Literature
, In Press.
High resolution biologging of breaching by world’s second largest shark species. Scientific Reports.
, In Press. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 119, p.106624. Available at: http://www.sciencedirect.com/science/article/pii/S1470160X20305616.
, 2020. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 119, p.106624. Available at: http://www.sciencedirect.com/science/article/pii/S1470160X20305616.
, 2020. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators, 119, p.106624. Available at: http://www.sciencedirect.com/science/article/pii/S1470160X20305616.
, 2020. Autonomous underwater videography and tracking of basking sharks. Animal Biotelemetry, 8(1), p.29. Available at: https://animalbiotelemetry.biomedcentral.com/articles/10.1186/s40317-020-00216-w.
, 2020. Blue carbon audit of Orkney waters. Scottish Marine and Freshwater Science, 11(3), p.96. Available at: https://data.marine.gov.scot/dataset/blue-carbon-audit-orkney-waters.
, 2020. , 2020.
Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity. Frontiers in Marine Science, 7, p.668. Available at: https://www.frontiersin.org/article/10.3389/fmars.2020.00668.
, 2020. Environmental controls and anthropogenic impacts on deep-sea sponge grounds in the Faroe-Shetland Channel, NE Atlantic: the importance of considering spatial scale to distinguish drivers of change. ICES Journal of Marine Science, 77(1), pp.451 - 461. Available at: https://academic.oup.com/icesjms/article/77/1/451/5599858.
, 2020. , 2020.
Impacts of climate change on deep-sea habitats, relevant to the coastal and marine environment around the UK, Marine Climate Change Impacts Partnership. Available at: http://www.mccip.org.uk/media/2017/14_deepsea_habitats_2020.pdf.
, 2020. , 2020.
Impacts of climate change on transport and infrastructure relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020, pp.566–592. Available at: http://www.mccip.org.uk/media/2027/24_transport_2020.pdf.
, 2020. Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Frontiers in Marine Science, 7, p.239. Available at: https://www.frontiersin.org/article/10.3389/fmars.2020.00239.
, 2020. Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Frontiers in Marine Science, 7, p.239. Available at: https://www.frontiersin.org/article/10.3389/fmars.2020.00239.
, 2020. Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous. Marine Drugs, 18(1), p.5. Available at: https://www.mdpi.com/1660-3397/18/1/5.
, 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications , 11. Available at: https://www.nature.com/articles/s41467-020-14474-y.
, 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications , 11. Available at: https://www.nature.com/articles/s41467-020-14474-y.
, 2020. The ocean genome and future prospects for conservation and equity. Nature Sustainability, 3(8), pp.588 - 596. Available at: https://www.nature.com/articles/s41893-020-0522-9.
, 2020. The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources , Washington, DC: World Resources Institute. Available at: https://www.oceanpanel.org/blue-papers/ocean-genome-conservation-and-fair-equitable-and-sustainable-use-marine-genetic.
, 2020. , 2020.
UK deep-sea conservation: Progress, lessons learned, and actions for the future. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(2), pp.375 - 393. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/aqc.3243?af=R.
, 2020. Waterbirds in the UK 2018/19: The Wetland Bird Survey, BTO/RSPB/JNCC. Available at: https://app.bto.org/webs-reporting/numbers.jsp.
, 2020. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89(3), p.e01366. Available at: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1366.
, 2019. Distribution of Deep-Sea Sponge Aggregations in an Area of Multisectoral Activities and Changing Oceanic Conditions. Frontiers in Marine Science, 6, p.163. Available at: https://www.frontiersin.org/article/10.3389/fmars.2019.00163.
, 2019. Evidence for spatial coherence in time trends of marine life history traits of Atlantic salmon in the North Atlantic. Fish and Fisheries, 20(2), pp.322 - 342.
, 2019. Expert Assessment of Risks Posed by Climate Change and Anthropogenic Activities to Ecosystem Services in the Deep North Atlantic. Frontiers in Marine Science, 6, p.158. Available at: https://www.frontiersin.org/article/10.3389/fmars.2019.00158.
, 2019. The future of Blue Carbon science. Nature Communications, 10(1).
, 2019. The future of Blue Carbon science. Nature Communications, 10(1).
, 2019. Global analysis of seagrass restoration: the importance of large‐scale planting. Journal of Applied Ecology, 56(7), pp.1856-1856 . Available at: https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.12562.
, 2019. Global production of marine bivalves. Trends and challenges. In Goods and Services of Marine Bivalves. Goods and Services of Marine Bivalves. Cham: Springer International Publishing, pp. 7 - 26. Available at: https://link.springer.com/chapter/10.1007/978-3-319-96776-9_2.
, 2019. Habitat- and species-mediated short- and long-term distributional changes in waterbird abundance linked to variation in European winter weather. Diversity and Distributions, 25(2), pp.225 - 239. Available at: https://onlinelibrary.wiley.com/doi/10.1111/ddi.12855.
, 2019. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020, pp.158–189. Available at: http://www.mccip.org.uk/media/2011/08_coastal_geomorphology_2020.pdf.
, 2019. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020, pp.158–189. Available at: http://www.mccip.org.uk/media/2011/08_coastal_geomorphology_2020.pdf.
, 2019. Impacts of ocean deoxygenation on fisheries. In Ocean deoxygenation: everyone’s problem. Ocean deoxygenation: everyone’s problem. Gland, Switzerland: IUCN, pp. 519 - 544. Available at: https://portals.iucn.org/library/sites/library/files/documents/10%20DEOX.pdf.
, 2019. , 2019.
, 2019.
Investigating decadal changes in persistent organic pollutants in Scottish grey seal pups. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(S1), pp.86 - 100. Available at: https://doi.org/10.1002/aqc.3137.
, 2019. , 2019.
, 2019.
Monitoring long-term changes in UK grey seal pup production. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(S1), pp.24 - 39. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/aqc.3100.
, 2019. , 2019.