Literature

Found 289 results
Filters: First Letter Of Last Name is W  [Clear All Filters]
2019
Wijsman, J.W.M. et al., 2019. Global production of marine bivalves. Trends and challenges. In A. C. Smaal et al., eds. Goods and Services of Marine Bivalves. Goods and Services of Marine Bivalves. Cham: Springer International Publishing, pp. 7 - 26. Available at: https://link.springer.com/chapter/10.1007/978-3-319-96776-9_2.
IPCC, 2019. Summary for Policymakers. In H. - O. Pörtner et al., eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC. Available at: https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/.
2018
Moore, S.E. et al., 2018. Climate Change. In Encyclopedia of Marine Mammals. Encyclopedia of Marine Mammals. San Diego, USA: Academic Press, pp. 194 - 197.
Hoegh-Guldberg, O. et al., 2018. Impacts of 1.5ºC Global Warming on Natural and Human Systems. In V. Masson-Delmotte et al., eds. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. IPCC. Available at: https://www.ipcc.ch/sr15/chapter/chapter-3/.
Hoegh-Guldberg, O. et al., 2018. Impacts of 1.5ºC Global Warming on Natural and Human Systems. In V. Masson-Delmotte et al., eds. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. IPCC. Available at: https://www.ipcc.ch/sr15/chapter/chapter-3/.
Lefcheck, J.S. et al., 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences of the United States of America, 115(14), pp.3658-3662. Available at: https://www.pnas.org/content/115/14/3658.
Lefcheck, J.S. et al., 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences of the United States of America, 115(14), pp.3658-3662. Available at: https://www.pnas.org/content/115/14/3658.