Literature
Found 289 results
Filters: First Letter Of Last Name is C [Clear All Filters]
Influence of Water Masses on the Biodiversity and Biogeography of Deep-Sea Benthic Ecosystems in the North Atlantic. Frontiers in Marine Science, 7, p.239. Available at: https://www.frontiersin.org/article/10.3389/fmars.2020.00239.
, 2020. Integrated monitoring of chemicals and their effects on four sentinel species, Limanda limanda, Platichthys flesus, Nucella lapillus and Mytilus sp., in Seine Bay: A key step towards applying biological effects to monitoring. Marine Environmental Research, 124, pp.92-105. Available at: https://doi.org/10.1016/j.marenvres.2016.10.009.
, 2017. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. In Integrated Mariculture: a Global review. Integrated Mariculture: a Global review. Rome: FAO , pp. 7 - 46. Available at: www.researchgate.net/publication/269996303_Integrated_multi-trophic_aquaculture_IMTA_in_marine_temperate_waters.
, 2009. , 2012.
, 2012.
, 2019.
Inter-species differences for polychlorinated biphenyls and polybrominated diphenyl ethers in marine top predators from the Southern North Sea: Part 1. Accumulation patterns in harbour seals and harbour porpoises. Environmental Pollution, 157, pp.437 - 444. Available at: http://www.sciencedirect.com/science/article/pii/S0269749108004764.
, 2009. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions, 6(4), pp.411-416. Available at: https://link.springer.com/article/10.1023/B:BINV.0000041555.29305.41#citeas.
, 2004. JNCC Pressure Mapping Methodology. Physical Damage (Reversible Change) – Penetration and/or disturbance of the substrate below the surface of the seabed, including abrasion, Peterborough: Joint Nature Conservation Committee. Available at: https://hub.jncc.gov.uk/assets/5874e65d-324b-4f6b-bce2-bfc7aab5ba7f.
, 2016. JNCC Pressure Mapping Methodology. Physical Damage (Reversible Change) – Penetration and/or disturbance of the substrate below the surface of the seabed, including abrasion, Peterborough: Joint Nature Conservation Committee. Available at: https://hub.jncc.gov.uk/assets/5874e65d-324b-4f6b-bce2-bfc7aab5ba7f.
, 2016. JNCC Pressure Mapping Methodology. Physical Damage (Reversible Change) – Penetration and/or disturbance of the substrate below the surface of the seabed, including abrasion, Peterborough: Joint Nature Conservation Committee. Available at: https://hub.jncc.gov.uk/assets/5874e65d-324b-4f6b-bce2-bfc7aab5ba7f.
, 2016. A large and persistent carbon sink in the world’s forests. Science , 333(6045), pp.988-993. Available at: https://science.sciencemag.org/content/333/6045/988.abstract.
, 2011. A large and persistent carbon sink in the world’s forests. Science , 333(6045), pp.988-993. Available at: https://science.sciencemag.org/content/333/6045/988.abstract.
, 2011. , 2015.
, 2013.
, 2010.
Marine biological survey to establish the distribution of Priority Marine Features within the Clyde Sea area., Inverness: Scottish Natural Heritage. Available at: https://www.nls.uk/e-monographs/2013/437.pdf.
, 2013. , 2014.
The Marine Habitat Classification for Britain and Ireland Version 04.05., Peterborough: Joint Nature Conservation Committee . Available at: https://tethys.pnnl.gov/sites/default/files/publications/Connoretal2014.pdf.
, 2004. Marine Litter Within the European Marine Strategy Framework Directive. In Marine Productivity: Perturbations and Resilience of Socio-ecosystems. Marine Productivity: Perturbations and Resilience of Socio-ecosystems. 02/2015. Springer International Publishing. Available at: https://link.springer.com/chapter/10.1007/978-3-319-13878-7_10.
, 2015. Marine plankton: a practical guide to ecology, methodology, and taxonomy., Oxford: Oxford University Press . Available at: https://www.oxfordscholarship.com/view/10.1093/oso/9780199233267.001.0001/oso-9780199233267.
, 2017. Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy. Limnology and Oceanography Bulletin, 26(4), pp.120 - 121. Available at: https://doi.org/10.1002/lob.10199.
, 2017. Marine primary production in relation to climate variability and change. Annual Review of Marine Science , 3, pp.227–260. Available at: https://www.annualreviews.org/doi/10.1146/annurev.marine.010908.163917.
, 2011. Methylmercury Exposure and Health Effects in Humans: A Worldwide Concern. AMBIO: A Journal of the Human Environment, 36(1), pp.3 – 11. Available at: https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2.
, 2007. Microbial oceanography in a sea of opportunity. , 459(7244), pp.180 - 184. Available at: https://www.nature.com/articles/nature08056.
, 2009. The mineral resources of Scottish waters and the Central North Sea, Nottingham, UK: British Geological Survey. Available at: http://nora.nerc.ac.uk/id/eprint/502151/.
, 2013. , 2020.
Molecular identification of Didemnum vexillum Kott, 1982 from sites around the UK coastline. BioInvasions Records, 4(3), pp.171–177 . Available at: https://www.reabic.net/journals/bir/2015/3/BIR_2015_Graham_etal.pdf.
, 2015. , 2018.
Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter movements in a pelagic seabird. , 578. Available at: https://www.researchgate.net/publication/313815243_Multi-colony_tracking_reveals_spatio-Temporal_variation_in_carry-over_effects_between_breeding_success_and_winter_movements_in_a_pelagic_seabird.
, 2017. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter movements in a pelagic seabird. , 578. Available at: https://www.researchgate.net/publication/313815243_Multi-colony_tracking_reveals_spatio-Temporal_variation_in_carry-over_effects_between_breeding_success_and_winter_movements_in_a_pelagic_seabird.
, 2017. Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean. Global Biogeochemical Cycles, 30(2), pp.293 - 310. Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015GB005246.
, 2016. , 1998.
Mussel bed stock assessment for the Tain mussel fishery, Dornoch Firth., Edinburgh: Heriot Watt University.
, 2016. Mussel bed stock assessment for the Tain mussel fishery, Dornoch Firth., Edinburgh: Heriot Watt University.
, 2016. Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. J Plankton Res, 29(9), pp.757 - 767. Available at: https://academic.oup.com/plankt/article/29/9/757/1580681.
, 2007. A new merged dataset of global ocean chlorophyll a concentration with higher spatial and temporal coverage. Acta Oceanologica Sinica, 37(7), pp.118 - 130. Available at: https://link.springer.com/article/10.1007%2Fs13131-018-1249-6.
, 2018. , 1997.
, 1997.
Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 3, pp.1055–1061. Available at: https://pure.york.ac.uk/portal/en/publications/observed-and-predicted-effects-of-climate-change-on-species-abundance-in-protected-areas(f815d1d1-23fb-4446-96ff-262a634b5ee2)/export.html.
, 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 3, pp.1055–1061. Available at: https://pure.york.ac.uk/portal/en/publications/observed-and-predicted-effects-of-climate-change-on-species-abundance-in-protected-areas(f815d1d1-23fb-4446-96ff-262a634b5ee2)/export.html.
, 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 3, pp.1055–1061. Available at: https://pure.york.ac.uk/portal/en/publications/observed-and-predicted-effects-of-climate-change-on-species-abundance-in-protected-areas(f815d1d1-23fb-4446-96ff-262a634b5ee2)/export.html.
, 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 3, pp.1055–1061. Available at: https://pure.york.ac.uk/portal/en/publications/observed-and-predicted-effects-of-climate-change-on-species-abundance-in-protected-areas(f815d1d1-23fb-4446-96ff-262a634b5ee2)/export.html.
, 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 3, pp.1055–1061. Available at: https://pure.york.ac.uk/portal/en/publications/observed-and-predicted-effects-of-climate-change-on-species-abundance-in-protected-areas(f815d1d1-23fb-4446-96ff-262a634b5ee2)/export.html.
, 2013. Observed decline of the Atlantic meridional overturning circulation 2004-2012. Ocean Science, 10(1), pp.29-38. Available at: https://os.copernicus.org/articles/10/29/2014/.
, 2014. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population. PLoS ONE, 11(8), p.e0155448. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155448.
, 2016. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population. PLoS ONE, 11(8), p.e0155448. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155448.
, 2016. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications , 11. Available at: https://www.nature.com/articles/s41467-020-14474-y.
, 2020. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications , 11. Available at: https://www.nature.com/articles/s41467-020-14474-y.
, 2020.