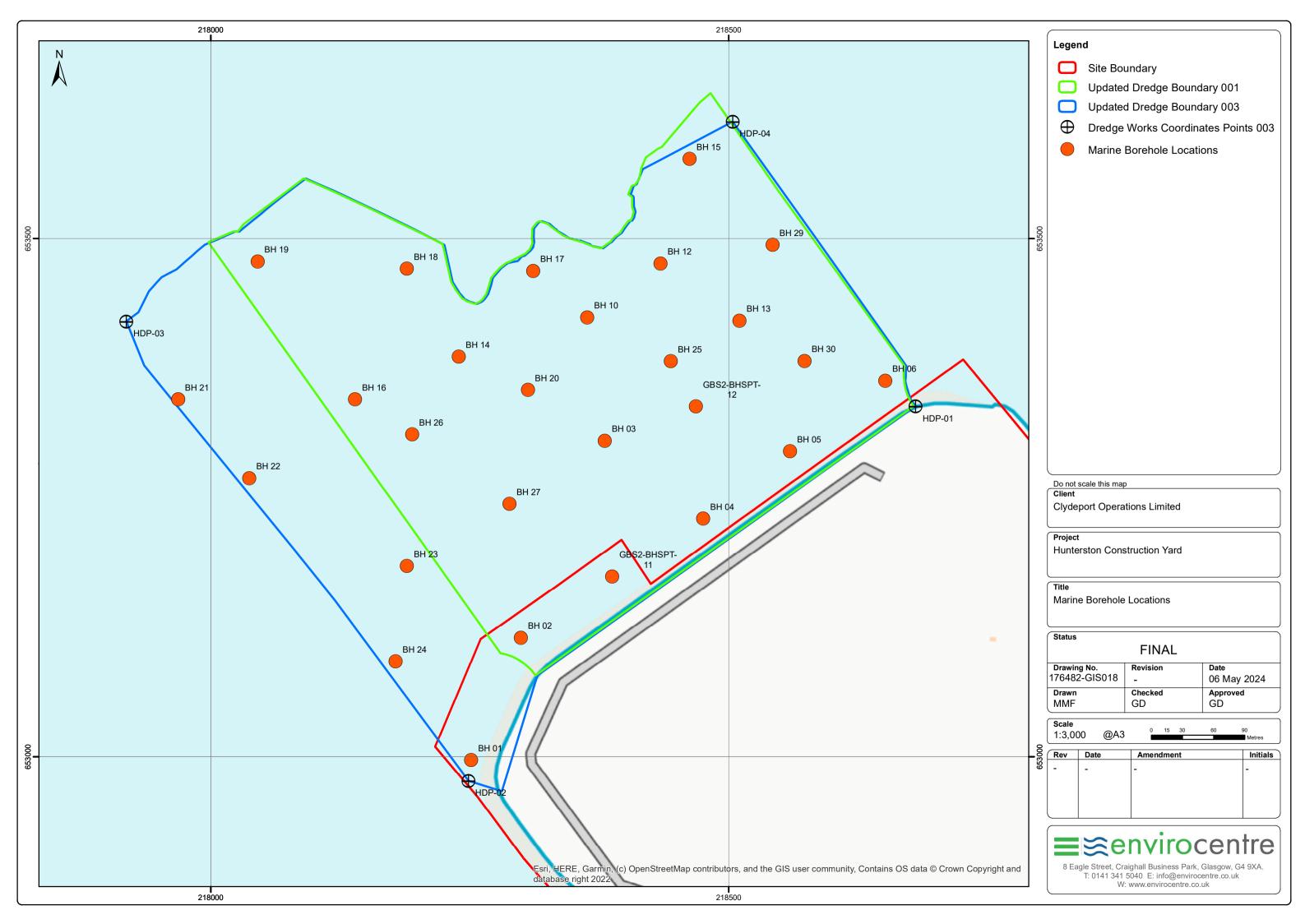
REFERENCES

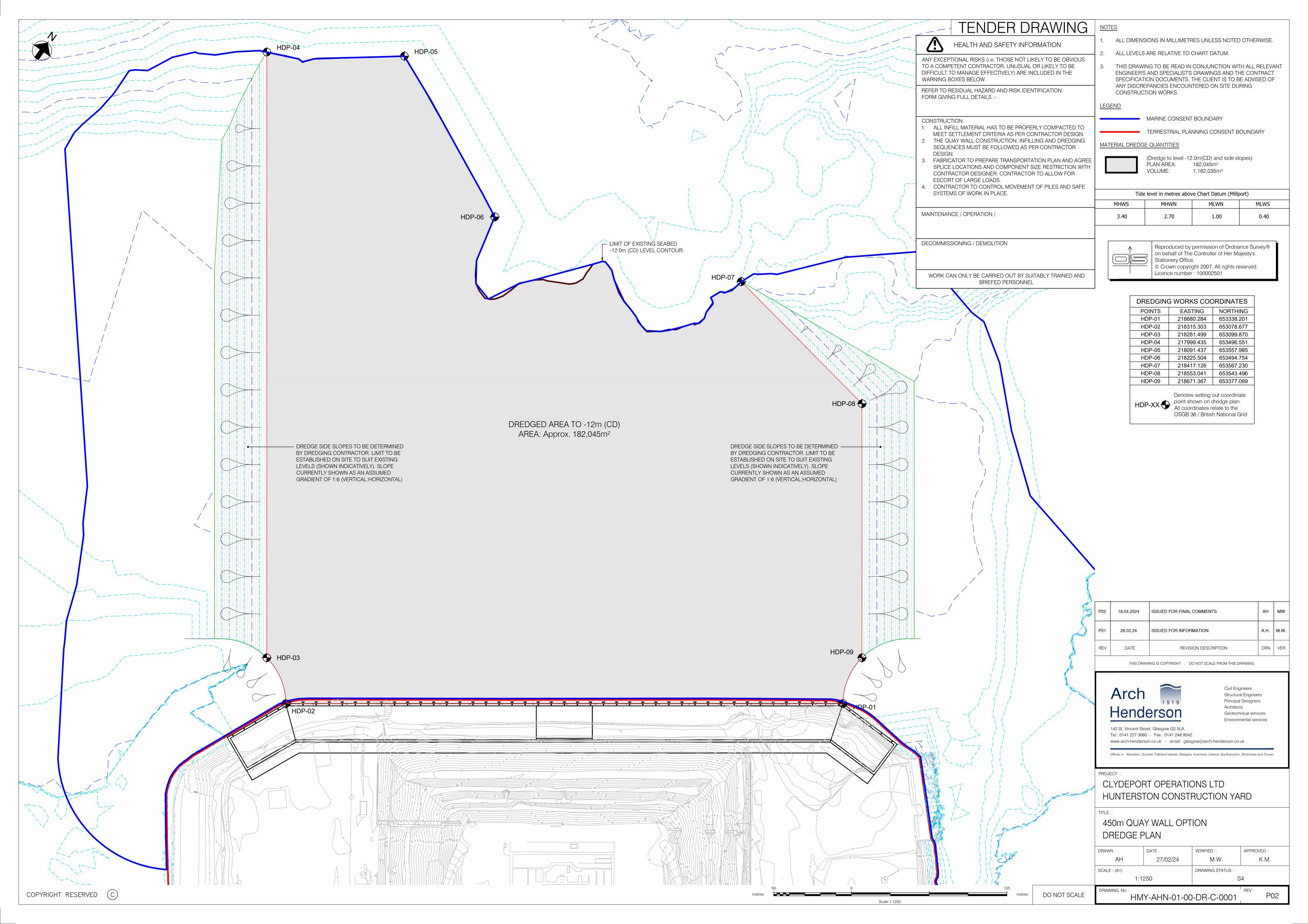
IAEA (2003). Determining the suitability of materials for disposal at sea under the London Convention 1972: A radiological assessment procedure

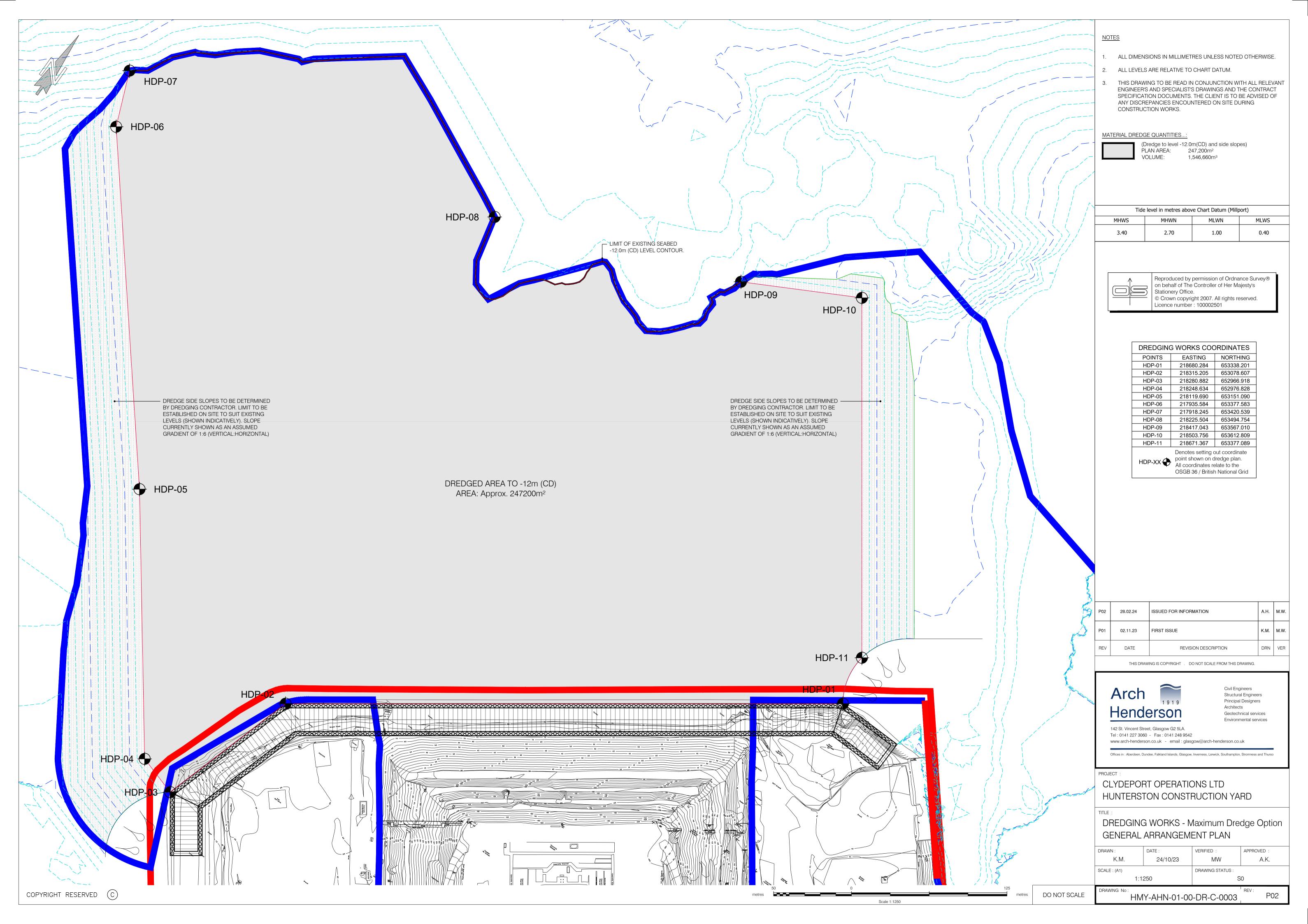
Marine Scotland (2017). Pre-DredgeSampling Guidance Version 2: Scottish Government.

Marine Scotland (2015). Guidance for Marine Licence Applicants Version 2: Scottish Government.

Marine Scotland National Marine Plan Interactive Viewer - https://marinescotland.atkinsgeospatial.com/nmpi/


OSPAR/ICES (2004) Workshop on the evaluation and update of background reference concentrations (B/RCs) and ecotoxicological assessment criteria (EACs) and how these assessment tools should be used in assessing contaminants in water, sediment and biota


Ospar (2020) Background document for Canadian Federal Environmental Quality Guidelines (FEQGs) for Polybrominated Diphenyl Ethers (PBDEs) in sediment and biota


APPENDICES

APPENDICES

A FIGURES

B SEDIMENT LOGS

•		AUSEV	VAY TECH	,			ct No. 1 739	Project Client: Client's		ts Limited	Yard			В	orehole	
Metho Sonic Dri		Plant Used Fraste CRS-XL14 Duo	Top (n 0.00		e (m) .30	21825	1.61 E 7.80 N	Final De	pth: 11.30 m	Start Date:	29/03/2024	Driller:			heet 1 c Scale: 1: DRAF	:50
Depth (m)	Sample / Tests	Field Reco	rds	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription		1	Water	Backfill	Т
(m) 0.00 0.00 0.00 0.00 - 0.80 0.80 0.80 - 2.30 0.80 - 1.25	ES1 ES4 ES5 B6 D17 B7	Marine Scotland Sal RAD Composite ENV Composite N=20 (1,3/3,4,6,7) H 1398		0.80	0.00	mcD	(m)		Medium dense to o			ND.		M		1.0
2.30 2.30 - 3.80 2.30 - 2.75		N=37 (2,3/6,8,10,13 SN = 1398	3) Hammer	2.30	0.00											2.5
3.80 3.80 - 4.80 3.80 - 4.25	D19 B9 SPT (S)	N=14 (2,5/3,3,3,5) H 1398	Hammer SN		0.00	-4.87	3.80	× × × × × × × × × × × × × × × × × × ×	Medium dense bro	wn slightly silt	y fine to mediun	n SAND.				4.0
5.30 5.30 - 5.75 5.30 - 6.80 5.50	B11	Ublow=20 67% Reco	,	5.30	0.00	-5.87	4.80	X	Stiff reddish brown	slightly sandy	silty CLAY. Sand	is fine to m	edium.			5.5
5.80 5.80 - 8.30 5.80 - 7.25	D21 B12 SPT (S)	N=16 (3,6/4,5,3,4) H 1398	Hammer SN		0.00			X X X X X X X X X X X X X X X X X X X								7.0
8.30 8.30 - 9.40 8.30 - 8.75	D22 B13 SPT (S)	N=6 (1,0/2,1,1,2) Ha 1398	ammer SN =		0.00	-9.37	8.30	X X X X X X X X X X X X X X X X X X X	Loose reddish brow SAND. Gravel is ang lithologies.							8.0 8.5 9.0
	Water	Strikes	Ron	narks												<u></u>
Casing Do	etails) Time (min) Rose t	o (m) Ove Decl All e Mar Com	water land to bed levation ine Scot posite	l = 6.4 ns and tland : sampl	0m I reduced	levels given ocation (Datum							
11.30	177		Со	re Barı	rel	Flush	Туре		ion Reason d at scheduled depth	1			Last Up 02/04/			G

	_		ОТЕ	ECH			Projection 23-1	1739	Client:		ts Limited	talu				BH01	L
Metho Sonic Dril		Plant Use Fraste CRS-X Duo		Top (r 0.00	n) Bas	e (m) 1.30	Coord 21825		Final De	epth: 11.30 m	Start Date:	29/03/2024	Driller:	AM/MJ	l	heet 2 c Scale: 1:	
		Buo						7.80 N	Elevatio	on: -1.07 mCD	End Date:	30/03/2024	Logger:	MS		DRAF	Т
Depth (m)	Sample / Tests	Field	Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
40 - 10.00 80 80 - 10.07 0.00 - 10.60 0.60 - 11.30 0.90	B15 B16	50 (25 for 115n 160mm) Hamm	ner SN =	1398	9.86	0.00	-10.47 -11.67 -12.37	10.60		Brown and reddish subangular fine to do to coarse.	brown slightly coarse GRAVEI	r sandy slightly cl	ayey angu	ar to			9.5 10.0 - 10.5 11.0 - 12.5 13.0 - 14.5 15.0 - 16.5 17.0 -
	-							-									18.0
	Water	Strikes		Rei	marks												
Casing De) Time (min) Ro Water Ad From (m)		Dec All e Ma Cor	erwater ik to be elevatio rine Sco nposite	d = 6.4 ons and otland samp	10m d reduced l	evels given ocation (Datum							
11.30	177			Co	ore Bai	rrel	Flush	Туре		tion Reason	1			Last Up			

		CAUSEW GEOTE	AY CH			ect No. -1739	Project Client: Client'		rts Limited	Yard			В	orehole BH02	
Metho Sonic Dri Rotary Co	illing	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140	Top (m) 0.00 36.40	36.40 45.40	2182	rdinates 299.51 E 115.79 N	Final De			30/03/2024		AM/KW		heet 1 o Scale: 1:	50
Depth	Sample /	Duo			033.	Depth		JII1.16 IIICD			Logger.	LVV/IVI3	ħ		
(m) 0.40 0.40 0.40 0.40 - 1.90	Tests ES1 ES4	Field Records Marine Scotland Sample RAD Composit ENV Composite	2	Casing Wat Depth (m)	mCD	(m)	Legend XXXX XXX XXX XXX XXX XXX XXX XXX XXX	Medium dense to o		cription htly silty fine to	coarse SAN	ND.	Water	Backfill	0.5
L.90 - 3.40 L.90 - 2.35	B7 SPT (S)	N=11 (1,2/2,3,3,3) Ham 1398	mer SN =	1.90 0.0	00										2.0 —
3.40 3.40 - 4.90 3.40 - 3.85		N=35 (1,3/6,10,9,10) Ha SN = 1398	nmmer	3.40 0.0	00										3.5
1.90 1.90 - 6.40 1.90 - 5.35 5.40		N=26 (3,5/5,7,7,7) Ham 1398 Marine Scotland Sample		4.90 0.0	00										5.0 – 5.5
5.40 5.40 - 6.85 5.60 - 6.80 5.80 - 7.90	D38 SPT (S) B10 B11	N=5 (3,4/2,1,1,1) Hamm 1398	ner SN =	6.40 0.0	-7.76 -7.96	F		Soft grey slightly gr angular fine to med Loose reddish brow	dium of variou	s lithologies.		Gravel is			6.5 7.0 -
7.90 7.90 - 9.40 7.90 - 8.35		N=7 (3,2/3,2,1,1) Hamm 1398	ner SN =	7.90 O.C	00										8.0 — 8.5 —
	<u> </u>	a. !!	T =	\coprod		-									
Casing D	asing to (m	Strikes) Time (min) Rose to (m Water Added From (m) To (m)	Deck t All ele Marin Comp	vater bore o bed = 7 vations a e Scotlan osite sam	7.10m nd reduce d Samplin iple for rad	d levels giv		Datum							
36.40 45.40	177 150			Barrel		h Type lymer		tion Reason ed at scheduled depth	h			Last Up 05/04/		- 1	<u> </u>

	CAUSEWAY GEOTECH Method Plant Used Top (m) Ba							ct No. 1 739	Project Client:		ts Limited	Yard				rehole BH02	
Metho	d) Bas	e (m)	Coord	inates	Final Da	4F 40 m	Start Date:	20/02/2024	Drillow	A B 4 /1//A/	Sh	eet 2 o	f 5
Sonic Dril Rotary Co	Ū	Fraste CRS-7 Duo Fraste CRS-7 Duo		0.00 36.40		5.40 5.40		9.51 E 5.79 N	Final De			01/04/2024	Driller:			ale: 1:	
Depth (m)	Sample / Tests	Field	d Records		Casin Depti (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	cription			Water	Backfill	
9.40 9.40 - 9.85 9.50 - 10.90		N=7 (1,1/2,2,2, 1398	.,1) Hamn	ner SN =		0.00	-10.66	9.50		Loose to medium d	ense grey fine	to medium SAN	ND.				9.5 —
10.80 10.90 10.90 - 12.40 10.90 - 11.35	D41 B14 SPT (S)	Marine Scotlar N=10 (5,3/3,2,1398				9 0.00											11.0
	SPT (S)	50 (5,8/50 for : SN = 1398	280mm)	Hamme		4 0.00	-13.56	12.40		Very dense dark rec SAND. Gravel is sub lithologies.							12.0 — — — — — — — — — — — — — — — — — — —
13.90 13.90 - 14.35 13.90 - 15.40		Ublow=120 10	00% Reco	very	13.	9 0.00											13.5 — — — — — — — — — — — — — — — — — — —
15.40 15.40 - 16.50 15.40 - 15.76		50 (8,12/50 for Hammer SN = 1)	15.	4 0.00	-16.56	15.40		Very stiff reddish br coarse.	rown slightly s	andy silty CLAY. !	Sand is fine t	0			15.0 — - - - 15.5 — - - 16.0 —
16.50 - 17.70 16.90 16.90 - 17.35	D45	Ublow=112 10	00% Reco	very	16.	9 0.00			X								16.5 — 16.5 — - - 17.0 —
17.70 - 18.40	B19						-18.86	17.70	×	Very stiff reddish br fine to coarse. Grav various lithologies.							17.5 — - - - - 18.0 —
18.40 18.40 - 19.90		Chris		-													18.5 —
truck at (m) Ca		Strikes) Time (min) R	Rose to (n		narks water		ole drilled	from the	· Causeway	Giant 1							
Casing De	e tails iam (mm)	Water A		Deck All el Mari Com	to be levation ne Sco posite	d = 7.1 ons and otland samp	L0m d reduced	levels give ocation (i	en in Chart 3 samples t esting	Datum							
36.40 45.40	177 150			Coi	re Ba SK6L		Flush Polyr			tion Reason d at scheduled depth	ı			05/04/2		A	T GS

						Proje	ct No.	Project	Name: Hunterst	ton Marine	Yard			В	orehole	: ID
	C	AUSEW	AY			23-1	739	Client:	Peel Por	ts Limited					BH02	2
		——GEOT	ECH					Client's	Rep: Enviroce	ntre						
Method	d	Plant Used	Top (m)	Base	(m)	Coord	inates				00/5-1-	L		S	heet 3 o	 of 5
Sonic Drill	ling	Fraste CRS-XL140	0.00	36.	40	21829	0.51.5	Final De	pth: 45.40 m	Start Date:	30/03/2024	Driller:	AM/KW		Scale: 1:	
Rotary Cor	ring	Duo Fraste CRS-XL140 Duo	36.40	45.	40	65311		Elevatio	n: -1.16 mCD	End Date:	01/04/2024	Logger:	LW/MS		DRAF	Т
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend	·	Des	cription			Water	Backfill	Π
																19.0
																19.5
	D47			19.9	0.00											20.0
	B21 SPT (S)	50 (2,2/50 for 295mm)	Hammer													
		SN = 1398														
																20.5
																I
							-									21.0
40	D48			21.4	0.00											I
.40 - 21.95	UT62	Ublow=128 100% Reco	very	21.4	0.00											21.5
.70 - 23.00	B22					-22.86	21.70		Very stiff reddish br	own slightly s	andy CLAY. Sand	is fine to m	nedium.			1
																22.0
																ı
																22.5
																1
	D49			22.9	0.00	24.10	22.00									<u>,</u> ,
.90 - 23.28	SPT (S)	50 (5,10/50 for 225mn Hammer SN = 1398	٦)			-24.16	23.00	× × :	Very stiff dark brow subangular fine to r				to			23.0
3.00 - 24.00	B23							×>	subangular fine to r	neulum grave	i oi various litno	iogies.				1
								<u></u>								23.5
								×——								
1.00 - 24.90	B24							×——								24.0
								×——>								
	D50 UT63	Ublow=100 0% Recove	ry	24.4	0.00			×——>								24.5
								×								
4.90 - 25.75	B25					-26.06	24.90		Brown slightly claye	ey fine to coar	se SAND.					25.0
																25.5
						-26.90	25.75									1
	D51			25.9	0.00	-20.90	23./5	×	Very stiff dark brow to coarse sand.	n silty CLAY w	ith rare beds of	reddish bro	wn fine			- -
	B26 SPT (S)	50 (6,10/50 for 230mm	n)					×_×	to course sallu.							26.0
.50 20.20		Hammer SN = 1398	-1					×-×								1
							-	×								26.5
								×								
								×								27.0
7.40	DES				0.00			×								ĺ
	D52 UT64	Ublow=100 0% Recove	rv	27.4	0.00			×								27.5
7.40 - 28.90								×>								I
								×								
uck at /m\lc=		Strikes) Time (min) Rose to (i	Rema			-11 .0	£ : '	C	Ci+1							_
uck at (III) Cas	oring to (m	, rime (min) Rose to (I	Deck t	o bed	= 7.1	0m		Causeway								
			All ele	vation	s and	reduced l	evels give	en in Chart	Datum							
								3 samples t	aken)							
Casing De	tails	Water Added				e for radio e for envir										
To (m) Dia	am (mm)				F.		20	0								
36.40 45.40	177 150			_		_			·			-	• . • • •		,	_
			Core	Barr	eI	Flush	ıype	Ierminat	tion Reason				Last Up	aate	d	Ī
45.40				K6L		Polyn			d at scheduled depth				05/04/2			_

		CAUSEW				Projec	.739	Project Client: Client's	Name: Hunterston Marine Yard Peel Ports Limited Rep: Envirocentre	Borehole ID BH02
Method Sonic Drilli Rotary Cori	ing	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140 Duo	0.00 36.40	36.4 45.4	40	21829 65311	9.51 E	Final De		Scale: 1:50
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend	Description	backfill Backfill
28.90	D53			28.9 (-	X—————————————————————————————————————		28.0 —
		50 (6,9/50 for 225mm) SN = 1398	Hammer			-31.16	30.00	× × × × × × × × × × × × × × × × × × ×	Very stiff dark brown silty CLAY with low cobble content. Cobbles ar	29.5
		50 (9,9/50 for 225mm) SN = 1398	Hammer	30.4 (0.00	-31.76	30.60		very stiff dark brown slity CLAY with low cobble content. Cobbles ar subangular of sandstone. Very dense reddish brown slightly gravelly slightly clayey fine to coarse SAND. Gravel is angular to subangular fine to medium of sandstone.	90.5 —
		N=50 (9,9/8,12,12,18) F SN = 1398	Hammer	31.9 (0.00	-33.26	32.10		Very stiff grey slightly sandy CLAY. Sand is fine to medium.	31.5 — 32.0 — 32.5 — 32.5 —
	B32 D56 UT65	Ublow=140 100% Recov	very	33.4 (0.00	-34.46	33.30		Dark reddish brown very clayey fine to medium SAND.	33.0 — - - - 33.5 — - -
34.00 - 34.90						-35.16	34.00		Medium dense reddish brown gravelly slightly clayey fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of various lithologies. Cobbles are subangular to subrounded of sandstone.	
34.90 - 35.90	D57 B34 SPT (S)	N=14 (5,5/4,4,3,3) Ham 1398	mer SN =	34.9 (0.00					35.0 — 35.0 — - - 35.5 —
	D58			36.4	0.00	-37.06 -37.56	35.90 36.40	A	Grey mottled reddish brown gravelly fine to coarse SAND. Gravel is subangular to subrounded of sandstone. Very dense brown very gravelly fine to medium SAND with low	36.0
36.40 - 36.48	5P1 (S)	50 (25 for 75mm/50 for Hammer SN = 1398 100	NI						cobble content Gravel is rounded to subrounded fine to coarse of various lithologies. Cobbles are subrounded of various lithologies. (Low recovery: Probable fine material washed out during drilling)	37.0 — 37.0 —
	Water	r Strikes	RQD FI	rks						
Struck at (m) Casi)) Time (min) Rose to (m	Overw Deck t All ele	vater bo o bed : vations e Scotl	= 7.10 s and and S	0m reduced l Sampling l	evels give	e Causeway en in Chart 3 samples t	Datum	
36.40	m (mm) 177 150	Water Added) From (m) To (m)	Comp		ample	e for radio e for envir Flush	onmenta	l testing	on Reason Last	Updated Updated
				K6L	-	Polyn				/04/2024 AGS

8		20110			/ A '	_				ct No.		Name: Hunterst		Yard			В	orehole	
		AUS	E	VV OTE	A	Н			23-1	L 73 9	Client:	Peel Por	ts Limited					BH02	<u>'</u>
			1 = () l		П					Client's	Rep: Enviroce	ntre						
Met		Plant U					Base		Coord	inates	Final De	oth: 45.40 m	Start Date	30/03/2024	Driller:	AM/KW	S	heet 5 o	of 5
Sonic D	Drilling	Fraste CRS		L40	0.	00	36	.40	21829	9.51 E	i iliai bej	ytii. 43.40 iii	Start Date.	30/03/2024	Dillier.	AIVI/KVV	,	Scale: 1:	50
Rotary	Coring	Fraste CRS Du		L40	36	.40	45	.40	65311	5.79 N	Elevation	-1.16 mCD	End Date:	01/04/2024	Logger:	LW/MS		DRAF	Τ
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
7.90 7.90 - 37.9	90 SPT(S) 5 0mm/5	50 (25 for 0 for 0mm)				NI	37.9	0.00	-39.06	37.90		Weak very thinly to poorly cemented SA closer fracture space	ANDSTONE. Pa						37.5 38.0 -
37.90	Hamme D59	er SN = 1398	100	25	16	10						Discontinuities: 1. 20-45 degree joir deconstructed to sa 2. 70-90 degree joir undulating, rough.	nts, very closel and on joint su	rfaces.					38.5 - 39.0 -
39.40			100	95	73				-40.56	39.40		Medium strong to s grained well cemen quartz inclusions, u fracture spacing. Discontinuities: 1. 5-30 degree bedd planar, rough, clean	ted SANDSTOI p to 5mm. Par	NE with rare ligh	t grey silts I: slightly c	tone and loser			39.5 40.0 - 40.5
10.90			100	98	98	_													41.0 · 41.5
2.40			100	100	97	3													42.5 43.0 43.5
3.90			100	97	91														44.0 44.5 45.0
5.40									-46.56	45.40			End of Bore	nole at 45.40m					45.5 46.0
			TCR	SCR	RQD	FI	<u> </u>	Щ	_										\perp
nck at /=: \		r Strikes	Doc-	to /-	ח ר	rom '			Details		Remarks		.1. 0	e:					
Casing To (m)	Details Diam (mm	Water) From (m)	Add		n) F	rom (<u>m) </u>	To (m) Tim	e (hh:mm)	Deck to be All elevation Marine Scot Composite	borehole drilled froid = 7.10m ins and reduced level stland Sampling local sample for radiologic sample for environn	ls given in Cha tion (3 sample cal testing	rt Datum					
36.40	177 150				-	Core	Barı	rel	Flush	Type	Terminati	on Reason				Last Up	date	d =	-
45.40	1	İ	1		- 1	2016	Juil	٠.	. 14311	. , , , ,	·c····iati					asc Op	-utc	-	

		CAUSEWA	СН		23-	ect No. 1739	Project Name: Hunterston Marine Yard Client: Peel Ports Limited Client's Rep: Envirocentre	Borehole ID BH03
Metho Sonic Dril Rotary Co	lling	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140 Duo	0.00 29.00	29.00 35.00	21838	30.96 E 05.73 N	Final Depth: 35.00 m Start Date: 17/03/2024 Driller: MJ/KW Elevation: -8.29 mCD End Date: 20/03/2024 Logger: MS/OG	Sheet 1 of 4 Scale: 1:50 DRAFT
Depth (m)	Sample / Tests	Field Records		Casing Wat Depth Dep (m) (m	er Level	Depth (m)	Legend Description	të Backfill
0.50 0.50 0.50 0.50 - 0.90 0.50 - 0.95	ES1 ES4 ES5 B6	Marine Scotland Sample RAD Composite ENV Composite N=0 (0,0/0,0,0,0) Hamm		0.50 0.0		0.90	X X X X X X X X X X X X X X X X X X X	0.5
1.90 2.00 2.00 - 2.50 2.00 - 2.45		1398 Marine Scotland Sample N=6 (1,2/1,2,1,2) Hamm 1398		2.00 0.0	-10.79	2.50	Dark reddish brown slightly gravelly clayey fine to coarse SAND.	1.5 — 2.0 — 2.5 —
2.50 - 3.00 3.00 - 3.50	B9 B10				-11.29	3.00	Gravel is subangular to subrounded fine to medium of various lithologies. Soft reddish brown CLAY.	3.0
3.50 3.50 - 4.30 3.50 - 3.95 3.70 4.30 - 5.00	D39 B11 SPT (S) ES3 B12	N=2 (0,1/0,0,1,1) Hamm 1398 Marine Scotland Sample		3.50 0.0	-12.59	4.30	Very soft grey slightly gravelly sandy clayey SILT. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of various lithologies. Soft reddish brown CLAY.	4.0
5.00 5.00 - 5.75 5.00 - 5.45	D40 B13 SPT (S)	N=9 (0,0/1,2,3,3) Hamm 1398	er SN =	5.00 0.0	00 -13.29	5.00	Firm grey slightly gravelly sandy clayey SILT. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of various lithologies.	4.5 — - 5.0 — - - 5.5 —
6.50 6.50 - 6.95	D41 B15 SPT (S)	N=1 (1,0/1,0,0,0) Hamm 1398	er SN =	6.50 0.0	-14.04	5.75	Very loose reddish brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded of various lithologies.	6.0
8.00 8.00 - 8.45 8.00 - 9.50	D42 UT58 B16	Ublow=300 100% Recovi	ery	8.00 0.0	00 -16.29	8.00	Reddish brown slightly clayey fine to coarse SAND.	7.5 — 8.0 — 8.5 — 8.5 —
Casing De	sing to (m	r Strikes Time (min) Rose to (m) Water Added From (m) To (m)	Deck t All ele	vater bord o bed = 1 vations a e Scotlan osite sam	L4.50m nd reduced	levels giv location (ological te		
35.00	150			Barrel	Flush Poly	Type mer	Termination Reason Last Up Terminated at scheduled depth 21/03	pdated AGS

Client's Rep: Envirocentre			CAUS	EW	ΆΥ			Project 23-1	ct No.	Project	: Name: Hunters	ton Marine	Yard			В	orehole	
Method Plant Used Top (m) Suc for O.00 20 0 O.00			G	EOTI	ЕСН							entre						
Sonic Politing Prose (SX 1140) 0.00 29.00 35.00 (13380.378) Rotary Corning Duc	Meth	od	Plant U	Jsed	Top (m	Base	(m)	Coord	inates		•					S	heet 2 o	 of 4
Project Coring Frank CS \$1,140 29.00 35.00 653305.73 N	Sonic Dr	rilling				_		21020	0.06.5	Final De	epth: 35.00 m	Start Date:	17/03/2024	Driller:	MJ/KW		Scale: 1:	
1.50	Rotary C	Coring	Fraste CRS	S-XL140	29.00	35.	00			Elevatio	on: -8.29 mCD	End Date:	20/03/2024	Logger:	MS/OG		DRAF	Τ
1.50 - 1.20 27 30 (25 for 109mm/50 for 205mm) 1.50 - 1.20 30 (25 for 205mm) 1.50 -			Fie	eld Records		Casing Depth (m)	Water Depth (m)			Legend		Des	cription			Water	Backfill	
10.0 - 11.5 UTS9	9.50 - 11.00	B17				9.50	0.00	-17.79	9.50		coarse. Gravel is an					-		9.5
12.50 - 12.88 SPT (5) SO (7,10/50 for 232mm) Hammer SN = 1398 14.0 0.00 14.00 - 14.45 0.00 15.00 - 15.00 15.10 15.50 15.	11.00 - 11.45 11.00 - 11.50	5 UT59 0 B18	Ublow=276 1	100% Reco	very	11.0	0.00	-19.79	11.50		coarse SAND. Grave					_		11.0 — 11.5 -
4.00 - 14.45 UT50 A0.15.00 B21 A0.0 - 15.00 B22 A0.0 - 15.80 B23 A0.0 - 15.80 B24 A0.0 - 15.80 B24 A0.0 - 15.80 B24 A0.0 - 15.80 B25 A0.0 - 15.80 B25 A0.0 - 17.30 B25 A0.0 - 17.30	2.50 - 14.00	0 B20			n)	12.5	0.00											12.5 13.0 -
15.50	L4.00 - 14.45	5 UT60	Ublow=232 1	100% Reco	very	14.0	0.00											13.5 ··· 14.0 -
5.80 - 16.70 B23 6.70 - 17.00 B24 7.00	.5.50	D47	50 (10,12/50) for 205m	m)	15.5	0.00											15.0 · 15.5
7.00 D48 7.00 - 17.40 B25 50 (10,15/50 for 150mm) Hammer SN = 1398 17.0 0.00 -25.69 17.40								-24.09	15.80	× × × × × × × × × × × ×	Very dense reddish	brown slightly	silty fine to coa	rse SAND.				16.0 -
17.40 - 17.30 SPT (S)	17.00	D48				17.0	0.00	-24.99	16.70	* * *	Very dense reddish	brown fine to	coarse SAND.					16.5 17.0 -
8.50 D49 8.50 - 18.95 UT61 Ublow=316 100% Recovery Water Strikes Remarks Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 14.50m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing Reddish brown slightly silty fine to coarse SAND.	7.00 - 17.30	0 SPT (S)			m)			-25.69	17.40		Gravel is subangula							17.5 18.0
Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 14.50m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing To (m) Diam (mm) From (m) To (m) Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 14.50m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing	8.50	D49 5 UT61		100% Reco			0.00	-26.59	18.30		Reddish brown sligl	ntly silty fine to	o coarse SAND.			-		18.5
Deck to bed = 14.50m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing To (m) Diam (mm) From (m) To (m) Deck to bed = 14.50m All elevations and reduced levels given in Chart Datum Composite sample for radiological testing Composite sample for environmental testing	ruck at /\l-			Poso to /				1 1										
To (m) Diam (mm) From (m) To (m)					Deck All ele Marir Comp	to bed evations ne Scotl posite s	= 14. s and and S ample	50m reduced l Sampling l e for radio	evels give ocation (i	en in Chart 3 samples t	Datum							
	To (m)	Diam (mm																
35.00 150 Core Barrel Flush Type Termination Reason Last Updated SK6L Polymer Terminated at scheduled depth 21/03/2024							el											J

		CAUSEW	AY CH			Proje		Project Client: Client's		ts Limited	Yard			В	orehole BH03	
Metho Sonic Dri		Plant Used Fraste CRS-XL140	Top (m) 0.00	Base 29.		Coord	inates	Final De	pth: 35.00 m	Start Date:	17/03/2024	Driller:	MJ/KW		heet 3 o	
Rotary Co	Ū	Duo Fraste CRS-XL140 Duo	29.00	35.		21838 65330		Elevatio	n: -8.29 mCD	End Date:	20/03/2024	Logger:	MS/OG		Scale: 1: DRAF	
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	ription			Water	Backfill	
19.10 - 20.00) B28					-27.39	19.10	X X X X X X X X X X X X X X X X X X X	Stiff brown slightly medium sand. Sand			ddish brow	n fine to			19.0 — — — — — — — — —
20.00 20.00 - 21.50 20.00 - 20.37		50 (7,9/50 for 220mm) H SN = 1398	Hammer	20.0	0.00	-28.29	– 20.00 –		Very stiff brown slig coarse. Gravel is an lithologies.							20.0 —
21.50 21.50 - 21.95 21.50 - 23.00		Ublow=186 100% Recov	ery	21.5	0.00											21.5 —
23.00 23.00 - 24.35 23.00 - 23.40		50 (5,9/50 for 245mm) H SN = 1398	łammer	23.0	0.00											22.5 — 23.0 — 23.5 — 23.5 — -
24.35 - 25.25 24.50 24.50 - 24.86	D53	50 (25 for 135mm/50 fo 225mm) Hammer SN = 1		24.5	0.00	-32.64	24.35		Very dense reddish Gravel is subangula lithologies.							24.0 — 24.5 — 24.5 —
25.25 - 25.65	B33					-33.54	25.25		Stiff reddish brown	slightly sandy	CLAY. Sand is fin	e to coarse	<u>. </u>			-
25.65 - 26.50 26.00 26.00 - 26.34 26.50 - 27.50	D54 SPT (S)	50 (25 for 135mm/50 fo 210mm) Hammer SN = 1		26.0	0.00	-33.94	25.65		Very dense reddish Gravel is subangula lithologies.	brown gravell	y slightly silty fir	ne to coarse	e SAND.			25.5 — 25.5 — 26.0 — 26.5 —
27.50 27.50 - 28.60 27.50 - 27.85		50 (25 for 125mm/50 fo 227mm) Hammer SN = 1		27.5	0.00											27.0 — 27.0 — 27.5 — 27.5 —
<u> </u>		r Strikes	Rema					ı							1	
	Deck to bed = All elevations Marine Scotla Composite sai Casing Details (m) Diam (mm) From (m) To (m) Double Trom (m) To (m)						evels give ocation (a logical te	3 samples t	Datum							
35.00	150			Barr	el	Flush Polyr			tion Reason d at scheduled depth	1			Last Up 21/03/			T GS

	CAUSEWAY								Proje	ct No.	Project	Name: Hunterst	on Marine	Yard			В	orehole	e ID
	C	AUS	E	W	A	Y			23-1	L 73 9	Client:	Peel Por	ts Limited					BH03	3
					ECI						Client's								
Metho	od	Plant U	Jsed		Top	(m)	Base	e (m)	Coord	inates							9	heet 4 c	 of 4
Sonic Dril		Fraste CRS	S-XL1			00		.00			Final Dep	oth: 35.00 m	Start Date:	17/03/2024	Driller:	MJ/KW		Scale: 1:	
Rotary Co	oring	Duo Fraste CRS		L40	29	.00	35	.00	21838	0.96 E 5.73 N	Elev-2"	0.30 : 05	End C-4	20/02/2024	les-	NAC /OC		DD 4 C	т
		Duc								-	Elevation	-8.29 MCD	End Date:	20/03/2024	Logger:	MS/OG	<u>.</u>	DRAF	
Depth (m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	20.0
28.60 - 29.00	B37								-36.89 -37.29	28.60	$\sim \sim \sim$	28.50-28.60m: Bed of stift Weathered SANDST slightly sandy clayey cobble content. (Recovered disturbe Medium strong red	ONE/BRECCIA y subangular f ed due to soni dish brown an	recovered as, reine to coarse GR c drilling) d light grey well	eddish bro AVEL with cemented	low			28.5 - 29.0 -
			100	71	43	4				-	00000000000000000000000000000000000000	CONGLOMERATE w medium strong red SANDSTONE. Partia closer fracture spac Discontinuities: 1. 10-30 degree joir	dish brown co Ily weathered ing, with brov	arse grained wel slightly reduced n discolouration	I cemented I strength, n.	d slightly			30.0 -
30.50			100	100	91		-		-39.09	30.80	0000	1. 10-30 degree joir rough, with brown s 2. 85-90 degree joir staining on joint sur 29.50-29.60m: 100mm ro Strong reddish brow SANDSTONE interbers well cemented SAN fracture spacing, oc discolouration.	staining on joints, 29.90-30.5 face. unded clasts of silts vn and grey coedded with str DSTONE. Parti	nt surfaces. 50m, undulating, 50me. Parse grained we ong reddish bro ally weathered:	rough. wit Il cemente wn mediur slightly clo	th brown d pebbly n grained			30.5 31.0 -
12.00			100	100	82	2						Discontinuities: 1. 5-30 degree joint with brown staining surfaces. 32.00-32.20m: 70 degree	and occasion						32.0 - 32.5 33.0 -
5.30			100	100	78														34.0
35.00									-43.29	35.00			End of Bore	hole at 35.00m					35.0 - 35.5 36.0 -
	\	Cautter	TCR	SCR	RQD		-			-									37.0 -
ruck at (m) Ca		Strikes Time (min)	Rose	e to (n		Nerw		noreh	ale drilled	from the	Causeway 0	Giant 1							
. 350. 34 (111) Cd		Water	Add		D A N C	eck t II ele Varino Compo	o bed vatior e Scot osite s	l = 14. ns and tland S sampl	50m reduced l	levels give ocation (3 blogical te	en in Chart [3 samples ta sting)atum							
	177 150					Core	Barı	rel	Flush	Туре	Terminati	on Reason				Last Up	date	ed 🔳	_

		CAUSEW	/AY			ct No. 1 739	Project Name: Hunterston Marine Yard Client: Peel Ports Limited Client's Rep: Envirocentre	Borehole ID BH04
Metho Sonic Dri		Plant Used Fraste CRS-XL140	Top (m)	Base (m) 38.60	Coord	linates	Final Depth: 45.50 m Start Date: 02/04/2024 Driller: AM/KW	Sheet 1 of 5
Rotary Co	Ū	Duo Fraste CRS-XL140 Duo	38.60	45.50		5.93 E 0.11 N	Elevation: 0.17 mCD End Date: 03/04/2024 Logger: LW/MS	Scale: 1:50 DRAFT
Depth (m)	Sample / Tests	Field Records	i	Casing Water Depth Depth (m) (m)	Level mCD	Depth (m)	Legend Description	Backfill
0.00 0.00 0.00 0.00 - 1.10		Marine Scotland Samp RAD Composite ENV Composite	ile				Light brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to medium of various lithologies.	0.5
1.10 1.10 - 1.55	D36 SPT (S)	N=6 (1,1/2,1,1,2) Ham 1398	mer SN =	1.10 0.00	-0.94	1.10	NO RECOVERY: Probable unrecoverable very loose non-cohesive material flushed out by drilling process.	1.0
2.60 2.60 - 3.05		N=2 (1,0/1,0,1,0) Ham 1398	mer SN =	2.60 0.00				2.5 —
4.10 4.10 - 5.60 4.10 - 4.55	D38 B7 SPT (S)	N=1 (1,0/0,1,0,0) Ham 1398	mer SN =	4.10 0.00	-3.94	4.10	Very loose brown slightly gravelly fine to coarse SAND with rare shell fragments. Gravel is subangular to subrounded fine to medium of various lithologies.	4.0 — 4.0 — 4.5 — 5.0 —
5.60 5.60 - 7.10 5.60 - 6.05 6.10		N=2 (1,0/1,0,0,1) Ham 1398 Marine Scotland Samp		5.60 0.00				5.5 — 6.0 — 6.5 —
7.10 7.10 - 8.60 7.10 - 7.55		N=2 (1,1/0,1,0,1) Ham 1398	mer SN =	7.10 0.00	-6.94	7.10	Very loose to loose greyish brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of various lithologies.	7.0 —
8.60 8.60 - 9.90 8.60 - 9.05	D41 B10 SPT (S)	N=8 (1,2/1,2,3,2) Ham 1398	mer SN =	8.60 0.00				8.5 — - - 9.0 —
		r Strikes	Rema	ırks	I	I		
Casing De		Water Added From (m) To (m)	Deck t All ele Marin Comp Comp	to bed = 6.4 vations and e Scotland osite samp osite samp	40m d reduced Sampling le for radio le for envi	levels giv location (plogical te ronmenta		
45.50	150			Barrel	Flush Polyi		Termination Reason Last Up 15 (10) (10) (10) (10) (10) (10) (10) (10)	

		CAUSEW				Projec 23-1	1739	Project Client: Client's		ts Limited	'ard				BH04	,
Sonic Dril Rotary Co	ling	Fraste CRS-XL140 Duo	0.00 38.60	38.6 45.5	60	21847 65323	5.93 E	Final De		Start Date:		Driller: Logger:		S	heet 2 o Scale: 1: DRAF	50
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desci	ription			Water	Backfill	
10.10	B11 D42 SPT (S)	N=11 (2,3/3,3,2,3) Hamn 1398	ner SN =	10.1 (0.00	-9.74	9.90		Medium dense grey	yish brown silty	fine to mediun	1 SAND.				9.5
11.60 - 12.05 11.80 - 12.55	B13	N=0 (0,0/0,0,0,0) Hamme 1398	er SN =	11.6 (0.00	-11.44 -11.64	11.60		Very soft reddish br				ium.			11.5 — - - - - - - - 12.0 — -
12.20 12.55 - 13.10 13.10	D44	Marine Scotland Sample		13.1 (0.00	-12.38	12.55		Very stiff brown slig Gravel is subangula lithologies.							12.5 —
	UT56	50 (8,11/50 for 225mm) Hammer SN = 1398 Ublow=45 100% Recover	ry	14.6 (00.00											13.5 - 14.0 - 14.5 - 15.0 - 15.5 - 15
16.10 16.10 - 17.60 16.10 - 16.42		50 (10,10/50 for 170mm) Hammer SN = 1398		16.1	0.00											16.0 — 16.5 -
17.60 17.60 - 19.10 17.60 - 17.94		50 (9,9/50 for 195mm) H SN = 1398	lammer	17.6 (0.00											17.5 — - - - - - - - - - - - - - - - - - - -
Casing De	sing to (m	r Strikes n) Time (min) Rose to (m) Water Added	Deck to All elev Marine Compo	rater be o bed s vations e Scotl osite sa osite sa	= 6.40 s and and S ample ample	Om reduced I Sampling I e for radio e for envir	levels given ocation (plogical te conmenta	al testing	Datum	d away during d	rilling					
To (m) Dia 38.60 45.50	am (mm 177 150) From (m) To (m)	Core	Barre		Flush Polyr	Туре	Termina	tion Reason				Last Up		d A	I GS

		AUS	EW	AY				ct No. 1 739	Client:		ts Limited	Yard			Вс	orehole BH04	
Metho Sonic Dril Rotary Co	ling	Plant L Fraste CRS Duc		e (m) .60	21847	5.93 E 0.11 N	Final De	epth: 45.50 m	Start Date:	02/04/2024	Driller:		5	heet 3 o Scale: 1:	50		
Depth	Sample /	Duc			Casing	Water	Level	Depth		0.17 11100			Logger.	LVV/IVIS			' —
(m)	Tests	Fie	eld Records		Casing Depth (m)	Water Depth (m)	mCD	(m)	Legend		Des	cription			Water	Backfill	┢
19.10 - 19.55 19.10 - 20.60	UT57 B19	Ublow=109 9	90% Recov	ery	19.2	0.00	-18.93	19.10		Reddish brown clay	ey fine to med	lium SAND.					19.0 - 19.5
0.60 0.60 - 22.10 0.60 - 20.98		50 (8,10/50 f Hammer SN		n)	20.6	0.00	-20.43	20.60		Very dense reddish Gravel is angular to	-						20.5
2.10 - 22.20 2.10 - 23.60	UT58 B21	Ublow=100 (0% Recove	ry	22.1	0.00		-									22.0
3.60 3.60 - 25.10 3.60 - 23.98	D48 B22 SPT (S)	50 (12,11/50 Hammer SN		m)	23.6	0.00											23.5 24.0 24.5
5.10 - 25.55 5.10 - 26.40		Ublow=146 1	100% Reco	very	25.1	0.00											25.0 25.5
26.60 26.60 - 28.10 16.60 - 26.91		50 (10,14/50 Hammer SN		m)	26.6	0.00	-26.24	26.40		Very stiff brown and CLAY. Sand is fine to various lithologies.							26.5 27.0
		. Ct. ::		1-	<u> </u>			-	- *** <u>, 5</u> *, <u>*</u>								L
Casing De	sing to (m		Rose to (r Added To (m)	Deck All ele Marir Comp	water l to bed evation ne Sco posite posite	f = 6.4 ns and tland s sampl sampl	Om I reduced Sampling I e for radic e for envir	levels give ocation (3 ological te ronmenta	I testing	Datum	l away during (drilling					
38.60 45.50	177 150	,	10 (111)	Cor	e Bar SK6L		Flush	Туре	Termina	tion Reason ed at scheduled depth		- -		Last Upo 05/04/2		d A	G

Methods	207							Proje	ct No.	Project	t Name: Hunters	ton Marine	Yard			В	orehole	· ID
Client's Rgp: Crivinocentre Client's Rgp: Coordinate Friend Cogs Coordinate Friend Cogs Coordinate Friend Cogs Coordinate Friend Cogs Coordinate Coo		C	AUS	EW	ΔΥ			23-1	1739								BH04	Į.
Method Plant Used Top (m) See Coordinates Conditions Condits Conditions Conditions Conditions Conditions Conditio			G	EOT	ЕСН													
Solid Design Paratice CRS-AL10 Do.	0.0.46.4		Di+ II	la a d	T ()	D	. ()	CI		Client	s kep: Enviroce	entre						
Rotary Confige						_		Loord	inates	Final De	epth: 45.50 m	Start Date:	02/04/2024	Driller:	AM/KW			
Duny Prior Number		_	Duc)				21847	5.93 E								ocale. 1.	
1.32 2.8.55 UTSD	Rotary Co	oring			38.60	45	.50	65323	0.11 N	Elevatio	on: 0.17 mCD	End Date:	03/04/2024	Logger:	LW/MS		DRAF	Γ
9.60 25 0.50 300 157 15 30 (8.5/50 for 250mm) Hammer 30 - 20.40 23.60 30.00 377 15 30 (8.5/50 for 250mm) Hammer 30 - 20.40 30.40 30.00 377 15 30 (8.5/50 for 250mm) Hammer 30 - 20.40 30.00 377 15 30 (8.5/50 for 250mm) Hammer 30 - 20.40 30.40			Fie	eld Records		Casing Depth (m)	Water Depth (m)			Legend		Des	cription			Water	Backfill	
8.6.0 - 30.01 Set 50 65.6.7 Set 200mm) Hammer 29.6.0.00 -29.4.4 39.0.0 -29.4.4 -29.0.0 -29.0.0 -29.4.4 -29.0.0 -29.0.0 -29.4.4 -29.0.0 -29.0.0 -29.4.4 -29.0.0 -29.0.0 -29.4.4 -29.0.0	8.10 - 28.55	UT60	Ublow=100 5	55% Recov	ery	28.1	0.00											28.0
36.0 - 3.0.0 SPF S S S S S S S S S	3.10 - 29.60	B25																
36.0 - 3.0.0 SPF S S S S S S S S S									Ē									28.5
36.0 - 3.0.0 SPF S S S S S S S S S																		ı
1,00 - 30.0 1,00																		29.0
1,00 - 30.0 1,00																		i
1,00 - 30.0 1,00		DEO				20.5	0.55	20.44	20.55									29.5
1.00 3.00 3.07						29.6	0.00	-29.44	29.60			and reddish br	own slightly clay	yey fine to c	oarse			1
1.00	9.60 - 30.01	SPT (S)		r 260mm)	Hammer						SAND.							30.0
1.0 2.1			SN = 1398															1
1.00 D51 D52 D53 D54 D55	0.40 - 31.10	B27						-30.24	30.40		Very stiff brown	d raddich bran	un clightly cand	, cliabtly ara	welly			
1.0 3.6 8.28 8.28 1.0 3.1.45 \$PF (5) \$50 (8.10/50 for 200mm) Hammer \$N = 1398 32.6 0.00											CLAY. Sand is fine to	coarse. Grave						30.5
1.0 - 32.05 \$328 1.0 - 31.45 \$FT(S) \$50 (8.10/50 for 200mm) Hammer SN = 1398 \$32.5 0.00 \$32.05 \$3.65 0.00 \$3.65 0.0									-									ı
1.0 - 32.05 \$328 1.0 - 31.45 \$FT(S) \$50 (8.10/50 for 200mm) Hammer SN = 1398 \$32.5 0.00 \$32.05 \$3.65 0.00 \$3.65 0.0	1.10	D51				31.1	0.00		Ė									31.0
Hammer SN = 1398	1.10 - 32.60	B28																İ
2.60 - 34.10 B25	1.10 - 31.45	SPT (S)			1)													31.5
1.00																		İ
1.00									Ē									32.0
1.0									Ē.									1
1.0																		l
2.60 - 32.93 SPT (S) SO (9.9/50 for 180mm) Hammer SN = 1398						32.6	0.00		E									32.5
4.10			50 (9 9/50 for	r 180mm)	Hammer													İ
4.10 - 34.45 SPT (S) 50 (10,14/50 for 200mm) Hammer SN = 1398 5.60 5.60 5.60 5.60 5.60 5.80 5.50 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.1	32.33	5 (5)		. 100,														33.0
4.10 - 34.45 SPT (S) 50 (10,14/50 for 200mm) Hammer SN = 1398 5.60 5.60 5.60 5.60 5.60 5.80 5.50 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.1																		İ
4.10 - 34.45 SPT (S) 50 (10,14/50 for 200mm) Hammer SN = 1398 5.60 5.60 5.60 5.60 5.60 5.80 5.50 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.1																		33.5
4.10 - 34.45 SPT (S) 50 (10,14/50 for 200mm) Hammer SN = 1398 5.60 5.60 5.60 5.60 5.60 5.80 5.50 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.10 5.20 7.1																		İ
4.10 - 34.45 SPT (s) 50 (10,14/50 for 200mm) Hammer SN = 1398 5.60																		34.0
4.10 - 34.45 SPT (S)						34.1	0.00											İ
5.60 D54 5.60 - 36.20 B31 5.60 - 35.85 SPT (5) SpT (5)					m)													34.5
5.60 - 36.20 B31 5.60 - 35.85 SPT (S) 5.60 - 35.85 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D55 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 SPT (S) 5.7.10 D155 SPT (S) 5.7.10 SPT (S)			Hammer SN =	= 1398					ļ.									J3
5.60 - 36.20 B31																		ı
Secondary Seco																		35.0
Secondary Seco									E									ı
Secondary Seco	5.60	D54				35.6	0.00		Ė									35.5
5.20 - 37.35 B32	5.60 - 36.20	B31																ı
-36.03 36.20 Very dense brown slightly gravelly clayey fine to medium SAND. Gravel is angular to subrounded fine of various lithologies. Water Strikes Water Strikes Cosing to (m) Time (min) Rose to (m) All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated	.60 - 35.85	SPT (S)							Ė									36.0
Table 1	6.20 - 37.35	B32						-36.03	36.20		Very dense brown	slightly gravell	y clayev fine to r	medium SAN	ND.			1
Water Strikes ruck at (m) Casing to (m) Time (min) Rose to (m) Casing Details To (m) Diam (mm) From (m) To (m) 38.60 177 45.50 150 Water Strikes Remarks Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 6.40m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated									Ē									36.5
Water Strikes Tuck at (m) Casing to (m) Time (min) Rose to (m) Casing Details To (m) Diam (mm) From (m) To (m) 38.60 177 45.50 150 Water Strikes Remarks Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 6.40m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated									ŧ									1
Water Strikes Tuck at (m) Casing to (m) Time (min) Rose to (m) Casing Details To (m) Diam (mm) From (m) To (m) 38.60 177 45.50 150 Water Strikes Remarks Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 6.40m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated									Ē									27 ^
Casing Details To (m) Diam (mm) From (m) To (m) Wester Added Wester Added To (m) Diam (mm) From (m) To (m) Wester Added To (m) Diam (mm) From (m) To (m) Wester Added To (m) Diam (mm) From (m) To (m) Wester Added To (m) Diam (mm) From (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Wester Added To (m) Diam (m) To (m) Weste	7.10	D55				37.1	0.00		<u> </u>	****								37.0
Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 6.40m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 6.40m All elevations and reduced levels given in Chart Datum Marine Scotland Samples taken) Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated		Water	r Strikes		Rema	arks												_
All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason	uck at (m) Ca			Rose to (r	n) Overw	/ater l			from the	Causeway	Giant 1							
Casing Details Water Added To (m) Diam (mm) From (m) To (m) 38.60 177 45.50 150									evels give	en in Chart	Datum							
Casing Details Water Added To (m) Diam (mm) From (m) To (m) 38.60 177 45.50 150 Composite sample for radiological testing Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Core Barrel Flush Type Termination Reason Last Updated																		
Casing Details Water Added Composite sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling Sample for environmental testing No Recovery 1.10-4.10m due to very loose granular material washed away during drilling											taken)							
45.50 150 Core Barrel Flush Type Termination Reason Last Updated					Comp	osite :	sampl	e for envir	onmenta	I testing	- dament 11 1	Laura III	da:111:					
45.50 Core Barrel Flush Type Termination Reason Last Updated) From (m)	To (m)	No Re	cover	y 1.10	1-4.10m du	ie to very	ioose grar	nuiar material washed	a away during	urilling					
					Core	Barı	rel	Flush ⁻	Туре	Termina	tion Reason				Last Up	date	ed 🔳	-
The Individual International I						SK6L						1			-			ਨਾਂ
SK6L Polymer Terminated at scheduled depth 05/04/2024						NUL		ruiyi		icilillatt	.a at seneuuleu depth				03/04/	LUZ4		<u></u>

		AUS	SE	W	/ A	Y			ct No. 1739	Project Client:	: Name: Hunters	ton Marine Yard ts Limited		В	orehole	
			GEC	ITC	EC	Н				Client's	Rep: Enviroce	entre				
Meth Sonic D		Plant I			-	(m)	Base (m 38.60) Coord	linates	Final De	epth: 45.50 m	Start Date: 02/04/2024	Driller: A	M/KW l	Sheet 5 o	
Rotary (_	Du Fraste CR	0			3.60	45.50		75.93 E 80.11 N	Elevatio	on: 0.17 mCD	End Date: 03/04/2024	Logger: LV		Scale: 1: DRAF	
Depth	Sample /	Du	O eld Re	cords			Casing Wate Depth Dept (m) (m)	Level	Depth	Legend		Description	100	Water	Backfill	·
(m) 7.10 - 37.2	Tests SPT (S)	50 (25 for 75			r 100	mm)	(m) (m)	-37.18	(m) 37.35							
7.35 - 37.7	'0 B33	Hammer SN	= 139	98					37.33		_	velly slightly clayey fine to med ounded fine of various litholog		avel is		37.5
7.70 - 38.3	80 B34							-37.53	37.70			sandy gravelly CLAY. Sand is fir prounded fine to medium of v				
											is susungular to sur		u.1045010g.			38.0 -
8.30 - 38.6	60 B35							-38.14	38.30		Reddish brown fine	to medium SAND.				38.5
							1	-38.44	38.60			strong reddish brown medium ANDSTONE. Partially weathere		waad		
			89	89	89							oser fracture spacing, with sor				39.0
											Discontinuities:					
9.50						$\frac{1}{2}$:::::	rough, rare sandy c	nts, medium spaced (120/490, lay deposits on joint surfaces,		-		39.5
												nts at 40.40-40.60m, 40.70-41 undulating, rough, with rare s		I		
											on joint surfaces.	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	, , , , .			40.0
			100	91	87											
																40.5
1.00																41.0
																41.5
			100	82	80				E							41.5
			100	02	80											42.0
						3				:::::						42.0
2.50																42.5
										:::::						43.0
			100	93	93					:::::						
									-							43.5
4.00						-										44.0
																44.5
			100	100	100					:::::						
									-							45.0
5.50							1	-45.34	45.50			End of Borehole at 45.50m				45.5
																46.0
	Mate	Strikes	TCR	SCR	_	FI Rema	rks									
uck at (m)		Time (min)	Rose	e to (r				hole drilled	I from the	Causeway	Giant 1					
					D	eck t	o bed = 6									
	_							d Sampling ple for radio			aken)					
Casing I		Water	_			ompo	osite sam	ple for envi	ronmenta	l testing	nular material washed	l away during drilling				
38.60	Diam (mm 177	From (m)	li	o (m)	┤ '`		y 1.	_>ou	C CO VCI Y	.oooc gran	accilai wasilet					
45.50	150					Core	Barrel	Flush	Туре	Terminat	tion Reason		L	ast Update	ed	I
- 1																

		AUS	EOTI	AY				ct No. 1 739	Project Client:		ts Limited	Yard			В	orehole BH05	
Metho Sonic Dr		Plant L	S-XL140	Top (m) 0.00	Base 34.9			inates 9.75 E	Final De			12/03/2024	Driller:	MJ+MJ/ AM		heet 1 o Scale: 1:	
Rotary C	oring	Fraste CRS Due		34.90	40.6	60	65329	5.99 N	Elevatio	n: 0.01 mCD	End Date:	14/03/2024	Logger:	LW/OG		DRAF	Γ
Depth (m)	Sample / Tests		eld Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfill	
0.00 0.00 0.00 0.00 0.00 - 1.30	ES4	Marine Scotl RAD Compos ENV Compos	sit	le						Very loose to loose SAND and rare cobl Cobbles are angula	oles. Gravel is	subangular to su					0.5
30 - 2.80 30 - 1.75		N=2 (0,0/1,0 1398	1,0,1) Hamı	mer SN =	1.30	0.00											1.5
.80 - 4.30 .80 - 3.25	B8 SPT (S)	N=7 (1,1/1,2 1398	2,2,2) Hamı	mer SN =	2.80 (0.00											2.5 3.0 =
1.30 - 5.80 1.30 - 4.75		N=3 (0,1/1,0 1398),1,1) Hamı	mer SN =	4.30 (0.00											4.5
5.80 - 6.50 5.80 - 6.25 5.00 5.50 - 8.65		N=4 (1,1/1,1 1398 Marine Scotl			5.80 (0.00	-6.49	6.50									5.5 6.0 -
7.30 7.30 - 7.75	D34 SPT (S)	N=10 (1,2/3, 1398	,2,2,3) Han	nmer SN =	7.30 (0.00	0.43			Loose to medium d	ense greyish b	rown silty fine t	o medium	SAND.			7.0 -
3.65 - 9.30 3.80 - 9.25	B12 UT46	Ublow=13 10	00% Recov	ery	8.80 (0.00	-8.64	8.65	X X X X X X X X X X X X X X X X X X X	Very soft to soft gremedium.	eyish brown sa	ndy silty CLAY. S	and is fie to	0			8.5 9.0 -
.30	D35						-9.29	9.30	X								
	Water	Strikes		Rema	arks			<u> </u>	1							I	
Casing D			Rose to (r Added To (m)	Deck t All ele Marin Comp	to bed : vations e Scotla osite sa	= 7.40 s and and S ample	0m reduced	levels given ocation (Datum							
34.90 40.60	177 150	()	()	Core	e Barre	el	Flush Polyr			tion Reason d at scheduled depth	1			Last Up 15/03/			G (

		CAUSEW				23-1	ct No. 1 739			ts Limited	Yard			В	orehole BH05	
Metho Sonic Dri		Plant Used Fraste CRS-XL140	Top (m)	Base 34.		Coord	inates	Final Depth:	40.60 m	Start Date:	12/03/2024	Driller:	MJ+MJ/ AM		heet 2 o	
Rotary Co	Ū	Duo Fraste CRS-XL140 Duo	34.90	40.			9.75 E 5.99 N	Elevation: 0	.01 mCD	End Date:	14/03/2024	Logger:			Scale: 1:	
Depth (m)	Sample / Tests	Field Record	s	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	ription			Water	Backfill	
9.30 - 11.00 10.30 10.30 - 10.75 11.00 - 12.40		N=5 (0,0/1,1,1,2) Han 1398	nmer SN =	10.3	0.00	-10.99	11.00	coarse. G	ravel is an	gular to subro	y gravelly CLAY. unded fine to m	edium of v	arious			9.5 — 10.0 — 10.5 — 11.0 — -
11.80 - 12.25 12.00 12.40 - 13.70	ES3	Ublow=42 100% Reco Marine Scotland Sam		11.8	0.00											11.5 —
13.30 13.30 - 13.75 13.70 - 14.90		N=10 (1,1/2,2,3,3) Ha 1398	mmer SN =	13.3	0.00	-13.69	13.70	Reddish I	prown silty	fine to mediu	m SAND.					13.0 — - 13.5 — 13.5 — - 14.0 —
14.80 - 15.25 14.90 - 16.30		Ublow=120 100% Rec	overy	14.8	0.00	-14.89	14.90	clayey fin	e to coars subangula	e SAND with ra	on slightly grave are thin beds of ed fine to mediu	sandy claye	ey gravel.			14.5 — 15.0 — 15.5 —
16.30 16.30 - 17.80 16.30 - 16.74	SPT (S)	50 (4,4/50 for 285mm SN = 1398	i) Hammer	16.3	0.00											16.0 — - - - 16.5 — - - - - - - - -
17.80 - 18.25 17.80 - 19.30		Ublow=172 100% Rec	overy	17.8	0.00											17.5 — - - - 18.0 — - - - - - - - - -
		Strikes	Rema	arks			<u> </u>									
Casing De		Water Added From (m) To (m	Deck All ele Marir Comp	to bed evation ne Scotl posite s	= 7.4 s and land s ampl	Om I reduced	evels giv ocation (blogical te									
40.60	150			e Barr	el	Flush Polyr		Termination Reason		1			Last Up 15/03/			T GS

20	1					Proje	ct No.	Project I	Name: Hunterst	ton Marine	Yard			В	orehole	e ID
	A) C	CAUSEV	VAY			23-1	L739	Client:	Peel Por	ts Limited					BH05	5
		——GEO	TECH					Client's								
Meth	nod	Plant Used	Top (m) Base	(m)	Coord	linates	Chemes	nep. Enviroce	There			N 41 - N 41 /	9	heet 3 o	of 5
Sonic Dr		Fraste CRS-XL140			.90			Final Dep	oth: 40.60 m	Start Date:	12/03/2024	Driller:	MJ+MJ/ AM		Scale: 1:	
Rotary C	Coring	Duo Fraste CRS-XL140	34.90	40	.60		9.75 E									
KOLAT Y C	Jorning	Duo	34.90	40	.60	65329	5.99 N	Elevation	0.01 mCD	End Date:	14/03/2024	Logger:	LW/OG		DRAF	T
Depth (m)	Sample / Tests	Field Recor	ds	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
							F									19.0 -
9.30	D39			19.3	0.00			7								
9.30 - 20.80			_													19.5
9.30 - 19.75	5 SPT (S)	N=45 (4,6/6,7,15,17) SN = 1398) Hammer													
																20.0
							ŧ									20.0
																20.5
0.80 - 21.25		Ublow=149 100% Re	ecovery	20.8	0.00			7								
0.80 - 22.30	0 B21						E	7								21.0
							E	7.								
							Ė									21.5
								73.5								
							E									22.0
								7								22.0
2.30	D40			22.3	0.00											
2.30 - 24.20 2.30 - 22.75		N=38 (3,4/6,6,9,17)	Hammer SN				Ē									22.5
		= 1398					Ė									
							F									23.0
							ŧ									
							Ē									23.5
3.80 - 24.25	5 0151	Ublow=179 100% Re	ecovery	23.8	0.00											24.0
4.20 - 25.30	0 B23					-24.19	24.20									24.0
									Very stiff brown slig subrounded fine to				0			
							Ē									24.5
																25.0
5.30	D41			25.3	0.00											
5.30 - 26.80	0 B24															25.5
ı.30 - 25.74	4 SPT (S)	50 (6,7/50 for 290mi SN = 1398	m) Hammei	r			E									
																26.0
							ŧ									20.0
							[
							Ē									26.5
6.80 - 27.25		Ublow=190 100% Re	ecovery	26.8	0.00		E									
6.80 - 27.65	5 B25						F									27.0
							E									
							ŧ									27.5
7.65 - 28.40	0 B26					-27.64	27.65		Very stiff brown slig	htly sandy CL	AY. Sand is fine t	o medium.				
							<u> </u>	F-177773								
uck at (m)		r Strikes n) Time (min) Rose to		arks	20"51	ا دالنج مام	from	Caucania	Ciant 1							
uck at (III) C	casnig tO (IT	, and thing Rose to	Deck	to bed	= 7.4	10m		Causeway G								
			All el	evatior	ns and	I reduced	levels give	en in Chart D	atum							
								3 samples ta	ken)							
Casing D	Details	Water Added				e for radio le for envii										
	Diam (mm				- G111PI	01 CIIVII	JIICIII.a									
34.90	177															
40.60	150		Cor	e Barı	rel	Flush	Туре	Termination	on Reason				Last Up	date	d	Ī
			- 1													

26									Proje	ct No.	Project	t Name: Hunters	ton Marine	Yard			В	orehole	: ID
	C	CAUS	E	W	A	Y			23-1	L 73 9	Client:		ts Limited					BH05	;
		G	GEC	OTE	ECI	Н													
Ba at		DI	la - '		T -	1:	р.	- /)	C	last-	Client's	s Rep: Enviroce	nue					d . :	· -
Meth Sonic Dr		Plant L Fraste CRS			1 0p		_	e (m) 1.90	Coord	inates	Final De	epth: 40.60 m	Start Date:	12/03/2024	Driller:	MJ+MJ/ AM		heet 4 o Scale: 1:	
	_	Duc	0						21855	9.75 E						7 (1 1 1		ocale. 1.	50
Rotary C	oring	Fraste CRS Duc		L40	34.	.90	40	0.60	65329	5.99 N	Elevatio	on: 0.01 mCD	End Date:	14/03/2024	Logger:	LW/OG		DRAF	Γ
Depth (m)	Sample / Tests	Fie	eld Red	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
																			28.0 -
8.30 8 30 - 28 74	D42 1 SPT (S)	50 (4,5/50 fo	or 285	imm)	Hami	mer	28.3	0.00	-28.39	28.40	× ×	Very dense brown s	iltu fina ta m	ndium CAND					
		SN = 1398		,						Ē	× × ×	very defise brown s	siity iiile to iile	edidili SAND.					28.5
8.40 - 28.90 8.90 - 30.10									-28.89	28.90	× × ×	Firm to stiff brown	mottled group	candy CLAV Sand	l ic fino				
										Ē		Filli to still blowii	mottieu grey :	sandy CLAT. Sand	i is iiiie.				29.0
										Ē									
																			29.5
9.80 - 30.25	5 UT53	Ublow=100 1	Ublow=100 100% Recovery 29.8 0.0					0.00											
0.10 - 31.30	B29																	30.0	
										Ē									
										<u> </u>									30.5
										<u> </u>									
			31.00-31.20m: band of gravelly sar							ravelly sandy CLAY						31.0			
.30 .30 - 31.90	D43 B30						31.3	0.00	-31.29	31.30		Very stiff brown sar	ndy CLAY. Sand	d is fine to mediu	ım				
		N=46 (6,8/7,9	9,15,1	15) H	amme	er				Ē									31.5
.90 - 33.70	B31	SN = 1398							-31.89	31.90			AV '11 '		11:1				
												Very stiff brown CL/ sand.	AY WITH OCCASI	onal lenses of re	aaisn grey i	nne			32.0
										ŧ									
										Ē									32.5
2.80	D44	N=43 (4,6/9,:	12 10	1 1 2 1 1	⊔amn	nor	32.8	0.00		Ē									
00 - 33.23	3F1 (3)	SN = 1398	12,10	,,12,1	ilaiiiii	IICI													33.0
										Ė									
3.70 - 34.20	1 22								-33.69	33.70									33.5
u - 34.2l	032								-33.03	33./0		Brown very gravelly subrounded fine to			angular to				
									-34.19	24.20		Very stiff reddish br			ockets of g	rey fine			34.0
4.30 4.30 - 34.90	D45 B33						34.3	0.00	-34.19 -34.29	34.20 34.30	a , a , 0	to medium sand. POSSIBLE WEATHER							
4.30 - 34.90 4.30 - 34.72		50 (5,8/50 fo	or 265	imm)	Hamı	mer				Ė	a , a , a	mottled grey sandy sandstone with low							34.5
		SN = 1398				1				Ė	9 9 9	are subangular of s		Sana is fine t	_ 550150.00				
									-35.09	35.10		SANDSTONE BEDRO	OCK (Detailed	description to fo	llow)				35.0
										E		JANUS TONE DEDKO	Ser (Detailed	αεσατριίση το 10					
			100							Ė	:::::								35.5
										E	:::::								
5.10										Ė	:::::								36.0
										ŧ									
			100							Ē									36.5
										-									İ
										F									37.0
			TCR	SCR	-														L
uck at (m)		r Strikes n) Time (min)	Rose	to In		ema		ben !	ا النجاء مام	fro !!	Carre	Ciant 1							
- 3x 3x (m) C	60 (11	.,, (111111)		(11	D	eck 1	to be	d = 7.4	0m		Causeway								
					A	ıı ele	vatio	ns and	reduced l	ievels give	en in Chart	natum							
									Sampling I e for radic		3 samples t	taken)							
Casing D	Details	Water	Adde	ed					e for radic e for envir										
To (m) 0	Diam (mm 177) From (m)	То	(m)	-														
40.60	150				\vdash	Core	e Bai	rel	Flush	Туре	Termina	tion Reason				Last Upo	date	ed 🔳	_
							SK6L		Polyr			ed at scheduled depth	1			15/03/2			台
						•	JKUL		ruiyi	rici	ici i i i i i i i i	a at serieuuleu deptr				13/03/2	2024		<u>11</u>

	S	AUS	E	W DTI	A	Y H				1739	Client's Rep: Envirocentre inates Final Depth: 40.60 m Start Date: 12/03/2024 Driller: AM							orehole BH05	
Meth		Plant l					_	e (m)	Cooi	dinates		-		12/02/2021	Delli	MJ+MJ/	5	heet 5 o	 f 5
Sonic Dr	illing	Fraste CRS Du		.40	0.	00	34	.90	2185	59.75 E	Final Dep	otn: 40.60 m	Start Date:	12/03/2024	Driller:	AM		Scale: 1:	50
Rotary C	oring	Fraste CRS	S-XL1	40	34	.90		.60		95.99 N	Elevation	0.01 mCD	End Date:	14/03/2024	Logger:	LW/OG		DRAF	Γ
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	cription			Water	Backfill	
7.60 9.10			100																37.5 38.0 38.5
			90																39.5 40.0
0.60									-40.59	40.60			End of Bore	hole at 40.60m					40.5
																			41.0
																			41.5
																			42.0
																			42.5
																			43.0
																			43.5
																			44.0
																			44.5
																			45.0
																			45.
																			46.0
	4		T0-	SCR	PG-					Ē									
	Water	Strikes	ICR	SUR	KQD	FI	Chis	ellin	g Detail	s	Remarks							1	_
ck at (m) C) Time (min) Water			n) F	rom (То (me (hh:mm)	Deck to bed All elevation Marine Sco Composite	borehole drilled from the sand reduced leve tland Sampling loca sample for radiologi sample for environr	els given in Cha tion (3 sample ical testing	rt Datum					
To (m) [Diam (mm) 177			(m)															
40.60	150					Core	Barı	rel	Flusi	Туре	Terminati	on Reason				Last Up	date	ed 📕	Ī

		GEO	VA TECH	Y			ct No. 1 73 9	Client's		ts Limited				,	orehole BH06	
Metl Sonic D		Plant Used Fraste CRS-XL14 Duo		(m) Ba	se (m) 3.80		linates	Final De	epth: 39.80 m	Start Date:	09/03/2024	Driller:	AM/MJ		heet 1 o Scale: 1:	
Rotary	Coring	Fraste CRS-XL14 Duo	10 33.8	80 3	9.80		3.70 N	Elevatio	on: -0.13 mCD	End Date:	12/03/2024	Logger:	LW/OG		DRAF	Γ
Depth (m)	Sample / Tests	Field Reco	ords	Casi Dep (m	water h Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
0.00 - 0.45 0.80 - 1.25		N=4 (1,1/1,1,1) H 1398 N=3 (0,0/1,1,0,1) H 1398			0 0.00				NO RECOVERY: Prol away during drilling		se to loose silty f	ine SAND v	washed			1.0 -
2.30 2.30 2.30 2.30 2.30 2.30 - 3.80 2.30 - 2.75	ES4 ES5 B6	Marine Scotland Sa RAD Composite ENV Composite N=10 (1,1/2,2,3,3) 1398	·		0 0.00	-2.43	2.30		Loose brown silty fi	ne to medium	SAND.					2.0 -
3.80 3.80 - 4.00 3.80 - 4.25 4.00 - 5.20	D33 B7 SPT (S)	N=10 (1,2/2,2,3,3) 1398	Hammer SI		0 0.00	-3.93 -4.13	3.80	× × × × × × × × × × × × × × × × × × ×	Medium dense bro							4.0 -
5.20 - 6.70 5.30 5.30 - 5.75		N=19 (1,2/4,4,4,7) 1398 Marine Scotland Sa			0 0.00	-5.33	5.20	** * * * * * * * * * *	Medium dense red occasional pockets 5.20-5.30m: Bed of stiff n			m SAND wit	th			5.0 -
5.70 - 7.90 5.80	B10 UT51	Ublow=84 100% Re	ecovery	6.8	0 0.00	-6.83	6.70		Soft to firm reddish Gravel is subangula lithologies.							6.5 7.0 -
7.90 - 9.05 3.30 3.30 - 8.60	D35	50 (10,10/50 for 15 Hammer SN = 1398		8.3	0 0.00	-8.03	7.90	* * * * * * * * * * * * * * * * * * *	Dense brown grave content. Gravel is si lithologies. Cobbles	ubanglar to su	brounded fine to					8.0 -
9.05 - 9.35	B12					-9.18	9.05	****	Brown sandy clayey of various lithologie			ne to coarse	e GRAVEL			9.0 -
		Strikes		marks		•	•	1								_
Casing	Details) Time (min) Rose t	Der All Ma Cor d Cor	eck to be elevati arine Sc emposite	ed = 6.4 ons and otland e samp	10m d reduced	levels give location (i		Datum							
To (m) 33.80 39.80	Diam (mm 177 150) From (m) To (ore Ba	rrel	Flush	Туре	Terminat	tion Reason				Last Up	date	d 🔳	_
				SK6L		Polyi			ed at scheduled depth				13/03/2			귑

		CAUSEW	AY ECH			Project 23-1	ct No. 1739	Project Client: Client's		ts Limited	Yard			В	orehole BH06	
Metho Sonic Dril		Plant Used Fraste CRS-XL140	Top (m) 0.00	Base 33.8		Coord	inates	Final De	epth: 39.80 m	Start Date:	09/03/2024	Driller:	AM/MJ		heet 2 o	
Rotary Co		Duo Fraste CRS-XL140 Duo	33.80	39.8		21865 65336	1.43 E 3.70 N	Elevatio	on: -0.13 mCD	End Date:	12/03/2024	Logger:	LW/OG	;	Scale: 1:5	
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
9.35 - 9.90 9.80 9.80 - 10.25 9.90 - 11.30	D36 SPT (S) B14	N=43 (3,3/9,9,12,13) Ha	ammer	9.80 (0.00	-9.48 -10.03	9.90		Brown slightly grave content. Gravel is so lithologies. Cobbles Very stiff brown slig -150mm) gravelly so subangular to subre	ubangular to s are subangula ghtly gravelly v and lenses. Sa	ubrounded fine ar of various lith ery sandy CLAY v nd is fine to coar	to coarse o ologies. with rare (1 rse. Gravel i	of various .00 is			9.5 —
11.30 11.30 - 12.80 11.30 - 11.61 11.87	D37 B15 SPT (S)	50 (10,10/50 for 157mr Hammer SN = 1398 Marine Scotland Sampl		11.3 (0.00											11.0 — - - 11.5 — - 12.0 —
	D38 B16 SPT (S)	N=50 (4,7/12,14,17,7) F SN = 1398	Hammer	12.8 (0.00											12.5 — - - 13.0 — - - - 13.5 —
	D39 B17 SPT (S)	N=41 (1,3/4,12,12,13) H SN = 1398	Hammer	14.3 (0.00											14.0 — - - - 14.5 — - - - - - -
15.45 - 16.50 15.80 15.80 - 16.25	D40	N=59 (4,7/12,14,17,16)	Hammer	15.8 (0.00	-15.58	15.45	× × × × × × × × × × × × × × × × × × ×	Very dense brown s	slightly silty fin	e to medium SA	ND.		-		15.5 — - - - - - 16.0 —
16.50 - 17.30	B19	SN = 1398				-16.63	16.50	× × × × × × × × × × × × × × × × × × ×	Firm brown sandy s	silty CLAY. Sand	l is fine to mediu	um.		-		16.5 — - - 16.5 — - - -
	D42 B20	50 (5,15/50 for 235mm Hammer SN = 1398)	17.3 (0.00	-17.43	17.30	×	Very dense brown s	silty fine to me	dium SAND.			-		17.5 — - 17.5 — - - 18.0 — - - - - -
Casing De	sing to (m	r Strikes i) Time (min) Rose to (m Water Added From (m) To (m)	Deck t All ele Marin Comp	vater bo to bed : vations e Scotli osite sa	= 6.4 s and and s ampl	0m reduced l	evels giv ocation (blogical te		Datum							18.5 -
39.80	150			e Barre	el	Flush Polyn			tion Reason d at scheduled depth	1			Last Up			GS

		CAUSEW	AY			ct No. 1739	Project	t Name: Hunterst	ton Marine \	/ard		E	Borehole ID BH06
		GEOTE	ECH				Client's	s Rep: Enviroce	entre				
Metho				Base (m	Coord	linates	Final De	anth: 39.80 m	Start Date:	09/03/2024	Driller: A	104/04	Sheet 3 of 5
Sonic Dril	lling	Fraste CRS-XL140 Duo	0.00	33.80	21865	51.43 E	Fillal De	: ptii. 39.80 III	Start Date.	09/03/2024	Dilliei.	AIVI/IVIJ	Scale: 1:50
Rotary Co	oring	Fraste CRS-XL140 Duo	33.80	39.80	65336	53.70 N	Elevatio	on: -0.13 mCD	End Date:	12/03/2024	Logger: L	.W/OG	DRAFT
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mCD	Depth (m)	Legend		Desc	ription		Water	Backfill
18.80 18.80 - 20.30 18.80 - 19.25		N=62 (5,16/15,16,16,15 Hammer SN = 1398	5)	18.8 0.00									19.0
					-19.63	19.50	X_X_ X	Stiff brown sandy si	ilty CLAY. Sand i	s fine to mediu	ım		19.5
					-20.18	20.05	<u>X</u>	Firm brown slightly 20.06-20.10m: Sandston	sandy CLAY. Sa	nd is fine to me	edium.		20.0
20.30 - 20.50 20.30 - 20.55 20.30 - 22.10	UT52	Ublow=24 50% Recover	ry	20.3 0.00	-20.43	20.30		Very stiff brown slig Gravel is subangula lithologies.	ghtly gravelly sa	ndy CLAY. Sand	I is fine to coa		20.5
		N=66 (10,15/16,17,17,1 Hammer SN = 1398	16)	21.8 0.00									21.5 —
22.10 - 22.90					-22.23	22.10		Very dense light bro	own fine to coa	rse SAND			22.5 —
22.90 - 24.40	B24				-23.03	22.90		Stiff brown slightly	sandy CLAY. Sar	nd is fine to me	dium.		23.0
23.30 - 23.55	UT53	Ublow=52 50% Recover	ry	23.3 0.00									23.5 —
24.40 - 26.30	B25				-24.53	24.40		Very dense reddish lenses (50-90mm) o			with occasion	nal	24.0 — - - - - 24.5 —
24.80 24.80 - 25.25	D45 SPT (S)	N=68 (7,15/17,17,18,16 Hammer SN = 1398	6)	24.8 0.00									25.0 — - - - - 25.5 —
26.30 26.30 - 27.80 26.30 - 26.75		N=73 (6,16/17,19,19,18 Hammer SN = 1398	8)	26.3 0.00									26.0 — - - 26.5 — - - 27.0 —
27.80 27.80 - 29.80	D47 B27			27.8 0.00)								27.5 — - - 27.5 — - -
		r Strikes	Rema										•
		n) Time (min) Rose to (n	Deck t All ele Marin Comp	to bed = 6. vations an e Scotland osite samp	40m d reduced Sampling ble for radio	levels given location (Datum					
To (m) Di 33.80	etails iam (mm 177	Water Added) From (m) To (m)	Comp	osite samp	le for envi	ionmenta	ıı testing						
39.80	150			Barrel	Flush			tion Reason				Last Updat	
				SK6L	Polyi	шег	ierminate	ed at scheduled depth	I			13/03/202	* AUS

		AUS G	EV EO	TE	Cl	-			Proje- 23 -1	ct No. 1 739	roject Name: Hunterston Marine Yard lient: Peel Ports Limited lient's Rep: Envirocentre		Borehole ID BH06				
Metho		Plant Us Fraste CRS-		_	Top	(m) E			Coord	inates	nal Depth: 39.80 m Start Date: 09/03/2024 Dri	ler: AM/MJ	Sheet 4 of 5				
Sonic Drill Rotary Co		Praste CRS- Duo Fraste CRS- Duo			33.		33.8		21865 65336	1.43 E 3.70 N	·	ger: LW/OG	Scale: 1:50 DRAFT				
Depth (m)	Sample / Tests	Field	d Reco	rds			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	egend Description		Backfill				
27.80 - 28.25	SPT (S)	N=60 (8,15/15 Hammer SN =)								28.0 28.5 29.0				
29.30 29.30 - 29.75	D48 SPT (S)	N=57 (7,14/14 Hammer SN =)	2	29.3	0.00					29.5				
29.80 - 30.50	B28								-29.93	29.80	Brown silty fine to medium SAND.		30.0				
30.50 - 31.90	B29								-30.63	30.50	Very dense reddish brown slightly gravelly fine to coars		30.5				
30.80 30.80 - 31.16	D49 SPT (S)	30.8 (100 (9,16/100 for 215mm) Hammer SN = 1398 100 (25 for 135mm/100 for 180mm) Hammer SN = 1398					30.8	0.00			Gravel is angular to subangular fine to medium of sand	itone.	31.0				
31.90 - 33.20	B30								-32.03	31.90	Very dense reddish brown gravelly fine to coarse SAND angular to subangular fine to medium of sandstone.	Gravel is	32.0				
32.30 32.30 - 32.62	D50 SPT (S)						32.3	0.00					32.5				
33.20 - 33.80	B31								-33.33	33.20	Extremely weak reddish brown SANDSTONE Destructu as reddish brown sandy very angular to angular fine to GRAVEL.		33.5				
35.30		1	100 1	100	100	2			-33.93	33.80	Strong reddish brown speckled white well cemented postal Sandstone with widely spaced medium beds of strong brown fine grained well cemented SANDSTONE. Partial Discontinuities: 1. 5-15 degree joints, medium spaced (210/565/620), and smooth, clean.	reddish y weathered.	34.0 34.5				
55.50		1	100 9	98	98	2			-35.63	35.50	Strong light reddish brown speckled white well cement CONGLOMERATE. Partially weathered: occasional brow Discontinuities: 1. 10 degree bedding fractures at 35.95m and 36.20m, smooth, clean. 2. 60-65 degree joint at 35.85-35.80m, planar, rough, c	n clay infill. olanar,	35.5 36.0				
36.80			+								3. 75-85 degree joint at 36.60-36.80m, undulating, rou		37.0				
			TCR S	SCR	RQD	FI					37.10-37.25m: Incipient 65 degree joint.						
. , ., .		Strikes				emar							•				
Casing De	etails am (mm	Water A		d	De Al M	eck to I eleva arine ompos	bed ations Scotl site sa	= 6.4 s and and S ample	0m reduced l	levels give ocation (i							
33.80 39.80	177 150				(Core	Barro	el	Flush Polyr		rmination Reason minated at scheduled depth	Last Up					

		AUS		\A	/ A`	v			Proje										Borehole ID				
		AU3	EC	OT I	EC	Н			23-1	1/39	Client:							BH06)				
											Client's I	Rep: Enviroce	ntre										
Metho Sonic Dril		Plant U				(m) .00	Base 33.		Coord	inates	Final Dep	oth: 39.80 m	Start Date:	09/03/2024	Driller:	AM/MJ		Sheet 5 o					
	Ū	Duo	0						21865	1.43 E								Scale: 1:	50				
Rotary Co	oring	Fraste CRS Duc		L40	33	.80	39.		65336 Level	3.70 N	Elevation	-0.13 mCD	End Date:	12/03/2024	Logger:	LW/OG	5	DRAF	Γ				
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	mCD -37.33	Depth (m)	Legend			cription			Water	Backfill					
3.30 9.80			100		88	2			-39.93	39.80		Strong thinly bedde SANDSTONE with or closer fracture space. Discontinuities: 1. 20-25 degree join smooth, clean. 2. 60 degree joint at 37.50-37.85m: Bed of me sandstone.	ccasional pebb ing. hts at 38.80-38 t 39.50-39.60r dium strong reddish	oles. Partially we	-39.30m, p	ightly lanar,			37.5 38.0 38.5 39.0				
																			41.5 41.5 42.0 42.5 43.0 44.5				
Casing De	ising to (m	r Strikes) Time (min) Water) From (m)	Rose		m) F	rom ((m)	To (e (hh:mm)	Deck to bed All elevation Marine Scot Composite s Composite s	ns and reduced level tland Sampling locat sample for radiologi sample for environn	ls given in Cha tion (3 sample cal testing	rt Datum		act IIn	date	ad 🗷	45.0 45.5 46.0				
-3.55						Core	Barr	eı	Flush	ıype	Terminatio	on Reason				Last Up			Į				
		1				9	K6L		Polyr	ner	Terminated	at scheduled depth				13/03/			ď				

		GEO	TEC	Н			Projec	.739	Project Client: Client's		ts Limited	Yard			BH10	1
Meth Sonic Dr		Plant Used Fraste CRS-XL14		p (m) 0.00	Base 4.		Coord		Final Depth: 4.50 m Start Date: 14/03/2024 Driller: MJ						Sheet 1 of Scale: 1:5	
		Duo					21836 65342		Elevatio	n: -8.45 mCD	End Date:	14/03/2024)G	DRAFT	 ſ	
Depth (m)	Sample / Tests	Field Reco	rds		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	cription		Water	Backfill	
00 00 00 00 00 - 1.50	ES4	Marine Scotland Sar RAD Composite ENV Composite	mple						× × × × × × × × × × × × × × × × × × ×	Grey mottled black fragments. [organic		edium SAND wit	th rare shell			0.5
50 - 3.00	В7								X X X							1.5
80	ES2	Marine Scotland Sar	mple													2.0
00 - 4.50	В8						-11.24	2.80	×××	Brown mottled dark	k grey fine to o	oarse SAND.				3.0
50	ES3	Marine Scotland Sar	mple				-11.94	3.50	× × × × × × × × × × × × × × × × × × ×	Very soft light grey to medium.	mottled browi	n very sandy silty	y CLAY. Sand i	s fine		4.0
							-12.94	4.50	X———		End of Bore	ehole at 4.50m				4.5
																5.0
																5.5
																6.0
																6.5
																7.0
																7.5
																8.0
																8.5
																9.0
	Water	Strikes		Rema	rks			-								L
uck at (m) (Time (min) Rose to	o (m)	Overwa	ater b			from the	Causeway	Giant 1						
				Deck to All elev				evels giv	en in Chart	Datum						
Casina	Doto!!c	Mateu A J J	(Compo	site s	ample	e for radio	logical te		aken)						
Casing E To (m) [4.50	Details Diam (mm 177	Water Added		compo	site s	ampl	e for envir	onmenta	ii testing							
	=: *			Core	Barr	el	Flush	Гуре	Terminat	tion Reason				Last Updat	ed	Ī
									Terminate	d at scheduled depth	ı			19/03/202	4 A (H

		GEOTE	AY CH			23-1	L 739	Client: Client's		ts Limited ntre				BH12				
Met	hod	Plant Used	Top (m)	Base	(m)	Coord	inates				1.4.102.1202.4	5.11		5	Sheet 1	of 1		
Sonic D	Orilling	Fraste CRS-XL140 Duo	0.00	4.	50	21843	4.56 E	Final De	ρτη: 3.00 m	Start Date:	14/03/2024	Driller:	IVIJ	Scale:				
		340					6.60 N	Elevatio	n: -8.98 mCD	End Date:	15/03/2024	Logger:	OG		DRAF	- T		
Depth (m)	Sample / Tests	rieia Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfil	ı		
.00 .00 .00 .00 - 1.50	ES1 ES4 ES5 B6	Marine Scotland Sample RAD Composite ENV Composite	2			-9.88	0.90	× × × × × × × × × × × × × × × × × × ×	Grey silty fine to me			ine to med	lium.			1.0		
.50 .50 - 3.00	ES2 B7	Marine Scotland Sample														2.0		
00	ES3	Marine Scotland Sample	9			-11.98	3.00			End of Bore	ehole at 3.00m					3.0		
																3.5		
																4.0		
																4.5		
																5.0		
																6.0		
																6.5		
																7.0		
																7.5		
																8.0		
																9.0		
uck at /		r Strikes	Rema			1 1 1 1 1 1			C: 14									
ıck at (m)	Casing to (m	n) Time (min) Rose to (m	Deck t	o bed vation	= 13. is and	50m reduced l	evels giv	Causeway en in Chart I 3 samples ta	Datum									
To (m)	Details Diam (mm	Compo	osite s	sample	e for radic e for envir	logical te	esting	ancii)										
4.50	177		Core	Barr	el	Flush	Туре	Terminat	ion Reason				Last U	odate	ed T			
														19/03/2024 A G				

		GEOTE	СН	ln.	23	ect No. -1739	Project Client: Client's		ts Limited	rd	T		BH13A Sheet 1 of 1				
Meth Sonic Dr		Plant Used Fraste CRS-XL140 Duo	Top (m) 0.00	6.40	,	510.05 E	Final De	epth: 6.40 m	Start Date: 08	8/03/2024	Driller:	AM		1 of 1 : 1:50			
						121.04 N	Elevatio	on: -7.59 mCD	End Date: 08	8/03/2024	Logger:		DRA	4FT			
Depth (m)	Sample / Tests	Field Records Marine Scotland Sample		Casing W Depth Di (m) (Level mCD	Depth (m)	Legend	Very soft black sand	Descript				Mate Back	cfill			
0.00 0.00 0.00 - 0.40 0.40 - 1.90		RAD Composite ENV Composite			-7.09	0.10		Brownish grey fine		e to mediani.				1.0			
1.90 - 3.40 SB8 2.40 ES2 Marine Scotland Sample					-9.49	1.90	*	Brownish grey sligh subangular to subro						2.0			
					-10.39	2.80	X X X X X	Stiff reddish brown	slightly sandy CLA	AY. Sand is fine	e to coarse	<u>.</u>		3.0			
3.40 - 4.90	SB9				-10.89	3.30		Reddish brown sligi pockets of clay.	htly silty fine to m	nedium SAND	with occas	sional		4.0			
.80 .90 - 6.40	ES3 SB10	Marine Scotland Sample												5.0			
					-13.99			Dark reddish brown angular to subroun		of various lit		Gravel is		7.0 7.5			
	Water	r Strikes	Rema	rks										9.0			
Casing D	Casing to (m Details Diam (mm	Time (min) Rose to (m	Fime (min) Rose to (m) Deck to bed = All elevations Second attem Marine Scotla Composite sa				ven in Chart due to large (3 samples t esting	Datum boulder kicking casin	ng off the vertical o	on first set-up							
6.40	177		Core	Barrel	Flus	h Type		tion Reason	1			Last Upda		\C			

		CAUSEW	СН				Project No. Project Name: Hunterston Marine Yard Client: Peel Ports Limited Client's Rep: Envirocentre								Borehole ID BH14				
Metho Sonic Dri		Plant Used Fraste CRS-XL140 Duo	Top (m) 0.00	Base 4.5		21823		Final De			17/03/2024 17/03/2024	Driller:	-	Sca	et 1 of	50			
Depth	Sample /			Casing	Water	Level	Depth	Elevatio	-7.81 MCD			Logger:			RAFT	_			
(m) 0.00 0.00 0.00 0.00 0.00 - 1.50	ES4	Field Records Marine Scotland Sampl RAD Composite ENV Composite	e	Casing Depth (m)	Water Depth (m)	mCD -8.81	(m)	Legend	Brownish grey fine	to medium SA				Water	Backfill	0.5			
.50 - 3.00	B ES2 Marine Scotland Sample					-9.31	1.50	× × × × × × × × × × × × × × × × × × ×	Brownish grey sligh Brownish grey fine Cobbles are subang	to medium SA	ND with low cob	ble conten				1.5			
.10																2.0 -			
.00 - 4.50	В															3.0 -			
20	ES3	Marine Scotland Sampl	e			-12.31	4.50	.d. 6 0	At 4.40m: 150 x 70mm st		- ehole at 4.50m					4.5			
																5.0			
																6.0			
																7.0			
																7.5			
																8.5			
																9.0			
	Water	Strikes	Rema	rks			<u> </u>	1								_			
Casing Do		Water Added From (m) To (m)	Deck t All ele Secon Marin Compo	o bed : vations d atten e Scotl osite sa	= 12 s and npted and S ample	50m reduced l d jacking lo Sampling l e for radic	levels give ocation d ocation (ological te	3 samples testing	Datum boulder kicking casin	g off the vertic	cal on first set-up)							
4.50	177	10.11 (111)	Composite sample for envir					tion Reason				Last Upd	ated		=				

	C	CAUSE	W	AY CH			Projec		Project Client: Client's		ts Limited	/ard			Borehole ID BH15				
Meth		Plant Use		Top (m)	_		Coord	inates	Final Da	MJ	S	heet 1 o	of 1						
Sonic Dr	rilling	Fraste CRS-X Duo	(L140	0.00	3.0	00	21846	2.22 E							:	Scale: 1:	50		
							65357	7.41 N	Elevatio	on: -9.20 mCD	End Date:	d Date: 15/03/2024 Logger: C							
Depth (m)	Sample / Tests		Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			ription			Water	Backfill			
00 00 00 00 00 - 1.50	ES4	Marine Scotland RAD Composite ENV Composite							X—————————————————————————————————————	Very soft grey very throughout. Sand is			sand (20-3	0mm)			0.5		
40 50 - 3.00	ES2 B7	Marine Scotland	d Sample				-10.60	1.40	X———	Soft light brown slightly sandy slightly gravelly CLAY Sand is fine to							1.5		
		Marine Scotland Sample					-11.30	2.10	× × × × × × × × × × × × × × × × × × ×	Light brown slightly	silty fine to m	edium SAND.			-		2.0		
80	ES3	Marine Scotland	d Sample				-12.20	3.00	×××		End of Bore	hole at 3.00m					3.0		
											End of Bore	note at 0.00m					3.5		
																	4.0		
																	5.0		
																	5.5		
																	6.0		
																	6.5		
																	7.0		
																	8.0		
																	8.5		
															-		9.0		
		Strikes		Rema	rks												<u> </u>		
ick at (m) C	at (m) Casing to (m) Time (min) Rose to				o bed vatior e Scot	= 13. is and land s	30m reduced Sampling	evels give	Causeway en in Chart 3 samples t	Datum									
				Core	Barı	el	Flush	Гуре	Termina	tion Reason				Last Up	date	d	Ī		
									Terminate	ed at scheduled depth	n			19/03,	/2024	Α	H		

	<u> </u>	AUSE	W	AY CH			Projec 23-1		Project Client: Client's		ts Limited	Yard			E	Borehol BH1	
Metho Sonic Dr		Plant Used Fraste CRS-XL Duo		op (m) 0.00	Base 9.0		Coord 21813		Final De	epth: 9.00 m	Start Date:	16/03/2024	Driller:	MJ		Sheet 1 (
							65334	5.29 N	Elevatio	-4.40 mCD	End Date:	16/03/2024	Logger:	: OG		DRAF	:T
Depth (m)	Sample / Tests	Field Re			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfill	
.00 .00 .00 .00 - 1.50	ES4	Marine Scotland RAD Composite ENV Composite	Sample							Grey becoming brown fragments.	wn fine to coa	rse SAND with fi	requent sh	nell			0.5
.50 - 3.00							-6.90	2.50		Soft to firm brown s							2.0
.00 - 4.50	B8						-7.70	3.30		Reddish brown fine							3.0
.80	ES2	Marine Scotland	Sample														4.0
50 - 6.00	B9																5.0
.00 - 7.50	B10																6.0
.50 - 9.00 .60	B11 ES3	Marine Scotland	Sample														7.0
							-13.05	8.65		Soft brown sandy C	LAY. Sand is fir	e to medium.					8.5
							-13.40	9.00		-		ehole at 9.00m					9.0 ·
								: 									
uck at /==\la		Strikes	e to /~\	Rema			1 1 22 1			6: 14							
Casing D		Water Add		Deck to All elev Marine Compo	bed vation Scot osite s	= 9.00 s and land S ample	0m reduced l	evels give ocation (i logical te		Datum							
9.00	177			Core	Barr	el	Flush	Гуре	Terminat	tion Reason				Las	t Updat	ed	Ī
									Terminate	d at scheduled depth	ı			19	0/03/202	4	H

		GEO	TEC	CH			Project 23-1	.739	Client:		ts Limited		T			BH17	
Metho Sonic Dri		Plant Used Fraste CRS-XL14 Duo		p (m) 0.00	3.7		21831		Final De	pth: 3.70 m	Start Date:	15/03/2024	Driller:	AM		heet 1 o Scale: 1:	
		540					65346		Elevatio	n: -10.12 mCD	End Date:	15/03/2024	Logger:	LW		DRAF ⁻	Т
Depth (m)	Sample / Tests	Field Reco			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfill	
0.00 0.00 0.00 0.00 - 0.70 0.70 - 2.20	ES4 ES5 B6 B7	Marine Scotland Sa RAD Composite ENV Composite Marine Scotland Sa					-11.02	0.90	× × × × × × × × × × × × × × × × × × ×	Brownish grey sligh Brownish grey fine							1.0 -
.90 .20 - 3.70	ES3 B8	Marine Scotland Sa	mple														2.0 -
							-13.82	3.70			End of Bore	ehole at 3.70m					4.0 -
																	5.0 -
																	5.5
																	6.0 -
																	7.0 -
																	7.5
																	8.0 -
																	9.0 -
		Strikes		Remar										<u>'</u>	_		
Casing D		Nater Adder From (m) To	d	Deck to All elev Marine Compo	bed ation Scot site s	= 15. s and land s ample	50m reduced l	evels give ocation (i		Datum							
3.70	177			Core	Barr	el	Flush	Гуре	Terminat	ion Reason				Last Upd	data	a ==	_

		CAUSEN	AY ECH			23-1	L 739	Client:		ts Limited entre					ВН1	8
Meth		Plant Used	Top (m			Coord	inates				15/02/2024	D.:!!la	A.D. 4	S	heet 1	of 1
Sonic D	rilling	Fraste CRS-XL140 Duo	0.00	3.	00	21818	9.09 F	Final De	ptn: 3.00 m	Start Date:	15/03/2024	Driller:	AIVI		Scale: 1	L:50
		Duo					1.97 N	Elevatio	n: -13.21 mCD	End Date:	15/03/2024	Logger:	OG		DRAF	-T
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfil	ı
00 00	ES1 ES4	Marine Scotland Samp RAD Composite	ole					XXXX	Grey SILT.							
00 00 - 1.50	ES5 B6	ENV Composite						$\times \times \times \times$								0.5
60		Marine Scotland Samp	ole					× × × × × × × × × × × × × × ×								
						-14.21	1.00	(XXX	2 11111							1.0
20	ES3	Marine Scotland Samp	ole						Reddish brown fine	to coarse SAN	ID.					
50 - 3.00	В7															1.5
																2.0
							Ē.									2.5
						-16.21	3.00			End of Bore	ehole at 3.00m					3.0
							Ē									
																3.5
																4.0
																4.5
							-									5.0
																5.5
																6.0
																6.5
																0.5
																7.0
							E									
							Ė									7.5
							-									8.0
							Ē									
							Ė									8.5
							Ē									
							<u> </u>									9.0
							Ē									
	Wate	r Strikes	Rem	arks	1		1	I								
ıck at (m)	Casing to (m	Time (min) Rose to (from the	Causeway	Giant 1							
				to bed evatio			evels giv	en in Chart	Datum							
			Mari	ne Sco	tland '	Sampling I	ocation (3 samples t	aken)							
Carter	Dat-!!	14/=4== A 1.1 - 1	Com	oosite	sampl	e for radic	logical te	esting	,							
Casing I		Water Added) From (m) To (m)		osite	sampl	e for envir	onmenta	ii testing								
3.00	177							_						•		
			Cor	e Bar	rel	Flush	ıype		ion Reason				Last Up			Į
								Terminate	d at scheduled depth				19/03/	2024	Ti.	7 P.

		CAUSEW	AY CH			23-1	L 739	Client:		ts Limited ntre				BF	119
Meth			Top (m)			Coord	inates		•		16/02/222	D.:"		Sheet	1 of 1
Sonic D	rilling	Fraste CRS-XL140 Duo	0.00	3.	00	21804	5 52 F	Final De	e ptn: 3.00 m	Start Date:	16/03/2024	Driller:	IVIJ	Scale	e: 1:50
		Duo					8.25 N	Elevatio	n: -9.81 mCD	End Date:	16/03/2024	Logger:	OG	DR	AFT
Depth (m)	Sample / Tests	Field Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Mater Bac	kfill
00 00 00 00 00 - 1.50	ES4	Marine Scotland Sampl RAD Composite ENV Composite	e						Light brown fine to	coarse SAND v	with occasional s	shell fragm	ents.		0.5
10	ES2	Marine Scotland Sample	e												
50 - 3.00	В7														1.5
10	ES3	Marine Scotland Sampl	e												2.5
						-12.81	3.00	N 1		End of Bore	ehole at 3.00m				3.0
															3.5
							_								4.0
															4.5
															5.0
															5.5
															6.0
															6.5
															7.0
															/.0
															7.5
															8.0
															8.5
															9.0
uck at / l.		Strikes	Rema			1 1 22			61 11						
иск at (m) (casing to (m) Time (min) Rose to (n	Deck t All ele	o bed vatior	l = 13. ns and	30m reduced l	evels giv	e Causeway en in Chart	Datum						
			Compo	osite s	sampl	e for radic	logical te		aken)						
Casing I		Water Added From (m) To (m)				e for envir									
3.00	177	15 (11)				F1	 1	-	dan Barrier					-8.4.9	
			Core	Barı	rel	Flush	Type	Terminat	tion Reason				Last Upd	ated	

	S	CAUSEV	ГЕС	Н			Projec 23 -1		Project Client: Client's		ts Limited	Yard			Be	BH20	
Meth Sonic Dr		Plant Used Fraste CRS-XL140		(m) .00	Base 4.!		Coord	inates	Final De	pth: 4.50 m	Start Date:	17/03/2024	Driller:	MJ	1	heet 1 c	
	8	Duo					21830 65335		Elevatio	n: -8.62 mCD	End Date:	17/03/2024	Logger:	OG		DRAF	
Depth (m)	Sample / Tests	Field Recor	ds		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	ription		1	Water	Backfill	
00 00 00 00 00 - 1.50	ES4	Marine Scotland San RAD Composite ENV Composite	nple						**************************************	Grey slightly gravell fragments. Gravel is lithologies.							0.5
50 - 3.00 70	B7 ES2	Marine Scotland San	nple				-10.12	1.50		Grey slightly clayey lenses of clay and o	ccasional shel		sional (20-	40mm)	_		2.0
00 - 4.50	В8														3.0		
30	ES3	Marine Scotland San	nple														3.5
																	4.0
							-12.92	4.30		Soft grey mottled b	rown CLAY.						
							-13.12	4.50			End of Bore	hole at 4.50m					4.5
																	5.0
																	5.5
																	6.5
																	7.0
																	7.5
																	8.0
																	9.0
,		Strikes		Rema				l	ı						ı	I	_
ck at (m) C	Casing to (m) Time (min) Rose to	[/	Deck to All elev	bed ation	= 13. is and	10m reduced l	evels give	Causeway en in Chart 3 samples t	Datum							
Casing D To (m) [1 4.50	Details Diam (mm 177	Water Added) From (m) To (r		Compo	site s	ampl	e for radio e for envir	logical te	sting								
				Core	Barr	el	Flush	Гуре	Terminat	tion Reason				Last Up	date	d	Ī
									Terminate	d at scheduled depth				19/03/	/2024	Λ	P

		CAUSEW	AY CH				ct No. 1 739	Project Client: Client's		ts Limited	Yard			В	orehole BH21	
Meth			Top (m)			Coord	inates	Final De	-		16/03/2024	Driller:	Λ1.4	S	heet 1 c	of 1
Sonic Di	rilling	Fraste CRS-XL140 Duo	0.00	3.	00		6.79 E 6.67 N	Elevation			16/03/2024	Logger:			Scale: 1: DRAF	
Depth	Sample /	Field Records		Casing Depth (m)	Water Depth (m)	Level	Depth	Legend		Desc	ription			Water	Backfill	Т
(m) 00 00		Marine Scotland Sampl RAD Composite	e	(m)	(m)	mCD	(m)	Legend	Greyish brown fine					Wa	Васкіні	
00 00 00 - 1.50		ENV Composite														1.0
50 50 - 3.00	ES2 B7	Marine Scotland Sampl	e													2.0
00	ES3	Marine Scotland Sampl			-9.60	3.00			End of Bore	hole at 3.00m					3.0	
															3.5	
																4.0
																4.5
																5.0
																5.5
																6.0
																6.5
																7.0
																7.5
																8.0
																8.5
																9.0
		r Strikes	Rema											1	1	_
ck at (m) C	Casing to (m	n) Time (min) Rose to (n	Deck t	o bec	l = 11.	70m		Causeway en in Chart I								
Casing E	Details	Water Added	Comp	osite :	sampl	Sampling e for radio e for envi	logical te		aken)							
	Diam (mm 177			JUICE :	-u.i.pl	5. C										
			Core	Barı	rel	Flush	Туре	Terminat	ion Reason				Last U	odate	ed _	Ī
								Terminated	d at scheduled depth				19/03	/2024	$ \Lambda $	H

		GEOTE	СН	ln-	()	23-1	ct No.	Project Client: Client's		ts Limited	Yard				BH21	A
Meth Sonic Dr		Plant Used Fraste CRS-XL140 Duo	Top (m) 0.00	_	e (m) 00	21796		Final Dep			30/03/2024	Driller:			heet 1 o	:50
Depth	Sample /			Carion	Water	65334 Level	5.84 N Depth	Elevation	-6.38 mCD		30/03/2024	Logger:	MS	ħ	DRAF	T T
(m)	Tests	Field Records Marine Scotland Sample	0	Casing Depth (m)	Water Depth (m)	mCD	(m)	Legend	Reddish brown sligh		cription	with from	ant chall	Water	Backfill	
.00 .00 .00 .00 - 1.50	ES4	RAD Composite ENV Composite				-7.38	1.00	x	fragments. Reddish brown sligh			·				0.5
50 - 3.00	В7								Gravel is angular fin				ND.			2.0
80 00 - 4.50	ES2 B8	Marine Scotland Sampl	e													3.5
.50 - 6.00	B9	Marine Scotland Sampl	e					× × × × × × × × × × × × × × × × × × ×								5.0
						-12.38	6.00	* × ×		End of Bore	ehole at 6.00m					6.0
										End of Boro	, , , , , , , , , , , , , , , , , , ,					7.0
																7.5 8.0
	Water	r Strikes	Dame	urke			-									9.0
uck at (m)		Time (min) Rose to (m		ater l			from the	· Causeway 0	Giant 1							
	Diam (mm	Water Added) From (m) To (m)	Deck t All ele Re-dri Marin Comp	o bed vation II at E e Scot osite s	l = 11. ns and BH21 o tland s	50m reduced due to insi	levels give afficient cocation (a ocation (a	en in Chart [depth of sam 3 samples ta esting	Datum npling during initial vi	isit						
6.00	177		Core	Barı	rel	Flush	Туре	Terminati	ion Reason				Last Up	date	ed 📕	-
								Terminated	d at scheduled depth				02/04/			Ŕ

		AUSE	W OTE	AY CH			roject No 2 3-173 9	Client	t Name: Hunters Peel Por s Rep: Enviroce	rts Limited	talu .				rehole	
Meth		Plant Use		Top (m)			oordinate		•	Start Date:	16/03/2024	Driller:	MJ		eet 1 o	
Sonic Di	rilling	Fraste CRS-XI Duo	L140	0.00	9.0	21	18037.76 53269.30	E -			16/03/2024	Logger:			cale: 1: DRAF	
Depth	Sample /	Field F	Records		Casing Depth (m)	Water Lev Depth (m) m(Des	cription			Water	Backfill	Т
(m) .00 .00 .00 .00 .00 - 1.50	ES4	Marine Scotland RAD Composite ENV Composite	l Sample	:	(m)	(m) m(CD (m	,	Orangish brown grassubrounded fine to			vel is subai		\$		0
1.50 - 3.00	В7															2
3.00 - 4.50	B8															3
3.80	ES2	Marine Scotland	l Sample													2
4.50 - 6.00	В9															
5.00 - 7.50	B10															6
7.50 7.50 - 9.00	ES3 B11	Marine Scotland	l Sample			-11	.81		Soft to firm reddish coarse. Gravel is su lithologies.							8
						-13	.41 = 9.0	00		End of Bore	ehole at 9.00m					9
		Strikes		Rema				<u> </u>								_
Casing [Water Ad From (m)		Deck t All ele Marin Comp	o bed = vations e Scotla osite sa	= 9.00m and redu and Samp ample for	iced levels ling locatio	the Causewa given in Chai n (3 samples I testing ntal testing	t Datum							
9.00	177		. ,	Core	Barre	el Fl	ush Type		ation Reason red at scheduled depth				Last Upd a 19/03/20		, K	_

		AUS	EW	AY				ct No. 1 739	Client:		ts Limited	Yard			В	orehole BH23	
Metho Sonic Dril Rotary Co	lling	Plant L Fraste CRS Duc Fraste CRS	Jsed 5-XL140 0 5-XL140	Top (m) 0.00 31.90	Base 31. 39.	.90	21818 65318		Client's Final De Elevatio	pth: 39.40 m	Start Date:	27/03/2024	Driller:	MJ/AM LW/MS		heet 1 o Scale: 1:	50
Depth (m)	Sample / Tests		eld Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend	1	Desc	cription		1	Water	Backfill	
0.40 0.40 0.40 0.40 0.40 - 1.90	ES1 ES4	Marine Scotl RAD Compos ENV Compos	site	le	(m)	(m)	ilico			Very loose reddish	brown slightly	silty fine to coar	rse SAND.		\$		0.5
1.90 1.90 - 3.40 1.90 - 2.35		N=2 (0,1/0,1, 1398	,1,0) Hamr	mer SN =	1.90	0.00											2.0 —
3.40	D33				3.40	0.00	-7.51	3.40	××× ×××								
3.40 - 4.90 3.40 - 3.85	B8 SPT (S)	N=15 (1,4/3,4	4,4,4) Ham	nmer SN =					× × ×	LOW RECOVERY: Ve fine to medium SAN		edium dense red	dish browr	i clayey			3.5
l.00		1398 Marine Scotla							× × ×								4.0 -
1.90 1.90 - 5.80 1.90 - 5.35		N=3 (1,0/1,1, 1398	,0,1) Hamr	mer SN =	4.90	0.00			X X X X X X X X X X X X X X X X X X X								4.5 5.0 -
5.80 - 6.40	B10						-9.91	5.80	× × × × × ×	Very loose to loose	reddish browi	n slightly silty fin	e to mediu	ım SAND.	-		5.5 6.0 -
5.40 - 7.90 5.40 - 6.85		N=3 (1,1/0,1, 1398	,1,1) Hamr	mer SN =	6.40	0.00											6.5 7.0 =
7.90 7.90 7.90 - 9.20 7.90 - 8.35	B12 SPT (S)	Marine Scotla N=6 (1,2/1,2, 1398			7.90	0.00											8.0 =
9.20 - 9.40	B13						-13.31	9.20	x	Stiff brown slightly	sandy CLAY. Sa	nd is fine to me	dium				9.0 -
	Mata	Strikes		Po	rks												
Casing De	sing to (m	Time (min)	Rose to (r	Deck to All ele	vater b to bed vation e Scot osite s	= 10. is and land s ampl	10m reduced l	levels give ocation (i		Datum							
To (m) Dis	iam (mm) 177 150	From (m)	To (m)				P 1 1 1	.	T	in December				1		I	
55.40	-50				Barr	ei	Flush Polyr			ion Reason d at scheduled depth	1			02/04/			뇄

	<u> </u>	AUSE	W .	AY CH				ct No. 1 739	Project Client:		ts Limited	Yard			В	orehole BH23	
Method Sonic Drill Rotary Cor	ling	Plant Use Fraste CRS-X Duo Fraste CRS-X	(L140	Top (m) 0.00 31.90	Base 31.9	90	21818 65318		Final De	epth: 39.40 m	Start Date:	27/03/2024	Driller:	,	9	heet 2 o Scale: 1:	:50
Depth	Sample /	Duo	Records		Casing Depth (m)	Water Depth (m)	Level	Depth	Legend			cription	100		Water	Backfill	· —
9.40 - 10.90	D36 B14 UT51	Ublow=100 75%		ry	9.40 (_	mCD -13.51	9.40	X X X X X X X X X X X X X X X X X X X	Medium dense to d SAND.			Ity fine to c	oarse	Wa	Backiiii	9.5 -
10.90 - 12.40		N=49 (7,13/18,: SN = 1398	12,10,9) I	Hammer	10.9	0.00			**								11.0 —
2.40 - 13.90		N=10 (3,2/1,1,3 1398	8,5) Hamr	mer SN =	12.4 (0.00											12.5
3.90 - 15.40	SPT (S)	N=37 (4,4/5,7,1 SN = 1398	.1,14) Ha		13.9 (0.00			*								13.5 14.0 -
.5.40 - 16.90	D40 B18 SPT (S)	N=36 (4,6/7,7,9 = 1398),13) Ham	nmer SN	15.4 (0.00			* * * * * * * * * * * * * * * * * * *								15.0 – 15.5
16.90 - 18.40	SPT (S)	N=37 (5,6/7,8,1 SN = 1398	.0,12) Ha	mmer	16.9	0.00	-21.01	16.90		Dense reddish brow	vn slightly silty	fine to coarse S	AND.				16.5 · · · · · · · · · · · · · · · · · · ·
18.40 18.40 - 19.90		· Christon		Darre	18.4 (0.00		-	× × × × × × × × × × × × × × ×								18.5
ruck at (m) Cas		Strikes) Time (min) Ro	ose to (m	Rema Overw		oreho	ole drilled	from the	: Causeway	Giant 1							
Casing De To (m) Dia 31.90	tails am (mm) 177	Water Ac	dded To (m)	Deck to All elev Marine Compo	o bed s vations e Scotl osite sa	= 10. s and and s ample	10m reduced l	evels give ocation (i	en in Chart 3 samples t	Datum							
39.40	150				Barre K6L	el	Flush Polyr			tion Reason d at scheduled depth	1			02/04/		d A	GS

	C	AUS	EW	AY				ct No. 1739	Project Na	ame: Hunterst	ton Marine ts Limited	Yard			В	orehole	
		——-GI	EOTE	СН					Client's R	ep: Enviroce	ntre						
Metho Sonic Dril		Plant Us		Top (m) 0.00	Base			inates	Final Depti	h: 39.40 m	Start Date:	27/03/2024	Driller:	MJ/AM		heet 3 o Scale: 1:	
Rotary Co	ring	Duo Fraste CRS- Duo	XL140	31.90	39.	40		9.09 E 4.43 N	Elevation:	-4.11 mCD	End Date:	29/03/2024	Logger:	LW/MS		DRAF	Т
Depth (m)	Sample / Tests	Field	d Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
8.40 - 18.85	SPT (S)	N=35 (5,7/6,9, = 1398	9,11) Ha	mmer SN				-	X X X X X X X X X X X X X X X X X X X								19.0 - 19.5
.9.90 .9.90 - 21.40 .9.90 - 20.35	D43 B21 SPT (S)	N=33 (6,6/6,8, = 1398	10,9) Hai	mmer SN	19.9	0.00											20.0 -
:1.40 :1.40 - 22.90 :1.40 - 21.85		N=35 (4,5/6,9, = 1398	9,11) Hai	mmer SN	21.4	0.00											21.5
	SPT (S)	N=44 (5,7/9,10 SN = 1398	D,12,13) ł	Hammer	22.9	0.00											22.5 23.0 -
24.40 24.40 24.40 - 24.84 24.90 - 25.90	D46 SPT (S)	50 (8,10/50 fo Hammer SN =)	24.4	0.00	-28.11	24.00	F. X-1	ery dense brown a AND.	and reddish br	own slightly silty	/ fine to co	arse			24.0 · 24.5
25.90 25.90 - 27.00 25.90 - 26.32		50 (9,11/50 fo Hammer SN =)	25.9	0.00											25.5 26.0 -
27.00 - 28.00 27.40 27.40 - 27.80	D48 SPT (S)	50 (9,14/50 for Hammer SN =)	27.4	0.00	-31.11	27.00	Ve	ery dense brown c	clayey fine to r	nedium SAND.					27.0 - 27.5
	Water	r Strikes		Rema	rks				1								Щ
Casing De	sing to (m) Time (min) R		Deck to All ele Marin Comp	vater b o bed vation e Scot osite s	= 10. s and land s ampl	10m reduced l	levels give ocation (i		tum							
31.90 39.40	177 150				Barr	el	Flush Polyr		Termination Terminated as	n Reason t scheduled depth	1			Last Up			T A

3										Proje		Project	t Name: Hunters	ton Marine	Yard			В	orehole	
			AUS	FC	VV ITC	ECI	Y H			23-1	L 73 9	Client:		ts Limited					BH23	}
								L				Client's	s Rep: Enviroce	ntre						
Metho Sonic Dr			Plant U			Top 0.0		Base 31.		Coord	inates	Final De	epth: 39.40 m	Start Date:	27/03/2024	Driller:	MJ/AM		Sheet 4 o Scale: 1:	
Rotary C	oring		Duc Fraste CRS Duc	-XL1	L40	31.	.90	39.	40	21818 65318	9.09 E 4.43 N	Elevatio	on: -4.11 mCD	End Date:	29/03/2024	Logger	: LW/MS		DRAF	
Depth (m)	Sample Tests		Fie	ld Re	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
28.90 28.90 28.90 - 30.40	D49							28.9	0.00	-33.01	28.90		Very stiff brown CL/	ΔΥ.						28.0 —
28.90 - 29.35	D50 B30																			29.5 —
30.40 30.40 - 31.30 30.40 - 30.80	.30 B30 .80 SPT (S) 50 (10,15/50 for 245mm) Hammer SN = 1398							30.4	0.00											30.5 —
31.30 - 31.90	B31	1 0								-35.41	31.30 31.90		Weathered SANDST angular to subangu (Disturbed due to s	lar fine to coa onic drilling)	rse GRAVEL.					31.5 — — — — —
							0			-36.41	32.30		Extremely weak red SANDSTONE. Partia discolouration.							32.0
				100	60	60	2						No discernible disco Medium strong red cemented pebbly S strength, with grey	dish brown an ANDSTONE. Pa	artially weather					32.5 —
33.40				100	100	100				-37.51	33.40		Discontinuities: 1. 5-15 degree joint soft clay deposits o Medium strong red CONGLOMERATE. Slightly closer fracti Discontinuities: 1. 5-20 degree joint clean.	n joint surface dish brown an artially weath ure spacing.	s. Id light grey wel ered: slightly re	l cemente duced stre	d ngth,	,		33.5
34.90				100	95	77	1						c.cair.							35.0 — - - 35.5 — 36.0 —
36.40				87	80	80														36.5 — - - 37.0 —
	\A/a+	or	Strikos	TCR	SCR	RQD		rks												<u> </u>
Casing D	Casing to ((m)	Strikes Time (min) Water From (m)	Add		n) O D A	eck to Il elev Tarino ompo	ater b o bed vation e Scot	= 10. s and land s ampl	10m reduced l	levels give ocation (3 blogical te		Datum							
31.90 39.40	177 150	,	, ,					Barr K6L	el	Flush Polyr			tion Reason ed at scheduled depth	ı			Last Up			T GS

			GEC	ITC	EC	Н			23-:	ct No. L 73 9	Client:		ts Limited					BH23	
Meth Sonic D		Plant U			_	(m) 00	Base 31.		Coord	linates	Final De	pth: 39.40 m	Start Date:	27/03/2024	Driller:	MJ/AM		heet 5 o	
Rotary (_	Due Fraste CRS	0			.90	39.			9.09 E								Scale: 1:	
	Cornig	Due		140	31	.50				4.43 N	Elevatio	-4.11 mCD	End Date:	29/03/2024	Logger:	LW/MS		DRAF	Г
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
7.90			100	95	90	3			-42.01	37.90		Medium strong red SANDSTONE. Partia closer fracture spac Discontinuities: 1. 5-20 degree joint with gravel infill bet	Ily weathered ing, with occa	slightly reduced sional grey disco aced (40/375/75	l strength, louration.	slightly			38.0 38.5 39.0
9.40								-43.51	39.40			End of Bore	hole at 39.40m					39.5 40.0	
																		40.5	
																			41.5
																			42.0 42.5
																			43.0
																			43.5
																			44.0
																			44.5
																			45.5
																			46.0
			TCR	SCR	RQD	FI				-									
	Casing to (m	r Strikes i) Time (min) Water			m) F	rom (elling To (g Details	e (hh:mm)	Deck to be All elevation Marine Sco Composite	borehole drilled from the state of the state	ls given in Cha tion (3 sample ical testing	rt Datum					
Casing I To (m) 31.90 39.40	Diam (mm) 177 150			ed o (m)		Core	Barr	el	Flush	Туре		ion Reason	nental testing			Last Up	date	ed 📕	_
						S	K6L		Poly	mer	Terminated	d at scheduled depth	1			02/04/	2024	Λ	7

		AUSEV GEO	VA	Y			ct No. 1 739	Project Client: Client's		ts Limited	/ard		В	orehole	
Metho Sonic Dri		Plant Used Fraste CRS-XL140			Base (m 10.50		inates 8.24 E	Final De	-	Start Date:	30/03/2024	Driller:	AM	Sheet 1 c	
		Duo					2.15 N	Elevatio	n: -2.58 mCD	End Date:	30/03/2024	Logger:		DRAF	Т
Depth (m)	Sample / Tests	Field Recor			Casing Water Depth Depth (m) (m)	Level mCD	Depth (m)	Legend			ription		Water	Backfill	
1.00 1.00 1.00 1.00 1.00 - 1.50	ES4	Marine Scotland San RAD Composite ENV Composite	nple			-3.58	1.00	× × × × × × × × × × × × × × × × × × ×	Black slightly silty fi		SAND.				0.5
.50 - 3.00	В7								,						2.0 -
3.00 - 4.50	4.50 B8					-5.48	2.90	× × × × × × × × × × × × × × × × × × ×	Brown very clayey f	ine SAND.					3.0 -
4.50 - 6.00 4.70	6.00 B9 ES2 Marine Scotland Sample				-7.98	5.40		4.30-4.50m: Pocket of m						4.5	
5.00 - 7.50	7.50 B10								Reduisi Diowii iiie	to meatum sa	ND.				6.0
7.50 - 9.00	B11					10.49	7.00								7.0 -
						-10.48	7.90		Reddish brown sligl subangular to subro	ounded of vario	ous lithologies.				8.0 -
0.00 - 10.50	B12					12.00			Very stiff reddish br Gravel is angular of			l is fine to c	oarse.		9.0 -
	Water	Strikes	R	emar	ks										<u>—</u>
Casing Do	etails	Time (min) Rose to	o (m) Oo De Al	verwateck to ll eleva larine ompos	ter borel bed = 7. ations an Scotland site samp	80m d reduced	levels give ocation (3 blogical te		Datum						
To (m) D	iam (mm) 177	From (m) To (r		Core I	Barrel	Flush	Туре		ion Reason				Last Update 02/04/2024		

			EOTE	СН	L			1739	Client: Client's Rep		rts Limited entre					BH2	
Metho Sonic Dri		Plant U	-XL140	Top (m)		. 50	21817	inates 8.24 E	Final Depth:	10.50 m	Start Date:	30/03/2024	Driller:	AM	l	Sheet 2 o	
								2.15 N	Elevation:	-2.58 mCD	End Date:	30/03/2024	Logger:	LW		DRAF	Т
Depth (m)	Sample / Tests	Fiel Marine Scotla	ld Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
							-13.08	10.50			End of Bore	hole at 10.50m					9.5 10.0 11.0 11.5 12.0 13.5 14.0 15.5 16.0 16.5 17.0
																	18.5
	Water	Strikes		Rema	arks												
Casing D					vater I to bed evation e Scot osite :	l = 7.8 ns and tland : sampl	0m reduced	levels give ocation (i		m							
10.50						rel	Flush	Туре	Termination	Reason				Last Up	date	ed T	

Fraste CRS-M3-140 Double Foste CRS-M3-140 Double Cross-M3-140 Doub	rehole ID BH25					Yard	ts Limited		Project Client: Client's		Proje 23 -1			AY CH	EW	AUS	C	
Second Column Second Colum	eet 1 of 1		AM	Driller:	:4	14/03/2024	Start Date:	oth: 4.50 m	Final De	inates	Coord							
Marine Stortland Sample Sale Marine Stortland Sample Sale	DRAFT		LW	Logger:								30	4	0.00			IIII IB	JOINE D
Marine Stortland Sample Sale Marine Stortland Sample Sale	Backfill	Nater				ription	Desc		Legend			Water Depth (m)	Casing Depth (m)		ld Records	Fie		
Water Strikes Remarks 10 ESS Marine Scotland Sample 11.60 3.70 Firm brown sandy SILT. Sand is fine to medium. 12.40 4.50 End of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m All elevations and reduced levels given in Chart Datum Marine Scotland Sample Casing Details Water Added Composites sample for environmental testing Composites sample for environmental testing Composites sample for environmental testing	0.5				ND.				× × × × ×	0.25	-8.15				ite	AD Compos	ES2 ES3))
Water Strikes web at (m) Casing Details Water Added Namine Scotland Sample -11.60 3.70	2.0														and Sample	∕larine Scotl		
11.60 3.70	2.5								× × × × × × × × × × × × × × × × × × ×					50 B8) - 4.50
Water Strikes Remarks uck at (m) Casing to (m) Time (min) Rose to (m) All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Casing Details Water Added The Author of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m End of Borehole at 4.50m	3.5 4.0					e to medium.	ilLT. Sand is fin	Firm brown sandy S	× × × × × × ×	3.70	-11.60		ESS Marine Scotland Sample)	
Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing	4.5				m	hole at 4.50m	End of Bore		$\times \times \times \times$	4.50	-12.40			ES5 Marine Scotland Sample				
Casing Details Casing to (m) Time (min) Rose to (m) Time (min) Rose to (m)	5.0																	
Casing Details Casing to (m) Time (min) Rose to (m) Time (min) Rose to (m)	5.5																	
Casing Details Casing to (m) Time (min) Rose to (m) Time (min) Rose to (m)	6.0																	
Casing Details Casing to (m) Time (min) Rose to (m) Coverwater borehole drilled from the Causeway Giant 1	7.0																	
Casing Details Casing to (m) Time (min) Rose to (m) Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum	7.5																	
Deck to (m) Time (min) Rose to (m) Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing	8.0																	
Deck to (m) Time (min) Rose to (m) Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing	8.5																	
Overwater borehole drilled from the Causeway Giant 1 Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing	9.0																-	
Deck to bed = 13.30m All elevations and reduced levels given in Chart Datum Marine Scotland Sampling location (3 samples taken) Composite sample for radiological testing Composite sample for environmental testing								Giant 1	3115014/31/	from +h =	de drillad	noreh			Rose to (m)			k at (m)
								Datum	n in Chart I samples ta ting	evels give ocation (3 logical te	30m reduced l ampling l e for radic	= 13.3 is and land S sample	All elevation Marine Scot Composite s Sing Details Water Added m) Diam (mm) From (m) To (m)					Casing
4.50 177 Core Barrel Flush Type Termination Reason Last Updated		dated	Last Up					ion Reason	Terminat	Туре	Flush	el	177					

		GEOT	TECI	Н		:	Project 23-17	739	Client's		ts Limited	Yard				BH26	5
Metho Sonic Dri		Plant Used Fraste CRS-XL140 Duo		(m) E	7.50)	218194		Final De	pth: 7.50 m	Start Date:	17/03/2024	Driller:	AM		Sheet 1 c Scale: 1:	
		Duo					553311		Elevatio	n: -5.84 mCD	End Date:	17/03/2024	Logger:	LW		DRAF	Т
Depth (m)	Sample / Tests	Field Record			Casing W Depth De (m) (evel nCD	Depth (m)	Legend			cription			Water	Backfill	
1.00 1.00 1.00	ES4	Marine Scotland Sam RAD Composite ENV Composite	nple					-		Brownish grey fine	to coarse SANI	D.					0.5
1.50 - 3.00								-									2.0 -
.00 - 4.50 .10	ES2 Marine Scotland Sample					-8	3.84	- 3.00		Reddish brown sligi shell fragments. Gra							3.5
1.50 - 6.00	00 B8					-10	0.34	4.50		Very stiff brownish	grey sandy CLA	AY. Sand is fine to	o medium.				4.5 5.0 -
5.00 - 7.50 5.20	B9 ES3 Marine Scotland Sample					-1:	1.74	5.90		Reddish brown fine	to coarse SAN	ID.					6.5
						-13	3.34	7.50			End of Bore	ehole at 7.50m					7.5 · 8.0 - 8.5 · 9.0 -
	\A/c+c	· Strikos	-	20ma:	ks		-										
ruck at (m) Ca		Strikes Time (min) Rose to	(m) O		ter boı			rom the	Causeway	Giant 1							
	All e Mar Com Casing Details Water Added Com Com To (m) Com Co					10.40m and red nd Sam nple for	n luced le pling lo r radiolo	vels give cation (i	en in Chart 3 samples t	Datum							
7.50	177 Core Bar						lush T	ype		ion Reason				Last U	pdate 3/2024		Į

		AUS	EW EOTE	AY				ct No. 1 739	Project Client: Client's		ts Limited	Yard			В	orehole	
Meth Sonic Dr Rotary C	rilling	Plant Us Fraste CRS- Duo Fraste CRS-	-XL140	Top (m) 0.00 37.50	37. 43.	.50	21828	inates 8.83 E 4.04 N	Final De			20/03/2024		KW/MJ MS/OG		heet 1 c Scale: 1: DRAF	:50
Depth	Sample /	Duo			Casing	Water	Level	Depth		J.32 Meb		-	LOSSCI	1013/00	ē		—
(m) 0.00 0.00 0.00 0.00 0.00 - 0.90	ES1 ES4	Marine Scotla RAD Composit ENV Composit	te	e	Casing Depth (m)	Water Depth (m)	mCD	(m)	Legend X X X X X X X X X X X X	Very loose black an rare shell fragments	d brown slight		edium SAI	ND with	Water	Backfill	0.5 -
0.90 - 2.20 0.90 - 1.35	B7 SPT (S)	N=1 (0,0/1,0,0 1398	0,0) Hamn	mer SN =	0.90	0.00			* * * * * * * * * * * * * * * * * * *								1.0 -
2.20 - 3.00 2.40 - 2.85	2.85 SPT (S) N=2 (0,0/0,1,1,0) Hammer SN = 2.4					0.00	-7.72	2.20	* * * * * * * * * * * *	Very loose brown a with rare shell fragr		own slightly silty	fine to coa	arse SAND	_		2.5
3.00 - 3.90 3.30	ES2 Marine Scotland Sample						-8.52	3.00	X X X X X X X X X X X X X X X X X X X	Loose reddish brow	n slightly silty	fine to medium	SAND.				3.0 -
3.90 3.90 - 5.40 3.90 - 4.35	D38 3.90					0.00			X X X X X X X X X X X X X X X X X X X								4.0 -
5.40 5.40 - 6.90 5.40 - 5.85	.90 B11				5.40	0.00	-10.92	5.40		Medium dense to d SAND.	lense reddish l	orown slightly si	lty fine to	medium	_		5.0 -
5.50		Marine Scotla	ınd Sampl	e					x x x x x x x x x x x x x x x x x x x								6.5
5.90 5.90 - 7.80 5.90 - 7.34	D40 B12 SPT (S)	50 (4,6/50 for SN = 1398	⁻ 285mm)	Hammer	6.90	0.00			x x x x x x x x x x x x x x x								7.0 -
7.80 - 8.40 3.40	B13 D41 8.40					0.00	-13.92	8.40	× × × × × × × × × × × × × × × × × × ×		p. c. c.	6					8.0 -
3.40 - 9.90 3.40 - 8.85	9.90 B14 SPT (S) N=35 (0,2/5,6,10,14) Hammer SN = 1398									Dense reddish brow	vii Siigntiy Clay	ey iine to medil	uiii SANU.		_		9.0 -
	Water	r Strikes		Rema	rks												
Casing D	Deck to bec All elevation Marine Sco No SPT com Casing Details Water Added Composite (m) Diam (mm) From (m) To (m) Deck to bec All elevation Marine Sco No SPT com Composite Composite					= 12. is and land s pleter sample	40m reduced Sampling d at 20.40 e for radic	levels give ocation (i m due to blogical te	3 samples to blowing sail	Datum	:3.40m						
To (m) [37.50 43.50	50 177						Flush Polyr	Туре	Terminat	ion Reason d at scheduled depth	<u> </u>			Last Up 27/03/			.

		CAUSEW	AY			Project 23-1	ct No. 1 739	Project N Client: Client's F		ts Limited	Yard			В	orehole BH27	
Metho Sonic Dril Rotary Co	ling	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140 Duo	Top (m) 0.00 37.50	Base (37.5	0	21828 65324	8.83 E	Final Dept	th: 43.50 m	Start Date:	20/03/2024	Driller: Logger:		9	heet 2 c Scale: 1: DRAF	:50
Depth (m)	Sample / Tests	Field Records		Casing N Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	ription			Water	Backfill	
9.90 9.90 - 11.60 9.90 - 10.31	D42 B15 SPT (S)	50 (6,7/50 for 263mm) SN = 1398	Hammer	9.90 0	0.00											9.5
.1.40 .1.40 - 11.67 .1.60 - 12.80	2.80 B16					-17.12	11.60		/ery stiff brown slig	htly sandy silt	y CLAY. Sand is fi	ne to medi	ium.			11.0 · 11.5
3.50 - 13.70	D44 SPT (S) 50 (7,10/50 for 245mm) Hammer SN = 1398					-19.02 -19.22	13.50	X	Reddish brown sligh	ntly silty fine to	o coarse SAND.					12.5 13.0 13.5
4.40 4.40 - 15.90	D45 B20 SPT (S)	50 (9,14/50 for 150mm Hammer SN = 1398)	14.4 0	0.00	-19.22	13.70		Medium dense to d SAND.	ense reddish l	orown mottled g	rey fine to	coarse			14.0 14.5 15.0
5.90 5.90 - 17.40 5.90 - 16.26	SPT (S)	50 (3,7/50 for 210mm) SN = 1398	Hammer	15.9 0	0.00											15.5 16.0 16.5
7.40 7.40 - 18.90 7.40 - 17.85		N=19 (1,2/3,4,6,6) Ham 1398	ımer SN =	17.4 0	0.00											17.0 17.5 18.0
	1	C. 11	T_	Ш				(1.77\n+\(1.1								Ĺ
Casing De	sing to (m	Transport	Deck t All ele Marine No SP	vater bo o bed = vations e Scotla I compl osite sa	= 12.4 and and S letec mple	40m reduced l Sampling l	levels give ocation (i m due to blogical te	esting	atum	3.40m						
37.50 43.50	177 150			Barre	ı	Flush Polyn		Terminatio Terminated	on Reason at scheduled depth				Last Up 27/03/			G

		CAUSEW	AY ECH			Project 23-17		Project Client: Client's		ts Limited	Yard			В	orehole BH27	
Metho Sonic Dril Rotary Co	ling	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140 Duo	Top (m) 0.00 37.50	37.50 43.50)	Coordina 218288.8 653244.0	83 E	Final De			20/03/2024	Driller:	KW/MJ MS/OG		heet 3 o Scale: 1: DRAF	50
Depth (m)	Sample / Tests	Field Records		Casing Wa Depth De (m) (r	ater pth	Level mCD	Depth (m)	Legend	1	Des	cription			Water	Backfill	
.8.90 .8.90 - 20.40	D48 B23	N=44 (2,4/5,12,13,14) I SN = 1398	Hammer	18.9 0.4			18.90	*	Medium dense to o	lense grey sligi	ntly silty fine to I	medium SA	ND.			19.0
0.40 - 21.90	B24															20.0
	N=36 (4,5/5,9,10,12) Hammer SN = 1398															22.0
3.40 3.40 - 25.50 3.40 - 23.85	D50 5.50 B26				00 -2	28.92	23.40	**	Dense to very dens 23.40-24.00m: No Recov	e reddish brov ery	<u>v</u> n fine to coarse –	SAND.				23.5 24.0 24.5
:5.50 :5.50 - 27.00 :5.50 - 25.94	D51 B27 SPT (S)	50 (5,6/50 for 290mm) SN = 1398	Hammer	25.5 0.	00											25.5 26.0
27.00 27.00 - 28.50 27.00 - 27.40	- 28.50 B28 - 27.40 SPT (S) 50 (7,7/50 for 245mm) Hammer SN = 1398				00											27.0 27.5
		r Strikes	Rema	ırks				1								<u> </u>
	Deck to bed All elevations Marine Scotl No SPT composite same Diam (mm) From (m) To (m) Diam (mm) From (m) To (m) To (m)					m duced leven npling loca t 20.40m or radiolog	els give ation (3 due to gical te	3 samples t blowing sa sting	Datum	23.40m						_
43.50						Flush Ty	-		tion Reason	1			27/03/			G

	C	AUS	EW	AY			Proje	ct No.	Project	: Name: Hunterst	con Marine ts Limited	Yard			Во	orehole II
		——-G	EOTI	ECH					Client's	Rep: Enviroce	ntre					
Method		Plant U		Top (m)	_		Coord	inates	Final De	nth. 12 E0	Start Date:	20/03/2024	Drillor	KW/MJ	S	heet 4 of 5
Sonic Drill Rotary Co	Ū	Fraste CRS Duc Fraste CRS	5-XL140	0.00 37.50		.50	21828 65324	8.83 E 4.04 N	Elevatio			24/03/2024		: MS/OG		Scale: 1:50 DRAFT
Depth	Sample /	Duc	eld Records		Casing	Water	Level	Depth	1					1		Backfill
(m)	Tests	Fie	eia kecoras		Casing Depth (m)	Water Depth (m)	mCD	(m)	Legend		Desi	cription			Water	Васк піі 28.0
28.50 - 28.95 28.50 - 29.80	UT59 B29	Ublow=153 1	.00% Reco	very	28.5	0.00	-34.02	28.50		Very stiff brown slig	htly sandy CL/	AY. Sand is fine t	o medium			28.
29.80 - 31.50 30.00 30.00 - 30.31	D53	50 (6,10/50 fo Hammer SN =		n)	30.0	0.00	-35.32	29.80	× × × × × × × × × × × × × × × × × × ×	Very stiff brown slig	ihtly silty CLAY				-	29.3 30.4 30.5
	D54 B31 SPT (S)			n)	31.5	0.00			× × × × × × × × × × × × × × × × × × ×							31.4 31.4 32.4
	- 31.81 SPT (S) 50 (7,11/50 for 157mm) Hammer SN = 1398 D55 B32 - 33.30 SPT (S) FO (10,15/50 for 145mm) Hammer SN = 1398					0.00			X—————————————————————————————————————							32.: 33.(
34.00 - 35.00 34.50 34.50 - 34.92	D56	E0 /8 0/E0 fo	r 265mm)	Hammor	34.5	0.00	-39.52	34.00	×	Very dense brown v Gravel is subangula lithologies.					-	34.6 34.3
35.00 - 36.00		50 (8,9/50 10) SN = 1398	1 205111111)	nammer												35.d 35.d
		50 (7,10/50 fo Hammer SN =		n)	36.0	0.00	-41.52	36.00		Very dense brown r	nottled grey fi	ne to coarse SA	ND.		-	36.ú 36.ú
6.90 - 37.20	B36						-42.42	36.90			1.1.1.	<i>r</i>	CAND -			
7.20 - 37.50							-42.72	37.20		Brown very gravelly subangular to subro						37.0
0 37.30		Strikes		Rema	rks		.2.72	37.20								
uck at (m) Cas		Time (min)	Rose to (r	Deck t All ele	vater bed vation	= 12. is and land s	40m reduced l Sampling I	evels give	Causeway en in Chart 3 samples t	Datum	3.40m					
Casing De To (m) Dia 37.50 43.50	etails am (mm) 177 150	Water /	Added To (m)	Comp	osite s osite s	sampl sampl	e for radic e for envir	ological te conmenta	sting I testing		J.4UIII					
-3.30	130				Barı K6L	el	Flush Polyr			tion Reason ed at scheduled depth				27/03/		

	CAUSEWAY						Proje	ct No.	Project	Name: Hunterst	ton Marine	Yard			В	orehole	 ID			
	X	C	AUS	E	W	Δ	Y			_	L 73 9	Client:		ts Limited					BH27	,
	37											Client's								
Met	hod		Plant U	Jsed		Ton	(m)	Base	e (m)	Coord	linates	Chefft S	nep. Liiviiote	.nu c					Sheet 5 c	
Sonic D			Fraste CRS		40	_	00	-	.50	COOIG	illates	Final De	pth: 43.50 m	Start Date:	20/03/2024	Driller:	KW/MJ		Scale: 1:	
Potany	Coring	.	Duc Fraste CRS		40	27	.50	12	.50		8.83 E									
Rotary	Corning		Duc		.40	37	.50	43	.50	65324	4.04 N	Elevatio	n: -5.52 mCD	End Date:	24/03/2024	Logger:	MS/OG		DRAF	Τ
Depth (m)	Sam _j Tes		Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
													Weathered SANDST	ONE recovere	ed as, reddish bro	own slightl	ly sandy			
9.00				100	100	89				-43.02	37.50		clayey angular to su content. (Recovered disturbe Medium strong red SANDSTONE. Partia closer fracture spacidiscolouration. Discontinuities: 1. 30-55 degree bet planar, rough, clean 38.45-38.65m: Bed of col	ed due to soni dish brown co lly weathered ting, with occa dding fracture	c drilling) arse grained we : slightly reduced sional dark oran s, widely spaced	ll cemente d strength, gish brow	ed pebbly , slightly n			38.0 - 38.5 39.0 -
0.50		100	100	100	1													39.5 40.0 - 40.5		
2.00				97	97	97														41.0 - 41.5 42.0 -
															_					42.5
				96	96	96		-		-48.12	42.60		42.50-42.60m: Bed of con Medium strong thic cemented SANDSTO	kly laminated	reddish brown f					
							0						strength.							43.0
													No discontinuities p	oresent.	vein.					
3.50								1		-49.02	43.50		72.00 To. To. H. Oloppod,		hole at 43.50m			1		43.5
																				44.0 44.5 45.0 45.5
				TCR	SCR	RQD	FI	L										1		
			Strikes	_			ema													
Casing To (m)	Details	s mm)	Water From (m)	Add		A N N	eck t Il ele Iarin Io SP ompo	o bed vation e Scot I com osite :	f = 12. ns and tland : nplete sampl	.40m I reduced Sampling I	levels give ocation (: m due to blogical te	sting	Datum	:3.40m						
37.50 43.50	177	7				_	<u> </u>			F1 1	-	-	in December							
+3.30	130	~						Barı	rel	Flush			ion Reason				Last U	-		Į
							S	K6L		Polyr	mer	Terminate	d at scheduled depth				27/03	3/2024	A	맔

	C	CAUSEW	AY CH			Proje 23 -1	ct No. 1 73 9	Project Client: Client's		ts Limited	⁄ard			Вс	BH29	
Metho Sonic Dr		Plant Used Fraste CRS-XL140 Duo	Top (m) 0.00		(m) 80	21854	2.31 E	Final De		Start Date:		Driller:		S	neet 1 c	:50
Depth	Sample /			Casing	Water	65349 Level	4.45 N Depth	Elevatio	n: -6.41 mCD	End Date:		Logger:			DRAF	1
(m)	Tests	Field Records Marine Scotland Sample	<u> </u>	Casing Depth (m)	Water Depth (m)	mCD	(m)	Legend	Light brown fine to		ription			Water	Backfill	
0.00 0.00 0.00 - 0.80 0.80 - 2.30		RAD Composite ENV Composite														0.5
						-8.16	1.75	x × x	Brown silty fine to	medium SAND	with occasional	shell fragm	ients.			1.5 2.0 -
.30 - 3.80	SB8					-8.61	2.20		Very soft brown sar	ndy CLAY. Sand	is fine to mediu	m.				2.5
79	ES2 Marine Scotland Sample					-9.61	3.20		Very soft brown CL/	AY.						3.0 -
.80 - 5.30	5.30 SB9					-10.21	3.80		Brown fine to medi							3.5
	5.30 SB9					-11.01	4.60		Very soft brown slig	ahtly sandy CLA	V Sand is fine to	madium				4.5
.30 - 6.80	SB10					-11.71	5.30				r. Sand is fille to	o medium.				5.0
.59		Marine Scotland Sample	2			-12.21	5.80		Brown silty fine to r		CLAY. Sand is fir	ne to coarse	e. Gravel			5.5
									is angular to subanı	gular fine to m	edium of mixed	lithologies.				6.0
						-13.21	6.80			End of Bore	hole at 6.80m					7.0 -
																7.5
																8.0 -
																9.0 -
sugh =+ / \la		r Strikes	Rema			1 1 2										
uck at (m) C	asing to (m	n) Time (min) Rose to (m	Deck t All ele	o bed vatior	= 11. is and	60m reduced l	evels giv	e Causeway of the control of the con	Datum							
Casing D To (m) D 6.80	Details Diam (mm)	Water Added) From (m) To (m)	Comp	osite s	sampl	e for radio e for envir	logical te	esting								
			Core	Barı	el	Flush	Туре		ion Reason d at scheduled depth	1			Last Upd 11/03/2		d A	T C

	<u> </u>	CAUSE	WAY DTECH	7		Project 23-1		Project Client: Client's		ts Limited	Yard			В	orehole BH30	
Meti Sonic D	Drilling	Plant Used Fraste CRS-XL1 Duo	.40 0.00		90	Coord 21857		Final De		Start Date:	07/03/2024	Driller:	AM/KW		heet 1 o Scale: 1:	
Rotary	Coring	Fraste CRS-XL1 Duo	140 33.90	37.	20	65338	2.49 N	Elevatio	n: -4.28 mCD	End Date:	08/03/2024	Logger:	LW/OG		DRAF	Γ
Depth (m)	Sample / Tests	Field Rec	cords	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfill	
0.00 0.00 0.00 0.00 - 0.90 0.90 - 2.40	ES1 ES4 ES5 B6								Medium dense to d	lense reddish l	brown fine to me	edium SAN	D.			1.0 -
2.40 2.40 - 3.90 2.40 - 2.85	SPT (S) N=47 (7,8/8,10,12,17) Hammer SN = 1398 ES2 D32															2.0
3.86 3.90 3.90 - 4.65 3.90 - 4.35	D32 65 B9 35 SPT (S) N=16 (5,4/4,4,4,4) Hammer SN = 1398								3.70-3.75m: Bed of light i Sand is fine to coarse.	red sandy angular fi	ne to coarse GRAVEL	of various litho	logies.			4.0
4.65 - 5.30	B10	1398				-8.93	4.65		Very soft brown sar	ndy CLAY. Sand	l is fine to mediu	m.				5.0
5.30 - 6.40 5.40 5.40 - 5.85	D33	N=18 (3,3/4,4,4,6) 1398) Hammer SN	5.40	0.00	-9.58	5.30		Medium dense bro Gravel is subangula			to mediun	n SAND.			5.5
5.40 - 7.65	B12					-10.68	6.40		Stiff reddish brown	very sandy CL	AY. Sand is fine t	o medium.				6.5
6.90 6.90 - 7.35	D34 SPT (S)	N=30 (4,6/7,8,7,8) 1398) Hammer SN	6.90	0.00				6.70-6.80m: Shell fragme	ents						7.0
7.65 - 8.70 7.72	B13 ES3					-11.93	7.65	× × × × × × × × × × × × × × × × × × ×	Medium dense bro	wn silty fine to	o medium SAND.					7.5 8.0
3.40 3.40 - 8.85 3.70 - 9.90		N=13 (2,5/4,4,3,2) 1398) Hammer SN	8.40	0.00	-12.98	8.70	X X X X X X X X X X X X X X X X X X X	Stiff to very stiff bro cobble content. Sar coarse of various lit lithologies.	nd is fine to co	arse. Gravel is su	ıbangular f	ine to			9.0
	Mate	r Strikes	Pon	narks						-						
ruck at (m)) Time (min) Rose	to (m) Ove Decl All e	rwater b k to bed elevation ine Scot	= 9.70 s and land S	0m reduced I	evels give	Causeway en in Chart 3 samples t	Datum							
	Details Diam (mm 177 150	Water Adde) From (m) To	ed Com	nposite s	ample	e for envir	onmenta	l testing							. 1	
37.20	Core Barr					Flush Polyn			tion Reason d at scheduled depth	1			11/03/			귀

		CAUSEW	AY ECH			Project 23-1		Project Client: Client's		ts Limited	Yard			В	orehole BH30	
Metho Sonic Dril Rotary Co	ling	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140	Top (m) 0.00 33.90	Base (1 33.90)	218573 653383	3.89 E	Final De	pth: 37.20 m	Start Date:	07/03/2024	Driller:			heet 2 o Scale: 1:	50
Depth	Sample /	Duo Sield Berende		Casing Wa	ter	Level	Depth					- 00 -	,			· T
(m)	Tests	Field Records		Casing Wa Depth De (m) (r	pth n)	mCD	(m)	Legend		Des	cription			Water	Backfill	
9.90 - 10.35 90 - 11.40	UT49 B15	Ublow=197 100% Reco	very	9.90 0.	00											9.5
		50 (15,9/50 for 282mm Hammer SN = 1398)	11.4 0.	000											11.0 - 11.5
2.90 - 14.40 2.90 - 13.21	SPT (S)	50 (7,16/50 for 162mm Hammer SN = 1398)	12.9 0.	00											12.5 13.0
		50 (9,11/50 for 225mm Hammer SN = 1398)	14.4 0.	00											14.0 14.5 15.0
5.90 5.90 - 16.35		N=36 (3,4/6,9,10,11) H SN = 1398	ammer	15.9 0.	00											15.5 16.0
7.40 7.40 - 17.85	D39 SPT (S)	N=33 (3,5/7,8,8,10) Ha = 1398	mmer SN	17.4 0.	00											17.0 17.5
18.00 - 18.15 18.15 - 19.80						-22.28 -22.43	18.00 18.15		Firm brown slightly Very stiff brown slig coarse. Gravel is an	shtly sandy slig	ghtly gravelly CLA		ne to			18.0
		Strikes	Rema	rks				1								
Casing De	etails am (mm	Time (min) Rose to (n	Deck t All ele Marin Comp	o bed = vations a e Scotlar osite san	9.70r and re and Sai aple f	m educed l mpling lo for radio	evels give		Datum							
33.90 37.20	177 150			Barrel		Flush 1			ion Reason	1			11/03/2		d A	다 다

		CAUSEW	AY ECH			Projection 23-1	ct No. 1 739	Project Client: Client's		ts Limited	⁄ard			Во	orehole BH30	
Metho Sonic Dri Rotary Co	lling	Plant Used Fraste CRS-XL140 Duo Fraste CRS-XL140	Top (m) 0.00 33.90	33. 37.	90	21857	3.89 E 2.49 N	Final De	•	Start Date:			AM/KW	9	heet 3 o Scale: 1:	50
Depth	Sample /	Duo Field Records		Casing Depth (m)	Water Depth (m)	Level	Depth	Legend	1.20 11100		ription	Loggeri		Water	Backfill	<u>'</u>
(m)	Tests	rielu necolus		(m)	(m)	mCD	(m)	Legenu		Desc	Приоп			Wa	Dackilli	_
18.90 18.90 - 19.35	D40 SPT (S)	N=42 (5,5/8,11,11,12) SN = 1398	Hammer	18.9	0.00											19.0 — - - - - 19.5 —
19.80 - 21.40 20.40	B21			20.4	0.00	-24.08	19.80		Very stiff brown slig content. Sand is fine of various lithologie 19.80-19.82m: Thin bed of	e to medium. G	Gravel is subang	ular fine to	coarse			20.0 —
		N=41 (3,6/9,12,8,12) H SN = 1398	ammer	20.4	0.00											20.5 —
21.40 - 22.30	B22					-25.68	21.40		Very stiff brown slig silty fine sand. Sand		•	t pockets o	f clayey			21.5
21.90 21.90 - 22.35	D42 SPT (S)	N=34 (4,4/6,7,9,12) Ha = 1398	mmer SN	21.9	0.00											22.0 —
22.30 - 24.60	B23	1000				-26.58	22.30	× × × × × × × × × × × ×	Medium dense brov of sandy clay.	wn slightly silty	fine SAND with	n occasiona	al pockets			22.5 — - - - -
23.40 23.40 - 23.85	D43 SPT (S)	N=28 (3,4/5,6,6,11) Ha = 1398	mmer SN	23.4	0.00											23.5 -
24.60 - 24.90	B24					-28.88	24.60	× × × × × ×	24.40-24.50m: Very thin b		•		ım red			24.5 -
24.90 24.90 - 26.40 24.90 - 25.35		N=41 (3,3/5,8,12,16) H SN = 1398	24.9	0.00	-29.18	24.90		sand. Dense brown slightl	ly silty fine SAN	ID.					25.0 — 25.5 = 25.5 =	
26.40 - 27.10 26.40 - 28.20							26.40		Stiff to very stiff bro	own slightly san	idy CLAY. Sand i	s fine to m	edium.			26.5 -
																27.5 –
27.90				27.9	0.00											
truck at (m) Ca		r Strikes n) Time (min) Rose to (r	Rema		oreh	ole drilled	from the	Causeway	Giant 1							
., ,, ,,	Deck to bed = All elevations Marine Scotle						evels give	en in Chart	Datum							
Casing Details Water Added To (m) Diam (mm) From (m) To (m) 33.90 177						e for radio	logical te	esting								
33.90 177 37.20 150 Core Barrel						Flush	Туре	Termina	tion Reason				Last Up	date	d	J
	SK6L							Terminate	ed at scheduled depth	1			11/03/	2024	A	GS

		CAUS	SE GEG	W					Project 23-1		Project Client: Client's		ts Limited	Yard			В	BH30	
Meth Sonic Dr		Plant Fraste CR			Top		Base 33.9		Coord	inates	Final De	epth: 37.20 m	Start Date:	07/03/2024	Driller:	AM/KW		heet 4 c Scale: 1:	
Rotary C		Du Fraste CR Du	S-XL	140	33.	.90	37.		21857 65338		Elevatio	on: -4.28 mCD	End Date:	08/03/2024	Logger	: LW/OG		DRAF	
Depth (m)	Sample Tests	/ Fi	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
27.90 - 28.28 28.20 - 29.80		50 (5,6/50 fc SN = 1398	or 230	Omm)	Hamı	mer			-32.48	28.20	×	Very stiff brown cla	yey SILT with o	occasional (100-	180mm) c	lay lenses.	-		28.0 —
29.40 29.40 - 29.74 29.80 - 30.90	D47 60 B29								-34.08	29.80	X	Very dense brown g subangular to subro					-		29.5 —
30.90 30.90 - 32.60 30.90 - 31.00	60 B29 SPT (S) 50 (25 for 100mm/50 for 70mm) Hammer SN = 1398 D48 SPT (S) 50 (25 for 65mm/50 for 70mm) Hammer SN = 1398								-35.18	30.90		Very stiff reddish br medium cobble con to subrounded fine subrounded of sand	ntent. Sand is f to coarse vari	ine to coarse. G	ravel is sul	bangular	-		31.0 — 31.5 — 32.0 — -
32.40 32.40 - 32.53 32.60 - 33.90	3 SPT (S)				r 70m		32.4	0.00	-36.88	32.60		Weathered SANDST slightly clayey angu cobble content. (Recovered disturbe	lar to subnagu	lar fine to coars		,	-		32.5 — 33.0 — 33.5 — 33.5 —
34.20		Hammer SN = 1398							-38.18	33.90		Medium strong red with angular to sub lithologies. Partially No discernible disce	angular fine to weathered w	o coarse gravel s eathered: slight	ized clasts	of various	_		34.0 —
			100	65	45	6			-39.28	- 35.00		Medium strong red SANDSTONE. Partia closer fracture spac Discontinuities: 1. 20-40 degree joir	dish brown co Ily weathered ling, with rare	arse grained we : slightly reduce brown discolou	d strength ration.	, slightly	V		35.0 —
35.70									-39.98	35.70		rough, with faint br 2. 80-85 degree joir staining on joint sur Medium strong me cemented BRECCIA sized clasts of vario	own staining on that 35.05-35. rface. dium bedded with angular	on joint surfaces 30m, undulating reddish brown a to subangular fil	g, rough, v and light gr ne to coars	vith brown rey well se gravel			35.5 — — — 36.0 — —
									-40.98	36.70		reduced strength. No discernible disce Medium strong red	ontinuity sets.	·		/			36.5 — — — — 37.0 —
			1.								•							•	
Casing D	Casing Details Water Added To (m) Diam (mm) From (m) To (m) Deck to bed = All elevations Marine Scotla Composite sa Composite sa							= 9.7 s and land s ampl	Om reduced I Sampling I e for radio	evels give ocation (a logical te	3 samples testing	Datum							
33.90 37.20	33.90 177								Flush Polyn			tion Reason ed at scheduled depth	ı			Last Up			GS

	C	AUS	E	W	A	Y H				ect No. 1739	Project Client: Client's		rts Limited	Yard			В	orehole	
Meth Sonic Dr	rilling	Plant L Fraste CRS Duc	S-XL1	L40		(m) 00	Base 33	e (m) .90		dinates 73.89 E	Final De	epth: 37.20 m	Start Date:	07/03/2024	Driller:	AM/KW		heet 5 c Scale: 1:	
Rotary C	Coring	Fraste CRS Due		L40	33	.90		.20		82.49 N	Elevatio	-4.28 mCD	End Date:	08/03/2024	Logger:	LW/OG		DRAF	Т
Depth (m) 7.20	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m) - 37.20	Legend	pebbly SANDSTONI		cription			Water	Backfill	
ruck at (m) C	Casing to (m) Details Diam (mm)	Strikes Time (min) Water From (m)	Rose					ellin _i To (g Detail		Deck to be All elevati Marine So Composit	with faint brown di Discontinuities: 1. 25-30 degree joi brown staining on j	m the Causew els given in Cha	planar, rough, wi					37.5 38.0 - 38.5 39.0 - 39.5 40.0 - 41.5 42.0 - 42.5 43.0 - 44.5 45.0 - 45.5 46.0 -
33.90 37.20	177 150				-	Core	Barr	rel	Flush	Туре	Termina	tion Reason				Last Up	date	ed 🔳	p 1
							K6L			mer		d at scheduled depth	า			11/03/			Ę

			EOTE	ЕСН			23-1	ct No. 1 739	Project Client: Client's		ts Limited	Yard			G	orehole BS2-B SPT-1	3H- 1
Sonic D Rotary (rilling	Plant Us Fraste CRS-2 Duo Fraste CRS-2	XL140	0.00 21.90	21. 41.	90	21838	7.30 E 4.10 N	Final Dep			04/04/2024		AM/KW		Sheet 1 c Scale: 1: DRAF	:50
Depth	Sample /	Duo	d Records		Casing Depth (m)	Water Depth (m)	Level	Depth	Legend		Doc	cription			Water	Backfill	T
(m) 0.90 0.90		Marine Scotlar	nd Sampl	e	0.90		mCD	(m)		Medium dense grey subangular to subro	yish brown gra	velly fine to coa			W.		0.5
0.90 0.90 0.90 - 2.40 0.90 - 1.35	ES5 B6 SPT (S)	RAD Composit ENV Composit N=11 (2,2/3,3, 1398	nmer SN =													2.0	
2.40 2.40 - 3.90 2.40 - 2.85	D24 B7 SPT (S)	N=10 (2,1/2,2, 1398	nmer SN =	2.40	0.00											3.0	
3.90 3.90 - 4.40 3.90 - 4.35 4.40 - 5.40	D25 B8 SPT (S)	N=18 (2,3/4,4, 1398	nmer SN =	3.90	0.00	-4.29 -4.79	3.90		Medium dense grey SAND with frequen subrounded fine of Medium dense grey	t shell fragme various litholo	nts. Gravel is sub ogies.	angular to				4.0	
5.40 5.40 - 6.90 5.40 - 5.85 5.80		N=20 (2,3/4,5, 1398 Marine Scotlar			5.40	0.00											6.0
5.90 5.90 - 8.40 5.90 - 7.35						0.00											7.0
3.40 3.40 - 9.70 3.40 - 8.85	9 - 9.70 B12 SPT (S) N=12 (2,3/3,2,3,4) Hammer SI 1398								X X X X X X X X X X X X X X X X X X X								9.0
				Rema												1	_
To (m)	Casing Details Water Added To (m) Diam (mm) From (m) To (m) Deck to b All elevati Marine Sc Composit Composit						Om reduced Sampling I e for radic	levels give ocation (i		Datum							
21.90 41.90	177 150			Core	Barre	el	Flush	Туре	Terminati	on Reason				Last Up	date	ed I	_
	Core Barrel SK6L						Polyr			d on Client's instructi	ion			10/04/			ų

	<u> </u>	CAUS	EW	ECH			Projec 23-1	.739	Project Client: Client's		ts Limited	Yard			G	orehole iBS2-B SPT-1	H-
Metho Sonic Dril Rotary Co	ling	Plant U Fraste CRS Duo Fraste CRS Duo	-XL140) -XL140	0.00 21.90	21. 41.	90	21838 65317	7.30 E	Final De			04/04/2024		AM/KW LW/OG		Scale: 1:	50
Depth (m)	Sample / Tests	Fie	ld Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend	1	Des	cription			Water	Backfill	
0.70 - 10.60 0.90 0.90 - 10.35	B13 D29 SPT (S)	N=0 (0,0/0,0,1 1398	0,0) Hamr	mer SN =	9.90		-10.09	9.70	× × × × × × × × × × × × × × × × × × ×	Very loose grey grashell fragments. Graof various lithologie	avel is subang es.	ular to subround	ed fine to	medium	1		9.5
1.40 - 11.85 1.40 - 12.90 1.60	UT45 B15	Ublow=4 100 Marine Scotla			11.4	0.00	10.55			Soft reddish brown fine sand. Sand is fi			ional pock	ets of			11.0 - 11.5
.2.90 2.90 - 14.40 2.90 - 13.35	D30 B16 SPT (S)	N=1 (1,1/0,0,1 1398	mer SN =	12.9	0.00	-13.29	12.90		Very loose brownis	h grey silty fin	e to medium SAP	ND.				12.5 13.0 -	
4.40 - 14.85 4.40 - 15.90	UT46 B17	Ublow=68 10	0% Recov	ery	14.4	0.00	-14.79	14.40		Medium dense bro	wnish grey ver	ry silty fine to me	edium SAN	D.			14.0 - 14.5 15.0 -
	0 - 17.40 B18 SPT (S) N=18 (3,3/4,4,5,5) Hammer SN = 1398 0 D32 D - 18.90 B19																15.5 16.0 - 16.5
.7.40 17.40 - 18.90 17.40 - 17.85							-17.79	17.40		Very soft reddish bi	rown slightly s	andy CLAY. Sand	is fine to c	oarse.			17.0 - 17.5 18.0 -
	\Ala±s	Ctribos		Do-	rks			-	P - 2 - 2 - 2 - 3 - 4								<u>L</u>
Casing De	sing to (m	Time (min) Water A From (m)		Deck t All ele Marin Comp	vater b o bed vation e Scotl osite s	= 8.1 s and land s ampl	0m reduced l	evels give ocation (a logical te		Datum							
21.90 41.90								Type ner		tion Reason d on Client's instructi	ion			Last Up			GS GS

(m) 18.90 18.90 - 20.40	d ling	Plant U	GEC	VV OT E	A	Y			23-1	720							_		
Sonic Drilli Rotary Cor Depth (m) 18.90 18.90 - 20.40	d ling	Plant U	GEC	OTE	ECI	Н				., 33	Client:	Peel Por	ts Limited				G	BS2-B	Н-
Sonic Drilli Rotary Cor Depth (m) 18.90 18.90 - 20.40	ling		Method Plant Used Top (m) Base								Client's	Rep: Enviroce	ntro					SPT-1	
Sonic Drilli Rotary Cor Depth (m) 18.90 18.90 - 20.40	ling									inates	Chefft	rep. Liviloce						heet 3 o	.f c
Depth (m) 18.90 18.90 - 20.40	ring	Duo								mates	Final De	pth: 41.90 m	Start Date:	04/04/2024	Driller:	AM/KW		Scale: 1:	
Depth (m) 18.90 18.90 - 20.40	ring			140	21	00	41	00	21838										
(m) 18.90 18.90 - 20.40		Duc		140	21.	.90			65317		Elevatio	n: -0.39 mCD	End Date:	08/04/2024	Logger:	LW/OG		DRAF	Γ
8.90 - 20.40	Sample / Tests	Fie	eld Red	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Desc	cription			Water	Backfill	
8.90 - 20.40	D33						18.9	0 00	-19.29	18.90									l
	B20			= \ .			10.5	0.00	25.25	_ 10.50		Very stiff reddish br coarse. Gravel is sub							19.0
8.90 - 19.35		N=46 (6,9/9,: SN = 1398	10,12	2,15) 1	Hamn	ner						lithologies.							
																			19.5
																			İ
																			20.0
0.40	D34						20.4	0.00											
	2-21.10 B21 1-20.85 SPT (S) N=50 (7,8/10,10,15,15) Hammer SN = 1398																		20.5
20.03																			
1.10 - 21.90									-21.49	21.10		Reddish brown BOL	JLDER of sand:	stone recovered	as angulai	coarse			21.0
											O O	gravel and angular of	cobbles.						21.5
											000								21.5
1.90 - 21.90							21.9	0.00			000								22.0
			0-1						-22.69	22.30		Very stiff brownish g coarse. Gravel is sub							22.5
2.60 2.60 - 22.92	SPT(S) 50	0 (7.8/50 for					22.6	0.00				lithologies.	bangulai to su	brounded fille to	J coarse or	various			
		Hammer																	23.0
	D35	10																	
			73	0	0														23.5
																			24.0
4.10 4.10 - 24.46	SPT(S) 50	0 (7,10/50					24.1	0.00											
	for 215n Hammer	nm) · SN = 1398																	24.5
	D36		80	0	0														
			80		U														25.0
5.60							25.6	0.00											25.5
5.60 - 25.96		0 (8,12/50																	
		r SN = 1398																	26.0
5.60	D37		83	0	0														
																			26.5
																			ı
7.10		o /o '-					27.1	0.00											27.0
	SPT(S) 50 for 215n	0 (8,15/50 nm)																	
	Hammer D38	SN = 1398	80	0	0														27.5
			TCR	SCR	RQD	FI													1
		Strikes			R	ema	rks				1							1	_
uck at (m) Casi	sing to (m)	Time (min)	Rose	to (n	D	eck to	o bed	= 8.1	0m		: Causeway								
					А	ll elev	/ation	s and	reduced I	evels give	en in Chart	Datum							
											3 samples t	aken)							
Casing Det	etails	Water	Add	ed					e for radio e for envir										
	am (mm) 177	From (m)	То	(m)															
41.90	150				-	Core	Barr	el	Flush	Гуре	Terminat	ion Reason				Last Up	date	ed 🔳	-
						S	K6L		Polyn		Terminate	d on Client's instructi	ion			10/04/			ਜ

									Proje	ect No.	Project	Name: Hunterst	ton Marine	Yard			В	orehole	e ID
		AUS	E	W	A	Y			23-	1739	Client:	Peel Por	ts Limited					BS2-B	
		——-G	iEC	OTE	ECI	Н					Client's	Rep: Enviroce	entre					SPT-1	1
Metho		Plant U			_		Base		Coor	dinates	Final Da	41.00	Chart Data	04/04/2024	Duillean	AM/KW	S	heet 4 o	of 5
Sonic Dr	illing	Fraste CRS		.40	0.	00	21	.90	2183	87.30 E	Final De	: ptn: 41.90 m	Start Date:	04/04/2024	Driller:	AIVI/KVV		Scale: 1:	.50
Rotary Co	oring	Fraste CRS Duc	S-XL1	.40	21	.90	41	.90		74.10 N	Elevatio	n: -0.39 mCD	End Date:	08/04/2024	Logger:	LW/OG		DRAF	Τ
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
																			28.0 -
																			28.5
3.60 3.60 - 28.98	SPT(S) 5	0 (7,10/50					28.6	0.00	-28.99	28.60		Very dense reddish							
	for 225r	nm)										(50 x 60mm) of clay medium of various		angular to subro	ounded fin	e to			29.0
3.60	D39	r SN = 1398																	
			93	0	0					[29.5
										ŧ									
																			30.0
.10 .10 - 30.52	- 30.52 SPT(S) 50 (7,9/50 for 265mm) Hammer							0.00		Ē									
										-									30.5
10																			
									21.40	- 110									31.0
									-31.49	31.10		Very dense brown r SAND. Gravel is ang							
.60							21.6	0.00					,	,					31.5
		0 (6,11/50					31.0	0.00											ı
	for 280r Hamme	nm) r SN = 1398								-									32.0
60	D41		73	0	0														
			/3																32.5
																			ı
.10							33 1	0.00											33.0
.10 - 33.49		0 (6,9/50 for					33.1	0.00											
	SN = 139) Hammer 98																	33.5
.10	D42		93	0	0														
																			34.0
										E									
.60						1	34.6	0.00											34.5
.60 - 34.97	SPT(S) 5 for 215r	0 (6,10/50									7								1
	Hamme	nm) r SN = 1398								-									35.0
.60	D43		80	0	0					Ė									1
																			35.5
																			1
.10							36.1	0.00		-									36.0
.10 - 36.48	SPT(S) 5 for 225r	0 (7,12/50 nm)								Ē									1
.10		r SN = 1398	33	13	0					-		36.50-37.40m: AZCL, Co.	re washed out durii	ng drilling					36.5
10	D44																		ĺ
																			37.0
	Mate	Strikes	TCR	SCR	RQD	FI	Chir	منالم	g Detail		Remarks								
ick at (m) C) Time (min)	Rose	to (n	n) F	rom		To (ne (hh:mm)		r borehole drilled froi	m the Causew	ay Giant 1					
											Deck to be	ed = 8.10m ons and reduced leve							
												otland Sampling loca e sample for radiologi		s taken)					
Casing D		Water										e sample for environn							
21.90	0iam (mm) 177	From (m)	То	(m)															
41.90	150					Core	Barı	rel	Flush	Туре	Terminat	tion Reason				Last Up	date	d	Ī
		1	I		- 1				Poly							1			

		AUS	E	OTE	ECI	Н			23-1	1739	Client: Client's Re		ts Limited ntre					BS2-B SPT-1	
Metho Sonic Dri		Plant U			-	(m) 00	Base 21.		Coord	inates	Final Depth	n: 41.90 m	Start Date:	04/04/2024	Driller:	AM/KW		heet 5 o	
Rotary Co		Due Fraste CRS Due	o S-XL1			.90	41.			7.30 E 4.10 N	Elevation:	-0.39 mCD	End Date:	08/04/2024	Logger:	LW/OG		Scale: 1:	
Depth (m)	Samples	/ Field Records		SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend	1	Des	cription		-	Water	Backfill	
7.60			100	87	48				-37.79	37.40	ce str Di: 1. un	edium strong thin mented SANDSTC rength, slightly clo scontinuities: 10-20 degree join dulating, rough, v 50-60 degree join ugh, with brown s 17.80-38.50m: incipient 6	ONE. Partially voser fracture s nts, widely spa with patchy br nts at 39.00-39	weathered: slight pacing, with brown aced (500/900/14 own staining on 0.25m and 40.00	tly reduced wn discolo 400), plana joint surfa	d uration. or and ces.			37.5 38.0 ·
9.10			100	100	77	2													39.5 40.0
0.60			72	60	37							:1.60-41.90m: AZCL, con	e scrubbed during d	<u>Tr</u> illing					41.0 41.5
1.90						AZCL			-42.29	41.90			End of Bore	hole at 41.90m					42.0
																			42.5
																			43.0
																			44.0
																			44.5
																			45.0
																			45.5
																			46.0
			TCR	SCR	RQD	FI				-									
		Strikes							Details		Remarks							ı	
Casing D) Time (min) Water			n) F	rom (m)	To (ı	n) Tim	e (hh:mm)	Deck to bed = All elevations Marine Scotla Composite sa	rehole drilled fror 8.10m and reduced level and Sampling locat mple for radiologi mple for environn	ls given in Cha tion (3 sample cal testing	rt Datum					
To (m) D	0iam (mm) 177			(m)				_			Somposite ad	pic for crivitofill							
41.90	150					Core	Barr	el	Flush	Туре	Termination	Reason				Last Up	date	d	Ī

		CAUSEW	/AY			Projection 23-1	ct No.	Project	t Name: Huntersi	ton Marine ts Limited	Yard				orehole	
		——GEOT	ECH					Client's	s Rep: Enviroce	entre					SPT-1	2
Meth Sonic D		Plant Used Fraste CRS-XL140 Duo	Top (m)	Base 31.		Coord 21846	inates 8.94 F	Final De	epth: 37.80 m	Start Date:	12/04/2024	Driller:	AM/MJ		heet 1 o Scale: 1:	
Rotary (Coring	Fraste CRS-XL140 Duo	31.00	37.	80	65333		Elevatio	on: -6.91 mCD	End Date:	14/04/2024	Logger:	LW/OG		DRAF	Т
Depth (m)	Sample / Tests	Field Records	3	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend			cription			Water	Backfill	
.00	ES1	Marine Scotland Samp	ole	1.00	0.00	-7.91	1.00	() () () () () () () () () () () () () (NO RECOVERY: Prol away during drilling	g.						0.5
00 00 00 - 1.50	ES4 ES5 B6	RAD Composite ENV Composite						x	Very loose grey silty	y fine to medic	ım SAND with ra	are shell fra	gments.			1.5
50 - 2.35		N=1 (0,1/0,0,1,0) Ham 1398	mer SN =			-8.41	1.50		Grey slightly clayey	fine to mediu	m SAND.					2.0 -
2.35 - 3.90 2.50 2.50 2.50 - 2.95	B8 D40 ES2 SPT (S)	Marine Scotland Samp N=3 (1,1/0,1,1,1) Ham 1398		2.50	0.00	-9.26	2.35	× × × × × × × × × × × × × × × × × × ×	Very soft brown silt	y CLAY.						2.5
.90 - 4.10 .00 .00 - 4.45 .10 - 5.40	B9 D41 SPT (S) B10	N=6 (1,1/2,2,1,1) Ham 1398	4.00	0.00	-10.81 -11.01	3.90 4.10	× × × × × × × × × × × × × × × × × × ×	Loose brown silty fi Soft brown very sar							4.0	
i.00	ES3	Marine Scotland Samp					X—————————————————————————————————————								5.0 -	
.40 - 5.50 .50 .50 - 5.90 .50 - 5.95 .90 - 7.00	B11 D42 B12 SPT (S)	N=19 (2,3/5,5,4,5) Har 1398	mmer SN =	5.50	0.00	-12.31 -12.41 -12.81	5.40 5.50 5.90		Brown slightly grave subrounded fine of Medium dense bro Gravel is subangula Very stiff brown sar	sandstone. wn slightly gra r to subround	velly silty fine to	coarse SAI	ND.			6.0 -
.00 .00 - 8.50 .00 - 7.38	D43 B14 SPT (S)	n)	7.00	0.00											7.0 -	
.50 .50 - 9.60 .50 - 8.86	D44 B15 SPT (S)	50 (25 for 140mm/50 215mm) Hammer SN =		8.50	0.00											9.0
		r Strikes	Rema	arks			<u> </u>	1	l						l	
Casing		Water Added From (m) To (m)	Deck All ele Marin Comp	to bed evations e Scotl osite s	= 14. s and and S ample	00m reduced l	evels giv ocation (blogical te		Datum							
31.00 37.80						Flush	Туре	Termina	tion Reason				Last Upo			
	SK6L							Terminate	ed at scheduled depth	1			15/04/2	2024	A	<u>G</u>

			ОТЕ	СН			Projec 23-1	.739	Project Client: Client's		ts Limited	Yard			G	orehole BS2-B SPT-1	BH-
Meth Sonic Di		Plant Use		Top (m) 0.00	Base 31.0		Coord	inates	Final De	pth: 37.80 m	Start Date:	12/04/2024	Driller:	AM/MJ		heet 2 o Scale: 1:	
Rotary C		Duo Fraste CRS-X Duo		31.00	37.8		21846 65333		Elevatio	n: -6.91 mCD	End Date:	14/04/2024	Logger:	LW/OG		DRAF	
Depth (m)	Sample / Tests	Field	Records		Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
9.60 - 9.75 9.75 - 11.50 10.00 10.00 - 10.3:	D45	50 (25 for 125m 200mm) Hamm			10.0	0.00	-16.51 -16.66	9.60 9.75		Brown fine to coars Very stiff brown slig coarse. Gravel is sul	ghtly gravelly v				-		9.5
11.50 - 12.9	5 B18																11.5 - 12.0 - 12.5 -
12.95 - 13.60 13.00 13.00 - 13.3: 13.00 - 13.3: 13.60 - 14.50	D46 5 UT57 0 SPT (S)	Ublow=100 75% 50 (25 for 105m 190mm) Hamm	nm/50 fc	or .	13.0 (-19.86 -20.51	13.60		Very dense brown s subangular to subro Very stiff brown slig coarse. Gravel is an lithologies.	ounded fine to	medium of vari	ous litholo	gies. fine to	-		13.0
14.50 14.50 - 15.9(14.50 - 14.8)		50 (25 for 135m 180mm) Hamm			14.5 (0.00	-21.41	14.50		Very stiff light brow coarse. Gravel is sul							14.5 - 15.0 —
15.90 - 16.00 16.00 16.00 - 17.50 16.00 - 16.30	D48 0 B23)	16.0	0.00	-22.81 -22.91	15.90 - 16.00		Very stiff brown slig Gravel is angular to lithologies. Very stiff brown slig Gravel is subangula lithologies. 16.30-16.50m: Pocket of	subrounded f ghtly gravelly s r to subround	andy CLAY. Sand ed fine to coarse	of various	coarse.	- /		15.5 - 16.0 — 16.5 -		
17.50 17.50 - 17.5! 17.50 - 18.4! 17.50 - 17.6	0 B24	Ublow=100 0% 50 (25 for 60mr Hammer SN = 1	•	17.5 (17.5 (17.5 - 18.0 —	
18.40 - 19.00	0 B25						-25.31	18.40		Very stiff brown CLA	AY.						18.5 -
	\A/-+-	y Strikes		Da	rks												<u></u>
Casing [Casing to (n	water Ac		Deck t All ele Marin Comp	vater bo o bed s vations e Scotl osite sa	= 14.0 s and and S ample	00m reduced l	evels give ocation (3 logical te		Datum							
31.00 177 37.80 150 Core Ba							Flush	Туре		ion Reason d at scheduled depth	1			Last Up 15/04/			u GS

26						Proje	ct No.	Project	Name: Hunters	ton Marine	Yard			В	orehole	· ID
	A)	CAUSEV	VAY	•		23-1	L 73 9	Client:	Peel Por	ts Limited				6	BS2-B	H-
	9 -	——GEO	TECH					Client's	s Rep: Enviroce	entre					SPT-1	2
Meth	nod	Plant Used	Top (m	n) Bas	e (m)	Coord	inates		•						Sheet 3 o	 of 5
Sonic D		Fraste CRS-XL14		_	1.00			Final De	epth: 37.80 m	Start Date:	12/04/2024	Driller:	AM/MJ		Scale: 1:	
Rotary C	Coring	Duo Fraste CRS-XL14	.0 31.00	37	7.80		8.94 E 8.77 N	Elevatio	6 01 mCD	End Date:	14/04/2024	Loggori	1111/00		DDAE	т
		Duo						Elevatio	on: -6.91 MCD	end Date:	14/04/2024	Logger	LW/OG	Ļ	DRAF	1
Depth (m)	Sample / Tests	Field Reco	ords	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
9.00 9.00 - 19.4	D50 5 B26			19.0	0.00	-25.91	19.00	×	Very dense brown s							19.0 -
9.00 - 19.1		50 (25 for 65mm/50		1)				× × ×	subangular to subro	ounded fine to	medium of vari	ous litholo	gies.			
9.45 - 19.6		Hammer SN = 1398				-26.36 -26.51	19.45 19.60		Very stiff brown sar Brown slightly grave				hangular			19.5
9.60 - 20.0								×	to subrounded fine				Dangalai			
0.00 - 21.0	0 B29					-26.91	20.00		Very stiff brown slig							20.0
									coarse. Gravel is sul lithologies.	bangular to su	brounded fine t	o meaium	of various			
0.50 0.50 - 20.7	D51 SPT (S)	50 (25 for 85mm/50		0.00											20.5	
. 00 . 22 -	0 535	Hammer SN = 1398					Ē									
1.00 - 22.3	D B30															21.0
							Ē									21.5
2.00	DES			22.	00.00		E									22.5
2.00 2.00 - 22.3	D52 O SPT (S)	50 (25 for 95mm/50	0 for 210mn		0.00											22.0
.30 - 23.5	0 B31	Hammer SN = 1398				-29.21	22.30		Very stiff brown slig							
	552						Ē		fine to medium san subrounded fine to			el is suban	gular to			22.5
																23.0
2.50	DES			22.1	0.00	20.41	22.50									22.5
3.50 3.50 - 24.2				23.5	0.00	-30.41	23.50		Very dense brown o	clayey fine SAN	ID.					23.5
3.50 - 23.8	6 SPT (S)	50 (25 for 125mm/5 235mm) Hammer S														24.0
4.20 - 25.0	0 B33					-31.11	24.20									24.0
								× ×	Brown silty fine SAI	ND.						24.5
								× × .								24.3
5.00	D54			25 (0.00	-31.91	25.00	××								25.0
5.00 - 25.9	0 B34		_	25.0	0.00	-31.91	25.00		Very dense brown s subangular to subro							25.0
5.00 - 25.3	3 SPT (S)	50 (25 for 105mm/5 225mm) Hammer S					Ē						8			25.5
							ŧ									23.3
5.90 - 27.0	0 B35					-32.81	25.90	x ^ ×	Very dense brown s	silty fine SAND				-		26.0
							Ė	x × ,×	, 22 STOWN 3	., 3, 1110						
6.50	D55			26 '	0.00		<u> </u>	××××								26.5
		50 (25 for 115mm/5			3.30		E	× × ×								1
7.00 - 28.0	0 B36	230mm) Hammer S				E	× × ×								27.0	
20.0						E	× × ×									
						Ė	× × ×								27.5	
							<u> </u>	× , ×								
								x: ^- :×.								
		er Strikes		narks												
uck at (m)	casing to (r	m) Time (min) Rose t		rwater < to be			trom the	Causeway	Giant 1							
			All e	levatio	ns and	l reduced	levels give	en in Chart	Datum							
	Marine Scotl Composite s								taken)							
Casing Details Water Added Composite sam To (m) Diam (mm) From (m) To (m) 31.00 177 To (m) To (m) 37.80 150 Core Barrel																
								-								
					rel	Flush	Type	Terminat	tion Reason				Last Up	date	ed 💻	—
	Core Barrer					. 14311	. , , , ,									ᆲ
	SK6L							ierminate	ed at scheduled depth	ı			15/04/	2024	· A	卫

									Proje	ct No.	Project	: Name: Hunterst	ton Marine	Yard			В	orehole	: ID
	C	AUS	E	W	A	Y			23-1	739	Client:	Peel Por	ts Limited				G	BS2-B	H-
	/ -	G	EC	TC	ECH	Н					Client's							SPT-1	
Method	d	Plant U	Jsed		Top	(m)	Base	(m)	Coord	inates	Chefft	ep. Liiviiote	.nu c		$\overline{}$		c	heet 4 o	ıf 5
Sonic Drill		Fraste CRS			0.0		31.		COOIG	αις3	Final De	epth: 37.80 m	Start Date:	12/04/2024	Driller:	AM/MJ		neet 4 o Scale: 1:	
Data Ca		Duc		140	24		27	00	21846						+				
Rotary Cor	ııng	Fraste CRS Duc		L4U	31.	.00	37.		65333	8.77 N	Elevatio	n: -6.91 mCD	End Date:	14/04/2024	Logger:	LW/OG		DRAF	Γ
(m)	Sample / Tests	Fie	eld Re	cords			Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
	D56 B37						28.0	0.00	-34.91	28.00	××	Stiff to very stiff bro							28.0 -
8.00 - 28.33	SPT (S)	50 (25 for 10 228mm) Han				.						coarse. Gravel is sul lithologies.	bangular to su	brounded fine to) coarse of	various			
		220111111111111111111111111111111111111	iiiiici	314 -	1330														28.5
														_					
												28.90-29.00m: Sandstone	e cobble	-					29.0
	B38	F0 /25 5 - 7	1-	.0.5	F		29.5	0.00		-									29.5
9.50 - 29.51	24L (S)	50 (25 for 5m Hammer SN :			5mm))													
																			30.0
																			30.5
0.65 - 31.10	B39								-37.56	30.65		Very stiff brown slig Gravel is subangula							
												lithologies predomi			Ju110U3				31.0
									-38.01	31.10		Medium strong red	dish brown an	d light grey well	cemented	BRECCIA			
			100	65	65							with angular to sub lithologies. Partially				of various			21 5
											 			, reduced s					31.5
1.80				\vdash	\Box						 	(Detailed description	n to follow)						
																			32.0
										Ė									
			100	100	100														32.5
																			33.0 -
3.30				<u> </u>	\sqcup														
																			33.5
			100	100	100					-									34.0
			100	100	100														
																			34.5
4.00																			
4.80																			35.0
																			U.C.
											[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
			100	100	100														35.5
											[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
										-	[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								36.0
6.30				\vdash	\vdash						ľýýý/								
											[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								36.5
			100	95	95						[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
										_									37.0
			TCR	SCR	RQD	FI				<u> </u>	VVVV								
		Strikes	-			ema													
ruck at (m) Cas	sing to (m) Time (min)	Rose	<u>to (n</u>	De	eck to	bed	= 14.	00m		Causeway en in Chart								
											3 samples t								
					Co	ompo	site s	ampl	e for radio	logical te	sting	unciij							
Casing De		Water			Co				e for envir										
T / \ \ \	am (mm)	From (m)	To	o (m)	_														
To (m) Dia	177		1		- 1														
	177 150				-	Core	Barr	el	Flush	Гуре	Terminat	tion Reason				Last Up	date	ed 📕	Ţ1

			GEC	OTE	C	Н	L	, ,	23-	ect No.	Client's		ts Limited				G	orehole BS2-B SPT-12	H- 2
Metho Sonic Dr		Plant U				(m) 00	Base 31.	e (m) .00	Cooi	dinates	Final De	pth: 37.80 m	Start Date:	12/04/2024	Driller:	AM/MJ		heet 5 of Scale: 1:5	
Rotary C	oring	Duo Fraste CRS Duo	S-XL1	L40	31	.00	37.	.80		68.94 E 38.77 N	Elevatio	n: -6.91 mCD	End Date:	14/04/2024	Logger:	LW/OG		DRAF1	
Depth (m)	Samples	/ Field Records	TCR	SCR	RQD	FI	Casing Depth (m)	Water Depth (m)	Level mCD	Depth (m)	Legend		Des	cription			Water	Backfill	
80									-44.71	37.80			End of Bore	hole at 37.80m					37.5 38.0 38.5
																	39.0 39.5		
																			40.0 40.5
																			41.0
																			42.0
																			42.5
																			43.0
																			43.5
																			44.0
																			44.5
																			45.5
																			46.0
	Water	Strikes	TCR	SCR	RQD	FI	Chis	ellina	g Detail	s	Remarks								_
Casing D	easing to (m Details Diam (mm)) Time (min) Water	Add		n) F	rom (To (me (hh:mm)	Overwater Deck to be All elevation Marine Sco Composite	borehole drilled from d = 14.00m ons and reduced leven otland Sampling loca e sample for radiologies e sample for environr	els given in Cha tion (3 sample ical testing	rt Datum					
31.00 37.80	177 150						Barr K6L	rel	Flush	1 Туре		ion Reason d at scheduled depth				Last Up 15/04/			

C ANALYTICAL RESULTS

Sampling Results Incorporated with BPEO Assessment (mg/kg)

	AL1	AL2	BAC	ERL	PEL	BH01 (ES1) 0.40m	BH01 (ES2) 4.00m	BH01 (ES3) 7.90m	BH02 (ES1) 0.40m	BH02 (ES2) 5.40m	BH02 (ES3) 10.80m	BH03 (ES1) 0.50m	BH03 (ES2) 1.90m	BH03 (ES3) 3.70m	BH04 (ES1) 0.00m	BH04 (ES2) 6.10m	BH04 (ES3) 12.20m	BH05 (ES1) 0.00m	BH05 (ES2) 6.00m	BH05 (ES3) 12.00m	BH06 (ES1) 2.30m	BH06 (ES2) 5.94m	BH06 (ES3) 11.87m	BH10 (ES1) 0.00m	BH10 (ES2) 1.80m) BH10 (i
Source			CSEMP	CSEMP	Canada																					
Arsenic	20	70	25		41.6	2.6	3.2	2.1	2	3.7	2	4.2	7.2	8.2	1.2	1.2	2.9	1.4	2.7	3.7	2	4.9	1.2	3.9	4.9	3.6
Cadmium	0.4	4	0.31	1.2	4.2	0.04	0.05	0.04	0.04	0.04	0.04	0.12	0.13	0.12	0.04	0.06	0.05	0.07	80.0	0.12	0.06	0.15	0.05	0.13	0.13	0.07
Chromium	50	370		81	160	7.8	13.4	16.1	9.1	12.1	5.2	16.8	17.2	20.2	6.3	7.4	12.7	8.8	10.9	15.6	7.1	20.7	4.9	21.3	25.1	13.9
Copper	30	300			108	6.2	16.4	14.8	5.1	6.3	15.1	8.2	8.4	9.9	2.6	7.8	10.6	3.8	5.3	15.5	5.5	19.8	4.2	6.4	8.7	5.5
Mercury	0.25	1.5	0.07	0.15	0.7	0.06	0.03	0.03	0.02	0.02	0.03	0.03	0.01	0.01	0.06	0.06	0.04	0.01	0.06	0.01	0.02	0.01	0.01	0.03	0.04	0.01
Nickel	30	150	36	-		7.5	17.5	15.7	9.3	12.6	8.6	16.9	18.4	21.5	5.2	10.6	14.6	9.5	9.3	19.5	7.6	25.5	6	20.6	27.8	13.8
.ead	50	400	38	47	112	4.7	6.3	5.5	2.4	4.7	7.1	7.1	6.1	7.2	2.7	2.7	4.5	2.7	2.9	6.5	3.2	7.2	1.9	11.2	13.6	5.2
Zinc	130	600	122	150	271	24.6	42.3	34	16.4	24.2	20.4	32.4	33	40.3	15.2	30.4	56.9	27.7	18.4	44.4	18.3	55.8	14.9	45.1	77	27.5
Napthalene	0.1		0.08	0.16	0.391	0.00229	0.001	0.00118	0.00193	0.00305	0.001	0.0022	0.00565	0.00552	0.00188	0.001	0.001	0.001	0.00278	0.00174	0.005	0.001	0.001	0.0156	0.0291	0.0057
Acenaphthylene	0.1				0.128	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.005	0.005	0.0017
Acenaphthene	0.1				0.0889	0.001	0.001	0.001	0.00129	0.001	0.001	0.001	0.00174	0.00232	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.005	0.0159	0.002
luorene	0.1				0.144	0.001	0.001	0.001	0.00131	0.00261	0.001	0.00132	0.00448	0.00485	0.001	0.001	0.001	0.001	0.00215	0.00156	0.005	0.001	0.001	0.00876	0.0162	0.004
Phenanthrene	0.1		0.032	0.24	0.544	0.00366	0.00144	0.00252	0.0089	0.011	0.001	0.03	0.0172	0.00000127	0.0061	0.001	0.00193	1.51	1.22	0.643	0.667	0.483	0.798	0.0476	0.118	0.025
Anthracene	0.1		0.05	0.085	0.245	0.001	0.001	0.001	0.00149	0.00143	0.001	0.00191	0.00199	0.00428	0.00153	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.0167	0.0367	0.007
luoranthene	0.1		0.039	0.6	1.494	0.00186	0.001	0.00224	0.00444	0.00439	0.001	0.015	0.00631	0.0204	0.00837	0.00128	0.0023	0.00604	0.00251	0.00369	0.019	0.001	0.00116	0.0678	0.249	0.040
Pyrene	0.1		0.024	0.665	1.398	0.00205	0.001	0.00184	0.00593	0.00623	0.001	0.0164	0.00954	0.0242	0.00824	0.00135	0.0027	0.0057	0.00375	0.0037	0.0196	0.001	0.00188	0.0759		0.045
Benzo(a)anthracene	0.1		0.016	0.261	0.693	0.001	0.001	0.001	0.00292	0.00318	0.001	0.009	0.00199	0.00428	0.00462	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.0167		0.0076
Chrysene	0.1		0.02	0.384	0.846	0.00139	0.001	0.00165	0.00366	0.00498	0.001	0.00905	0.00747	0.0161	0.00552	0.001	0.00169	0.00399	0.00314	0.00324	0.0101	0.001	0.00145	0.0398	0.149	0.022
Benzo(b)fluoranthene	0.1					0.001	0.001	0.0023	0.00282	0.005	0.001	0.00876	0.00725	0.0168	0.00472	0.001	0.00199	0.00356	0.0036	0.00473	0.00757	0.001	0.00202	0.033	0.0902	0.020
Benzo(k)fluoranthene	0.1					0.001	0.001	0.0011	0.00238	0.00218	0.001	0.00793	0.00383	0.0115	0.00503	0.001	0.001	0.00417	0.0014	0.00162	0.00843	0.001	0.001	0.0442	0.114	0.022
Benzo(a)pyrene	0.1		0.03	0.384	0.763	0.001	0.001	0.001	0.00329	0.00476	0.001	0.0105	0.00675	0.0169	0.0055	0.001	0.001	0.00462	0.00279	0.00237	0.0101	0.001	0.001	0.0391	0.117	0.026
ndeno(1,2,3cd)pyrene	0.1		0.103	0.24		0.001	0.001	0.001	0.00158	0.0023	0.001	0.00596	0.00412	0.00891	0.00293	0.001	0.001	0.00265	0.00155	0.00172	0.00505	0.001	0.001	0.0229	0.057	0.014
Benzo(ghi)perylene	0.1		0.08	0.085		0.00123	0.0016	0.0024	0.00487	0.00929	0.001	0.00846	0.0158	0.022	0.00373	0.001	0.00277	0.00327	0.0066	0.00635	0.00748	0.001	0.00309	0.0301	0.071	0.022
Dibenzo(a,h)anthracene	0.01				0.135	0.001	0.001	0.001	0.001	0.001	0.001	0.00134	0.00122	0.00287	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.0111	0.0029
TPH .	100					5.97	1.91	1.06	5.24	7.26	0.452	7.37	7.68	23.2	3.23	2.67	2.43	12.5	2.82	23.4	80.2	3.31	1.75	32.6	71.6	22
PCBs	0.02	0.18			0.189	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00527	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00316	0.0005
rbt	0.1	0.5				0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.005	0.005	0.001

Arthrosere 0.1 0.06 0.08 0.36 0.064 0.001 0.001 0.002 0.0014 0.001 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0014 0.0012 0.0014 0.001		AL1	AL2	BAC	ERL	PEL	BH12 (ES1) 0.00m	BH12 (ES2) 1.50m	BH12 (ES3) 3.00m	BH13A (ES1) 0.00m	BH13A (ES2) 2.40m	BH13A (ES3) 4.80m	BH14 (ES1) 0.00m	BH14 (ES2) 2.10m	BH14 (ES3) 4.20m	BH15 (ES1) 0.00m	BH15 (ES2) 1.40m	BH15 (ES3) 2.80m	BH16 (ES1) 0.00m	BH16 (ES2) 3.80m	BH16 (ES3) 7.60m	BH17 (ES1) 0.00m	BH17 (ES2) 0.90m	BH17 (ES3) 1.90m	BH18 (ES1) 0.00m	BH18 (ES2) 0.60m	BH18 (ES3) 1.20m
Comparison Carlonium Car	Source			CSEMP	CSEMP	Canada																					
Chromism 50 370 81 81 100 24.7 8.6 64.4 77 22.1 12.9 5.6 5.5 7.9 12.2 21.8 15.7 7.4 16.1 7.2 84.4 8.3 6.5 16.2 8.1		20	70	25		41.6	4.9	1.5	1.4	3.1	9.7	3.7	2.1	1.2	2.4	2.9	5	2.7	1.8	3.3	2.8	1.7	1.4	1.8	3.4	2.3	2.4
Copper 30 20 27 34 109 77 2.8 2.2 4.7 9.8 15.7 1.9 2.9 3.7 5.3 10.1 16 3.8 15.1 11.8 3.9 3.2 2.8 5.2 9.2		0.4	4	0.31	12	4.2	0.12	0.04	0.07	0.09	0.16	0.09	0.04	0.04	0.04	0.04	0.08	0.06	0.04	0.05	0.04	0.04	0.04	0.05	0.08	0.05	0.04
Mercury 0.26 1.5 0.07 0.15 0.7 0.04 0.01 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.022 0.021 0.021 0.022 0.024 0.011 0.022 0.044 0.011 0.024 0.024 0.021 0.021 0.022 0.022 0.021 0.021 0.022 0.024 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.024 0.022 0.021 0.022 0.021 0.022 0.021 0.022 0.0	Chromium	50	370	81	8	160	24.7	6.6	6.4	17	23.1	12.9	5.6	5.5	7.9	12.3	21.8	15	7.4	16.1	7.2	9.4	6.3	8.5	16.2	8.1	8.3
Notes 50 50 50 50 5	Copper	30	300	27	34	108	7.7	2.6	2.8	4.7	9.8	15.7	1.9	2.9	3.7	5.3	10.1	16	3.6	16.1	11.8	3.9	3.2	2.8	5.2	9.2	4.3
East Section		0.25	1.5	0.07	0.15	0.7	0.04	0.01	0.01	0.03	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.02	0.04	0.01	0.01	0.04	0.01	0.01
The contraction The contra	Nickel	30	150	36			26	5.9	5.4	16.2	25.2	16.8	5.3	5.9	7.8	12.3	23.7	19	5.4	19.2	10.1	9.1	6.5	8	14.7	9.2	7.4
Neghthalarie 0.1 0.00 0.16 0.397 0.0057 0.001 0.005 0.005 0.001 0.005 0.		50	400	38	47	112	13.2	2.2	2.5	7.5	8.6	5.7	2.4	2.3	2.7	4.8	8.1	6.2	4.9	6.4	4.4	4.7	1.7	2.7	9.5	4.2	3.9
Accessability-free	Zinc	130	600	122	150	271	75.5	18.8	22.4	46.4	51.1	51.5	19.4	19.9	14.6	23.7	48.9	45.8	17.7	41.5	23.3	22.1	14.8	27.8	42.4	39.1	28.3
Accessphilyses																											
Accordanteries 0.1	Napthalene	0.1		0.08	0.16	0.391	0.0357	0.001	0.001	0.019	0.00526	0.001	0.001	0.00184	0.00169	0.0029	0.00395	0.001	0.001	0.001	0.001	0.0153	0.00315	0.0112	0.0132	0.001	0.001
Fluorente 0 1	Acenaphthylene	0.1				0.128	0.00991	0.001	0.001	0.00674	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0064	0.001	0.001	0.00429	0.001	0.001
Phenemberse 0.1 0.032 0.34 0.54 0.324 0.0004 0.00024 0.0004 0.00034 0.0004 0.0	Acenaphthene	0.1																									0.001
Aprilmonome 0 1 0 006 0065 026 00514 0.001 0.005 0.0052 0.0072 0.001 0.001 0.0058 0.0057 0.0072 0.001 0.001 0.0058 0.0055	Fluorene	0.1				0.144	0.0344	0.001	0.001	0.0123	0.00592	0.001	0.001	0.00114	0.001	0.00264	0.00367	0.001	0.001	0.001	0.001	0.0122	0.00188	0.00587	0.0089	0.001	0.001
Fluorentheme	Phenanthrene	0.1		0.032			0.205	0.00346	0.00164	0.0842	0.0234	0.00157	0.00367	0.00578	0.00418	0.012		0.00148	0.00258	0.001	0.001		0.00934	0.0312	0.0483	0.001	0.00204
Pyrene 0.1 0.004 0.005 1.98 1.99 0.00594 0.00595 0.005	Anthracene	0.1		0.05	0.088	0.245	0.0514	0.001	0.001	0.0303	0.00212	0.001	0.001	0.00148	0.001	0.001	0.00152	0.001		0.001	0.001	0.0267	0.0014	0.00887	0.0174	0.001	0.001
Secretary Secr	Fluoranthene	0.1		0.039	0.6	1.494	0.271					0.001								0.001		0.132			0.103	0.001	0.00148
Chyperie 0.1 0.02 0.384 0.866 0.867 0.00037 0.0012 0.0014 0.0014 0.0018 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00037 0.00184 0.00182 0.00187 0.00184 0.00182 0.00184		0.1					0.279						0.00532						0.00497			0.133				0.001	0.0018
							0.0514															0.0267			0.0174	0.001	0.001
				0.02	0.384	0.846																					0.00135
																											0.001
Indexent C2 July 1999	Benzo(k)fluoranthene	0.1					0.131	0.0027	0.001	0.0808	0.00788	0.001	0.00258	0.00362	0.00113	0.00356	0.00485	0.001	0.0032	0.001	0.001	0.0684	0.00318	0.0198	0.0502	0.001	0.001
Berza(ghi)perylene		0.1		0.03	0.384	0.763														0.001							0.001
Diberaco(u.h)anthracene				0.103			0.0848					0.001									0.001				0.0364	0.001	0.001
				0.08	0.085		0.105												0.00367								0.001
TPH 100 773 5.22 2.62 43 34.7 8.82 10.7 18.9 15.7 6.25 7.23 0.888 9.58 0.827 0.529 97 11.7 152 33.1 1.84		0.01				0.135	0.0176	0.001	0.001	0.0104	0.00193	0.001	0.001	0.001	0.001	0.001	0.00121	0.001	0.001	0.001	0.001	0.00974	0.001	0.0029	0.00763	0.001	0.001
	TPH	100			-		77.3	5.22	2.62	43	34.7	8.82	10.7	16.9	15.7	6.25	7.23	0.898	9.58	0.827	0.529	137	11.7	137	33.1	1.84	2.86
		0.02	0.18	-	-	0.189	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00136	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00127	0.00056	0.00056	0.00056	0.00056	0.00092
TBT 01 05 0.001 0.		0.1						0.001	0.001	0.005	0.001	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.001	0.005	0.001	0.001	0.001	0.001	0.001

PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

						BH19 (ES1)	BH19 (ES2)	BH19 (ES3)	BH20 (ES1)	BH20 (ES2)	BH20 (ES3)	BH21 (ES1)	BH21 (ES3)	BH21A (ES3)	BH22 (ES1)	BH22 (ES2)	BH22 (ES3)	BH23 (ES1)	BH23 (ES2)	BH23 (ES3)	BH24 (ES1)	1 BH24 (ES2)	BH24 (ES3)	BH25 (ES1)	1 BH25 (ES2) 1	BH25 (ES3)
	AL 1	AL2	BAC	EDI	DEI	0.00m	1.10m	2.10m	0.00m	1.70m	3.30m	0.00m	3.00m	5.60m	0.00m	3.80m	7.50m	0.40m	4.00m	7.90m	0.00m	4.70m	9.40m	0.00m	2.10m	4.10m
Source	1	-	CSEMP	CSEMP	Canada																				-	
Arsenic	20	71	0 25		41.6	2.4	1.8	1.3	4.3	5.1	2.9	1.3	1	2	1.2	3.2	2.6	1.6	3.7	3.8	18	4.5	4	48	4	3.9
Cadmium	0.4	_	4 0.31	1.2	4.2	0.04	0.04	0.04	0.05	0.06	0.04	0.04	0.04	0.04	0.04	0.05	0.08	0.04	0.05	0.04	0.04	0.1	0.23	0.14	0.04	0.07
Chromium	50	37	0 81	81	160	8.2	5.8	7.2	13.3	15	14.5	7.8	11.8	6.1	10.1	8.2	12.7	5.2	17	11.6	7.7	18.3	18.9	34	14.3	16.2
Copper	30	30	0 27	34	108	2.4	1.8	3	4.7	5.5	7.7	3.8	3.2	2.6	12.3	16.5	10.3	10.2	21	17.2	10.1	22.4	21.6	9.8	6.3	8
Mercury	0.25	1.5	5 0.07	0.15	0.7	0.01	0.01	0.01	0.01	0.01	0.03	0.02	0.01	0.03	0.03	0.07	0.04	0.03	0.03	0.03	0.08	0.06	0.05	0.08	0.02	0.01
Nickel	30	15	0 36			4.8	4	4.8	13.1	15.2	14.8	5.8	5.5	5.7	10.8	12.3	15.7	5.1	21.5	15.3	6.3	23.5	22.9	27.9	15.7	17.5
Lead	50	401	0 38	47	112	6.8	1.6	1.7	4.1	5	4.9	8.1	1.9	2.7	4.5	5.2	5.4	1.6	6.6	8.2	5.2	7.3	6.7	15	5.6	6.1
Zinc	130	601	0 122	150	271	40.5	21.5	16.8	32.5	34.3	34.4	18.6	14	17	24.6	44.3	36.4	16	52.6	37.9	21.4	56.2	52	65.1	29.9	34.4
Napthalene	0.1		0.08	0.16	0.391	0.001	0.001	0.001	0.00422	0.00611	0.00206	0.00193	0.001	0.00207	0.00144	0.001	0.001	0.001	0.001	0.001	0.00554	0.00195	0.00168	0.0339	0.00452	0.001
Acenaphthylene	0.1				0.128	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00686	0.00131	0.001
Acenaphthene	0.1				0.0889	0.001	0.001	0.001	0.00366	0.00199	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0202	0.00276	0.001
Fluorene	0.1				0.144	0.001	0.001	0.001	0.00319	0.00365	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00559	0.00176	0.001	0.0196	0.00337	0.001
Phenanthrene	0.1		0.032	0.24	0.544	0.00251	0.001	0.001	0.0146	0.0156	0.00558	0.00435	0.00128	0.00249	0.017	0.00133	0.001	0.00225	0.00236	0.00354	0.0301	0.00625	0.00479	0.114	0.017	0.00133
Anthracene	0.1		0.05	0.085		0.001	0.001	0.001	0.00273	0.00206	0.00174	0.00173	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0367	0.00455	0.001
Fluoranthene	0.1		0.039	0.6		0.00332	0.001	0.001	0.00845	0.00675	0.0115	0.00687	0.001	0.001	0.00576	0.001	0.00132	0.00165	0.0013	0.00217	0.0487	0.00388	0.00291	0.184	0.0252	0.001
Pyrene	0.1		0.024	0.665		0.00412	0.001	0.0014	0.01	0.00871	0.0122	0.00832	0.001	0.00165	0.00572	0.001	0.00116	0.0019	0.00152	0.00271	0.0482	0.00434	0.00307	0.19	0.0255	0.001
Benzo(a)anthracene	0.1		0.016	0.261		0.001	0.001	0.001	0.00273	0.00206	0.00174	0.00173	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0367	0.00455	0.001
Chrysene	0.1		0.02	0.384	0.846	0.00236	0.001	0.001	0.00731	0.00752	0.00708	0.00429	0.001	0.00142	0.00468	0.001	0.001	0.001	0.001	0.0021	0.0261	0.00337	0.00223	0.102	0.0153	0.001
Benzo(b)fluoranthene	0.1					0.00273	0.001	0.00132	0.007	0.00813	0.0074	0.00603	0.001	0.00158	0.00292	0.001	0.00134	0.00124	0.0014	0.00228	0.0223	0.0043	0.00274	0.0883	0.0155	0.001
Benzo(k)fluoranthene	0.1		-			0.0033	0.001	0.00148	0.00424	0.00485	0.00574	0.00533	0.001	0.001	0.00342	0.001	0.001	0.001	0.001	0.00101	0.0252	0.00234	0.00121	0.0899	0.0155	0.001
Benzo(a)pyrene	0.1		0.03	0.384		0.00319	0.001	0.00125	0.00634	0.0064	0.00774	0.00674	0.001	0.00144	0.00282	0.001	0.001	0.001	0.001	0.0014	0.0272	0.00238	0.00142	0.113	0.0184	0.001
Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24		0.0031	0.001	0.00127	0.00306	0.00318	0.00435	0.00573	0.001	0.001	0.00212	0.001	0.001	0.001	0.001	0.001	0.016	0.00173	0.00124	0.0668	0.0119	0.001
Benzo(ghi)perylene	0.1		0.08	0.085	_	0.00375	0.001	0.00171	0.0118	0.0128	0.00623	0.00723	0.001	0.00244	0.00301	0.001	0.00129	0.0014	0.00184	0.00357	0.0181	0.00636	0.00455	0.0923	0.0149	0.001
Dibenzo(a,h)anthracene	0.01	_	-		0.135	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0023	0.001	0.001	0.0145	0.00263	0.001
TPH	100	_	+ -	<u> </u>	<u> </u>	13.7	1.81	13.3	7.94	9.53	10.5	33.4	1.24	1.88	13.2	1.69	5.71	12	8.36	4.66	73.9	5.98	4.74	65.1	63.4	70.5
200																										
PCBs	0.02	0.10		<u> </u>	0.189	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00322	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00126	0.00056	0.00056
TBT	0.1	0.5				0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.001	0.001	0.001	0.005	0.005	0.001	0.005	0.001	0.005	0.005	0.005	0.001	0.001	0.001

TBT 0.1 0.5 - 0.5 - 0.001

Note: Underlined Values are < LOD. Values highlighted red are equal to or greater than AL1.

PEL Data Source: http://ceqq-rcqc.come.ca/en/in/dex.html#void

	AL1	AL2	BAC	ERL	PEL	BH26 (ES1) 0.00m	BH26 (ES2) 3.10m	BH26 (ES3) 6.20m	BH27 (ES1) 0.00m	BH27 (ES2) 3.30m	BH27 (ES3) 6.50m	BH29 (ES1) 0.00m	BH29 (ES2) 2.79m	BH29 (ES3) 5.59m	BH30 (ES1) 0.00m	BH30 (ES2) 3.86m	BH30 (ES3) 7.72m	GBS2-BH- SPT-11 (ES1) 0.90m	GBS2-BH- SPT-11 (ES2) 5.80m	GBS2-BH- SPT-11 (ES3) 11.60m
Source			CSEMP	CSEMP	Canada															
Arsenic	20	70	25		41.6	2.1	3.3	2.1	1.9	4.4	3	2.8	3.9	3.1	1.8	2.2	3.4	1.8	2.8	5.6
Cadmium	0.4	4	0.31	1.2	4.2	0.04	0.24	0.04	0.04	0.09	0.07	0.04	0.06	0.04	0.04	0.04	0.08	0.04	0.04	0.1
Chromium	50	370	81	81	160	10.2	7.5	4.5	5.2	21.6	13.8	6.5	17	10.5	8.1	7.7	13.8	6.7	10.4	21.3
Copper	30	300	27	34	108	3.7	7.6	6.9	7.1	7.7	5.6	10.2	8.2	13	4.2	4	16.8	7.1	6.7	25.2
Mercury	0.25	1.5	0.07	0.15	0.7	0.02	0.01	0.03	0.02	0.07	0.04	0.01	0.02	0.02	0.02	0.12	0.2	0.06	0.03	0.07
Nickel	30	150	36	-		8.7	9.6	6.7	8.4	21.5	14.4	9.9	18.9	13.5	7.8	7.7	18.6	6.4	9.4	27.6
Lead	50	400	38	47	112	5.4	3.8	2.8	2.7	12.8	7.6	3.8	6.5	5.1	3.2	2.6	5.9	2.4	2.7	8
Zinc	130	600	122	150	271	25.7	27.7	18.8	18.1	47.7	38.8	30.2	37	35	35	24.3	42.9	29.4	20.5	62.6
Napthalene	0.1		0.08	0.16	0.391	0.001	0.0556	0.0044	0.001	0.00818	0.00524	0.00406	0.00586	0.001	0.00245	0.00146	0.001	0.00933	0.00453	0.00196
Acenaphthylene	0.1				0.128	0.001	0.0187	0.00289	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00184	0.001	0.001
Acenaphthene	0.1				0.0889	0.001	0.0583	0.00275	0.001	0.00294	0.00162	0.00153	0.00167	0.001	0.001	0.001	0.001	0.00605	0.001	0.001
Fluorene	0.1				0.144	0.001	0.0606	0.00413	0.001	0.00786	0.00363	0.00294	0.00513	0.001	0.00137	0.001	0.001	0.00641	0.00204	0.001
Phenanthrene	0.1		0.032	0.24	0.544	0.001	0.465	0.0256	0.001	0.0309	0.0141	0.0145	0.0199	0.001		0.00283	1.24	0.0438	0.00979	0.0056
Anthracene	0.1		0.05	0.085	0.245	0.001	0.128	0.0121	0.001	0.00358	0.00207	0.00226	0.00202	0.001	0.00259	0.001	0.001	0.0118	0.00136	0.001
Fluoranthene	0.1		0.039	0.6	1.494	0.001	0.709	0.0472	0.001	0.0135	0.00598	0.00814	0.00782	0.001	0.0116	0.00317	0.001	0.0882	0.00362	0.003
Pyrene	0.1		0.024	0.665	1.398	0.001	0.677	0.0464	0.001	0.021	0.00874	0.0102	0.0127	0.001	0.0125	0.00383	0.001	0.0666	0.00494	0.00361
Benzo(a)anthracene	0.1		0.016	0.261	0.693	0.001	0.128	0.0121	0.001	0.00358	0.00207	0.00226	0.00202	0.001	0.00259	0.001	0.001		0.00289	0.00151
Chrysene	0.1		0.02	0.384	0.846	0.001	0.333	0.0258	0.001	0.0144	0.00666	0.00733	0.00985	0.001	0.0073	0.00247	0.001		0.00442	0.00272
Benzo(b)fluoranthene	0.1					0.001	0.272	0.0199	0.001	0.0142	0.00732	0.00737	0.00952	0.001	0.00483	0.00218	0.001	0.0303	0.00359	0.00363
Benzo(k)fluoranthene	0.1					0.001	0.273	0.0219	0.001	0.00921	0.0034	0.00451	0.00539	0.001	0.00508	0.00197	0.001	0.0302	0.00186	0.001
Benzo(a)pyrene	0.1		0.03	0.384	0.763	0.001	0.357	0.0279	0.001	0.0145	0.00643	0.00668	0.00855	0.001	0.00707	0.00265	0.001	0.0408	0.00374	0.00221
Indeno(1,2,3cd)pyrene	0.1		0.103	0.24		0.001	0.216	0.0143	0.001	0.00921	0.0035	0.00363	0.00482	0.001	0.00338	0.00129	0.001	0.0225	0.00194	0.00145
Benzo(ghi)perylene	0.1		0.08	0.085		0.001	0.22	0.017	0.001	0.0342	0.0139	0.0124	0.0196	0.001	0.00601	0.00207	0.001	0.0269	0.00756	0.00553
Dibenzo(a,h)anthracene	0.01		-	-	0.135	0.001	0.047	0.00263	0.001	0.00285	0.00134	0.001	0.00172	0.001	0.001	0.001	0.001	0.00502	0.001	0.001
TPH	100			-		1	86.4	12.3	1.63	13.4	7.74	13.4	9.25	0.741	14.1	11.2	0.593	687	18.3	29.1
and the second second																				
PCBs	0.02	0.18			0.189	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056	0.00056
TBT	0.1	0.5				0.005	0.001	0.001	0.005	0.001	0.001	0.001	0.005	0.001	0.001	0.001	0.001	0.005	0.005	0.005

TBT 0.1 0.5 - 0.50 0.5 - 0.005.

Note: Underlined Values are < LOD. Values highlighted red are equal to or greater than AL1.

PEL Data Source: http://ceqg-rcqe.ccme.ca/en/index.html#void

Page 1 of 2

Summary Table B

River Clyde Average Concentrations All units in mg/kg

All units in mg/kg	AL1	AL2	BAC	<erl< th=""><th>PEL</th><th>Dredge Average</th><th>Exceed AL1?</th><th>Exceed AL2?</th><th>Exceed BAC?</th><th>Exceed ERL?</th><th>Exceed PEL?</th></erl<>	PEL	Dredge Average	Exceed AL1?	Exceed AL2?	Exceed BAC?	Exceed ERL?	Exceed PEL?
Source	ALI		CSEMP	CSEMP	Canada	Dieuge Average	LACCEU ALT:	EXCEEU ALZ:	LACCEU DAO:	LXCCCU LILL :	LXCCCUT LL:
Arsenic	20				41.6	3.0	No	No	No	No	No
Cadmium	0.4	4	0.31		4.2	0.1	No	No	No	No	No
Chromium	50	370			160	12.1	No	No	No	No	No
Copper	30				108	8.5	No	No	No	No	No
Mercury	0.25	1.5			0.7	0.0	No	No	No	No	No
Nickel	30				-	13.0	No	No	No	No	No
Lead	50				112	5.3	No	No	No	No	No
Zinc	130				271	33.2	No	No	No	No	No
	1.00	300	122	100	-	0012	1,0	110	110	110	110
Napthalene	0.1	-	0.08	0.16	0.319	0.0	No	N/A	No	No	No
Acenaphthylene	0.1	-	-	-	0.128	0.0	No	N/A	N/A	No	No
Acenaphthene	0.1	-	_	_	0.0889	0.0	No	N/A	N/A	No	No
Fluorene	0.1	_	-	-	0.144	0.0	No	N/A	N/A	No	No
Phenanthrene	0.1	-	0.032	0.24	0.544	0.1	Yes	N/A	Yes	No	No
Anthracene	0.1	-	0.05		0.245	0.0	No	N/A	No	No	No
Fluoranthene	0.1	-	0.039	0.6	1.494	0.0	No	N/A	No	No	No
Pyrene	0.1	-	0.024	0.665	1.398	0.0	No	N/A	Yes	No	No
Benzo(a)anthracene	0.1	-	0.016	0.261	0.693	0.0	No	N/A	No	No	No
Chrysene	0.1	-	0.02	0.384	0.846	0.0	No	N/A	No	No	No
Benzo(b)fluoranthene	0.1	-	-	-	-	0.0	No	N/A	N/A	No	No
Benzo(k)fluoranthene	0.1	-	-	-	-	0.0	No	N/A	N/A	No	No
Benzo(a)pyrene	0.1	-	0.03	0.384	0.763	0.0	No	N/A	No	No	No
Indeno(1,2,3cd)pyrene	0.1	-	0.103	0.24	-	0.0	No	N/A	No	No	No
Benzo(ghi)perylene	0.1	-	0.08	0.085	-	0.0	No	N/A	No	No	No
Dibenzo(a,h)anthracene	0.01	-	-	-	0.135	0.0	No	N/A	N/A	No	No
TPH	100	-	-	-	-	28.3	No	N/A	N/A	No	No
PCBs	0.02	0.18		-	0.189	0.0	No	No	N/A	No	No
TBT	0.1	0.5	-	-	-	0.0	No	No	N/A	No	No

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI

Date Sampled: 07-20-Mar-24

Date Samples Received: 28-Mar-24

Test Report Date: 29-Apr-24

Condition of samples: Ambient Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	%	%	%	%	%	Mg/m3
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_03*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Particle Density
BH03 (ES1) 0.50m	MAR02247.001	Sediment	22.5	77.5	0.00	67.10	32.90	2.67
BH03 (ES2) 1.90m	MAR02247.002	Sediment	14.1	85.9	0.00	51.38	48.62	2.67
BH03 (ES3) 3.70m	MAR02247.003	Sediment	17.5	82.5	0.00	7.23	92.77	2.72
BH05 (ES1) 0.00m	MAR02247.004	Sediment	17.5	82.5	1.25	89.89	8.87	2.67
BH05 (ES2) 6.00m	MAR02247.005	Sediment	13.6	86.4	10.05	50.33	39.61	2.70
BH05 (ES3) 12.00m	MAR02247.006	Sediment	22.0	78.0	0.93	8.94	90.13	2.72
BH06 (ES1) 2.30m	MAR02247.007	Sediment	20.8	79.2	1.03	83.54	15.43	2.66
BH06 (ES2) 5.94m	MAR02247.008	Sediment	18.3	81.7	0.00	31.79	68.21	2.72
BH06 (ES3) 11.87m	MAR02247.009	Sediment	8.60	91.4	18.30	22.62	59.08	2.69
BH10 (ES1) 0.00m	MAR02247.010	Sediment	24.3	75.7	0.00	77.43	22.57	2.66
BH10 (ES2) 1.80m	MAR02247.011	Sediment	23.9	76.1	0.00	60.28	39.72	2.68
BH10 (ES3) 3.50m	MAR02247.012	Sediment	19.5	80.5	4.55	58.26	37.19	2.68
BH12 (ES1) 0.00m	MAR02247.013	Sediment	22.7	77.3	0.00	76.07	23.93	2.67
BH12 (ES2) 1.50m	MAR02247.014	Sediment	18.5	81.5	0.00	94.29	5.71	2.66
BH12 (ES3) 3.00m	MAR02247.015	Sediment	17.9	82.1	0.00	96.88	3.12	2.67
BH13A (ES1) 0.00m	MAR02247.016	Sediment	26.1	73.9	0.00	73.60	26.40	2.67
BH13A (ES2) 2.40m	MAR02247.017	Sediment	18.7	81.3	5.03	26.39	68.58	2.70
BH13A (ES3) 4.80m	MAR02247.018	Sediment	21.0	79.0	0.00	33.26	66.74	2.74
BH14 (ES1) 0.00m	MAR02247.019	Sediment	23.9	76.1	0.00	85.20	14.80	2.68
BH14 (ES2) 2.10m	MAR02247.020	Sediment	19.2	80.8	0.00	89.00	11.00	2.67
BH14 (ES3) 4.20m	MAR02247.021	Sediment	23.4	76.6	0.00	63.24	36.76	2.67
BH15 (ES1) 0.00m	MAR02247.022	Sediment	15.9	84.1	1.17	44.77	54.06	2.69
BH15 (ES2) 1.40m	MAR02247.023	Sediment	15.5	84.5	0.78	26.00	73.22	2.69
BH15 (ES3) 2.80m	MAR02247.024	Sediment	19.2	80.8	0.00	50.45	49.55	2.73
BH16 (ES1) 0.00m	MAR02247.025	Sediment	25.0	75.0	4.30	69.92	25.78	2.65
BH16 (ES2) 3.80m	MAR02247.026	Sediment	24.9	75.1	0.00	23.30	76.70	2.73
BH16 (ES3) 7.60m	MAR02247.027	Sediment	14.9	85.1	0.00	65.84	34.16	2.68
BH17 (ES1) 0.00m	MAR02247.028	Sediment	26.0	74.0	0.34	88.95	10.70	2.66
BH17 (ES2) 0.90m	MAR02247.029	Sediment	18.0	82.0	0.62	66.56	32.82	2.66
BH17 (ES3) 1.90m	MAR02247.030	Sediment	23.5	76.5	0.00	71.16	28.84	2.67
BH18 (ES1) 0.00m	MAR02247.031	Sediment	21.3	78.7	0.34	76.49	23.17	2.67
BH18 (ES2) 0.60m	MAR02247.032	Sediment	14.1	85.9	0.00	60.36	39.64	2.67

MAR02247

This test report shall not be reproduced except in full, without written approval of the laboratory

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	%	%	%	%	%	Mg/m3
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_03*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 μm)	Particle Density
BH18 (ES3) 1.20m	MAR02247.033	Sediment	21.4	78.6	0.00	87.86	12.14	2.67
BH19 (ES1) 0.00m	MAR02247.034	Sediment	23.3	76.7	0.00	88.63	11.37	2.67
BH19 (ES2) 1.10m	MAR02247.035	Sediment	21.7	78.3	0.19	65.44	34.37	2.68
BH19 (ES3) 2.10m	MAR02247.036	Sediment	17.8	82.2	1.82	73.81	24.37	2.67
BH20 (ES1) 0.00m	MAR02247.037	Sediment	34.9	65.1	0.11	59.28	40.61	2.66
BH20 (ES2) 1.70m	MAR02247.038	Sediment	16.3	83.7	0.63	52.12	47.24	2.67
BH20 (ES3) 3.30m	MAR02247.039	Sediment	24.3	75.7	0.34	60.93	38.73	2.69
BH21 (ES1) 0.00m	MAR02247.040	Sediment	24.7	75.3	0.29	91.54	8.17	2.66
BH21 (ES3) 3.00m	MAR02247.041	Sediment	18.7	81.3	0.28	69.53	30.18	2.66
BH22 (ES1) 0.00m	MAR02247.042	Sediment	23.8	76.2	0.47	65.16	34.37	2.67
BH22 (ES2) 3.80m	MAR02247.043	Sediment	21.3	78.7	6.19	64.37	29.44	2.69
BH22 (ES3) 7.50m	MAR02247.044	Sediment	10.4	89.6	23.88	21.48	54.64	2.71
BH25 (ES1) 0.00m	MAR02247.045	Sediment	23.1	76.9	0.43	73.61	25.96	2.67
BH25 (ES2) 2.10m	MAR02247.046	Sediment	16.7	83.3	0.00	46.55	53.45	2.69
BH25 (ES3) 4.10m	MAR02247.047	Sediment	17.7	82.3	6.82	38.67	54.51	2.71
BH26 (ES1) 0.00m	MAR02247.048	Sediment	28.7	71.3	1.00	75.91	23.09	2.66
BH26 (ES2) 3.10m	MAR02247.049	Sediment	14.3	85.7	12.79	42.10	45.12	2.68
BH26 (ES3) 6.20m	MAR02247.050	Sediment	18.7	81.3	0.00	81.80	18.20	2.68
BH27 (ES1) 0.00m	MAR02247.051	Sediment	23.0	77.0	6.98	66.80	26.22	2.68
BH27 (ES2) 3.30m	MAR02247.052	Sediment	15.7	84.3	0.27	68.77	30.96	2.67
BH27 (ES3) 6.50m	MAR02247.053	Sediment	13.0	87.0	1.51	50.74	47.75	2.70
BH29 (ES1) 0.00m	MAR02247.054	Sediment	14.5	85.5	0.15	66.25	33.60	2.67
BH29 (ES2) 2.79m	MAR02247.055	Sediment	16.1	83.9	3.38	31.26	65.36	2.68
BH29 (ES3) 5.59m	MAR02247.056	Sediment	17.9	82.1	3.41	48.05	48.54	2.69
BH30 (ES1) 0.00m	MAR02247.057	Sediment	18.9	81.1	0.03	89.95	10.02	2.67
BH30 (ES2) 3.86m	MAR02247.058	Sediment	17.2	82.8	0.06	57.55	42.39	2.68
BH30 (ES3) 7.72m	MAR02247.059	Sediment	17.4	82.6	0.00	34.15	65.85	2.75
	Reference N	Material (% Recovery)	N/A	N/A	N/A	N/A	N/A	N/A
		QC Blank	N/A	N/A	N/A	N/A	N/A	N/A

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	% M/M
		Method No	WSLM59*
		Limit of Detection	0.02
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	TOC
BH03 (ES1) 0.50m	MAR02247.001	Sediment	0.44
BH03 (ES2) 1.90m	MAR02247.002	Sediment	0.38
BH03 (ES3) 3.70m	MAR02247.003	Sediment	0.37
BH05 (ES1) 0.00m	MAR02247.004	Sediment	0.21
BH05 (ES2) 6.00m	MAR02247.005	Sediment	0.17
BH05 (ES3) 12.00m	MAR02247.006	Sediment	0.18
BH06 (ES1) 2.30m	MAR02247.007	Sediment	0.19
BH06 (ES2) 5.94m	MAR02247.008	Sediment	0.18
BH06 (ES3) 11.87m	MAR02247.009	Sediment	0.16
BH10 (ES1) 0.00m	MAR02247.010	Sediment	0.58
BH10 (ES2) 1.80m	MAR02247.011	Sediment	0.56
BH10 (ES3) 3.50m	MAR02247.012	Sediment	0.25
BH12 (ES1) 0.00m	MAR02247.013	Sediment	0.62
BH12 (ES2) 1.50m	MAR02247.014	Sediment	0.09
BH12 (ES3) 3.00m	MAR02247.015	Sediment	0.13
BH13A (ES1) 0.00m	MAR02247.016	Sediment	0.48
BH13A (ES2) 2.40m	MAR02247.017	Sediment	0.46
BH13A (ES3) 4.80m	MAR02247.018	Sediment	0.14
BH14 (ES1) 0.00m	MAR02247.019	Sediment	0.11
BH14 (ES2) 2.10m	MAR02247.020	Sediment	0.14
BH14 (ES3) 4.20m	MAR02247.021	Sediment	0.16
BH15 (ES1) 0.00m	MAR02247.022	Sediment	0.30
BH15 (ES2) 1.40m	MAR02247.023	Sediment	0.47
BH15 (ES3) 2.80m	MAR02247.024	Sediment	0.15
BH16 (ES1) 0.00m	MAR02247.025	Sediment	0.14
BH16 (ES2) 3.80m	MAR02247.026	Sediment	0.19
BH16 (ES3) 7.60m	MAR02247.027	Sediment	0.11
BH17 (ES1) 0.00m	MAR02247.028	Sediment	0.31
BH17 (ES2) 0.90m	MAR02247.029	Sediment	0.13
BH17 (ES3) 1.90m	MAR02247.030	Sediment	0.25
BH18 (ES1) 0.00m	MAR02247.031	Sediment	0.48
BH18 (ES2) 0.60m	MAR02247.032	Sediment	0.16

Page 4 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	% M/M
		Method No	WSLM59*
		Limit of Detection	0.02
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	TOC
BH18 (ES3) 1.20m	MAR02247.033	Sediment	0.27
BH19 (ES1) 0.00m	MAR02247.034	Sediment	0.13
BH19 (ES2) 1.10m	MAR02247.035	Sediment	0.10
BH19 (ES3) 2.10m	MAR02247.036	Sediment	0.10
BH20 (ES1) 0.00m	MAR02247.037	Sediment	0.24
BH20 (ES2) 1.70m	MAR02247.038	Sediment	0.30
BH20 (ES3) 3.30m	MAR02247.039	Sediment	0.21
BH21 (ES1) 0.00m	MAR02247.040	Sediment	0.10
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.11
BH22 (ES1) 0.00m	MAR02247.042	Sediment	0.10
BH22 (ES2) 3.80m	MAR02247.043	Sediment	0.11
BH22 (ES3) 7.50m	MAR02247.044	Sediment	0.14
BH25 (ES1) 0.00m	MAR02247.045	Sediment	1.17
BH25 (ES2) 2.10m	MAR02247.046	Sediment	0.33
BH25 (ES3) 4.10m	MAR02247.047	Sediment	0.39
BH26 (ES1) 0.00m	MAR02247.048	Sediment	0.21
BH26 (ES2) 3.10m	MAR02247.049	Sediment	0.24
BH26 (ES3) 6.20m	MAR02247.050	Sediment	0.07
BH27 (ES1) 0.00m	MAR02247.051	Sediment	0.06
BH27 (ES2) 3.30m	MAR02247.052	Sediment	0.77
BH27 (ES3) 6.50m	MAR02247.053	Sediment	0.48
BH29 (ES1) 0.00m	MAR02247.054	Sediment	0.11
BH29 (ES2) 2.79m	MAR02247.055	Sediment	0.31
BH29 (ES3) 5.59m	MAR02247.056	Sediment	0.13
BH30 (ES1) 0.00m	MAR02247.057	Sediment	0.16
BH30 (ES2) 3.86m	MAR02247.058	Sediment	0.11
BH30 (ES3) 7.72m	MAR02247.059	Sediment	0.13
	Reference I	Material (% Recovery)	101
		QC Blank	<0.02

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units				mg/Kg (D	ry Weight)			
		Method No				ICP	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
BH03 (ES1) 0.50m	MAR02247.001	Sediment	4.2	0.12	16.8	8.2	0.03	16.9	7.1	32.4
BH03 (ES2) 1.90m	MAR02247.002	Sediment	7.2	0.13	17.2	8.4	0.01	18.4	6.1	33.0
BH03 (ES3) 3.70m	MAR02247.003	Sediment	8.2	0.12	20.2	9.9	0.01	21.5	7.2	40.3
BH05 (ES1) 0.00m	MAR02247.004	Sediment	1.4	0.07	8.8	3.8	<0.01	9.5	2.7	27.7
BH05 (ES2) 6.00m	MAR02247.005	Sediment	2.7	0.08	10.9	5.3	0.06	9.3	2.9	18.4
BH05 (ES3) 12.00m	MAR02247.006	Sediment	3.7	0.12	15.6	15.5	<0.01	19.5	6.5	44.4
BH06 (ES1) 2.30m	MAR02247.007	Sediment	2.0	0.06	7.1	5.5	0.02	7.6	3.2	18.3
BH06 (ES2) 5.94m	MAR02247.008	Sediment	4.9	0.15	20.7	19.8	0.01	25.5	7.2	55.8
BH06 (ES3) 11.87m	MAR02247.009	Sediment	1.2	0.05	4.9	4.2	<0.01	6.0	1.9	14.9
BH10 (ES1) 0.00m	MAR02247.010	Sediment	3.9	0.13	21.3	6.4	0.03	20.6	11.2	45.1
BH10 (ES2) 1.80m	MAR02247.011	Sediment	4.9	0.13	25.1	8.7	0.04	27.8	13.6	77.0
BH10 (ES3) 3.50m	MAR02247.012	Sediment	3.6	0.07	13.9	5.5	<0.01	13.8	5.2	27.5
BH12 (ES1) 0.00m	MAR02247.013	Sediment	4.9	0.12	24.7	7.7	0.04	26.0	13.2	75.5
BH12 (ES2) 1.50m	MAR02247.014	Sediment	1.5	<0.04	6.6	2.6	0.01	5.9	2.2	18.8
BH12 (ES3) 3.00m	MAR02247.015	Sediment	1.4	0.07	6.4	2.8	<0.01	5.4	2.5	22.4
BH13A (ES1) 0.00m	MAR02247.016	Sediment	3.1	0.09	17.0	4.7	0.03	16.2	7.5	46.4
BH13A (ES2) 2.40m	MAR02247.017	Sediment	9.7	0.16	23.1	9.8	0.01	25.2	8.6	51.1
BH13A (ES3) 4.80m	MAR02247.018	Sediment	3.7	0.09	12.9	15.7	<0.01	16.8	5.7	51.5
BH14 (ES1) 0.00m	MAR02247.019	Sediment	2.1	<0.04	5.6	1.9	<0.01	5.3	2.4	19.4
BH14 (ES2) 2.10m	MAR02247.020	Sediment	1.2	<0.04	5.5	2.9	<0.01	5.9	2.3	19.9
BH14 (ES3) 4.20m	MAR02247.021	Sediment	2.4	<0.04	7.9	3.7	0.02	7.8	2.7	14.6
BH15 (ES1) 0.00m	MAR02247.022	Sediment	2.9	<0.04	12.3	5.3	0.02	12.3	4.8	23.7
BH15 (ES2) 1.40m	MAR02247.023	Sediment	5.0	0.08	21.8	10.1	0.02	23.7	8.1	48.9
BH15 (ES3) 2.80m	MAR02247.024	Sediment	2.7	0.06	15.0	16.0	0.01	19.0	6.2	45.8
BH16 (ES1) 0.00m	MAR02247.025	Sediment	1.8	<0.04	7.4	3.6	0.01	5.4	4.9	17.7
BH16 (ES2) 3.80m	MAR02247.026	Sediment	3.3	0.05	16.1	16.1	0.01	19.2	6.4	41.5
BH16 (ES3) 7.60m	MAR02247.027	Sediment	2.8	<0.04	7.2	11.8	0.02	10.1	4.4	23.3
BH17 (ES1) 0.00m	MAR02247.028	Sediment	1.7	<0.04	9.4	3.9	0.04	9.1	4.7	22.1
BH17 (ES2) 0.90m	MAR02247.029	Sediment	1.4	<0.04	6.3	3.2	0.01	6.5	1.7	14.8
BH17 (ES3) 1.90m	MAR02247.030	Sediment	1.8	0.05	8.5	2.8	<0.01	8.0	2.7	27.8
BH18 (ES1) 0.00m	MAR02247.031	Sediment	3.4	0.08	16.2	5.2	0.04	14.7	9.5	42.4
BH18 (ES2) 0.60m	MAR02247.032	Sediment	2.3	0.05	8.1	9.2	<0.01	9.2	4.2	39.1

This test report shall not be reproduced except in full, without written approval of the laboratory

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units		mg/Kg (Dry Weight)							
		Method No				ICP	MSS*				
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2	
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc	
BH18 (ES3) 1.20m	MAR02247.033	Sediment	2.4	0.04	8.3	4.3	<0.01	7.4	3.9	28.3	
BH19 (ES1) 0.00m	MAR02247.034	Sediment	2.4	<0.04	8.2	2.4	<0.01	4.8	6.8	40.5	
BH19 (ES2) 1.10m	MAR02247.035	Sediment	1.8	<0.04	5.8	1.8	<0.01	4.0	1.6	21.5	
BH19 (ES3) 2.10m	MAR02247.036	Sediment	1.3	<0.04	7.2	3.0	<0.01	4.8	1.7	16.8	
BH20 (ES1) 0.00m	MAR02247.037	Sediment	4.3	0.05	13.3	4.7	<0.01	13.1	4.1	32.5	
BH20 (ES2) 1.70m	MAR02247.038	Sediment	5.1	0.06	15.0	5.5	<0.01	15.2	5.0	34.3	
BH20 (ES3) 3.30m	MAR02247.039	Sediment	2.9	0.04	14.5	7.7	0.03	14.8	4.9	34.4	
BH21 (ES1) 0.00m	MAR02247.040	Sediment	1.3	<0.04	7.8	3.8	0.02	5.8	8.1	18.6	
BH21 (ES3) 3.00m	MAR02247.041	Sediment	1.0	<0.04	11.8	3.2	0.01	5.5	1.9	14.0	
BH22 (ES1) 0.00m	MAR02247.042	Sediment	1.2	<0.04	10.1	12.3	0.03	10.8	4.5	24.6	
BH22 (ES2) 3.80m	MAR02247.043	Sediment	3.2	0.05	8.2	16.5	0.07	12.3	5.2	44.3	
BH22 (ES3) 7.50m	MAR02247.044	Sediment	2.6	0.08	12.7	10.3	0.04	15.7	5.4	36.4	
BH25 (ES1) 0.00m	MAR02247.045	Sediment	4.8	0.14	34.0	9.8	0.08	27.9	15.0	65.1	
BH25 (ES2) 2.10m	MAR02247.046	Sediment	4.0	0.04	14.3	6.3	0.02	15.7	5.6	29.9	
BH25 (ES3) 4.10m	MAR02247.047	Sediment	3.9	0.07	16.2	8.0	0.01	17.5	6.1	34.4	
BH26 (ES1) 0.00m	MAR02247.048	Sediment	2.1	<0.04	10.2	3.7	0.02	8.7	5.4	25.7	
BH26 (ES2) 3.10m	MAR02247.049	Sediment	3.3	0.24	7.5	7.6	0.01	9.6	3.8	27.7	
BH26 (ES3) 6.20m	MAR02247.050	Sediment	2.1	<0.04	4.5	6.9	0.03	6.7	2.8	18.8	
BH27 (ES1) 0.00m	MAR02247.051	Sediment	1.9	<0.04	5.2	7.1	0.02	8.4	2.7	18.1	
BH27 (ES2) 3.30m	MAR02247.052	Sediment	4.4	0.09	21.6	7.7	0.07	21.5	12.8	47.7	
BH27 (ES3) 6.50m	MAR02247.053	Sediment	3.0	0.07	13.8	5.6	0.04	14.4	7.6	38.8	
BH29 (ES1) 0.00m	MAR02247.054	Sediment	2.8	<0.04	6.5	10.2	0.01	9.9	3.8	30.2	
BH29 (ES2) 2.79m	MAR02247.055	Sediment	3.9	0.06	17.0	8.2	0.02	18.9	6.5	37.0	
BH29 (ES3) 5.59m	MAR02247.056	Sediment	3.1	<0.04	10.5	13.0	0.02	13.5	5.1	35.0	
BH30 (ES1) 0.00m	MAR02247.057	Sediment	1.8	<0.04	8.1	4.2	0.02	7.8	3.2	35.0	
BH30 (ES2) 3.86m	MAR02247.058	Sediment	2.2	<0.04	7.7	4.0	0.12	7.7	2.6	24.3	
BH30 (ES3) 7.72m	MAR02247.059	Sediment	3.4	0.08	13.8	16.8	0.2	18.6	5.9	42.9	
Certified Re	Certified Reference Material SETOC 768 (% Recovery)			104	108	106	106	109	106	110	
		QC Blank	<0.5	<0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2	

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Di	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<5	<5
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<1	<1
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<1	<1
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<1	<1
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<1	<1
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<5	<5
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<1	<1
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<1	<1
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<1	<1
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<5	<5
BH10 (ES2) 1.80m	MAR02247.011	Sediment	<5	<5
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<1	<1
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<1	<1
Cert	ified Reference Material Bo	CR-646 (% Recovery)	64	71
		QC Blank	<1	<1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dr	y Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<1	<1
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<1	<1
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<5	<5
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<1	<1
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<5	<5
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<1	<1
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<1	<1
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<1	<1
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<1	<1
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<1	<1
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<1	<1
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<1	<1
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<5	<5
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<1	<1
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<5	<5
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<1	<1
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<1	<1
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<1	<1
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<1	<1
Certific	ed Reference Material Bo	, ,,	64	71
		QC Blank	<1	<1

^{*} See Report Notes

Page 10 of 70

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dr	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<1	<1
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<1	<1
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<1	<1
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<1	<1
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<1	<1
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<5	<5
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<5	<5
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<5	<5
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<1	<1
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<1	<1
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<5	<5
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<5	<5
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<1	<1
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<1	<1
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<1	<1
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<5	<5
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<1	<1
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<1	<1
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<5	<5
Cert	ified Reference Material Bo		63	72
		QC Blank	<1	<1

^{*} See Report Notes

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dr	ry Weight)
		Method No	ASC/S	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<1	<1
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<1	<1
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<1	<1
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<5	<5
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<1	<1
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<1	<1
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<1	<1
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<1	<1
Certif	ied Reference Material Bo	CR-646 (% Recovery)	67	76
	•	QC Blank	<1	<1

^{*} See Report Notes

Page 11 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<1	<1	1.91	9.00	10.5	8.76
BH03 (ES2) 1.90m	MAR02247.002	Sediment	1.74	<1	1.99	5.05	6.75	7.25
BH03 (ES3) 3.70m	MAR02247.003	Sediment	2.32	<1	4.28	13.5	16.9	16.8
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<1	<1	<1	3.16	4.62	3.56
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<1	<1	<1	1.90	2.79	3.60
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<1	<1	<1	1.69	2.37	4.73
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<5	<5	<5	9.39	10.1	7.57
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<1	<1	<1	<1	<1	<1
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<1	<1	<1	<1	<1	2.02
Certified R	Certified Reference Material NIST 1941b (% Recovery)		102	120	71	60	57	82
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 12 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH03 (ES1) 0.50m	MAR02247.001	Sediment	6.38	8.46	7.93	7.70	11.0	11.6
BH03 (ES2) 1.90m	MAR02247.002	Sediment	8.43	15.8	3.83	25.0	28.2	32.7
BH03 (ES3) 3.70m	MAR02247.003	Sediment	14.2	22.0	11.5	26.4	30.3	37.0
BH05 (ES1) 0.00m	MAR02247.004	Sediment	2.91	3.27	4.17	2.53	3.50	4.06
BH05 (ES2) 6.00m	MAR02247.005	Sediment	3.35	6.60	1.40	11.3	12.7	14.7
BH05 (ES3) 12.00m	MAR02247.006	Sediment	3.96	6.35	1.62	8.24	8.02	11.5
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<5	7.48	8.43	11.9	15.3	16.1
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<1	<1	<1	1.73	<1	1.78
BH06 (ES3) 11.87m	MAR02247.009	Sediment	1.78	3.09	<1	2.31	2.17	2.52
Certified Ref	Certified Reference Material NIST 1941b (% Recovery		69	77	75	74	75	114
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH03 (ES1) 0.50m	MAR02247.001	Sediment	13.9	9.05	1.34	15.0	1.32	5.96
BH03 (ES2) 1.90m	MAR02247.002	Sediment	34.8	7.47	1.22	6.31	4.48	4.12
BH03 (ES3) 3.70m	MAR02247.003	Sediment	41.9	16.10	2.87	20.4	4.85	8.91
BH05 (ES1) 0.00m	MAR02247.004	Sediment	4.15	3.99	<1	6.04	<1	2.65
BH05 (ES2) 6.00m	MAR02247.005	Sediment	18.3	3.14	<1	2.51	2.15	1.55
BH05 (ES3) 12.00m	MAR02247.006	Sediment	10.9	3.24	<1	3.69	1.56	1.72
BH06 (ES1) 2.30m	MAR02247.007	Sediment	15.8	10.1	<5	19.0	<5	5.05
BH06 (ES2) 5.94m	MAR02247.008	Sediment	1.69	<1	<1	<1	<1	<1
BH06 (ES3) 11.87m	MAR02247.009	Sediment	2.42	1.45	<1	1.16	<1	<1
Certified R	Certified Reference Material NIST 1941b (% Recovery)		109	79	105	81	60	70
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 14 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH03 (ES1) 0.50m	MAR02247.001	Sediment	2.20	3.30	6.01	16.4	7370
BH03 (ES2) 1.90m	MAR02247.002	Sediment	5.65	8.46	17.2	9.54	7680
BH03 (ES3) 3.70m	MAR02247.003	Sediment	5.52	9.92	20.8	24.2	23200
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<1	<1	3.43	5.70	12500
BH05 (ES2) 6.00m	MAR02247.005	Sediment	2.78	2.94	7.28	3.75	2820
BH05 (ES3) 12.00m	MAR02247.006	Sediment	1.74	1.80	6.07	3.70	23400
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<5	<5	13.6	19.6	80200
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<1	<1	<1	<1	3310
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<1	1.34	1.49	1.88	1750
Certifie	d Reference Material NIST	1941b (% Recovery)	63	44	83	70	92~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 15 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	N*
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<5	<5	16.7	32.7	39.1	33.0
BH10 (ES2) 1.80m	MAR02247.011	Sediment	15.9	<5	36.7	119	117	90.2
BH10 (ES3) 3.50m	MAR02247.012	Sediment	2.63	1.79	7.68	20.8	26.3	20.3
BH12 (ES1) 0.00m	MAR02247.013	Sediment	37.4	9.91	51.4	132	156	115
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<1	<1	<1	3.13	3.07	2.11
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<1	<1	<1	<1	<1	<1
BH13A (ES1) 0.00m	MAR02247.016	Sediment	8.39	6.74	30.3	91.4	88.6	71.2
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<1	<1	2.12	7.16	9.66	11.9
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<1	<1	<1	<1	<1	<1
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<1	<1	<1	2.50	2.52	2.77
BH14 (ES2) 2.10m	MAR02247.020	Sediment	3.32	<1	1.48	3.68	4.01	3.04
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<1	<1	<1	1.35	1.91	2.00
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<1	<1	<1	3.56	5.16	5.86
BH15 (ES2) 1.40m	MAR02247.023	Sediment	1.33	<1	1.52	4.44	6.70	7.65
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<1	<1	<1	<1	<1	<1
Certified	Reference Material NIST	, ,,	91	117	66	58	54	75
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 16 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH10 (ES1) 0.00m	MAR02247.010	Sediment	28.5	30.1	44.2	43.4	67.1	73.0
BH10 (ES2) 1.80m	MAR02247.011	Sediment	74.8	71.0	114	84.3	135	111
BH10 (ES3) 3.50m	MAR02247.012	Sediment	18.3	22.9	22.0	23.5	35.2	33.0
BH12 (ES1) 0.00m	MAR02247.013	Sediment	96.3	105	131	110	178	148
BH12 (ES2) 1.50m	MAR02247.014	Sediment	1.98	2.15	2.70	2.68	3.97	3.86
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<1	<1	<1	2.98	2.73	3.23
BH13A (ES1) 0.00m	MAR02247.016	Sediment	57.6	61.7	80.8	56.0	105	76.3
BH13A (ES2) 2.40m	MAR02247.017	Sediment	13.1	22.2	7.88	32.2	33.4	46.6
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<1	<1	<1	1.98	1.90	2.61
BH14 (ES1) 0.00m	MAR02247.019	Sediment	2.64	2.67	2.58	3.69	5.67	7.64
BH14 (ES2) 2.10m	MAR02247.020	Sediment	3.33	4.57	3.62	5.31	7.54	8.26
BH14 (ES3) 4.20m	MAR02247.021	Sediment	2.13	3.19	1.13	6.73	6.64	9.06
BH15 (ES1) 0.00m	MAR02247.022	Sediment	6.77	11.0	3.56	16.0	19.7	22.5
BH15 (ES2) 1.40m	MAR02247.023	Sediment	8.97	14.9	4.85	22.2	22.9	29.7
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<1	<1	<1	2.17	1.66	2.59
Certified	Certified Reference Material NIST 1941b (% Recov		71	62	76	73	88	111
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

reported as percentage trueness, not rec

*See report notes

Page 17 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH10 (ES1) 0.00m	MAR02247.010	Sediment	78.8	39.8	<5	67.8	8.76	22.9
BH10 (ES2) 1.80m	MAR02247.011	Sediment	127	149	11.1	249	16.2	57.0
BH10 (ES3) 3.50m	MAR02247.012	Sediment	43.6	22.7	2.92	40.2	4.20	14.8
BH12 (ES1) 0.00m	MAR02247.013	Sediment	200	145	17.6	271	34.4	84.8
BH12 (ES2) 1.50m	MAR02247.014	Sediment	3.97	3.31	<1	5.59	<1	1.56
BH12 (ES3) 3.00m	MAR02247.015	Sediment	2.78	<1	<1	1.23	<1	<1
BH13A (ES1) 0.00m	MAR02247.016	Sediment	111	105	10.4	176	12.3	50.8
BH13A (ES2) 2.40m	MAR02247.017	Sediment	50.8	11.8	1.93	11.2	5.92	5.23
BH13A (ES3) 4.80m	MAR02247.018	Sediment	2.99	<1	<1	<1	<1	<1
BH14 (ES1) 0.00m	MAR02247.019	Sediment	8.09	2.84	<1	4.79	<1	1.83
BH14 (ES2) 2.10m	MAR02247.020	Sediment	10.1	4.37	<1	7.19	1.14	2.17
BH14 (ES3) 4.20m	MAR02247.021	Sediment	10.4	1.91	<1	1.89	<1	<1
BH15 (ES1) 0.00m	MAR02247.022	Sediment	24.4	5.82	<1	4.68	2.64	2.62
BH15 (ES2) 1.40m	MAR02247.023	Sediment	34.6	7.17	1.21	6.05	3.67	3.67
BH15 (ES3) 2.80m	MAR02247.024	Sediment	2.55	<1	<1	<1	<1	<1
Certifie	d Reference Material NIST		110	86	98	78	51	57
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 18 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH10 (ES1) 0.00m	MAR02247.010	Sediment	15.6	8.84	47.6	75.9	32600
BH10 (ES2) 1.80m	MAR02247.011	Sediment	29.1	25.8	118	273	71600
BH10 (ES3) 3.50m	MAR02247.012	Sediment	5.77	7.46	25.8	45.5	22000
BH12 (ES1) 0.00m	MAR02247.013	Sediment	35.7	33.1	205	279	77300
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<1	<1	3.46	5.56	5220
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<1	<1	1.64	1.58	2620
BH13A (ES1) 0.00m	MAR02247.016	Sediment	19.0	21.2	84.2	171	43000
BH13A (ES2) 2.40m	MAR02247.017	Sediment	5.26	6.63	23.4	15.3	34700
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<1	<1	1.57	<1	8820
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<1	<1	3.67	5.32	10700
BH14 (ES2) 2.10m	MAR02247.020	Sediment	1.84	1.82	5.78	8.15	16900
BH14 (ES3) 4.20m	MAR02247.021	Sediment	1.69	1.87	4.18	2.80	15700
BH15 (ES1) 0.00m	MAR02247.022	Sediment	2.90	7.40	12.0	6.17	6250
BH15 (ES2) 1.40m	MAR02247.023	Sediment	3.95	12.4	15.9	8.43	7230
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<1	<1	1.48	<1	898
	Certified Reference Material NIST	, ,,	55	51	77	69	98~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are $\,$

reported as percentage trueness, not recovery.

*See report notes

Page 19 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<1	<1	<1	2.51	3.94	4.19
BH16 (ES2) 3.80m	MAR02247.026	Sediment	1.79	<1	<1	<1	<1	<1
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<1	<1	<1	<1	<1	<1
BH17 (ES1) 0.00m	MAR02247.028	Sediment	8.19	6.40	26.7	67.7	84.7	62.2
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<1	<1	1.40	3.19	3.28	3.83
BH17 (ES3) 1.90m	MAR02247.030	Sediment	3.31	<1	8.87	21.6	24.5	20.1
BH18 (ES1) 0.00m	MAR02247.031	Sediment	5.77	4.29	17.4	54.7	61.4	48.7
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<1	<1	<1	<1	<1	<1
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<1	<1	<1	<1	<1	<1
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<1	<1	<1	2.00	3.19	2.73
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<1	<1	<1	<1	<1	<1
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<1	<1	<1	<1	1.25	1.32
BH20 (ES1) 0.00m	MAR02247.037	Sediment	3.66	<1	2.73	5.65	6.34	7.00
BH20 (ES2) 1.70m	MAR02247.038	Sediment	1.99	<1	2.06	4.79	6.40	8.13
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<1	<1	1.74	6.08	7.74	7.40
Certifie	d Reference Material NIST	1941b (% Recovery)	73	113	66	66	66	81
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 20 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH16 (ES1) 0.00m	MAR02247.025	Sediment	3.16	3.67	3.20	3.25	3.72	5.99
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<1	<1	<1	1.67	<1	1.73
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<1	<1	<1	<1	<1	<1
BH17 (ES1) 0.00m	MAR02247.028	Sediment	51.3	59.1	68.4	42.6	77.2	67.2
BH17 (ES2) 0.90m	MAR02247.029	Sediment	4.73	7.54	3.18	12.4	15.8	19.5
BH17 (ES3) 1.90m	MAR02247.030	Sediment	17.5	24.1	19.8	32.5	53.0	84.7
BH18 (ES1) 0.00m	MAR02247.031	Sediment	37.6	43.7	50.2	35.5	65.0	61.0
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<1	<1	<1	1.48	<1	1.67
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<1	<1	<1	1.64	4.21	4.57
BH19 (ES1) 0.00m	MAR02247.034	Sediment	2.81	3.75	3.30	3.83	3.21	5.23
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<1	<1	<1	1.30	<1	1.93
BH19 (ES3) 2.10m	MAR02247.036	Sediment	1.33	1.71	1.48	<1	<1	1.93
BH20 (ES1) 0.00m	MAR02247.037	Sediment	7.63	11.8	4.24	16.8	29.9	31.7
BH20 (ES2) 1.70m	MAR02247.038	Sediment	8.13	12.8	4.85	22.5	26.2	36.0
BH20 (ES3) 3.30m	MAR02247.039	Sediment	5.44	6.23	5.74	5.42	8.90	10.8
Certified	Reference Material NIST	1941b (% Recovery)	78	76	94	78	80	114
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 21 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH16 (ES1) 0.00m	MAR02247.025	Sediment	4.62	2.91	<1	4.55	<1	2.90
BH16 (ES2) 3.80m	MAR02247.026	Sediment	1.38	<1	<1	<1	<1	<1
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<1	<1	<1	<1	<1	<1
BH17 (ES1) 0.00m	MAR02247.028	Sediment	84.4	73.0	9.74	132	12.2	47.8
BH17 (ES2) 0.90m	MAR02247.029	Sediment	20.1	4.45	<1	4.71	1.88	2.13
BH17 (ES3) 1.90m	MAR02247.030	Sediment	72.2	24.1	2.90	36.1	5.9	12.8
BH18 (ES1) 0.00m	MAR02247.031	Sediment	63.2	55.9	7.63	103	8.9	36.4
BH18 (ES2) 0.60m	MAR02247.032	Sediment	1.38	<1	<1	<1	<1	<1
BH18 (ES3) 1.20m	MAR02247.033	Sediment	5.96	1.35	<1	1.48	<1	<1
BH19 (ES1) 0.00m	MAR02247.034	Sediment	4.77	2.36	<1	3.32	<1	3.10
BH19 (ES2) 1.10m	MAR02247.035	Sediment	1.33	<1	<1	<1	<1	<1
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<1	<1	<1	<1	<1	1.27
BH20 (ES1) 0.00m	MAR02247.037	Sediment	38.0	7.31	<1	8.45	3.19	3.06
BH20 (ES2) 1.70m	MAR02247.038	Sediment	32.4	7.52	<1	6.75	3.65	3.18
BH20 (ES3) 3.30m	MAR02247.039	Sediment	9.68	7.08	<1	11.5	<1	4.35
Certified R	eference Material NIST		113	87	97	77	56	69
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 22 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<1	<1	2.58	4.97	9580
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<1	<1	<1	<1	827
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<1	<1	<1	<1	529
BH17 (ES1) 0.00m	MAR02247.028	Sediment	15.3	18.5	79.9	133	137000
BH17 (ES2) 0.90m	MAR02247.029	Sediment	3.15	3.27	9.34	5.96	11700
BH17 (ES3) 1.90m	MAR02247.030	Sediment	11.2	12.0	31.2	41.5	137000
BH18 (ES1) 0.00m	MAR02247.031	Sediment	13.2	13.8	48.3	103	33100
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<1	<1	<1	<1	1840
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<1	1.41	2.04	1.80	2860
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<1	<1	2.51	4.12	13700
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<1	<1	<1	<1	1810
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<1	<1	<1	1.40	13300
BH20 (ES1) 0.00m	MAR02247.037	Sediment	4.22	5.05	14.6	10.0	7940
BH20 (ES2) 1.70m	MAR02247.038	Sediment	6.11	7.96	15.6	8.71	9530
BH20 (ES3) 3.30m	MAR02247.039	Sediment	2.06	2.56	5.58	12.2	10500
	Certified Reference Material NIS	1941b (% Recovery)	61	55	76	70	93~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 23 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<1	<1	1.73	4.03	6.74	6.03
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<1	<1	<1	<1	<1	<1
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<1	<1	<1	3.19	2.82	2.92
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<1	<1	<1	<1	<1	<1
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<1	<1	<1	<1	<1	1.34
BH25 (ES1) 0.00m	MAR02247.045	Sediment	20.2	6.86	36.7	95.8	113	88.3
BH25 (ES2) 2.10m	MAR02247.046	Sediment	2.76	1.31	4.55	15.3	18.4	15.5
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<1	<1	<1	<1	<1	<1
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<1	<1	<1	<1	<1	<1
BH26 (ES2) 3.10m	MAR02247.049	Sediment	58.3	18.7	128	323	357	272
BH26 (ES3) 6.20m	MAR02247.050	Sediment	2.75	2.89	12.1	25.5	27.9	19.9
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<1	<1	<1	<1	<1	<1
BH27 (ES2) 3.30m	MAR02247.052	Sediment	2.94	<1	3.58	10.2	14.5	14.2
BH27 (ES3) 6.50m	MAR02247.053	Sediment	1.62	<1	2.07	4.64	6.43	7.32
BH29 (ES1) 0.00m	MAR02247.054	Sediment	1.53	<1	2.26	5.49	6.68	7.37
BH29 (ES2) 2.79m	MAR02247.055	Sediment	1.67	<1	2.02	5.86	8.55	9.52
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<1	<1	<1	<1	<1	<1
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<1	<1	2.59	6.15	7.07	4.83
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<1	<1	<1	2.04	2.65	2.18
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<1	<1	<1	<1	<1	<1
Certified Re	eference Material NIST	1941b (% Recovery)	66	114	66	67	66	81
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 24 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH21 (ES1) 0.00m	MAR02247.040	Sediment	4.88	7.23	5.33	3.17	5.58	4.76
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<1	<1	<1	2.33	1.67	3.11
BH22 (ES1) 0.00m	MAR02247.042	Sediment	2.64	3.01	3.42	2.16	4.69	3.82
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<1	<1	<1	<1	<1	<1
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<1	1.29	<1	1.83	1.66	2.23
BH25 (ES1) 0.00m	MAR02247.045	Sediment	74.1	92.3	89.9	75.4	114	101
BH25 (ES2) 2.10m	MAR02247.046	Sediment	12.0	14.9	15.5	13.0	19.5	21.0
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<1	<1	<1	2.03	1.79	2.90
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<1	<1	<1	<1	<1	<1
BH26 (ES2) 3.10m	MAR02247.049	Sediment	202	220	273	143	358	168
BH26 (ES3) 6.20m	MAR02247.050	Sediment	15.5	17.0	21.9	10.6	27.6	17.2
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<1	<1	<1	<1	<1	<1
BH27 (ES2) 3.30m	MAR02247.052	Sediment	18.0	34.2	9.21	45.0	47.4	59.4
BH27 (ES3) 6.50m	MAR02247.053	Sediment	8.07	13.9	3.40	24.3	24.9	30.6
BH29 (ES1) 0.00m	MAR02247.054	Sediment	7.57	12.4	4.51	17.3	22.9	25.2
BH29 (ES2) 2.79m	MAR02247.055	Sediment	12.2	19.6	5.39	27.8	31.0	36.1
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<1	<1	<1	<1	<1	1.32
BH30 (ES1) 0.00m	MAR02247.057	Sediment	5.15	6.01	5.08	6.93	13.8	14.5
BH30 (ES2) 3.86m	MAR02247.058	Sediment	2.20	2.07	1.97	3.75	3.77	4.97
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<1	<1	<1	1.60	<1	1.55
Certified R	eference Material NIST		81	83	88	76	80	111
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 25 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH21 (ES1) 0.00m	MAR02247.040	Sediment	4.96	4.29	<1	6.87	<1	5.73
BH21 (ES3) 3.00m	MAR02247.041	Sediment	2.50	<1	<1	<1	<1	<1
BH22 (ES1) 0.00m	MAR02247.042	Sediment	3.41	4.68	<1	5.76	<1	2.12
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<1	<1	<1	<1	<1	<1
BH22 (ES3) 7.50m	MAR02247.044	Sediment	1.90	<1	<1	1.32	<1	<1
BH25 (ES1) 0.00m	MAR02247.045	Sediment	122	102	14.5	184	19.6	66.8
BH25 (ES2) 2.10m	MAR02247.046	Sediment	22.0	15.3	2.63	25.20	3.37	11.9
BH25 (ES3) 4.10m	MAR02247.047	Sediment	2.52	<1	<1	<1	<1	<1
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<1	<1	<1	<1	<1	<1
BH26 (ES2) 3.10m	MAR02247.049	Sediment	227	333	47.0	709	60.6	216
BH26 (ES3) 6.20m	MAR02247.050	Sediment	24.1	25.8	2.63	47.2	4.13	14.3
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<1	<1	<1	<1	<1	<1
BH27 (ES2) 3.30m	MAR02247.052	Sediment	63.6	14.4	2.85	13.5	7.86	9.21
BH27 (ES3) 6.50m	MAR02247.053	Sediment	37.2	6.66	1.34	5.98	3.63	3.50
BH29 (ES1) 0.00m	MAR02247.054	Sediment	29.3	7.33	<1	8.14	2.94	3.63
BH29 (ES2) 2.79m	MAR02247.055	Sediment	37.8	9.85	1.72	7.82	5.13	4.82
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<1	<1	<1	<1	<1	<1
BH30 (ES1) 0.00m	MAR02247.057	Sediment	14.9	7.30	<1	11.6	1.37	3.38
BH30 (ES2) 3.86m	MAR02247.058	Sediment	5.35	2.47	<1	3.17	<1	1.29
BH30 (ES3) 7.72m	MAR02247.059	Sediment	1.40	<1	<1	<1	<1	<1
Certified R	eference Material NIST		121	88	92	78	57	76
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 26 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH21 (ES1) 0.00m	MAR02247.040	Sediment	1.93	1.37	4.35	8.32	33400
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<1	<1	1.28	<1	1240
BH22 (ES1) 0.00m	MAR02247.042	Sediment	1.44	<1	2.48	5.72	13200
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<1	<1	<1	<1	1690
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<1	<1	1.34	1.16	5710
BH25 (ES1) 0.00m	MAR02247.045	Sediment	33.9	29.9	114	190	65100
BH25 (ES2) 2.10m	MAR02247.046	Sediment	4.52	4.65	17.0	25.5	63400
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<1	<1	1.33	<1	70500
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<1	<1	<1	<1	1000
BH26 (ES2) 3.10m	MAR02247.049	Sediment	55.6	77.8	465	677	86400
BH26 (ES3) 6.20m	MAR02247.050	Sediment	4.40	6.16	25.6	46.4	12300
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<1	<1	<1	<1	1630
BH27 (ES2) 3.30m	MAR02247.052	Sediment	8.18	19.9	30.9	21.0	13400
BH27 (ES3) 6.50m	MAR02247.053	Sediment	5.24	8.65	14.1	8.74	7740
BH29 (ES1) 0.00m	MAR02247.054	Sediment	4.06	4.69	14.5	10.2	13400
BH29 (ES2) 2.79m	MAR02247.055	Sediment	5.86	17.4	19.9	12.7	9250
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<1	<1	<1	<1	741
BH30 (ES1) 0.00m	MAR02247.057	Sediment	2.45	1.99	8.66	12.5	14100
BH30 (ES2) 3.86m	MAR02247.058	Sediment	1.46	<1	2.83	3.83	11200
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<1	<1	<1	<1	593
Certifi	ed Reference Material NIST		62	55	76	70	96~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 27 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.08	<0.08	<0.08	<0.08	0.10	0.08
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.08	<0.08	<0.08	0.13	0.18	0.12
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.08	<0.08	0.09	0.13	<0.08	0.10
BH10 (ES2) 1.80m	MAR02247.011	Sediment	0.29	0.30	0.43	0.63	0.54	0.56
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified	Reference Material NIST	1941b (% Recovery)	73	88	89	102	104	87
	<u> </u>	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Page 28 of 70

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.08	<0.08	0.08	<0.08	<0.08	<0.08
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES1) 2.30m	MAR02247.007	Sediment	0.08	<0.08	<0.08	<0.08	<0.08	0.20
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.08	0.15	0.15	0.25	0.12	0.13
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.08	<0.08	0.10	<0.08	<0.08	<0.08
BH10 (ES2) 1.80m	MAR02247.011	Sediment	0.09	0.37	0.51	0.49	0.37	0.55
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	81	83	102	89	105~	96
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES3) 11.87m	MAR02247.009	Sediment	0.15	0.31	0.17	0.15	0.21	0.22
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH10 (ES2) 1.80m	MAR02247.011	Sediment	0.45	0.40	0.41	0.35	0.40	0.35
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST 1	1941b (% Recovery)	108~	98	97	86	92	76
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.08	<0.08	0.09	<0.08	0.24	<0.08	<0.08
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH06 (ES3) 11.87m	MAR02247.009	Sediment	0.19	0.19	<0.08	<0.08	<0.08	<0.08	0.10
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH10 (ES2) 1.80m	MAR02247.011	Sediment	0.42	0.36	0.27	0.37	0.29	0.30	0.53
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Reference Material NIST 1941b (% Recovery)			102	104	92	88	104~	94	98
QC Blank			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302
		Limit of Detection	0.56
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.56
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.56
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.56
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.56
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.56
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.56
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.56
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.56
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.56
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.56
BH10 (ES2) 1.80m	MAR02247.011	Sediment	3.16
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.56
	Certified Reference Material NIST	1941b (% Recovery)	103
		QC Blank	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	80.0	0.08	0.08	80.0	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.08	<0.08	<0.08	0.11	0.09	<0.08
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.08	<0.08	0.09	<0.08	<0.08	<0.08
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.08	0.17	0.29	0.26	0.21	0.20
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Re	eference Material NIST	1941b (% Recovery)	84	87	88	101	107	100
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.08	0.08	0.29	<0.08	<0.08	0.23
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	83	86	105	119	107~	101
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES1) 0.00m	MAR02247.019	Sediment	0.09	<0.08	<0.08	0.12	0.19	<0.08
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Refe	erence Material NIST	1941b (% Recovery)	110~	92	88	97	99	59
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.08	<0.08	<0.08	0.12	<0.08	0.14	0.24
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified	Reference Material NIST	Г 1941b (% Recovery)	103	92	103	89	105~	92	100
	•	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302
		Limit of Detection	0.7
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.56
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.56
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.56
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.56
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.56
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.56
BH14 (ES1) 0.00m	MAR02247.019	Sediment	1.36
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.56
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.56
Ci	ertified Reference Material NIST	1941b (% Recovery)	104
		QC Blank	<0.56

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<0.08	<0.08	0.17	0.21	0.26	0.26
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.08	<0.08	<0.08	<0.08	0.10	0.08
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.08	<0.08	0.14	0.16	0.29	0.24
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST		79	84	95	103	94	95
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<0.08	0.22	0.21	0.22	0.22	0.20
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.08	<0.08	0.16	0.09	<0.08	0.20
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Re	ference Material NIST	1941b (% Recovery)	83	86	102	92	102~	99
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES1) 0.00m	MAR02247.028	Sediment	0.14	0.28	0.16	0.23	0.24	0.26
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Refe	erence Material NIST	1941b (% Recovery)	112~	97	86	101	103	70
	·	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.08	<0.08	<0.08	<0.08	0.18	<0.08	<0.08
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES1) 0.00m	MAR02247.028	Sediment	0.15	0.27	<0.08	<0.08	<0.08	<0.08	0.18
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified F	Reference Material NIST	1941b (% Recovery)	107	98	97	87	98~	94	99
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302
		Limit of Detection	0.7
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.56
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.56
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.56
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.56
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.56
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.56
BH17 (ES1) 0.00m	MAR02247.028	Sediment	1.27
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.56
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.56
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.56
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.56
BH18 (ES3) 1.20m	MAR02247.033	Sediment	0.92
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.56
	Certified Reference Material NIST	1941b (% Recovery)	104
		QC Blank	<0.56

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Page 42 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.26	0.31	0.55	0.54	0.60	0.45
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES1) 0.00m	MAR02247.045	Sediment	0.11	0.11	0.18	0.24	0.22	0.28
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES2) 3.30m	MAR02247.052	Sediment	0.11	<0.08	0.13	0.17	0.15	0.15
	Certified Reference Material NIST		77	87	91	103	92	99
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Page 43 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.10	0.51	0.61	0.41	0.43	0.60
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<0.08	<0.08	0.17	0.12	0.10	0.21
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.08	<0.08	0.10	<0.08	<0.08	0.17
	Certified Reference Material NIST		82	97	102	98	102~	104
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.62	0.67	0.47	0.50	0.50	0.50
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<0.08	<0.08	<0.08	0.12	0.12	<0.08
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST		106~	83	83	92	96	71
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

Page 45 of 70

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	80.0	0.08	0.08	0.08	0.08	0.08	80.0
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.60	0.55	0.24	0.47	0.37	0.32	0.59
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.08	<0.08	<0.08	<0.08	0.21	<0.08	<0.08
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.08	<0.08	<0.08	<0.08	0.28	<0.08	<0.08
BH25 (ES1) 0.00m	MAR02247.045	Sediment	0.12	<0.08	0.11	<0.08	<0.08	<0.08	0.14
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.08	<0.08	<0.08	<0.08	0.15	<0.08	<0.08
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH27 (ES2) 3.30m	MAR02247.052	Sediment	0.09	<0.08	<0.08	<0.08	<0.08	<0.08	0.12
Certified Re	ference Material NIST	1941b (% Recovery)	98	104	91	93	105~	98	96
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302
		Limit of Detection	0.7
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.56
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.56
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.56
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.56
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.56
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.56
BH21 (ES3) 3.00m	MAR02247.041	Sediment	3.22
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.56
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.56
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.56
BH25 (ES1) 0.00m	MAR02247.045	Sediment	1.26
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.56
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.56
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.56
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.56
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.56
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.56
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.56
	Certified Reference Material NIST	, ,,	103
		QC Blank	<0.56

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Page 47 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.08	<0.08	<0.08	0.10	<0.08	<0.08
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	83	101	90	95	103	93
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.08	<0.08	0.09	<0.08	<0.08	<0.08
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certifi	ed Reference Material NIST	1941b (% Recovery)	95	74	100	88	98~	98
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Cert	ified Reference Material NIST	1941b (% Recovery)	98~	85	93	97	96	80
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified F	Reference Material NIST	1941b (% Recovery)	84	106	106	99	98~	106	98
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302
		Limit of Detection	0.7
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.56
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.56
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.56
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.56
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.56
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.56
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.56
Certified R	Reference Material NIST	1941b (% Recovery)	103
		QC Blank	<0.1

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	НСВ	DDE	DDT	DDD
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	0.40
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.1	0.12	0.36	<0.1	<0.1	<0.1	0.67	<0.1
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.1	<0.1	<0.1	0.16	<0.1	0.11	0.39	0.36
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	0.17	<0.1	0.31
BH10 (ES2) 1.80m	MAR02247.011	Sediment	<0.1	0.30	0.15	0.85	<0.1	0.59	0.51	1.37
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified Re	eference Material NIST	1941b (% Recovery)	90~	91~	89~	89~	103	84	63	77
	<u> </u>	QC Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	НСВ	DDE	DDT	DDD
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	0.24	<0.1	0.38
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	0.16
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified F	Reference Material NIST	1941b (% Recovery)	89~	99~	90~	102~	120	81	58	92
		QC Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	нсв	DDE	DDT	DDD
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<0.1	0.12	<0.1	0.12	<0.1	0.27	0.24	0.55
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.26
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.1	<0.1	<0.1	0.13	<0.1	<0.1	<0.1	0.12
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified Re	ference Material NIST	1941b (% Recovery)	98~	91~	94~	102~	123	98	77	102
		QC Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Page 55 of 70

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	нсв	DDE	DDT	DDD
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH21 (ES3) 3.00m	MAR02247.041	Sediment	0.10	0.32	0.14	0.62	<0.1	0.45	0.31	0.79
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	0.33	<0.1	0.93
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.1	<0.1	<0.1	0.41	<0.1	0.36	<0.1	0.60
Certified Re	eference Material NIST		91~	70~	72~	93~	116	85	81	90
		QC Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	НСВ	DDE	DDT	DDD
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.1	<0.1	<0.1	0.27	<0.1	0.13	<0.1	0.24
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified F	Reference Material NIST	Г 1941b (% Recovery)	94~	104~	98~	94~	104	78	70	62
		QC Blank	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99	PBDE 85
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.05	<0.05	0.06	<0.05	<0.05	0.13	<0.05
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.05	<0.05	0.07	<0.05	<0.05	0.11	<0.05
BH10 (ES2) 1.80m	MAR02247.011	Sediment	<0.05	<0.05	0.19	0.06	<0.05	0.37	<0.05
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.05	<0.05	0.10	<0.05	<0.05	0.18	<0.05
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	<0.05
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH13A (ES3) 4.80m	BH13A (ES3) 4.80m MAR02247.018 Sediment			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Certified R	eference Material Qua	simeme SED56 (% Recovery)	109~	101	96	87~	122	106	87~
	·	QC Blank	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH03 (ES1) 0.50m	MAR02247.001	Sediment	<0.05	<0.05	<0.05	<0.05	14.0
BH03 (ES2) 1.90m	MAR02247.002	Sediment	<0.05	<0.05	<0.05	<0.05	0.13
BH03 (ES3) 3.70m	MAR02247.003	Sediment	<0.05	<0.05	<0.05	<0.05	<0.1
BH05 (ES1) 0.00m	MAR02247.004	Sediment	<0.05	<0.05	<0.05	<0.05	0.11
BH05 (ES2) 6.00m	MAR02247.005	Sediment	<0.05	<0.05	<0.05	<0.05	0.16
BH05 (ES3) 12.00m	MAR02247.006	Sediment	<0.05	<0.05	<0.05	<0.05	<0.1
BH06 (ES1) 2.30m	MAR02247.007	Sediment	<0.05	<0.05	<0.05	<0.05	0.17
BH06 (ES2) 5.94m	MAR02247.008	Sediment	<0.05	<0.05	<0.05	<0.05	0.12
BH06 (ES3) 11.87m	MAR02247.009	Sediment	<0.05	<0.05	<0.05	<0.05	<0.1
BH10 (ES1) 0.00m	MAR02247.010	Sediment	<0.05	<0.05	<0.05	<0.05	1.82
BH10 (ES2) 1.80m	MAR02247.011	Sediment	<0.05	0.06	<0.05	<0.05	1.73
BH10 (ES3) 3.50m	MAR02247.012	Sediment	<0.05	<0.05	<0.05	<0.05	0.25
BH12 (ES1) 0.00m	MAR02247.013	Sediment	<0.05	<0.05	<0.05	<0.05	1.52
BH12 (ES2) 1.50m	MAR02247.014	Sediment	<0.05	<0.05	<0.05	<0.05	0.16
BH12 (ES3) 3.00m	MAR02247.015	Sediment	<0.05	<0.05	<0.05	<0.05	0.24
BH13A (ES1) 0.00m	MAR02247.016	Sediment	<0.05	<0.05	<0.05	<0.05	1.76
BH13A (ES2) 2.40m	MAR02247.017	Sediment	<0.05	<0.05	<0.05	<0.05	1.12
BH13A (ES3) 4.80m	MAR02247.018	Sediment	<0.05	<0.05	<0.05	<0.05	<0.1
Cert	tified Reference Material Qua	simeme SED56 (% Recovery)	74~	124	82~	81	74
		QC Blank	<0.05	< 0.05	<0.05	< 0.05	<0.1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS	N*	N*	N*	UKAS	UKAS	UKAS
Client Reference: S	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99	PBDE 85
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Certified Refere	rence Material Quasi	imeme SED56 (% Recovery)	82~	81	70	69~	99	75	65~
		QC Blank	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

^{*} See Report Notes

Page 61 of 70

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.1
		Accreditation	N*	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH14 (ES1) 0.00m	MAR02247.019	Sediment	<0.05	<0.05	<0.05	<0.05	0.39
BH14 (ES2) 2.10m	MAR02247.020	Sediment	<0.05	<0.05	<0.05	<0.05	0.47
BH14 (ES3) 4.20m	MAR02247.021	Sediment	<0.05	<0.05	<0.05	<0.05	0.39
BH15 (ES1) 0.00m	MAR02247.022	Sediment	<0.05	<0.05	<0.05	<0.05	0.49
BH15 (ES2) 1.40m	MAR02247.023	Sediment	<0.05	<0.05	<0.05	<0.05	0.39
BH15 (ES3) 2.80m	MAR02247.024	Sediment	<0.05	<0.05	<0.05	<0.05	0.84
BH16 (ES1) 0.00m	MAR02247.025	Sediment	<0.05	<0.05	<0.05	<0.05	0.51
BH16 (ES2) 3.80m	MAR02247.026	Sediment	<0.05	<0.05	<0.05	<0.05	0.51
BH16 (ES3) 7.60m	MAR02247.027	Sediment	<0.05	<0.05	<0.05	<0.05	0.31
	Certified Reference Material Quas	simeme SED56 (% Recovery)	64~	84	73~	72	51
		QC Blank	< 0.05	< 0.05	< 0.05	< 0.05	<0.1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99	PBDE 85
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.05	<0.05	0.12	<0.05	<0.05	0.17	<0.05
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<0.05	<0.05	0.24	0.08	<0.05	0.37	<0.05
Certified Re	ference Material Qua	simeme SED56 (% Recovery)	113~	108	114	106~	126	107	103~
		QC Blank	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05

^{*} See Report Notes

Page 63 of 70

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH17 (ES1) 0.00m	MAR02247.028	Sediment	<0.05	<0.05	<0.05	<0.05	1.11
BH17 (ES2) 0.90m	MAR02247.029	Sediment	<0.05	<0.05	<0.05	<0.05	0.56
BH17 (ES3) 1.90m	MAR02247.030	Sediment	<0.05	<0.05	<0.05	<0.05	0.39
BH18 (ES1) 0.00m	MAR02247.031	Sediment	<0.05	<0.05	<0.05	<0.05	2.37
BH18 (ES2) 0.60m	MAR02247.032	Sediment	<0.05	<0.05	<0.05	<0.05	0.28
BH18 (ES3) 1.20m	MAR02247.033	Sediment	<0.05	<0.05	<0.05	<0.05	0.20
BH19 (ES1) 0.00m	MAR02247.034	Sediment	<0.05	<0.05	<0.05	<0.05	0.36
BH19 (ES2) 1.10m	MAR02247.035	Sediment	<0.05	<0.05	<0.05	<0.05	0.24
BH19 (ES3) 2.10m	MAR02247.036	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH20 (ES1) 0.00m	MAR02247.037	Sediment	<0.05	<0.05	<0.05	<0.05	0.30
BH20 (ES2) 1.70m	MAR02247.038	Sediment	<0.05	<0.05	<0.05	<0.05	0.25
BH20 (ES3) 3.30m	MAR02247.039	Sediment	<0.05	<0.05	<0.05	<0.05	0.32
BH21 (ES1) 0.00m	MAR02247.040	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH21 (ES3) 3.00m	MAR02247.041	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH22 (ES1) 0.00m	MAR02247.042	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH22 (ES2) 3.80m	MAR02247.043	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH22 (ES3) 7.50m	MAR02247.044	Sediment	<0.05	<0.05	<0.05	<0.05	<0.2
BH25 (ES1) 0.00m	MAR02247.045	Sediment	<0.05	0.08	<0.05	<0.05	3.31
Certified F	Reference Material Qua	simeme SED56 (% Recovery)	95~	128	104~	88	92
		QC Blank	<0.05	< 0.05	<0.05	< 0.05	<0.2*

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99	PBDE 85
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.05	<0.05	0.11	<0.05	<0.05	0.15	<0.05
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	0.02	<0.05
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Certified Ref	ference Material Quas	simeme SED56 (% Recovery)	126~	108	135	107~	169	144	97~
		QC Blank	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Page 64 of 70

^{*} See Report Notes

Page 65 of 70

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH25 (ES2) 2.10m	MAR02247.046	Sediment	<0.05	<0.05	<0.05	<0.05	0.29
BH25 (ES3) 4.10m	MAR02247.047	Sediment	<0.05	<0.05	<0.05	<0.05	0.39
BH26 (ES1) 0.00m	MAR02247.048	Sediment	<0.05	<0.05	<0.05	<0.05	1.40
BH26 (ES2) 3.10m	MAR02247.049	Sediment	<0.05	<0.05	<0.05	<0.05	0.19
BH26 (ES3) 6.20m	MAR02247.050	Sediment	<0.05	<0.05	<0.05	<0.05	7.77
BH27 (ES1) 0.00m	MAR02247.051	Sediment	<0.05	<0.05	<0.05	<0.05	0.30
BH27 (ES2) 3.30m	MAR02247.052	Sediment	<0.05	<0.05	<0.05	<0.05	1.92
BH27 (ES3) 6.50m	MAR02247.053	Sediment	<0.05	<0.05	<0.05	<0.05	0.33
BH29 (ES1) 0.00m	MAR02247.054	Sediment	<0.05	<0.05	<0.05	<0.05	0.42
	Certified Reference Material Quasimeme SED56 (% Recovery)				105~	104	81
		QC Blank	<0.05	<0.05	<0.05	<0.05	<0.1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS						
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99	PBDE 85
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Certified Reference Material Quasi	meme SED56 (% Recovery)	108~	112	119	100~	135	108	93~
		QC Blank	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH29 (ES2) 2.79m	MAR02247.055	Sediment	<0.05	<0.05	<0.05	<0.05	<0.3
BH29 (ES3) 5.59m	MAR02247.056	Sediment	<0.05	<0.05	<0.05	<0.05	0.54
BH30 (ES1) 0.00m	MAR02247.057	Sediment	<0.05	<0.05	<0.05	<0.05	0.37
BH30 (ES2) 3.86m	MAR02247.058	Sediment	<0.05	<0.05	<0.05	<0.05	<0.3
BH30 (ES3) 7.72m	MAR02247.059	Sediment	<0.05	<0.05	<0.05	<0.05	0.36
	Certified Reference Material Qua	simeme SED56 (% Recovery)	89~	116	96~	99	96
		QC Blank	<0.05	< 0.05	< 0.05	< 0.05	<0.3*

^{*} See Report Notes

Page 67 of 70 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
WSLM59*	MAR02247.001-059	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
ICPMSS*	MAR02247.001-059	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB 01*	MAR02247.001-059	Analysis was conducted by an approved subcontracted laboratory.
SUB 02*	MAR02247.001-059	Analysis was conducted by an approved subcontracted laboratory.
SUB_03*	MAR02247.001-059	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR02247.001, 006, 010-011, .016, .018, .026, .028, 038-40, .043-44, .048, .051, .055	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR02247.007, .010-011	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR02247.001-009	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (FLUORENE). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02247.010-024	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (BBF). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02247.040-059	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (ACENAPTH, FLUORENE). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02247.001-059	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02247.001-059	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
ASC/SOP/308	MAR02247.019-027	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PBDE 28, 47, 66, 154). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/308	MAR02247.028-045, .055-059	The Primary process control blank data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with BDE209 falling above acceptable reporting limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy the report limit for this compound has been raised and samples have been blank subtracted.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02247

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Total Organic Carbon (TOC)	Air dried and ground	Carbonate removal and sulphurous acid/combustion at 1600°C/NDIR.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
Organochlorine Pesticides (OCPs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
Brominated Flame Retardants (PBDEs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

	Analyte Definitions										
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name						
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content						
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane						
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane						
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane						
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin						
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene						
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane						
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene						
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane						
C1N	C1-naphthalenes	PHENANT	Phenanthrene								
C1PHEN	C1-phenanthrene	PYRENE	Pyrene								

Page 70 of 70 ASCF011z_1.0_03APR23

Page 1 of 7

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI - Radiological Testing

Date Sampled: 07-18-Mar-24

Date Samples Received: 03-Apr-24

Test Report Date: 03-May-24

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

		Units	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Gross Alpha as Pu- 242	Gross Beta as Cs- 137	Be-7	K-40	Co-60	I-125	I-129
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	400 ± 160	890 ± 200	<16	418 ± 44	<1.7	<43	<19
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	340 ± 130	690 ± 170	<13	419 ± 39	<1.1	<31	<13
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	360 ± 140	730 ± 170	<16	437 ± 47	<1.5	<37	<15
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	210 ± 120	590 ± 150	<16	327 ± 38	<1.7	<25	<11
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<200	660 ± 160	<16	295 ± 34	<1.4	<40	<18
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	310 ± 130	870 ± 200	<14	527 ± 47	<1.1	<33	<13
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<160	420 ± 130	<12	247 ± 30	<1.2	<33	<14
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	550 ± 180	1010 ± 230	<17	546 ± 59	<2.0	<26	<12
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<210	620 ± 150	<16	317 ± 35	<1.5	<42	<18
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<170	440 ± 120	<9.8	297 ± 31	<0.86	<26	<11
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<200	500 ± 130	<13	303 ± 35	<1.2	<33	<14
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<140	410 ± 120	<13	184 ± 29	<1.5	<21	<9.6
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	310 ± 150	800 ± 190	<18	395 ± 45	<1.8	<43	<19
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<150	320 ± 110	<9.8	223 ± 23	<0.78	<25	<11
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	270 ± 130	590 ± 160	<13	290 ± 33	<1.3	<34	<14
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	290 ± 150	770 ± 180	<17	466 ± 50	<1.9	<25	<11
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	210 ± 120	430 ± 120	<15	239 ± 31	<1.4	<40	<17
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	210 ± 140	680 ± 170	<14	312 ± 34	<1.3	<25	<12
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	250 ± 120	560 ± 140	<15	347 ± 39	<1.3	<37	<14
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	370 ± 160	800 ± 180	<18	376 ± 44	<1.8	<27	<12

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	N	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Cs-134	Cs-137	TI-208	Pb-210	Bi-212	Pb-212	Bi-214
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	<1.6	7.7 ± 1.5	5.8 ± 1.4	<29	<19	15.4 ± 2.4	13.7 ± 3.0
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	<1.1	9.7 ± 1.3	6.6 ± 1.1	<19	24.3 ± 9.3	21.0 ± 2.5	16.0 ± 2.3
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	<1.5	15.2 ± 1.9	5.7 ± 1.2	<24	<17	21.7 ± 2.6	14.3 ± 2.5
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	<1.6	30.3 ± 3.0	4.5 ± 1.2	<18	<17	12.4 ± 1.8	13.0 ± 2.6
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<1.3	14.4 ± 1.9	4.1 ± 1.1	<26	<16	9.3 ± 1.9	9.8 ± 2.4
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	<1.2	4.3 ± 1.1	7.4 ± 1.2	<20	28.6 ± 9.8	23.6 ± 2.6	17.3 ± 2.3
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<1.2	11.4 ± 1.6	2.35 ± 0.84	<20	<14	7.9 ± 1.6	8.3 ± 1.9
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	<1.9	10.7 ± 1.7	8.9 ± 1.7	<20	<23	29.1 ± 3.1	19.9 ± 3.5
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<1.6	10.4 ± 1.6	5.9 ± 1.2	<28	<18	16.3 ± 2.4	10.7 ± 2.5
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<0.90	13.5 ± 1.5	2.51 ± 0.67	<16	<11	8.7 ± 1.4	7.2 ± 1.6
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<1.3	8.2 ± 1.3	4.10 ± 0.97	<22	<15	12.3 ± 1.8	10.5 ± 2.1
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<1.4	8.4 ± 1.4	<1.3	<16	<15	4.9 ± 1.3	<2.6
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	<1.8	9.1 ± 1.6	6.0 ± 1.4	<29	<21	16.3 ± 2.4	12.2 ± 2.9
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<0.85	8.1 ± 1.1	2.19 ± 0.68	<15	<10	6.0 ± 1.2	5.0 ± 1.4
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	<1.3	9.1 ± 1.4	4.8 ± 1.0	<22	<15	15.5 ± 1.9	12.1 ± 2.3
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	<1.8	5.6 ± 1.4	5.8 ± 1.4	<19	<21	17.7 ± 2.2	16.9 ± 3.0
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	<1.5	7.3 ± 1.4	4.4 ± 1.2	<27	<18	13.4 ± 2.2	10.2 ± 2.4
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	<1.2	39.2 ± 3.6	4.9 ± 1.1	<19	<14	15.7 ± 2.1	12.9 ± 2.2
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	<1.4	7.2 ± 1.2	4.2 ± 1.0	<22	<15	15.1 ± 2.1	11.5 ± 2.4
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	<1.8	5.5 ± 1.3	7.5 ± 1.4	<19	<20	20.3 ± 2.5	17.3 ± 3.1

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	N	UKAS	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Pb-214	Ra-224	Ra-226 *	Ac-228	Ra-228 *	Th-228 *	Pa-234m
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	14.6 ± 2.6	<41	<28	20.7 ± 3.9	20.7 ± 3.9	<41	<180
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	16.4 ± 2.0	<27	<20	20.8 ± 3.1	20.8 ± 3.1	<27	<110
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	17.2 ± 2.2	<20	<21	21.0 ± 3.6	21.0 ± 3.6	<20	<150
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	12.8 ± 1.9	<18	<19	12.0 ± 3.4	12.0 ± 3.4	<18	<160
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	10.6 ± 2.4	<34	<25	15.1 ± 3.7	15.1 ± 3.7	<34	<150
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	19.4 ± 2.2	<28	<21	23.3 ± 3.3	23.3 ± 3.3	<28	<120
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	9.0 ± 1.7	<24	<18	<4.9	<4.9	<24	<120
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	22.1 ± 2.7	<22	<22	29.5 ± 4.7	29.5 ± 4.7	<22	<210
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	12.2 ± 2.2	<39	<26	19.0 ± 4.8	19.0 ± 4.8	<39	<180
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	8.4 ± 1.4	<20	<17	9.4 ± 2.2	9.4 ± 2.2	<20	<91
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	11.5 ± 1.9	<25	<18	12.1 ± 3.0	12.1 ± 3.0	<25	<130
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	6.1 ± 1.5	<20	<17	<5.7	<5.7	<20	<140
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	13.9 ± 2.4	<41	<29	17.1 ± 4.1	17.1 ± 4.1	<41	<190
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	6.3 ± 1.2	<20	<16	7.0 ± 2.5	7.0 ± 2.5	<20	<86
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	14.6 ± 1.9	<18	<18	15.0 ± 3.3	15.0 ± 3.3	<18	<130
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	17.4 ± 2.3	<20	<20	20.5 ± 3.9	20.5 ± 3.9	<20	<190
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	10.6 ± 2.4	<36	<25	13.9 ± 3.4	13.9 ± 3.4	<36	<170
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	13.8 ± 1.9	<17	<18	15.6 ± 2.9	15.6 ± 2.9	<17	<120
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	14.3 ± 2.0	<26	<19	13.5 ± 3.3	13.5 ± 3.3	<26	<140
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	19.7 ± 2.5	<28	<20	20.7 ± 4.1	20.7 ± 4.1	<28	<180

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Th-234	U-235	Am-241
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	<19	<5.8	<2.2
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	<19	<5.2	<1.8
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	<22	<5.3	<2.5
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	<19	<4.4	<2.0
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<27	<5.6	<1.8
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	<20	<5.3	<2.0
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<18	<4.4	<2.6
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	<22	<5.3	<1.6
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<28	<6.1	<1.9
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<16	<4.2	<1.5
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<19	<4.7	<2.8
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<16	<3.8	<1.5
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	<30	<6.4	<2.0
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<15	<4.0	<1.8
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	<20	<4.7	<2.5
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	<20	<4.8	<1.9
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	<27	<5.8	<2.0
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	<19	<4.4	<1.9
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	<20	<4.9	<2.0
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	<20	<4.8	<1.9

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Didcot*	MAR02253.001-020	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SOCOTEC Didcot*	MAR02253.001-020	Analyses and/or samples marked with an asterisk are not covered under UKAS schedule 1252.
SOCOTEC Didcot*	MAR02253.001-020	Results are presented as Bq/kg of dried and homogenised sample and are decay corrected to the sampling date.
SOCOTEC Didcot*		For results below the Limit of Detection, the LoD is rounded up to 2 significant figures. Results above the LoD are reported with expanded (2\significant figures) uncertainties based on a total uncertainty budget. Uncertainties are rounded to 2 significant figures; results are rounded to the same precision.
SOCOTEC Didcot*	MAR02253.001-020	Detector calibrations are based upon homogeneous standard solutions. For quantification purposes the sample is assumed to be homogeneous.
SOCOTEC Didcot*		226Ra has only one gamma ray at 186 keV and the major gamma ray from 235U also occurs at 186 keV. 235U can be measured by the lower abundance gamma ray at 144 keV and if a positive result for 235U is reported, the 226Ra result will be unreliable and overestimated. However even if 235U is below the LoD there may still be a contribution to the 226Ra from 235U and the 226Ra result may be unreliable and overestimated. If an accurate result for 226Ra is required, this is better obtained by radiochemical analysis.
SOCOTEC Didcot*	MAR02253.001-020	228Ra and 228Th are derived from their daughter radionuclides (228Ac and 224Ra, respectively), assuming secular equilibrium.

DEVIATING SAMPLE STATEMENT

Deviation Code	Devation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

Method	Sample and Fraction Size	Method Summary
NORM	Air dried	High resolution gamma ray spectrometry
Gross Alpha/Beta	Air dried	Proportional Counting

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI

Date Sampled: 28-Mar-04-Apr-24

Date Samples Received: 12-Apr-24

Test Report Date: 13-May-24

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units	%	%	%	%	%	Mg/m3
		Method No	ASC/SOP/303	ASC/SOP/303	SUB_01*	SUB_01*	SUB_01*	SUB_03*
		Limit of Detection	0.2	0.2	N/A	N/A	N/A	N/A
		Accreditation	UKAS	UKAS	N	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	Total Moisture @ 120°C	Total Solids	Gravel (>2mm)	Sand (63-2000 µm)	Silt (<63 µm)	Particle Density
BH01 (ES1) 0.40m	MAR02270.001	Sediment	16.1	83.9	0.00	87.03	12.97	2.67
BH01 (ES2) 4.00m	MAR02270.002	Sediment	15.5	84.5	2.00	37.77	60.22	2.74
BH01 (ES3) 7.90m	MAR02270.003	Sediment	8.76	91.2	10.79	34.59	54.61	2.67
BH02 (ES1) 0.40m	MAR02270.004	Sediment	17.2	82.8	0.00	89.72	10.28	2.66
BH02 (ES2) 5.40m	MAR02270.005	Sediment	15.9	84.1	0.00	74.46	25.54	2.67
BH02 (ES3) 10.80m	MAR02270.006	Sediment	20.4	79.6	0.40	81.74	17.85	2.69
BH04 (ES1) 0.00m	MAR02270.007	Sediment	15.9	84.1	0.00	91.64	8.36	2.66
BH04 (ES2) 6.10m	MAR02270.008	Sediment	18.7	81.3	6.59	88.76	4.64	2.67
BH04 (ES3) 12.20m	MAR02270.009	Sediment	12.1	87.9	17.55	30.72	51.73	2.73
BH21A (ES3) 5.60m	MAR02270.010	Sediment	21.8	78.2	2.51	89.77	7.72	2.65
BH23 (ES1) 0.40m	MAR02270.011	Sediment	23.4	76.6	0.00	94.85	5.15	2.66
BH23 (ES2) 4.00m	MAR02270.012	Sediment	19.5	80.5	0.00	28.62	71.38	2.75
BH23 (ES3) 7.90m	MAR02270.013	Sediment	12.9	87.1	1.27	55.81	42.92	2.68
BH24 (ES1) 0.00m	MAR02270.014	Sediment	24.9	75.1	0.28	95.50	4.22	2.65
BH24 (ES2) 4.70m	MAR02270.015	Sediment	19.6	80.4	0.24	16.25	83.51	2.71
BH24 (ES3) 9.40m	MAR02270.016	Sediment	8.93	91.1	17.70	19.10	63.20	2.74
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	21.4	78.6	0.21	92.15	7.64	2.67
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	16.5	83.5	0.18	83.67	16.15	2.67
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	21.5	78.5	2.37	12.81	84.82	2.74
	Reference Material (% Recovery)			N/A	N/A	N/A	N/A	N/A
		QC Blank	N/A	N/A	N/A	N/A	N/A	N/A

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units	% M/M
		Method No	WSLM59*
		Limit of Detection	0.02
		Accreditation	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	тос
BH01 (ES1) 0.40m	MAR02270.001	Sediment	0.33
BH01 (ES2) 4.00m	MAR02270.002	Sediment	0.11
BH01 (ES3) 7.90m	MAR02270.003	Sediment	0.11
BH02 (ES1) 0.40m	MAR02270.004	Sediment	0.14
BH02 (ES2) 5.40m	MAR02270.005	Sediment	0.16
BH02 (ES3) 10.80m	MAR02270.006	Sediment	0.06
BH04 (ES1) 0.00m	MAR02270.007	Sediment	0.10
BH04 (ES2) 6.10m	MAR02270.008	Sediment	0.04
BH04 (ES3) 12.20m	MAR02270.009	Sediment	0.11
BH21A (ES3) 5.60m	MAR02270.010	Sediment	0.09
BH23 (ES1) 0.40m	MAR02270.011	Sediment	0.07
BH23 (ES2) 4.00m	MAR02270.012	Sediment	0.11
BH23 (ES3) 7.90m	MAR02270.013	Sediment	0.10
BH24 (ES1) 0.00m	MAR02270.014	Sediment	0.12
BH24 (ES2) 4.70m	MAR02270.015	Sediment	0.11
BH24 (ES3) 9.40m	MAR02270.016	Sediment	0.13
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	0.16
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	0.14
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	0.12
	Reference N	Material (% Recovery)	100
		QC Blank	<0.02

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units				mg/Kg (D	ry Weight)			
		Method No				ICPN	MSS*			
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5	2
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Zinc
BH01 (ES1) 0.40m	MAR02270.001	Sediment	2.6	<0.04	7.8	6.2	0.06	7.5	4.7	24.6
BH01 (ES2) 4.00m	MAR02270.002	Sediment	3.2	0.05	13.4	16.4	0.03	17.5	6.3	42.3
BH01 (ES3) 7.90m	MAR02270.003	Sediment	2.1	<0.04	16.1	14.8	0.03	15.7	5.5	34.0
BH02 (ES1) 0.40m	MAR02270.004	Sediment	2.0	<0.04	9.1	5.1	0.02	9.3	2.4	16.4
BH02 (ES2) 5.40m	MAR02270.005	Sediment	3.7	<0.04	12.1	6.3	0.02	12.6	4.7	24.2
BH02 (ES3) 10.80m	MAR02270.006	Sediment	2.0	<0.04	5.2	15.1	0.03	8.6	7.1	20.4
BH04 (ES1) 0.00m	MAR02270.007	Sediment	1.2	<0.04	6.3	2.6	0.06	5.2	2.7	15.2
BH04 (ES2) 6.10m	MAR02270.008	Sediment	1.2	0.06	7.4	7.8	0.06	10.6	2.7	30.4
BH04 (ES3) 12.20m	MAR02270.009	Sediment	2.9	0.05	12.7	10.6	0.04	14.6	4.5	56.9
BH21A (ES3) 5.60m	MAR02270.010	Sediment	2.0	<0.04	6.1	2.6	0.03	5.7	2.7	17.0
BH23 (ES1) 0.40m	MAR02270.011	Sediment	1.6	<0.04	5.2	10.2	0.03	5.1	1.6	16.0
BH23 (ES2) 4.00m	MAR02270.012	Sediment	3.7	0.05	17.0	21.0	0.03	21.5	6.6	52.6
BH23 (ES3) 7.90m	MAR02270.013	Sediment	3.8	<0.04	11.6	17.2	0.03	15.3	8.2	37.9
BH24 (ES1) 0.00m	MAR02270.014	Sediment	1.8	<0.04	7.7	10.1	0.08	6.3	5.2	21.4
BH24 (ES2) 4.70m	MAR02270.015	Sediment	4.5	0.10	18.3	22.4	0.06	23.5	7.3	56.2
BH24 (ES3) 9.40m	MAR02270.016	Sediment	4.0	0.23	18.9	21.6	0.05	22.9	6.7	52.0
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	1.8	<0.04	6.7	7.1	0.06	6.4	2.4	29.4
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	2.8	<0.04	10.4	6.7	0.03	9.4	2.7	20.5
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	5.6	0.10	21.3	25.2	0.07	27.6	8.0	62.6
Certified	Certified Reference Material SETOC 768 (% Recove				103	117	103	101	101	103
		QC Blank	<0.5	< 0.04	<0.5	<0.5	<0.01	<0.5	<0.5	<2

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units	μg/Kg (Dr	y Weight)
		Method No	ASC/S0	OP/301
		Limit of Detection	1	1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Dibutyltin (DBT)	Tributyltin (TBT)
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<1	<1
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<1	<1
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<1	<1
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<1	<1
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<1	<1
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<1	<1
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<1	<1
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<1	<1
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<1	<1
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<1	<1
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<1	<1
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<5	<5
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<1	<1
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<5	<5
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<5	<5
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<5	<5
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<5	<5
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<5	<5
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<5	<5
Certified	Reference Material Bo		123	105
		QC Blank	<1	<1

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	ВАР	BBF
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<1	<1	<1	<1	<1	<1
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<1	<1	<1	<1	<1	<1
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<1	<1	<1	<1	<1	2.30
BH02 (ES1) 0.40m	MAR02270.004	Sediment	1.29	<1	1.49	2.92	3.29	2.82
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<1	<1	1.43	3.18	4.76	5.00
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<1	<1	<1	<1	<1	<1
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<1	<1	1.53	4.62	5.50	4.72
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<1	<1	<1	<1	<1	<1
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<1	<1	<1	<1	<1	1.99
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<1	<1	<1	<1	1.44	1.58
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<1	<1	<1	<1	<1	1.24
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<1	<1	<1	<1	<1	1.40
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<1	<1	<1	<1	1.40	2.28
BH24 (ES1) 0.00m	MAR02270.014	Sediment	5.27	2.04	9.12	24.4	27.2	22.3
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<1	<1	<1	1.85	2.38	4.30
Certified Ref	erence Material NIST	1941b (% Recovery)	96	106	66	64	60	84
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

 \sim Indicates result is for an In-house Reference Material as no Certified Reference

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Page 6 of 35 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<1	1.23	<1	6.11	3.40	3.86
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<1	1.60	<1	1.92	1.81	1.97
BH01 (ES3) 7.90m	MAR02270.003	Sediment	1.68	2.40	1.10	2.31	2.32	2.10
BH02 (ES1) 0.40m	MAR02270.004	Sediment	3.42	4.87	2.38	7.56	14.5	12.1
BH02 (ES2) 5.40m	MAR02270.005	Sediment	5.46	9.29	2.18	15.0	20.4	21.1
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<1	<1	<1	<1	<1	4.86
BH04 (ES1) 0.00m	MAR02270.007	Sediment	3.46	3.73	5.03	4.32	6.23	5.22
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<1	<1	<1	1.68	<1	<1
BH04 (ES3) 12.20m	MAR02270.009	Sediment	1.87	2.77	<1	2.69	3.00	3.16
BH21A (ES3) 5.60m	MAR02270.010	Sediment	1.50	2.44	<1	6.14	5.18	6.98
BH23 (ES1) 0.40m	MAR02270.011	Sediment	1.13	1.40	<1	3.52	2.96	8.55
BH23 (ES2) 4.00m	MAR02270.012	Sediment	1.24	1.84	<1	2.97	2.68	4.25
BH23 (ES3) 7.90m	MAR02270.013	Sediment	2.23	3.57	1.01	5.07	4.64	6.82
BH24 (ES1) 0.00m	MAR02270.014	Sediment	16.8	18.1	25.2	13.1	19.7	18.9
BH24 (ES2) 4.70m	MAR02270.015	Sediment	3.75	6.36	2.34	9.68	8.20	11.7
Certified Re	eference Material NIST		75	76	88	75	84	109
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are $\,$

reported as percentage trueness, not recovery.

*See report notes

Page 7 of 35 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH01 (ES1) 0.40m	MAR02270.001	Sediment	3.95	1.39	<1	1.86	<1	<1
BH01 (ES2) 4.00m	MAR02270.002	Sediment	2.15	<1	<1	<1	<1	<1
BH01 (ES3) 7.90m	MAR02270.003	Sediment	2.27	1.65	<1	2.24	<1	<1
BH02 (ES1) 0.40m	MAR02270.004	Sediment	15.3	3.66	<1	4.44	1.31	1.58
BH02 (ES2) 5.40m	MAR02270.005	Sediment	28.5	4.98	<1	4.39	2.61	2.30
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<1	<1	<1	<1	<1	<1
BH04 (ES1) 0.00m	MAR02270.007	Sediment	5.80	5.52	<1	8.37	<1	2.93
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<1	<1	<1	1.28	<1	<1
BH04 (ES3) 12.20m	MAR02270.009	Sediment	3.22	1.69	<1	2.30	<1	<1
BH21A (ES3) 5.60m	MAR02270.010	Sediment	6.86	1.42	<1	<1	<1	<1
BH23 (ES1) 0.40m	MAR02270.011	Sediment	3.64	<1	<1	1.65	<1	<1
BH23 (ES2) 4.00m	MAR02270.012	Sediment	3.31	<1	<1	1.30	<1	<1
BH23 (ES3) 7.90m	MAR02270.013	Sediment	5.74	2.10	<1	2.17	<1	<1
BH24 (ES1) 0.00m	MAR02270.014	Sediment	21.0	26.1	2.30	48.7	5.59	16.0
BH24 (ES2) 4.70m	MAR02270.015	Sediment	12.6	3.37	<1	3.88	1.76	1.73
Certified Re	eference Material NIST	1941b (% Recovery)	121	85	118	79	51	70
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

*See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH01 (ES1) 0.40m	MAR02270.001	Sediment	2.29	<1	3.66	2.05	5970
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<1	<1	1.44	<1	1910
BH01 (ES3) 7.90m	MAR02270.003	Sediment	1.18	<1	2.52	1.84	1060
BH02 (ES1) 0.40m	MAR02270.004	Sediment	1.93	2.23	8.90	5.93	5240
BH02 (ES2) 5.40m	MAR02270.005	Sediment	3.05	5.51	11.0	6.23	7260
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<1	<1	<1	<1	452
BH04 (ES1) 0.00m	MAR02270.007	Sediment	1.88	<1	6.10	8.24	3230
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<1	<1	<1	1.35	2670
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<1	1.63	1.93	2.70	2430
BH21A (ES3) 5.60m	MAR02270.010	Sediment	2.07	<1	2.49	1.65	1880
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<1	<1	2.25	1.90	12000
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<1	<1	2.36	1.52	8360
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<1	1.32	3.54	2.71	4660
BH24 (ES1) 0.00m	MAR02270.014	Sediment	5.54	6.98	30.1	48.2	73900
BH24 (ES2) 4.70m	MAR02270.015	Sediment	1.95	2.18	6.25	4.34	5980
(Certified Reference Material NIST	, ,,	60	58	78	68	93~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference

Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are

reported as percentage trueness, not recovery.

*See report notes

Page 9 of 35 ASCF011z_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<1	<1	<1	<1	1.42	2.74
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	6.05	1.84	11.8	34.2	40.8	30.3
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<1	<1	1.36	2.89	3.74	3.59
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<1	<1	<1	1.51	2.21	3.63
Certifie	d Reference Material NIST	1941b (% Recovery)	96	115	66	66	66	82
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are avaliable.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	UKAS	UKAS	UKAS	N	N	N
Client Reference:	SOCOTEC Ref:	Matrix	BEP	BENZGHIP	BKF*	C1N	C1PHEN	C2N
BH24 (ES3) 9.40m	MAR02270.016	Sediment	2.65	4.55	1.21	4.94	5.05	5.00
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	24.3	26.9	30.2	16.6	38.0	27.7
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	4.20	7.56	1.86	13.2	16.3	16.0
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	3.15	5.53	<1	8.42	7.28	8.26
Certifie	d Reference Material NIST	1941b (% Recovery)	77	71	82	77	83	112
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 11 of 35 ASCF011z_1.0_03APR23

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	1	1	1
		Accreditation	N	UKAS	UKAS	UKAS	N*	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE*	DBENZAH	FLUORANT	FLUORENE	INDPYR
BH24 (ES3) 9.40m	MAR02270.016	Sediment	5.26	2.23	<1	2.91	<1	1.24
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	33.2	36.3	5.02	66.2	6.41	22.5
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	21.2	4.42	<1	3.62	2.04	1.94
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	9.48	2.72	<1	3.00	<1	1.45
Certifie	ed Reference Material NIST	Г 1941b (% Recovery)	117	88	109	79	56	72
		QC Blank	<1	<1	<1	<1	<1	<1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/306
		Limit of Detection	1	1	1	1	100
		Accreditation	UKAS	N	UKAS	UKAS	N
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
BH24 (ES3) 9.40m	MAR02270.016	Sediment	1.68	2.28	4.79	3.07	4740
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	9.33	9.92	43.8	66.6	687000
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	4.53	2.28	9.79	4.94	18300
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	1.96	2.04	5.60	3.61	29100
Certified	Reference Material NIST	1941b (% Recovery)	59	59	77	69	101~
		QC Blank	<1	<1	<1	<1	<100

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

As the method uses surrogate standards to correct for losses, the RM results are reported as percentage trueness, not recovery.

Page 13 of 35 ASCF011z_1.0_03APR23

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	82	105	102	118	90	105
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	97	104	117	100	125~	100
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	117~	83	99	103	100	81
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified	Reference Material NIST	1941b (% Recovery)	102	97	102	99	108~	109	108
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.56	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7	AHCH	внсн	GHCH	DIELDRIN	НСВ	DDE
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.56	<0.1	<0.1	<0.1	0.12	<0.1	<0.1
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified	Reference Material NIST	Г 1941b (% Recovery)	100	97~	96~	99~	112~	136	109
		QC Blank	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	DDT	DDD
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.1	<0.1
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.1	<0.1
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.1	<0.1
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.1	<0.1
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.1	<0.1
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.1	<0.1
Certified Re	eference Material NIST	1941b (% Recovery)	139	100
		QC Blank	<0.1	<0.1

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	0.48	0.57	0.84	1.05	0.75	0.82
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	75	95	100	121	98	94
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	0.21	0.90	0.96	0.63	0.68	1.01
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified F	Reference Material NIST	1941b (% Recovery)	88	89	119	90	109~	92
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	0.89	0.89	0.86	0.86	0.77	0.73
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
	Certified Reference Material NIST	1941b (% Recovery)	116~	100	84	93	98	92
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	0.68	0.68	0.45	0.76	0.61	0.59	0.99
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified Refer	rence Material NIST	1941b (% Recovery)	104	90	98	102	113~	102	100
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.56	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7	AHCH	внсн	GHCH	DIELDRIN	нсв	DDE
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	5.27	0.23	0.57	0.20	1.49	0.13	0.61
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certified	Reference Material NIST	1941b (% Recovery)	115	108~	83~	82~	121~	130	96
		QC Blank	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

For full analyte name see method summaries

ASCF011z_1.0_03APR23

Page 24 of 35

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	DDT	DDD
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.1	<0.1
BH04 (ES2) 6.10m	MAR02270.008*	Sediment	0.97	1.09
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.1	<0.1
Certified R	eference Material NIST	1941b (% Recovery)	149	101
	•	QC Blank	<0.1	<0.1

For full analyte name see method summaries

Page 25 of 35 ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

^{*}See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB28	PCB52	PCB101	PCB118	PCB138	PCB153
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Ce	rtified Reference Material NIST	1941b (% Recovery)	83	99	99	104	106	95
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

ASCF011z_1.0_03APR23

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB18	PCB105	PCB110	PCB128	PCB141	PCB149
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certifie	ed Reference Material NIST	1941b (% Recovery)	91	98	104	108	127~	100
	•	QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB151	PCB156	PCB158	PCB170	PCB180	PCB183
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Cer	tified Reference Material NIST	1941b (% Recovery)	122~	100	83	97	98	77
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.08	0.08	0.08	0.08	0.08	0.08	0.08
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PCB187	PCB194	PCB31	PCB44	PCB47	PCB49	PCB66
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Certified	Certified Reference Material NIST 1941b (% Recovery)		102	100	105	101	107~	104	98
		QC Blank	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08

For full analyte name see method summaries

[~] Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.56	0.1	0.1	0.1	0.1	0.1	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	ICES7	AHCH	внсн	GHCH	DIELDRIN	НСВ	DDE
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Certific	ed Reference Material NIST	1941b (% Recovery)	98	106~	66~	68~	135~	154	109
		QC Blank	<0.56	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/302	ASC/SOP/302
		Limit of Detection	0.1	0.1
		Accreditation	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	DDT	DDD
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.1	<0.1
BH23 (ES1) 0.40m	MAR02270.011	Sediment	0.20	<0.1
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.1	<0.1
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.1	<0.1
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.1	<0.1
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.1	<0.1
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.1	<0.1
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	0.17	<0.1
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	0.37	<0.1
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	0.48	<0.1
Certifie	d Reference Material NIST	1941b (% Recovery)	116	79
		QC Blank	<0.1	<0.1

For full analyte name see method summaries

~ Indicates result is for an In-house Reference Material as no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.05
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 17	PBDE 28	PBDE 47	PBDE 66	PBDE 100	PBDE 99
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH01 (ES3) 7.90m	MAR02270.003	Sediment	<0.05	<0.05	0.06	<0.05	<0.05	<0.05
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Certified	Reference Material Quas	simeme SED56 (% Recovery)	115~	99	100	85~	108	87
		QC Blank	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)
		Method No	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308	ASC/SOP/308
		Limit of Detection	0.05	0.05	0.05	0.05	0.05	0.1
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	PBDE 85	PBDE 154	PBDE 153	PBDE 138	PBDE 183	PBDE 209
BH01 (ES1) 0.40m	MAR02270.001	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH01 (ES2) 4.00m	MAR02270.002	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH01 (ES3) 7.90m	MAR02270.003	Sediment	< 0.05	<0.05	<0.05	<0.05	<0.05	0.36
BH02 (ES1) 0.40m	MAR02270.004	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH02 (ES2) 5.40m	MAR02270.005	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH02 (ES3) 10.80m	MAR02270.006	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH04 (ES1) 0.00m	MAR02270.007	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH04 (ES2) 6.10m	MAR02270.008	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH04 (ES3) 12.20m	MAR02270.009	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH21A (ES3) 5.60m	MAR02270.010	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH23 (ES1) 0.40m	MAR02270.011	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH23 (ES2) 4.00m	MAR02270.012	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH23 (ES3) 7.90m	MAR02270.013	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH24 (ES1) 0.00m	MAR02270.014	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH24 (ES2) 4.70m	MAR02270.015	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
BH24 (ES3) 9.40m	MAR02270.016	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
GBS2-BH-SPT-11 (ES1) 0.90m	MAR02270.017	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
GBS2-BH-SPT-11 (ES2) 5.80m	MAR02270.018	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
GBS2-BH-SPT-11 (ES3) 11.60m	MAR02270.019	Sediment	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2
Certifie	d Reference Material Qua	simeme SED56 (% Recovery)	84~	79~	79~	83~	98	71
		QC Blank	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2*

^{*} See Report Notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
WSLM59*	MAR02270.001-019	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
ICPMSS*	MAR02270.001-019	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SUB_01*	MAR02270.001-019	Analysis was conducted by an approved subcontracted laboratory.
SUB_02*	MAR02270.001-019	Analysis was conducted by an approved subcontracted laboratory.
ASC/SOP/301	MAR002270.012, 014-019	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/302	MAR02270.008	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (PCB118, 110, 156, 158, 170, 180, 194). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02270.001-019	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Fluorene). These circumstances should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02270.001-019	Benzo[k]fluoranthene is known to coelute with Benzo[j]fluoranthene and these peaks can not be resolved. It is believed Benzo[j]fluoranthene is present in these samples therefore it is suggested that the Benzo[k]fluoranthene results should be taken as a Benzo[k]fluoranthene (inc. Benzo[j]fluoranthene). Benzo[j]fluoranthene is not UKAS accredited. This should be taken into consideration when utilising the data.
ASC/SOP/303/304	MAR02270.001-019	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved. It is believed Triphenylene is present in these samples therefore it is suggested that the Chrysene results should be taken as a Chrysene (inc. Triphenylene). This should be taken into consideration when utilising the data.
ASC/SOP/308	MAR02270.001-019	The Primary process control blank data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with BDE209 falling above acceptable reporting limits. The remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy the report limit for this compound has been raised and samples have been blank subtracted.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02270

Issue Version

Method	Sample and Fraction Size	Method Summary
Total Solids	Wet Sediment	Calculation (100%-Moisture Content). Moisture content determined by drying a portion of the sample at 120°C to constant weight.
Particle Size Analysis	Wet Sediment	Wet and dry sieving followed by laser diffraction analysis.
Total Organic Carbon (TOC)	Air dried and ground	Carbonate removal and sulphurous acid/combustion at 1600°C/NDIR.
Metals	Air dried and seived to <63μm	Aqua-regia extraction followed by ICP analysis.
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Total Hydrocarbon Content (THC)	Wet Sediment	Solvent extraction and clean up followed by GC-FID analysis.
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
Organochlorine Pesticides (OCPs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
Brominated Flame Retardants (PBDEs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.

		Analyte Defin	nitions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorcyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorcyclohexane
BAA	Benzo[a]anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorcyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo[b]fluoranthene	FLUORENE	Fluorene	HCB	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	DDD	p,p'-Dichlorodiphenyldichloroethane
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	DDE	p,p'-Dichlorodiphenyldichloroethylene
BKF	Benzo[k]fluoranthene	PERYLENE	Perylene	DDT	p,p'-Dichlorodiphenyltrichloroethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene		•
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI - Radiological Testing

Date Sampled: 07-18-Mar-24

Date Samples Received: 03-Apr-24

Test Report Date: 03-May-24

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

		Units	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Gross Alpha as Pu- 242	Gross Beta as Cs- 137	Be-7	K-40	Co-60	I-125	I-129
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	400 ± 160	890 ± 200	<16	418 ± 44	<1.7	<43	<19
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	340 ± 130	690 ± 170	<13	419 ± 39	<1.1	<31	<13
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	360 ± 140	730 ± 170	<16	437 ± 47	<1.5	<37	<15
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	210 ± 120	590 ± 150	<16	327 ± 38	<1.7	<25	<11
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<200	660 ± 160	<16	295 ± 34	<1.4	<40	<18
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	310 ± 130	870 ± 200	<14	527 ± 47	<1.1	<33	<13
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<160	420 ± 130	<12	247 ± 30	<1.2	<33	<14
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	550 ± 180	1010 ± 230	<17	546 ± 59	<2.0	<26	<12
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<210	620 ± 150	<16	317 ± 35	<1.5	<42	<18
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<170	440 ± 120	<9.8	297 ± 31	<0.86	<26	<11
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<200	500 ± 130	<13	303 ± 35	<1.2	<33	<14
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<140	410 ± 120	<13	184 ± 29	<1.5	<21	<9.6
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	310 ± 150	800 ± 190	<18	395 ± 45	<1.8	<43	<19
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<150	320 ± 110	<9.8	223 ± 23	<0.78	<25	<11
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	270 ± 130	590 ± 160	<13	290 ± 33	<1.3	<34	<14
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	290 ± 150	770 ± 180	<17	466 ± 50	<1.9	<25	<11
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	210 ± 120	430 ± 120	<15	239 ± 31	<1.4	<40	<17
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	210 ± 140	680 ± 170	<14	312 ± 34	<1.3	<25	<12
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	250 ± 120	560 ± 140	<15	347 ± 39	<1.3	<37	<14
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	370 ± 160	800 ± 180	<18	376 ± 44	<1.8	<27	<12

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	N	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Cs-134	Cs-137	TI-208	Pb-210	Bi-212	Pb-212	Bi-214
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	<1.6	7.7 ± 1.5	5.8 ± 1.4	<29	<19	15.4 ± 2.4	13.7 ± 3.0
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	<1.1	9.7 ± 1.3	6.6 ± 1.1	<19	24.3 ± 9.3	21.0 ± 2.5	16.0 ± 2.3
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	<1.5	15.2 ± 1.9	5.7 ± 1.2	<24	<17	21.7 ± 2.6	14.3 ± 2.5
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	<1.6	30.3 ± 3.0	4.5 ± 1.2	<18	<17	12.4 ± 1.8	13.0 ± 2.6
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<1.3	14.4 ± 1.9	4.1 ± 1.1	<26	<16	9.3 ± 1.9	9.8 ± 2.4
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	<1.2	4.3 ± 1.1	7.4 ± 1.2	<20	28.6 ± 9.8	23.6 ± 2.6	17.3 ± 2.3
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<1.2	11.4 ± 1.6	2.35 ± 0.84	<20	<14	7.9 ± 1.6	8.3 ± 1.9
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	<1.9	10.7 ± 1.7	8.9 ± 1.7	<20	<23	29.1 ± 3.1	19.9 ± 3.5
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<1.6	10.4 ± 1.6	5.9 ± 1.2	<28	<18	16.3 ± 2.4	10.7 ± 2.5
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<0.90	13.5 ± 1.5	2.51 ± 0.67	<16	<11	8.7 ± 1.4	7.2 ± 1.6
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<1.3	8.2 ± 1.3	4.10 ± 0.97	<22	<15	12.3 ± 1.8	10.5 ± 2.1
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<1.4	8.4 ± 1.4	<1.3	<16	<15	4.9 ± 1.3	<2.6
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	<1.8	9.1 ± 1.6	6.0 ± 1.4	<29	<21	16.3 ± 2.4	12.2 ± 2.9
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<0.85	8.1 ± 1.1	2.19 ± 0.68	<15	<10	6.0 ± 1.2	5.0 ± 1.4
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	<1.3	9.1 ± 1.4	4.8 ± 1.0	<22	<15	15.5 ± 1.9	12.1 ± 2.3
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	<1.8	5.6 ± 1.4	5.8 ± 1.4	<19	<21	17.7 ± 2.2	16.9 ± 3.0
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	<1.5	7.3 ± 1.4	4.4 ± 1.2	<27	<18	13.4 ± 2.2	10.2 ± 2.4
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	<1.2	39.2 ± 3.6	4.9 ± 1.1	<19	<14	15.7 ± 2.1	12.9 ± 2.2
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	<1.4	7.2 ± 1.2	4.2 ± 1.0	<22	<15	15.1 ± 2.1	11.5 ± 2.4
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	<1.8	5.5 ± 1.3	7.5 ± 1.4	<19	<20	20.3 ± 2.5	17.3 ± 3.1

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	N	UKAS	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Pb-214	Ra-224	Ra-226 *	Ac-228	Ra-228 *	Th-228 *	Pa-234m
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	14.6 ± 2.6	<41	<28	20.7 ± 3.9	20.7 ± 3.9	<41	<180
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	16.4 ± 2.0	<27	<20	20.8 ± 3.1	20.8 ± 3.1	<27	<110
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	17.2 ± 2.2	<20	<21	21.0 ± 3.6	21.0 ± 3.6	<20	<150
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	12.8 ± 1.9	<18	<19	12.0 ± 3.4	12.0 ± 3.4	<18	<160
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	10.6 ± 2.4	<34	<25	15.1 ± 3.7	15.1 ± 3.7	<34	<150
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	19.4 ± 2.2	<28	<21	23.3 ± 3.3	23.3 ± 3.3	<28	<120
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	9.0 ± 1.7	<24	<18	<4.9	<4.9	<24	<120
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	22.1 ± 2.7	<22	<22	29.5 ± 4.7	29.5 ± 4.7	<22	<210
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	12.2 ± 2.2	<39	<26	19.0 ± 4.8	19.0 ± 4.8	<39	<180
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	8.4 ± 1.4	<20	<17	9.4 ± 2.2	9.4 ± 2.2	<20	<91
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	11.5 ± 1.9	<25	<18	12.1 ± 3.0	12.1 ± 3.0	<25	<130
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	6.1 ± 1.5	<20	<17	<5.7	<5.7	<20	<140
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	13.9 ± 2.4	<41	<29	17.1 ± 4.1	17.1 ± 4.1	<41	<190
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	6.3 ± 1.2	<20	<16	7.0 ± 2.5	7.0 ± 2.5	<20	<86
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	14.6 ± 1.9	<18	<18	15.0 ± 3.3	15.0 ± 3.3	<18	<130
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	17.4 ± 2.3	<20	<20	20.5 ± 3.9	20.5 ± 3.9	<20	<190
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	10.6 ± 2.4	<36	<25	13.9 ± 3.4	13.9 ± 3.4	<36	<170
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	13.8 ± 1.9	<17	<18	15.6 ± 2.9	15.6 ± 2.9	<17	<120
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	14.3 ± 2.0	<26	<19	13.5 ± 3.3	13.5 ± 3.3	<26	<140
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	19.7 ± 2.5	<28	<20	20.7 ± 4.1	20.7 ± 4.1	<28	<180

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological To

		Units	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Th-234	U-235	Am-241
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	<19	<5.8	<2.2
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	<19	<5.2	<1.8
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	<22	<5.3	<2.5
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	<19	<4.4	<2.0
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	<27	<5.6	<1.8
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	<20	<5.3	<2.0
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	<18	<4.4	<2.6
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	<22	<5.3	<1.6
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	<28	<6.1	<1.9
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	<16	<4.2	<1.5
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	<19	<4.7	<2.8
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	<16	<3.8	<1.5
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	<30	<6.4	<2.0
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	<15	<4.0	<1.8
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	<20	<4.7	<2.5
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	<20	<4.8	<1.9
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	<27	<5.8	<2.0
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	<19	<4.4	<1.9
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	<20	<4.9	<2.0
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	<20	<4.8	<1.9

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Didcot*	MAR02253.001-020	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SOCOTEC Didcot*	MAR02253.001-020	Analyses and/or samples marked with an asterisk are not covered under UKAS schedule 1252.
SOCOTEC Didcot*	MAR02253.001-020	Results are presented as Bq/kg of dried and homogenised sample and are decay corrected to the sampling date.
SOCOTEC Didcot*		For results below the Limit of Detection, the LoD is rounded up to 2 significant figures. Results above the LoD are reported with expanded (2\significant figures) uncertainties based on a total uncertainty budget. Uncertainties are rounded to 2 significant figures; results are rounded to the same precision.
SOCOTEC Didcot*	MAR02253.001-020	Detector calibrations are based upon homogeneous standard solutions. For quantification purposes the sample is assumed to be homogeneous.
SOCOTEC Didcot*		226Ra has only one gamma ray at 186 keV and the major gamma ray from 235U also occurs at 186 keV. 235U can be measured by the lower abundance gamma ray at 144 keV and if a positive result for 235U is reported, the 226Ra result will be unreliable and overestimated. However even if 235U is below the LoD there may still be a contribution to the 226Ra from 235U and the 226Ra result may be unreliable and overestimated. If an accurate result for 226Ra is required, this is better obtained by radiochemical analysis.
SOCOTEC Didcot*	MAR02253.001-020	228Ra and 228Th are derived from their daughter radionuclides (228Ac and 224Ra, respectively), assuming secular equilibrium.

DEVIATING SAMPLE STATEMENT

Deviation Code	Devation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02253

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI - Radiological Testing

Method	Sample and Fraction Size	Method Summary
NORM	Air dried	High resolution gamma ray spectrometry
Gross Alpha/Beta	Air dried	Proportional Counting

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI

Date Sampled: 28-Mar-04-Apr-24

Date Samples Received: 17-Apr-24

Test Report Date: 08-May-24

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version

		Units	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Gross Alpha as Pu- 242	Gross Beta as Cs- 137	Be-7	K-40	Co-60	I-125	I-129
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	630 ± 180	710 ± 170	<15	361 ± 35	<1.7	<26	<14
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	360 ± 150	480 ± 130	<7.9	283 ± 25	<0.88	<14	<7.7
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	330 ± 140	680 ± 160	<9.5	351 ± 33	<1.3	<16	<8.7
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	390 ± 160	600 ± 150	<9.7	308 ± 31	<1.3	<18	<9.0
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	500 ± 160	1160 ± 250	<16	656 ± 60	<2.3	<17	<9.3
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	450 ± 160	870 ± 190	<8.8	467 ± 37	<0.98	<15	<8.5

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	N	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Cs-134	Cs-137	TI-208	Pb-210	Bi-212	Pb-212	Bi-214
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	<1.7	<1.6	5.8 ± 1.3	<35	<20	16.4 ± 2.2	29.7 ± 3.3
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	<0.93	2.34 ± 0.67	4.25 ± 0.77	<19	<12	13.1 ± 1.8	14.2 ± 1.9
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	<1.3	2.56 ± 0.82	4.18 ± 0.92	<24	<14	12.0 ± 1.6	16.2 ± 2.6
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	<1.2	<0.99	4.73 ± 0.99	<24	<14	14.1 ± 1.7	13.2 ± 2.3
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	<2.0	<1.7	10.8 ± 1.8	<22	49 ± 18	29.0 ± 2.9	19.2 ± 3.7
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	<1.1	1.91 ± 0.68	5.74 ± 0.88	<20	<13	17.7 ± 2.0	14.4 ± 1.9

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	N	UKAS	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Pb-214	Ra-224	Ra-226 *	Ac-228	Ra-228 *	Th-228 *	Pa-234m
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	34.9 ± 3.2	<42	<28	16.7 ± 4.0	16.7 ± 4.0	<42	<190
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	15.4 ± 1.7	<22	<17	13.1 ± 2.3	13.1 ± 2.3	<22	<98
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	18.0 ± 1.8	<17	<17	14.2 ± 3.0	14.2 ± 3.0	<17	<120
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	13.5 ± 1.6	<17	<17	14.8 ± 3.0	14.8 ± 3.0	<17	<140
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	23.2 ± 2.6	<22	<23	31.0 ± 5.0	31.0 ± 5.0	<22	<220
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	15.8 ± 1.7	<25	<18	18.9 ± 2.7	18.9 ± 2.7	<25	<110

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version

Customer Reference 23-1739 - Hunterston Marine Yard GI

		Units	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Th-234	U-235	Am-241
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	<40	<6.3	<3.6
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	<21	<4.1	<2.1
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	<25	<4.3	<2.4
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	<24	<4.3	<2.3
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	<26	<5.3	<2.4
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	<23	<4.6	<2.2

^{*} See report notes

ASCF011y_1.0_03APR23

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Didcot*	MAR02274.001-006	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SOCOTEC Didcot*	MAR02274.001-006	Analyses and/or samples marked with an asterisk are not covered under UKAS schedule 1252.
SOCOTEC Didcot*	MAR02274.001-006	Results are presented as Bq/kg of dried and homogenised sample and are decay corrected to the sampling date.
SOCOTEC Didcot*		For results below the Limit of Detection, the LoD is rounded up to 2 significant figures. Results above the LoD are reported with expanded (2\significant figures) uncertainties based on a total uncertainty budget. Uncertainties are rounded to 2 significant figures; results are rounded to the same precision.
SOCOTEC Didcot*	MAR02274.001-006	The gross alpha and beta activity are relative activities and the reported result might depend on the time between sampling, preparation and analysis due to decay and ingrowth processes and semi-secular equilibrium of natural and/or artificial radio-nuclides present in the sample.
SOCOTEC Didcot*	MAR02274.001-006	Detector calibrations are based upon homogeneous standard solutions. For quantification purposes the sample is assumed to be homogeneous.
SOCOTEC Didcot*		226Ra has only one gamma ray at 186 keV and the major gamma ray from 235U also occurs at 186 keV. 235U can be measured by the lower abundance gamma ray at 144 keV and if a positive result for 235U is reported, the 226Ra result will be unreliable and overestimated. However even if 235U is below the LoD there may still be a contribution to the 226Ra from 235U and the 226Ra result may be unreliable and overestimated. If an accurate result for 226Ra is required, this is better obtained by radiochemical analysis.
SOCOTEC Didcot*	MAR02274.001-006	228Ra and 228Th are derived from their daughter radionuclides (228Ac and 224Ra, respectively), assuming secular equilibrium.

DEVIATING SAMPLE STATEMENT

Deviation Code	Devation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02274

Issue Version

Method	Sample and Fraction Size	Method Summary
NORM	Air dried	High resolution gamma ray spectrometry
Gross Alpha/Beta	Air dried	Proportional Counting

Page 1 of 7

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version: 1

Customer: Causeway Geotech Ltd, 8 Drumahiskey Rd, Bendooragh, Balnamore, Ballymoney, BT53 7QL

Customer Reference: 23-1739 - Hunterston Marine Yard GI

Date Sampled: 13-Apr-24

Date Samples Received: 17-Apr-24

Test Report Date: 08-May-24

Condition of samples: Cold Satisfactory

Opinions and Interpretations expressed herein are outside the scope of our UKAS accreditaion. The results reported relate only to the sample tested. The results apply to the sample as received.

<Redacted>

Authorised by: Jane Colbourne

Position: Customer Service Specialist

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version

		Units	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Gross Alpha as Pu- 242	Gross Beta as Cs- 137	Be-7	K-40	Co-60	I-125	I-129
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	370 ± 140	920 ± 210	<9.7	496 ± 49	<1.5	<18	<12

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	N	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Cs-134	Cs-137	TI-208	Pb-210	Bi-212	Pb-212	Bi-214
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	<1.5	3.17 ± 0.98	6.9 ± 1.2	<28	<17	21.5 ± 2.2	16.3 ± 2.9

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version

		Units	Bq/kg						
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	N	UKAS	N	N	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Pb-214	Ra-224	Ra-226 *	Ac-228	Ra-228 *	Th-228 *	Pa-234m
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	18.4 ± 2.1	<20	<21	20.4 ± 3.5	20.4 ± 3.5	<20	<160

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Specialist Chemistry, Etwall House, Bretby Business Park, Ashby Road, Bretby, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version

		Units	Bq/kg	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS
Client Reference:	SOCOTEC Ref:	Matrix	Th-234	U-235	Am-241
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	<28	<5.3	<2.8

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version 1

Customer Reference 23-1739 - Hunterston Marine Yard GI

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Didcot*	MAR02275.001	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
SOCOTEC Didcot*	MAR02275.001	Analyses and/or samples marked with an asterisk are not covered under UKAS schedule 1252.
SOCOTEC Didcot*	MAR02275.001	Results are presented as Bq/kg of dried and homogenised sample and are decay corrected to the sampling date.
SOCOTEC Didcot*		For results below the Limit of Detection, the LoD is rounded up to 2 significant figures. Results above the LoD are reported with expanded (2\significant figures) uncertainties based on a total uncertainty budget. Uncertainties are rounded to 2 significant figures; results are rounded to the same precision.
SOCOTEC Didcot*	MAR02275.001	The gross alpha and beta activity are relative activities and the reported result might depend on the time between sampling, preparation and analysis due to decay and ingrowth processes and semi-secular equilibrium of natural and/or artificial radio-nuclides present in the sample.
SOCOTEC Didcot*	MAR02275.001	Detector calibrations are based upon homogeneous standard solutions. For quantification purposes the sample is assumed to be homogeneous.
SOCOTEC Didcot*	MAR02275.001	226Ra has only one gamma ray at 186 keV and the major gamma ray from 235U also occurs at 186 keV. 235U can be measured by the lower abundance gamma ray at 144 keV and if a positive result for 235U is reported, the 226Ra result will be unreliable and overestimated. However even if 235U is below the LoD there may still be a contribution to the 226Ra from 235U and the 226Ra result may be unreliable and overestimated. If an accurate result for 226Ra is required, this is better obtained by radiochemical analysis.
SOCOTEC Didcot*	MAR02275.001	228Ra and 228Th are derived from their daughter radionuclides (228Ac and 224Ra, respectively), assuming secular equilibrium.

DEVIATING SAMPLE STATEMENT

Deviation Code	Devation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Sample Contaminated through Damaged Packaging	N/A	N/A
D3	Sample Contaminated through Sampling	N/A	N/A
D4	Inappropriate Container/Packaging	N/A	N/A
D5	Damaged in Transit	N/A	N/A
D6	Insufficient Quantity of Sample	N/A	N/A
D7	Inappropriate Headspace	N/A	N/A
D8	Retained at Incorrect Temperature	N/A	N/A
D9	Lack of Date & Time of Sampling	N/A	N/A
D10	Insufficient Sample Details	N/A	N/A
D11	Sample integrity compromised or not suitable for analysis	N/A	N/A

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR02275

Issue Version 1

Method	Sample and Fraction Size	Method Summary
NORM	Air dried	High resolution gamma ray spectrometry
Gross Alpha/Beta	Air dried	Proportional Counting

D SEPA CORRESPONDENCE

	lanagement Licene g spoil for infill at	-	•
Requestor	Donny Morrison	Team	Waste and Industry Permitting
Date	27/03/2024	Author	Alan Hern
Reviewer	Not required	Authoriser	Not required

Introduction

Donny Morrison of the Waste and Industry Team requested that a proposal to use waste dredging spoil to infill a dry dock and create a development platform at the site was considered. The site is the Hunterston Development and at this stage the review is for the testing requirements to develop the site investigation.

The dredging spoil will be tested for the marine dredging licence suite. As stated by the applicant, this suite is quite broad and covers the likely contaminants of concern. It is assumed that the testing will include representative samples of the dredged depths to be re-used.

The dredging spoil is likely to become a waste material and will therefore, need to be tested and assessed to confirm if it should be considered non-hazardous or hazardous waste. This may affect the proposal for re-use. The chemical composition of the spoil is used to assign hazardous substances and assess the hazardous properties as described in the WM3 technical guidance. The WM3 Waste Classification guidance requires a sampling plan that meets the requirements stated in Appendix D, or relevant European/British standards as listed in WM3.

Dredging spoil is typically coded using the mirror entries from Chapter 17 of the European Waste Catalogue "Construction and demolition wastes (including excavated soil from contaminated sites)" subchapter 5 "soil (including excavated soil from contaminated sites), stones and dredging spoil".

- 17 05 05* dredging spoil containing hazardous substances (mirror hazardous entry)
- 17 05 06 dredging spoil other than those mentioned in 17 05 05 (mirror non-hazardous entry)

We would recommend the following metals in addition to those in the marine licensing suite:

- Antinomy
- Barium
- Beryllium
- Chromium VI
- Molybdenum
- Selenium

From a waste classification point of view, chromium VI is useful the analysis confirms that many of the worst case compounds for assessing hazardous properties can be safely disregarded for example chromates of lead, nickel and zinc.

The hydrocarbon contamination for risk assessment requires the analysis to split the hydrocarbons into aliphatic and aromatic hydrocarbons (for example, TPHCWG not total). For waste classification, the data can be either total petroleum hydrocarbons or TPHCWG. The ranges are slightly different and many laboratories can report these ranges in such a way that the same test can be used for both purposes. Otherwise, the applicant at their discretion may use the risk assessment range for waste

1 of 2 OFFICIAL

Chemistry Advice

OFFICIAL

classification. This runs the slight risk of overstating the hydrocarbon concentrations for waste classification.

- For risk assessment this should cover the carbon range >C₅ up to C₄₄
- For waste classification, this should cover the carbon range C₆ up to C₄₀

Beyond this we consider, that testing for benzene, toluene, ethylbenzene and xylene (BTEXs) and volatile organic compounds (VOC) semi volatile organic compounds (SVOC) in at least some samples should be considered.

For leachable components, the proposals are acceptable for metals, TPH, VOC and SVOC although we would add PAHs from the marine suite.

2 of 2 OFFICIAL

E RADIONUCLIDE ASSESSMENT

		Units	Ba/ka	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Ba/ka	Bq/kg	Bq/kg
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	N N	N N	UKAS	UKAS
	ı											
Client Reference:	SOCOTEC Ref:	Matrix	Co-60	I-125	I-129	Cs-134	Cs-137	Ra-224	Ra-226 *	Th-228 *	U-235	Am-241
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	1.70	43	19	1.6	7.7	41	28	41	5.8	2.2
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	1.100	31	13	1.1	9.7	27.00000	20.00000	27.00000	5.20000	1.80000
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	1.500	37	15	1.5	15.2	20.00000	21.00000	20.00000	5.30000	2.50000
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	1.700	25	11	1.6	30.3	18.00000	19.00000	18.00000	4.40000	2.00000
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	1.400	40	18	1.3	14.4	34.00000	25.00000	34.00000	5.60000	1.80000
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	1.100	33	13	1.2	4.3	28.00000	21.00000	28.00000	5.30000	2.00000
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	1.200	22	14	1.2	11.4	24.00000	18.00000	24.00000	4.40000	2.60000
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	2.000	26	12	1.9	10.7	22	22	22	5.3	1.6
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	1.500	42	18	1.6	10.4	39.00000	26.00000	39.00000	6.10000	1.90000
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	0.860	26	11	0.9	13.5	20.00000	17.00000	20.00000	4.20000	1.50000
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	1.200	33	14	1.3	8.2	25.00000	18.00000	25.00000	4.70000	2.80000
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	1.500	21	9.6	1.4	8.4	20.00000	17.00000	20.00000	3.80000	1.50000
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	1.800	43	19	1.8	9.1	41	29	41	6.4	2
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	0.780	25	11	0.85	8.1	20.00000	16.00000	20.00000	4.00000	1.80000
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	1.300	34	14	1.3	9.1	18.00000	18.00000	18.00000	4.70000	2.50000
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	1.900	25	11	1.8	5.6	20.00000	20.00000	20.00000	4.80000	1.90000
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	1.400	40	17	1.5	7.3	36.00000	25.00000	36.00000	5.80000	2.00000
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	1.300	25	12	1.2	39.2	17.00000	18.00000	17.00000	4.40000	1.90000
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	1.300	37	14	1.4	7.2	26.00000	19.00000	26.00000	4.90000	2.00000
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	1.800	27	12	1.8	5.5	28.00000	20.00000	28.00000	4.80000	1.90000
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	1.700	26	14	1.7	1.6	42.00000	28.00000	42.00000	6.30000	3.60000
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	0.880	14	7.7	0.93	2.34	22.00000	17.00000	22.00000	4.10000	2.10000
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	1.300	16	8.7	1.3	2.56	17.00000	17.00000	17.00000	4.30000	2.40000
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	1.300	18	9	1.2	0.99	17.00000	17.00000	17.00000	4.30000	2.30000
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	2.300	17	9.3	2	1.7	22.00000	23.00000	22.00000	5.30000	2.40000
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	0.980	15	8.5	1.1	1.91	25.00000	18.00000	25.00000	4.60000	2.20000
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	1.500	18	12	1.5	3.17	20.00000	21.00000	20.00000	5.30000	2.80000

* See report notes

	1.418518519	28.11111111	12.8444444	1.406666667	9.243333333	25.51851852	20.66666667	25.51851852	4.966666667	2.148148148			
50% of Value as < LoD	0.709259259	14.05555556	6.422222222	0.703333333	9.243333333	12.75925926	10.33333333	12.75925926	2.483333333	1.074074074			
Crew Conversion Rate	0.062000000	0.00015	0.0011	0.028	0.0081	0.045	0.06	0.047	0.025	0.0023	TOTAL	MASS CONVE	RSION
Crew uSV	0.043974074	0.002108333	0.007064444	0.019693333	0.074871000	0.574166667	0.620000000	0.599685185	0.062083333	0.002470370	2.006116741		
Public Conversion Rate	0.00068	0.000026	0.00014	0.00039	0.00028	0.00047	0.026	0.0023	0.003	0.000022			
Public uSv	0.000482296	0.000365444	0.000899111	0.0002743	0.002588133	0.005996852	0.268666667	0.029346296	0.00745	2.36296E-05	0.31609273	24	7.58622551

2.006116741

		Units	Bq/kg	Bq/kg	Bq/kq	Bg/kg	Bq/kq	Bq/kg	Bq/kg	Bg/kg	Bq/kg	Bq/kq				
		Method No	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*	SOCOTEC Didcot*				
		Accreditation	UKAS	UKAS	UKAS	UKAS	UKAS	UKAS	N	N	UKAS	UKAS				
Client Reference:	SOCOTEC Ref:	Matrix	Co-60	I-125	I-129	Cs-134	Cs-137	Ra-224	Ra-226 *	Th-228 *	U-235	Am-241				
BH03 (ES4) 0.50m - COMPOSITE	MAR02253.001	Sediment	1.70	43	19	1.6	7.7	41	28	41	5.8	2.2				
BH05 (ES4) 0.00m - COMPOSITE	MAR02253.002	Sediment	1.100	31	13	1.1	9.7	27.00000	20.00000	27.00000	5.20000	1.80000				
BH06 (ES4) 2.30m - COMPOSITE	MAR02253.003	Sediment	1.500	37	15	1.5	15.2	20.00000	21.00000	20.00000	5.30000	2.50000				
BH10 (ES4) 0.00m - COMPOSITE	MAR02253.004	Sediment	1.700	25	11	1.6	30.3	18.00000	19.00000	18.00000	4.40000	2.00000				
BH12 (ES4) 0.00m - COMPOSITE	MAR02253.005	Sediment	1.400	40	18	1.3	14.4	34.00000	25.00000	34.00000	5.60000	1.80000				
BH13A (ES4) 0.00m - COMPOSITE	MAR02253.006	Sediment	1.100	33	13	1.2	4.3	28.00000	21.00000	28.00000	5.30000	2.00000				
BH14 (ES4) 0.00m - COMPOSITE	MAR02253.007	Sediment	1.200	22	14	1.2	11.4	24.00000	18.00000	24.00000	4.40000	2.60000				
BH15 (ES4) 0.00m - COMPOSITE	MAR02253.008	Sediment	2.000	26	12	1.9	10.7	22	22	22	5.3	1.6				
BH16 (ES4) 0.00m - COMPOSITE	MAR02253.009	Sediment	1.500	42	18	1.6	10.4	39.00000	26.00000	39.00000	6.10000	1.90000				
BH17 (ES4) 0.00m - COMPOSITE	MAR02253.010	Sediment	0.860	26	11	0.9	13.5	20.00000	17.00000	20.00000	4.20000	1.50000				
BH18 (ES4) 0.00m - COMPOSITE	MAR02253.011	Sediment	1.200	33	14	1.3	8.2	25.00000	18.00000	25.00000	4.70000	2.80000				
BH19 (ES4) 0.00m - COMPOSITE	MAR02253.012	Sediment	1.500	21	9.6	1.4	8.4	20.00000	17.00000	20.00000	3.80000	1.50000				
BH20 (ES4) 0.00m - COMPOSITE	MAR02253.013	Sediment	1.800	43	19	1.8	9.1	41	29	41	6.4	2				
BH21 (ES4) 0.00m - COMPOSITE	MAR02253.014	Sediment	0.780	25	11	0.85	8.1	20.00000	16.00000	20.00000	4.00000	1.80000				
BH22 (ES4) 0.00m - COMPOSITE	MAR02253.015	Sediment	1.300	34	14	1.3	9.1	18.00000	18.00000	18.00000	4.70000	2.50000				
BH25 (ES4) 0.00m - COMPOSITE	MAR02253.016	Sediment	1.900	25	11	1.8	5.6	20.00000	20.00000	20.00000	4.80000	1.90000				
BH26 (ES4) 0.00m - COMPOSITE	MAR02253.017	Sediment	1.400	40	17	1.5	7.3	36.00000	25.00000	36.00000	5.80000	2.00000				
BH27 (ES4) 0.00m - COMPOSITE	MAR02253.018	Sediment	1.300	25	12	1.2	39.2	17.00000	18.00000	17.00000	4.40000	1.90000				
BH29 (ES4) 0.00m - COMPOSITE	MAR02253.019	Sediment	1.300	37	14	1.4	7.2	26.00000	19.00000	26.00000	4.90000	2.00000				
BH30 (ES4) 0.00m - COMPOSITE	MAR02253.020	Sediment	1.800	27	12	1.8	5.5	28.00000	20.00000	28.00000	4.80000	1.90000				
BH01 (ES4) 0.40m - COMPOSITE	MAR02274.001	Sediment	1.700	26	14	1.7	1.6	42.00000	28.00000	42.00000	6.30000	3.60000				
BH02 (ES4) 0.40m - COMPOSITE	MAR02274.002	Sediment	0.880	14	7.7	0.93	2.34	22.00000	17.00000	22.00000	4.10000	2.10000				
BH04 (ES4) 0.00m - COMPOSITE	MAR02274.003	Sediment	1.300	16	8.7	1.3	2.56	17.00000	17.00000	17.00000	4.30000	2.40000				
BH23 (ES4) 0.00m - COMPOSITE	MAR02274.004	Sediment	1.300	18	9	1.2	0.99	17.00000	17.00000	17.00000	4.30000	2.30000				
BH24 (ES4) 0.00m - COMPOSITE	MAR02274.005	Sediment	2.300	17	9.3	2	1.7	22.00000	23.00000	22.00000	5.30000	2.40000				
GBS2-BH-SPT-11 (ES4) 0.90m - COMPOSITE	MAR02274.006	Sediment	0.980	15	8.5	1.1	1.91	25.00000	18.00000	25.00000	4.60000	2.20000				
GBS2-BH-SPT-12 (ES4) 1.00m - COMPOSITE	MAR02275.001	Sediment	1.500	18	12	1.5	3.17	20.00000	21.00000	20.00000	5.30000	2.80000				
	,		1.418518519	28.11111111	12.84444444	1.406666667	9.243333333	25.51851852	20.66666667	25.51851852	4.966666667	2.148148148				
		50% if Value as <lod< td=""><td>0.709259259</td><td>14.055555556</td><td></td><td>0.703333333</td><td></td><td></td><td>10.333333333</td><td>12.759259259</td><td>2.483333333</td><td></td><td></td><td>1</td><td></td><td>1</td></lod<>	0.709259259	14.055555556		0.703333333			10.333333333	12.759259259	2.483333333			1		1
* See report notes		Crew Conversion Rate	0.000006200	0.00000015	0.00000011	0.0000028			0.000006	0.0000047	0.0000025	0.00000023	TOTAL	MASS CON	VERSION	Total Crew and Public (ma
		Crew man SV/a Public Conversion Rate	0.000004397 0.0000025	0.000000211	0.00000706	0.000001969			0.000062000	0.000059969	0.00006208	0.000000247	0.00020265-	4		-
		Public man SV/a	1.77315E-06	1.12444E-05					0.0012		9.43667E-05		0.01312364	5 2	4 0.31496748	1

Radiolgical Tables V2
This test report shall not be reproduced except in full, without written approval of the laboratory

ASCF011y_1.0_03APR23