Literature
Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf. Shelf Sea Biogeochemistry: Pelagic Processes., 177, p.101909. Available at: http://www.sciencedirect.com/science/article/pii/S007966111730099X.
, 2019. Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf. Shelf Sea Biogeochemistry: Pelagic Processes., 177, p.101909. Available at: http://www.sciencedirect.com/science/article/pii/S007966111730099X.
, 2019. Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf. Shelf Sea Biogeochemistry: Pelagic Processes., 177, p.101909. Available at: http://www.sciencedirect.com/science/article/pii/S007966111730099X.
, 2019. Seasonality and spatial heterogeneity of the surface ocean carbonate system in the northwest European continental shelf. Shelf Sea Biogeochemistry: Pelagic Processes., 177, p.101909. Available at: http://www.sciencedirect.com/science/article/pii/S007966111730099X.
, 2019. , 2003.
, 2003.
Seasonal habitat-based density models for a marine top predator, the harbor porpoise, in a dynamic environment. Ecosphere, 7(6), pp.1-22. Available at: https://doi.org/10.1002/ecs2.1367.
, 2016. Seasonal habitat-based density models for a marine top predator, the harbor porpoise, in a dynamic environment. Ecosphere, 7(6), pp.1-22. Available at: https://doi.org/10.1002/ecs2.1367.
, 2016. Seasonal habitat-based density models for a marine top predator, the harbor porpoise, in a dynamic environment. Ecosphere, 7(6), pp.1-22. Available at: https://doi.org/10.1002/ecs2.1367.
, 2016. Seasonal distribution of harbour porpoises and possible interference of offshore wind farms in the German North Sea. Marine Ecology Progress Series, 383, pp.295-307. Available at: https://www.int-res.com/abstracts/meps/v383/p295-307/.
, 2009. Seasonal distribution of harbour porpoises and possible interference of offshore wind farms in the German North Sea. Marine Ecology Progress Series, 383, pp.295-307. Available at: https://www.int-res.com/abstracts/meps/v383/p295-307/.
, 2009. Seasearch – a national SCUBA diving project providing evidence for marine conservation and training in marine species identification and survey skills. Practice. Bulletin of the Chartered Institute of Ecology and Environmental Management, 83, pp.13-18. Available at: https://cieem.net/wp-content/uploads/2019/01/InPractice83_Mar2014.pdf.
, 2014. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni. Journal of Fish Biology, 89(2), pp.1473–1481. Available at: https://pubmed.ncbi.nlm.nih.gov/27350418/.
, 2016. Sea urchin fecal production and accumulation in a rocky subtidal ecosystem. Aquatic Biology, 13(3), pp.215-223.
, 2011. Sea urchin fecal production and accumulation in a rocky subtidal ecosystem. Aquatic Biology, 13(3), pp.215-223.
, 2011. Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks. Biogeosciences, 14(24), pp.5663-5674. Available at: https://bg.copernicus.org/articles/14/5663/2017/.
, 2017. , 2019.
, 2019.
Review of climate change impacts on marine fish and shellfish around the UK and Ireland. , 22, pp.337 - 367. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/aqc.2244.
, 2012. Relative sea-level changes, glacial isostatic modelling and ice-sheet reconstructions from the British Isles since the Last Glacial Maximum. Journal of Quaternary Science, 21, pp.585-599. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jqs.1049.
, 2006. The relationship between Pseudo-nitzschia (Peragallo) and domoic acid in Scottish shellfish. Harmful Algae, 63, pp.193 - 202. Available at: http://www.sciencedirect.com/science/article/pii/S1568988316302244.
, 2017. The relationship between Pseudo-nitzschia (Peragallo) and domoic acid in Scottish shellfish. Harmful Algae, 63, pp.193 - 202. Available at: http://www.sciencedirect.com/science/article/pii/S1568988316302244.
, 2017. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnology and Oceanography, 51(2), pp.820-829. Available at: https://aslopubs.onlinelibrary.wiley.com/doi/10.4319/lo.2006.51.2.0820.
, 2006. Regional applications of an index of biotic integrity for use in water resource management. Fisheries, 13, pp.12-20.
, 1988. , 2020.
, 2020.
Re-evaluating Scotland’s sedimentary carbon stocks. Scottish Marine and Freshwater Science, 11(2), p.16. Available at: https://data.marine.gov.scot/dataset/re-evaluating-scotland%E2%80%99s-sedimentary-carbon-stocks.
, 2020. A red tide event associated with the dinoflagellate Karenia mikimotoi in the Firth of Clyde, Scotland. Harmful Algae News: an IOC newsletter on toxic algae and algal blooms, 58, pp.6-7. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000261549.
, 2017. Recruitment enhancement as an Indicator of oyster restoration success in Chesapeake Bay. Ecological Restoration, 32(4), pp.434-440. Available at: http://er.uwpress.org/content/32/4/434.abstract.
, 2014. The recent Atlantic cold anomaly: causes, consequences, and related phenomena. Annual Review of Marine Science, 10(1), pp.475-501. Available at: https://www.annualreviews.org/doi/10.1146/annurev-marine-121916-063102.
, 2018. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecological Applications, 18(sp2), pp.S97 - S125. Available at: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/06-0546.1.
, 2008. Quantifying the Effect of Anthropogenic Climate Change on Calcifying Plankton. Scientific Reports, 10(1), p.1620. Available at: https://www.nature.com/articles/s41598-020-58501-w.
, 2020. , 2017.
Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS. Estuarine, Coastal and Shelf Science, 201, pp.40–55. Available at: https://www.sciencedirect.com/science/article/pii/S0272771416301639?via%3Dihub.
, 2018. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS. Estuarine, Coastal and Shelf Science, 201, pp.40–55. Available at: https://www.sciencedirect.com/science/article/pii/S0272771416301639?via%3Dihub.
, 2018. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS. Estuarine, Coastal and Shelf Science, 201, pp.40–55. Available at: https://www.sciencedirect.com/science/article/pii/S0272771416301639?via%3Dihub.
, 2018. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS. Estuarine, Coastal and Shelf Science, 201, pp.40–55. Available at: https://www.sciencedirect.com/science/article/pii/S0272771416301639?via%3Dihub.
, 2018. Production and fate of kelp detritus. Marine Ecology Progress Series, 467.
, 2012. Prioritising islands in the United Kingdom and crown dependencies for the eradication of invasive alien vertebrates and rodent biosecurity. European Journal of Wildlife Research, 63(1), p.31. Available at: https://link.springer.com/article/10.1007/s10344-017-1084-7.
, 2017. Predictive Habitat Modelling as a Tool to Assess the Change in Distribution and Extent of an OSPAR Priority Habitat under an Increased Ocean Temperature Scenario: Consequences for Marine Protected Area Networks and Management. PloS ONE, 8, pp.1–16. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068263.
, 2013. Predicting the response of molluscs to the impact of ocean acidification. Biology, 2(2), pp.651 - 692. Available at: https://pubmed.ncbi.nlm.nih.gov/24832802.
, 2013. Predicting the effect of disturbance on coastal birds. Ibis, 149(s1), pp.73 - 81. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1474-919X.2007.00649.x.
, 2007. Predicting and mapping the risk of introduction of marine non-indigenous species into Great Britain and Ireland. Biological Invasions, 18(11), pp.3277 - 3292. Available at: https://link.springer.com/article/10.1007/s10530-016-1219-x.
, 2016. The Potential for Assemblage Thinking in Population Geography: Assembling Population, Space and Place. Population, Space and Place. Population, Space and Place, 24(3).
, 2018. The potential for Assemblage thinking in population geography: Assembling population, space, and place. Population, Space and Place, 24(3), p.e2097. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/psp.2097.
, 2018. , 2011.
Polychlorinated biphenyls: Correlation between in vivo and in vitro quantitative structure‐activity relationships (QSARs). Journal of Toxicology and Environmental Health, 16(3-4), pp.379 - 388. Available at: https://www.tandfonline.com/doi/abs/10.1080/15287398509530748.
, 1985. Polychlorinated biphenyls and organochlorine pesticides in baltic and atlantic gray seal (Halichoerus grypus) pups. Environmental Toxicology and Chemistry, 22(11), pp.2789 - 2799. Available at: https://setac.onlinelibrary.wiley.com/doi/abs/10.1897/02-556.
, 2003. Polychlorinated biphenyls and organochlorine pesticides in baltic and atlantic gray seal (Halichoerus grypus) pups. Environmental Toxicology and Chemistry, 22(11), pp.2789 - 2799. Available at: https://setac.onlinelibrary.wiley.com/doi/abs/10.1897/02-556.
, 2003. Polychlorinated biphenyls and chlorinated pesticides in harbor seals (Phoca vitulina concolor) from the northwestern Atlantic coast. Marine Pollution Bulletin, 50(10), pp.1069 - 1084. Available at: http://www.sciencedirect.com/science/article/pii/S0025326X05001499.
, 2005.