Literature
Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Scientific Reports, 4(1), p.5589. Available at: https://www.nature.com/articles/srep05589.
, 2014. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Scientific Reports, 4(1), p.5589. Available at: https://www.nature.com/articles/srep05589.
, 2014. Environmental control of harmful dinoflagellates and diatoms in a fjordic system. Harmful Algae, 69, pp.1 - 17. Available at: http://www.sciencedirect.com/science/article/pii/S1568988317301270.
, 2017. Environmental control of harmful dinoflagellates and diatoms in a fjordic system. Harmful Algae, 69, pp.1 - 17. Available at: http://www.sciencedirect.com/science/article/pii/S1568988317301270.
, 2017. Environmental control of harmful dinoflagellates and diatoms in a fjordic system. Harmful Algae, 69, pp.1 - 17. Available at: http://www.sciencedirect.com/science/article/pii/S1568988317301270.
, 2017. Empirical analyses of the length, weight, and condition of adult Atlantic salmon on return to the Scottish coast between 1963 and 2006. ICES Journal of Marine Science, 66(5), pp.844 - 859. Available at: https://academic.oup.com/icesjms/article/66/5/844/663955.
, 2009. , 1995.
, 1995.
Effort reduction and the large fish indicator: spatial trends reveal positive impacts of recent European fleet reduction schemes. Environmental Conservation, 42(3), pp.227-236.
, 2015. Effects of ship traffic on seabirds in offshore waters: implications for marine conservation and spatial planning. Ecological Applications, 21(5), pp.1851 - 1860. Available at: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/10-0615.1.
, 2011. , 2015.
Effects of Environmental Methylmercury on the Health of Wild Birds, Mammals, and Fish. AMBIO: A Journal of the Human Environment, 36, pp.12 – 19. Available at: https://doi.org/10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2.
, 2007. Effects of Environmental Methylmercury on the Health of Wild Birds, Mammals, and Fish. AMBIO: A Journal of the Human Environment, 36, pp.12 – 19. Available at: https://doi.org/10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2.
, 2007. Effects of climate change on the Atlantic Heat Conveyor relevant to the UK. MCCIP Science Review 2020, pp.190– 207. Available at: http://www.mccip.org.uk/media/2012/09_amoc_2020.pdf.
, 2020. The effect of total immunoglobulin levels, mass and condition on the first-year survival of Grey Seal pups. Functional Ecology, 16(4), pp.462 - 474. Available at: https://besjournals.onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2435.2002.00649.x.
, 2002. Eelgrass (Zostera marina) restoration on the west coast of Sweden using seeds. Marine Ecological Progress Series, 546, pp.31-45 . Available at: http://www.int-res.com/abstracts/meps/v546/p31-45/.
, 2016. Drifting buoys in the Northeast Atlantic. ICES Journal of Marine Science, 43(3), pp.261 - 267. Available at: https://academic.oup.com/icesjms/article-abstract/43/3/261/649897.
, 1987. Distribution and diversity of deep-sea sponge grounds on the Rosemary Bank Seamount, NE Atlantic. Marine Biology, 163(6), p.143. Available at: https://link.springer.com/article/10.1007/s00227-016-2913-z.
, 2016. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 141, pp.8-19. Available at: http://www.sciencedirect.com/science/article/pii/S0967064517300917.
, 2017. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 141, pp.8-19. Available at: http://www.sciencedirect.com/science/article/pii/S0967064517300917.
, 2017. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Global Change Biology, 14(5), pp.958 - 970.
, 2008. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Global Change Biology, 14(5), pp.958 - 970.
, 2008. Determination of CYP1A-dependent mono-oxygenase activity in dab by fluorimetric measurement of EROD activity in S9 or microsomal liver fractions. ICES Techniques in Marine Environmental Sciences, 57, p.21. Available at: http://hdl.handle.net/11329/684.
, 2016. Derivation of Groundfish Survey Monitoring and Assessment Data Product for the Northeast Atlantic Area. Scottish Marine and Freshwater Science, 8(16), p.240. Available at: https://data.marine.gov.scot/dataset/derivation-groundfish-survey-monitoring-and-assessment-data-product-northeast-atlantic-area.
, 2017. Declining oxygen in the global ocean and coastal waters. Science, 359(6371), p.eaam7240. Available at: http://science.sciencemag.org/content/359/6371/eaam7240.abstract.
, 2018. The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth. Renewable Energy, 80, pp.755-769. Available at: https://www.sciencedirect.com/science/article/pii/S096014811500186X?via%3Dihub.
, 2015. Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity. Frontiers in Marine Science, 7, p.668. Available at: https://www.frontiersin.org/article/10.3389/fmars.2020.00668.
, 2020. Crab and Lobster Fisheries in Scotland: Results of Stock Assessments 2013-2015. Scottish Marine and Freshwater Science , Vol 8(No 14), p.87pp. Available at: https://data.marine.gov.scot/sites/default/files//SMFS%200814_0.pdf.
, 2017. Crab and Lobster Fisheries in Scotland: Results of Stock Assessments 2013-2015. Scottish Marine and Freshwater Science , Vol 8(No 14), p.87pp. Available at: https://data.marine.gov.scot/sites/default/files//SMFS%200814_0.pdf.
, 2017. Crab and Lobster Fisheries in Scotland: Results of Stock Assessments 2013-2015. Scottish Marine and Freshwater Science , Vol 8(No 14), p.87pp. Available at: https://data.marine.gov.scot/sites/default/files//SMFS%200814_0.pdf.
, 2017. CO2 STORage Evaluation Database (CO2 Stored). The UK's online storage atlas. Energy Procedia, 63, pp.5103 - 5113. Available at: http://www.sciencedirect.com/science/article/pii/S1876610214023558.
, 2014. , 2010.
, 2010.
, 2008.
, 2008.
, 2015.
Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89(3), p.e01366. Available at: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1366.
, 2019. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89(3), p.e01366. Available at: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1366.
, 2019. A Comparison of Plastic and Plankton in the North Pacific Central Gyre. Marine Pollution Bulletin, 42(12), pp.1297 - 1300. Available at: http://www.sciencedirect.com/science/article/pii/S0025326X0100114X.
, 2001. A Comparison of Plastic and Plankton in the North Pacific Central Gyre. Marine Pollution Bulletin, 42(12), pp.1297 - 1300. Available at: http://www.sciencedirect.com/science/article/pii/S0025326X0100114X.
, 2001. , 2015.
Common diseases and parasites of fish in the North Atlantic: Training guide for identification. ICES Techniques in Marine Environmental Sciences, 19, p.27. Available at: https://www.oceanbestpractices.net/handle/11329/698.
, 1996. Combined bottom-up and top-down pressures drive catastrophic population declines of Arctic skuas in Scotland. Journal of Animal EcologyJournal of Animal EcologyJ Anim Ecol, 87(6), pp.1573 - 1586. Available at: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.12890.
, 2018. Colonisation and modification of soft substratum habitats by the invasive marcoalga Sargassum muticum. . Marine Ecology Progress Series, 321, pp.87-97. Available at: https://www.int-res.com/abstracts/meps/v321/p87-97/.
, 2006. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020.