Literature
CO2 STORage Evaluation Database (CO2 Stored). The UK's online storage atlas. Energy Procedia, 63, pp.5103 - 5113. Available at: http://www.sciencedirect.com/science/article/pii/S1876610214023558.
, 2014. , 2008.
, 2010.
, 2010.
, 2008.
Contrasting responses of male and female foraging effort to year-round wind conditions. The Journal of animal ecology, 84(6), pp.1490 - 1496. Available at: https://pubmed.ncbi.nlm.nih.gov/26283625.
, 2015. , 2015.
, 2020.
Continental Shelf-Wide Response of a Fish Assemblage to Rapid Warming of the Sea. , 21(18), pp.1565 - 1570. Available at: http://www.sciencedirect.com/science/article/pii/S0960982211008918.
, 2011. Contaminants in coastal waters of Norway-2016. Miljøgifter i norske kystområder 2016, Norwegian Institute for Water Research. Available at: https://www.miljodirektoratet.no/globalassets/publikasjoner/M856/M856.pdf.
, 2017. 2020.
Contaminant and biological effect data 1999-2018 for the National Performance Framework Clean Seas Indicator 2019 and Scotland's Marine Assessment 2020, Marine Scotland. Available at: https://data.marine.gov.scot/dataset/contaminant-and-biological-effect-data-1999-2018-national-performance-framework-clean-seas.
, 2020. , 2004.
, 2019.
Conservation of the native oyster Ostrea edulis in Scotland, Inverness: Scottish Natural Heritage. Available at: https://www.nature.scot/naturescot-commissioned-report-251-conservation-native-oyster-ostrea-edulis-scotland.
, 2007. , 2019.
, 2019.
, 2016.
Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecological Monographs, 89(3), p.e01366. Available at: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1366.
, 2019. Concentrations of chlorinated and brominated contaminants and their metabolites in serum of harbour seals and harbour porpoises. Environment International, 35(6), pp.842 - 850. Available at: http://www.sciencedirect.com/science/article/pii/S0160412009000531.
, 2009. Concentrations and patterns of environmental contaminants in marine mammals and their diet. Aberdeen: Robert Gordon University.
, 1999. The Complex Mixture, Fate and Toxicity of Chemicals Associated with Plastic Debris in the Marine Environment. In Marine Anthropogenic Litter. Marine Anthropogenic Litter. Cham: Springer International Publishing, pp. 117 - 140. Available at: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_5.
, 2015. Competition for the fish – fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES Journal of Marine Science, 75(3), pp.999 - 1008. Available at: https://academic.oup.com/icesjms/article/75/3/999/4616536.
, 2018. A Comparison of Plastic and Plankton in the North Pacific Central Gyre. Marine Pollution Bulletin, 42(12), pp.1297 - 1300. Available at: http://www.sciencedirect.com/science/article/pii/S0025326X0100114X.
, 2001. , 2015.
Community-wide decline in the occurrence of lesser sandeels Ammodytes marinus in seabird chick diets at a North Sea colony. Marine Ecology Progress Series, 600, pp.193–206. Available at: http://nora.nerc.ac.uk/id/eprint/520665/.
, 2018. , 2020.
, 2014.
Common diseases and parasites of fish in the North Atlantic: Training guide for identification. ICES Techniques in Marine Environmental Sciences, 19, p.27. Available at: https://www.oceanbestpractices.net/handle/11329/698.
, 1996. Combining in-situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland Channel. . Ocean Science, 9(4), pp.639–654. Available at: https://os.copernicus.org/articles/9/639/2013/.
, 2013. Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe-Shetland Channel. Ocean Science, 9, pp.639–654. Available at: https://www.ocean-sci.net/9/639/2013/.
, 2013. Combined bottom-up and top-down pressures drive catastrophic population declines of Arctic skuas in Scotland. Journal of Animal EcologyJournal of Animal EcologyJ Anim Ecol, 87(6), pp.1573 - 1586. Available at: https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.12890.
, 2018. Colonisation and modification of soft substratum habitats by the invasive marcoalga Sargassum muticum. . Marine Ecology Progress Series, 321, pp.87-97. Available at: https://www.int-res.com/abstracts/meps/v321/p87-97/.
, 2006. Coldwater reattachment of colonial tunicate Didemnum vexillum fragments to natural (eelgrass) and artificial (plastic) substrates in New England. Aquatic Invasions, 9(1), pp.105-110. Available at: http://www.aquaticinvasions.net/2014/AI_2014_Carman_etal.pdf.
, 2014. Coastal typologies: detailed method and outputs, Newcastle: Marine Management Organisation. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/312722/se_typologies.pdf.
, 2011. Coastal typologies: detailed method and outputs, Marine Management Organisation. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/312722/se_typologies.pdf.
2011. Coastal typologies: detailed method and outputs, Oxford Consultants for Social Inclusion (OCSI) with Roger Tym and Partners on behalf of the Marine Management Organisation (MMO). . Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/312722/se_typologies.pdf .
, 2011. CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophysical Research LettersGeophysical Research LettersGeophys. Res. Lett., 47(12), p.e2019GL086075. Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL086075.
, 2020. The climatology of the North Atlantic. Progress in Oceanography, 36, pp.1 - 44. Available at: http://www.sciencedirect.com/science/article/pii/0079661195000135.
, 1995. Climate-induced effects on the meroplankton and the benthic-pelagic ecology of the North Sea. Limnology and Oceanography, 53, pp.1805–1815. Available at: https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lo.2008.53.5.1805.
, 2008. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Global Change Biology, 26(4), pp.2181 - 2202. Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14996.
, 2020. Climate-driven change in the North Atlantic and Arctic oceans can greatly reduce the circulation of the North Sea. Geophysical Research Letters, 45(21), pp.11,827 - 11,836. Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078878.
, 2018. Climate sensitivity and the rate of ocean acidification: future impacts, and implications for experimental design. ICES Journal of Marine Science, 74(4), pp.934 - 940. Available at: https://academic.oup.com/icesjms/article/74/4/934/2667504.
, 2017. Climate, copepods and seabirds in the boreal Northeast Atlantic – current state and future outlook. Global Change Biology, 19, pp.364-372. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12072.
, 2013. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology, 14(11), pp.2489 - 2500. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2008.01666.x.
, 2008. , 2020.
Climate change and marine vertebrates. Science, 350(6262), p.772. Available at: http://science.sciencemag.org/content/350/6262/772.abstract.
, 2015. Climate change and marine mammals. Journal of the Marine Biological Association of the United Kingdom, 90, pp.1483–1487. Available at: https://www.cambridge.org/core/journals/journal-of-the-marine-biological-association-of-the-united-kingdom/article/climate-change-and-marine-mammals/D3FD5CCBE2D581A08D68388E07739F27.
, 2010. Climate change and marine conservation: Coral Gardens MCCIP Report Cards, p.8. Available at: http://www.mccip.org.uk/climate-smart-adaptation/climate-change-and-marine-conservation/.
2018.